
Dear Editor and Reviewers: 
 
My coauthors and I thank you for you thoughtful insight into how we can improve our 
manuscript, which is now entitled, “Comparison of Generalized Non-Data-Driven Lake and 
Reservoir Routing Models for Global-Scale Medium-Range Hydrologic Forecasting of Reservoir 
Outflow at Diurnal Time Steps”.  Generally, our edits have improved the flow of ideas and 
clarified the discussion and insights gained from this analysis.  
 
Specific improvements that have been made include: 

1. The authors updated the manuscript to refer to the Döll Method and Hanasaki Method as 
D03 and H06, respectively.   

2. The authors adapt the title and manuscript to better reflect the application of the paper to 
hydrologic forecast models at daily time steps. 

3. The authors evaluated Masaki et al. (2017) to determine if their results at reservoirs along 
the Missouri River were comparable to those in this study.  Because the study is more 
focused on intermodel comparison at seasonal time steps, there is little overlap with the 
intentions of our study and no comparison of the manuscripts deemed necessary by the 
authors. 

4. We have verified that all inflow estimates in our reservoir sample are a back calculated 
inflow. 

5. To better describe why a back calculated inflow was used in our study, Section 2.1 now 
describes why a back calculated inflow was chosen in this study.  Section 3.7 describes 
the limitations of this study, based upon the use of a back calculated inflow.   

6. To better describe our study’s objectives, clarification of why the D03 and H06 methods 
where chosen was provided in Section 1.2. 

7. The manuscript was altered in Section 3.8 to better describe that non-data-driven methods 
can be linked to statistical fitting techniques and remote sensing data. 

8. We investigate the reservoir routing methodology employed by Wada et al. (2014) but do 
not include this method because we deem it to be too simple and too similar to the Döll et 
al. (2003) approach.  Section 1.2 describes this investigation in the manuscript.   

9. In Section 1.2, we alter the manuscript to more clearly describe the rationale for 
comparing D03 and H06. 

10. Units and dimensions were added to the descriptions of the equations in Section 2.1 
11. Added the reference Macian-Sorribes and Pulido-Velazquez (2017) to the listed 

references. 
12. A statement was added to Section 3.1 to explain why RMSE decreases and R-Squared 

and KGE increase. 
13. Figure 6, Figure 7, Figure 8, Figure 9,  and Figure 10 were altered to reference discharge 

as m3 s-1. 
14. We have reviewed the document for spelling and grammatical errors. 
15. A stacked proportional bar graph (Figure 4) and analysis were added to Section 3.1 to 

better describe the improvement that D03 provides over the baseline and H06 
simulations. 

16. We added verbiage to Section 2.2 make it clear in the manuscript that the reservoirs in 
this study are almost exclusively multipurpose and perform more than flood control.  



17. An analysis of best performing k_rd in relation to IR was conducted and no significant 
statistical or visual relationship was found. 

18. The authors found only one instance where model accuracy was substantially worse than 
the baseline condition.  We consider this to be an outlier in our study because this 
reservoir behaves much differently than reservoirs of a similar IR and average inflow.  
We note this in Section 3.1 of the manuscript. 

19. In Section 3.7, we added a discussion concerning the lack of diversity in reservoir 
operational purposes in our study’s sample and how this inhibits the study’s ability to 
determine the effect purpose has on reservoir routing performance. 

20. Clarification was added to Figure 2, Figure 3, and Figure 5 to ensure that the description 
captured that these simulations depicted describe the best performing form of D03 and 
H06. 

 
We look forward to your feedback on this version of the manuscript.  Thank you again for your 
time and patience. 
 
Best, 
Joseph Gutenson  
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Abstract: Large-scale hydrologic simulations forecasts should account for attenuation 12 
through lakes and reservoirs when flow regulation is present. GGlobally generalized 13 
methods for approximating outflow are required since but must contend with operational 14 
reservoir operation is complexity and a dearth of information on dam characteristics at 15 
global spatial scales.   and specific real-time release information is typically unavailable at 16 
global scales. There is currently no consensus on the best approach for approximating 17 
reservoir release rates in large spatial scale hydrologic forecasting, particularly at diurnal 18 
time steps. This research compares two parsimonious reservoir routing methods at daily 19 
steps;. The methods considered are those proposed by Döll et al. (2003) and Hanasaki et 20 
al. (2006). These reservoir routing methods have been previously implemented in large-21 
scale hydrologic modeling applications and have typically been typically evaluated 22 
seasonally., requiring minimal data so as not to limit their usage. The methods considered 23 
are those proposed by Döll et al. (2003) and Hanasaki et al. (2006). This paperThese routing 24 
methods are  compareds the two methodologies across 60 reservoirs operated from 2006-25 
2012 by the U.S. Army Corps of Engineers. The authors vary empirical coefficients for 26 
both reservoir routing methods as part of a sensitivity analysis. The Döll methodmethod 27 
proposed by  Döll et al. (2003) outperformed generally outperformed the Hanasaki 28 
methodthat presented by Hanasaki et al. (2006) at a daily time step, improving  and 29 
improved model skill over most in most cases beyond run-of-the-river conditions. The 30 
temporal resolution of the model influences models performances. The optimal model 31 
coefficients varied across the reservoirs in this study and model performance fluctuates 32 
between wet years and dry years, and for different configurations such as dams in series. 33 
Overall, the method proposed by Döll et al. (2003) the Döll and Hanasaki Methods could 34 
enhance large scale hydrologic forecasting, but can be subject to instability under certain 35 
conditions.    36 
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1. Introduction 37 

1.1. Importance of Dams in Hydrologic Simulations 38 

Improvements in numerical weather prediction, the increasing abundance of 39 

computational power, and greater precision of remotely sensed observations make global 40 

hydrologic forecasting and flood warning systems increasingly feasible (Alfieri et al., 41 

2013; Wu et al., 2014; Emerton et al., 2016; Salas et al., 2017). Lack of information 42 

concerning anthropogenic influences on runoff is a major deficiency of large-scale flood 43 

forecasting systems (Emerton et al., 2016). Reservoir operations tend to distort natural flow 44 

patterns, effectively redistributing surface water spatially and temporally (Zhou et al., 45 

2016). Impoundments significantly influence the downstream flow regime at small and 46 

large spatial scales (Batalla et al., 2004; Magilligan and Nislow, 2005). Over half of the 47 

world’s large river systems are now substantially altered by dams (Nilsson et al., 2005) 48 

resulting in a seven-fold increase in water storage within the global river system 49 

(Vörösmarty et al. 1997). Furthermore, the cumulative alterations from global reservoir 50 

impoundments are so significant that it has been suggested that they could buffer global 51 

sea-level rise (Chao et al., 2008).     52 

 Dams primarily impact the hydrologic cycle by changing the magnitude and timing 53 

of the discharges downstream (Haddeland et al., 2006; Döll et al., 2009; Biemans et al., 54 

2011; Wu et al., 2014; Zajac et al., 2017), often with the specific intent to mitigate 55 

hydrologic extremes (i.e., floods and droughts) (Zajac et al., 2017). Dams reduce peak 56 

discharges by roughly a third on average while dampening the daily variation by a similar 57 

amount (Graf, 2006). In hydrologic forecasting, accuracy of the timing and magnitude of 58 

hydrologic extremes is fundamentally important to the usefulness of the forecasts. 59 



 

 

Therefore, the significant impacts from dams make inclusion of reservoir operations, or 60 

reservoir routing, critical in large scale hydrologic flood forecasting.   61 

 At continental scales, no current forecasting operations systematically account for 62 

dam and reservoir influences (Emerton et al., 2016). Integrating dam operations within 63 

large-scale hydrologic modelslarge-scale river routing and flood forecasting is shown to 64 

improves model performance downstream of reservoir locations (Snow et al., 2016; 65 

Tavakoly et al., 2017; Salas et al., 2017; Zajac et al., 2017). This is often not feasible at 66 

large-scales since there may be multiple entities responsible for regulating flow, 67 

particularly with respect to transboundary waters. Among other things, operational 68 

knowledge, site-specific rule curves, reservoir uses, and local decision-making practices at 69 

each individual project dictate dam releases. Thus, dam operations are typically non-linear, 70 

complex processes, driven by anthropogenic and environmental influences. This makes 71 

generalizing reservoir operations difficult, particularly in the context of predicting dam-72 

induced hydrologic responses at diurnal or sub-diurnal time step. Heuristically accounting 73 

for dams within existing routing schemes should improve flood forecast results when 74 

scheduled releases are not readily known. 75 

 Reservoir routing methodologies are generally divided into the two basic 76 

categories: data-driven and non-data-driven. Machine-learning, artificial intelligence 77 

(Coerver et al., 2017; Macian-Sorribes and Pulido-Velazquez, 2017; Ehsani et al., 2016; 78 

Mohan and Ramsundram, 2016; Ticlavilca and McKee, 2011; Chaves and Chang, 2008; 79 

Khalil et al., 2005), and remote sensing (Bonnema et al., 2016; Yoon and Beighley, 2015) 80 

are examples of data-driven approaches. Such data-driven methodologies can be 81 

effectively applied to dynamic non-linear systems, particularly when the governing 82 



 

 

influence on the system does not follow any particular deterministic model. These types of 83 

approaches require training data or specific knowledge of a particular reservoir to 84 

effectively parameterize and apply them. This is often an insurmountable limitation for 85 

data-driven approaches. For that reason, the focus of this paper is on non-data-driven 86 

reservoir routing methodologies as an incremental improvement over schemes that 87 

effectively neglect dams when information is scarce.  88 

1.2. Non-Data-Driven Reservoir Storage and Outflow Simulation 89 

Non-data-driven approaches to reservoir routing rely on conceptualizing reservoir 90 

responses without explicitly observing the actual reservoir operations. The optimal method 91 

for a given application depends on a balance between complexity and available information 92 

(De Vos, 2015). Therefore, this manuscript focuses on selecting for parsimony. 93 

Existing non-data-driven reservoir models range from simple approaches to 94 

sophisticated methods. Solander et al. (2016) showed that temperature-based schema best 95 

fits the modeling of discharge, 𝑄௢௨௧,௧. The Solander et al. (2016) rule is driven by 96 

temperature shifts at each model time step above and below the mean temperature. The 97 

Solander et al. (2016) method indicates that temperature is the main proxy governing 98 

reservoir release, due to the assumption that seasonality drives agricultural production and 99 

reservoir operation. However, the Solander et al. (2016) study focuses on long-term 100 

climatic forecasting. Diurnal temperature variations will not likely describe day-to-day 101 

reservoir operations. Zhao et al., (2016) developed a reservoir routing scheme based on 102 

reservoir stage and storage rules. However, real-time insights related to current reservoir 103 

stages throughout a region can involve considerable remotely sensed information. The 104 

stage information must then be related somehow to storage volume making this a much 105 



 

 

more a data-driven process. Burek et al. (2013) also developed a non-data-driven approach 106 

to reservoir routing which was implemented by Zajac et al. (2017). This approach is built 107 

into the LISFLOOD model. The Burek et al. (2013) model requires a number of 108 

assumptions about storage capacity limits and naturalized streamflow thresholds. For 109 

example, the minimum, normal, and maximum storage are assumed to be 0.1, 0.3, and 110 

0.97, respectively.  To maintain the objective of investigating parsimonious models, the 111 

approach by Burek et al. (2013) was not included in this evaluation.  112 

Döll et al. (2003), Wada et al. (2014), and  and Wisser et al. (2010) were presented 113 

non-data-driven methods to simulate reservoirs operation that can be considered as simple 114 

approaches.    115 

The Wisser et al. (2010) method follows a simple, rule-based approach to define 116 

the reservoir outflow at each time step (𝑄௢௨௧,௧). The rule that Wisser et al. (2010) enacts is 117 

that when the inflow at each model time step moves above or and below the long-term 118 

average inflow, the behavior of the reservoir release changes. De Vos (2015) suggested 119 

that this model is too simple to effectively model reservoir outflow. In a similar vein, Wada 120 

et al. (2014) introduced a daily estimate of reservoir outflow that is simply the product of 121 

the proportion of available reservoir storage and daily inflow, which wecan be consider to 122 

be too simplistic to estimate reservoir outflow since asinflow no coefficient is introduced 123 

into the simulation to account for reservoir heterogeneity.   124 

Döll et al. (2003) derived a natural lake reservoir routing scheme. Hence, this but 125 

this methodologythat can be applied is applicable to man-made reservoirs and natural water 126 

bodies. The Döll et al. (2003) methodology found genesis in the reservoir outflow model 127 

proposed by Meigh et al. (1999). Meigh et al. (1999) proposed a simple reservoir release 128 



 

 

methodology, which intended to mimic outflow at reservoirs from a theoretical rectangular 129 

weir. A more substantive version of the Meigh et al. (1999) method is formulated by Döll 130 

et al. (2003). Despite its simplicity, the Döll et al. (2003) method demonstrated good 131 

performance compared to several other routing methods previously mentioned (De Vos, 132 

2015).   The form of the Döll et al. (2003) equation is similar to that proposed by Wada et 133 

al. (2014).  However, the Döll et al. (2003) methodology incorporates a coefficient that can 134 

incorporate a portion of reservoir heterogeneity.   135 

Compared to the aforementioned methods, Hanasaki et al. (2006) derived a demand 136 

driven approach to reservoir routing, which can be considered as a complicated non-data-137 

driven reservoir routing model. They distinguished between irrigation and non-irrigation 138 

reservoirs and offered two distinct algorithms for each. Water demands for irrigation, 139 

domestic, and industrial uses are considered in the irrigation reservoirs, whereas the 140 

releases from non-irrigation reservoirs are simply a ratio proportion of inflow. 141 

De Vos (2015) also proposed a within-year/over-year reservoir routing method 142 

comprised of two systems of equations, which they was considered a non-data-driven 143 

approach. Within-year reservoir operations are driven by yearly fill and release cycles and 144 

typically have a small storage capacity relative to their total annual demand. Thus, water 145 

accumulates during wet periods and decreases during dry periods. Over-year reservoir 146 

operation, on the other hand, is based on long-term, multi-year drawdowns. Over-year 147 

reservoirs have storage which is sufficiently large, relative to inflow, so that yearly cycles 148 

of water storage and release are not necessary (Adeloye and Montaseri, 2000; Vogel et al., 149 

1999). De Vos (2015) compared his methodology to the Hanasaki et al (2006), Döll et al. 150 

(2003), and Neitsch et al. (2011).  The De Vos (2015) over-year simulation assumes 151 



 

 

knowledge of the mean and standard deviation of reservoir storage and is still too data-152 

driven for the purposes of this study.   153 

The goal of this research is to evaluate reservoir routing schemes that are 154 

parsimonious and align with available information for use in diurnal hydrologic forecasting 155 

across a global domain. TConsidering these research aims, the non-data driven reservoir 156 

routing methods developed by Döll et al. (2003) (referred to as D03) and Hanasaki et al. 157 

(2006) (referred to as H06) , which will be referred to as Döll and Hanasaki methods, were 158 

considered in this research for several reasons.  159 

The Döll et al. (2003)D03 and Hanasaki et al. (2006) H06 Both models require 160 

minimal input data to implement;: . They coconsideringnsider only reservoir inflow, 161 

average inflow,  and storage volume characteristics, i.e. current, minimum, and maximum 162 

storage volume that can be estimated when detailed reservoir information is not available. 163 

Each of these variables are available in existing datasets, such as the Global Reservoir and 164 

Dam (GRanD) database (Lehner et al., 2011) or can be generated produced using climate 165 

reanalysis data (Snow et al., 2016). Other non-data-driven methods require data inputs that 166 

are not globally available or produced within the hydrologic simulation (De Vos, 2015; 167 

Zhao et al., 2016; Burek et al., 2013; Zajac et al., 2017).  For example, the Global Flood 168 

Awareness System (GloFAS) is the only existing, operational flood forecasting system that 169 

accounts for reservoirs at continental to global spatial extents.  However, the reservoir 170 

routing component of GloFAS requires operational assumptions be made because of a lack 171 

of global reservoir operational records (Zajac et al., 2017). D03 and H06 do not require 172 

that these assumptions be made because of the minimal inputs which they require. Thus, 173 



 

 

D03 and H06 meet the requirements of being both parsimonious with respect to available 174 

reservoir information. 175 

The Döll et al. (2003) and Hanasaki et al. (2006) methodsD03 and H06 also provide 176 

enough complexity to account for a portion of the model complexity inherent in reservoir 177 

operations.  De Vos (2015) does not employ the reservoir routing approach of Wisser et al. 178 

(2010) because De Vos (2015) contends that this method is overly simplistic.  The approach 179 

taken by Wada et al. (2014) is similar to D03 but represents reservoirs with similar inflow 180 

and storage characteristics homogeneously.   181 

Furthermore,Additionally, both models Döll et al. (2003) (hereafter referred to as 182 

D03) and Hanasaki et al. (2006) (hereafter referred to as H06) D03 and H06methods  have 183 

been implemented in large-scale hydrologic models. The Döll methodD03 was used in the 184 

WaterGAP model and the application of the Hanasaki methodH06 was implemented in the 185 

TRIP model by the same authors.   The main difference in this evaluation and previous 186 

evaluations (i.e., Hanasaki et al., 2006; Masaki et al., 2017) of these reservoir routing 187 

schemes is that this research evaluates model performance at a diurnal time step.   188 

The aim of this study is to assess non-data-driven reservoir routing methods that 189 

are parsimonious and align with available information for use in hydrologic forecasting 190 

schemes applicable across the global domain at diurnal time steps.  Considering these 191 

research aims, the non-data driven reservoir routing methods developed by Döll et al. 192 

(2003) and Hanasaki et al. (2006) were considered.  193 

The Döll and Hanasaki methods were found to be sufficiently parsimonious for 194 

wide-scale implementation. The following research questions are addressed with respect 195 

to the two chosen D03 and H06 approaches: (1) How well do the selected chosen reservoir 196 



 

 

routing models improve outflow estimates relative to simulation of naturalized flow (i.e. 197 

neglecting dams altogether)? (2) How do reservoir routing coefficients affect model 198 

performance? (3) How does the time step affect model performance and stability? This is 199 

a critical point for the current regional- to continental-scale forecasting schemes that 200 

operate at daily , or sub-daily , time steps. (4) How sensitive are the reservoir routing 201 

schemes to various real-world dam operations and climate variability?  202 

To achieve the researchachieve research objectives of the study, reservoir data 203 

including daily inflow and outflow from 2006-2012, for 60 U.S. Army Corps of Engineers 204 

(USACE) reservoirs were used to evaluate the reservoir routing schemes. The data were 205 

obtained from nine USACE districts: Pittsburg, Nashville, St. Paul, Rock Island, Omaha, 206 

Tulsa, Sacramento, Los Angeles, and Vicksburg. The selected dams are representative of 207 

a wide range of reservoir sizes, flow regimes, and climatologic settings but are 208 

predominately managed for flood control. The results of this analysis will benefit readers 209 

in determining if the reservoir routing models implemented within existing,  large-scale 210 

hydrologic models forecasts adequately represent reservoir effects.   211 

2. Methodology 212 

2.1. Simulation Specifications 213 

The storage ratio (Vogel et al., 1999) or Impoundment Ratio (impoundment ratio) 214 

is an important metric in previous works examining generalizing reservoir operation ( by 215 

De Vos,  (2015);  and Hanasaki et al., (2006)). The impoundment ratio is described as 216 

follows: 217 

 218 
𝐼𝑅 ൌ  ሺௌ೘ೌೣିௌ೘೔೙ሻ

ொ೔೙∗଼଺ସ଴଴∗ଷ଺ହ
         (1) 219 



 

 

 220 
where 𝑆௠௔௫ and 𝑆௠௜௡ are the maximum and minimum volumes of the reservoir’s active 221 

storage [m3], and 𝑄௜௡ is the mean annual inflow to the reservoir [m3s-1]. 222 

A higher impoundment ratio indicates that the capacity of the reservoir is large 223 

relative to mean inflows, while the opposite is true of low IR values.  De Vos (2015) 224 

considered IR values greater than unity “large” reservoirs, as they are capable of storing 225 

the average yearly volume of water flowing into them. To utilize the Hanasaki methodH06, 226 

the release coefficient (𝑘௥) needs to be determined. 227 

𝑘௥ ൌ
ௌ್೐೒೔೙
ఈௌ೘ೌೣ

          (2) 228 

 229 
where 𝑆௕௘௚௜௡ is the storage [m3] at the beginning of eachof the each year and 𝛼 is a 230 

dimensionless coefficient, which was set to 0.85 in the Hanasaki et al. (2006) study. In the 231 

current study, the 𝛼 parameter was varied from 0.45-0.95 by increments of 0.10 and solve 232 

𝑘௥ for each 𝛼 value.  233 

Outflow is the quantity of most interest for hydrologic flood forecasting because 234 

these forecasts gthese simulations generally occur over a relatively short 0-10 day lead 235 

time. The Hanasaki MethodH06 relates outflow based on the incoming flow. In this study, 236 

only the non-irrigation methodology from the Hanasaki MethodH06 was used to simulate 237 

reservoir outflow at each time step (𝑄௢௨௧,௧) since one cannot assume seasonal irrigation 238 

demands will be known globally. Further, the primary purpose of selected reservoirs 239 

selected in this study is not irrigation. Hanasaki the H06 method estimates outflow as 240 

follows: 241 

 242 

𝑄௢௨௧,௧ ൌ  ൝
𝑘௥𝑄௜௡,௧                                                                 ሺ𝐼𝑅 ൌ 0.5ሻ

ሺூோ
଴.ହ
ሻଶ𝑄௜௡,௧ ൅  𝑄௜௡,௧ ൜1 െ ቀ

ூோ

଴.ହ
ቁ
ଶ
ൠ                       ሺ0 ൏ 𝐼𝑅 ൏ 0.5ሻ

 (3) 243 

Formatted: Superscript



 

 

 244 
where 𝑄௜௡,௧ is the inflow [m3s-1] at time t and 𝑘௥ is the release coefficient which is 245 

calculated based on Equation 2. The 0.5 threshold value for IR is an empirical condition 246 

derived by Hanasaki et al. (2006).  247 

Unlike Hanasaki methodH06, the Döll methodD03 relates outflow (𝑄௢௨௧,௧) to 248 

current available storage capacity of the reservoir:   249 

𝑄௢௨௧,௧ ൌ  ௞ೝ೏
௱௧
ሺ𝑆௧ െ 𝑆௠௜௡ሻ

ሺௌ೟ିௌ೘೔೙ሻ

ሺௌ೘ೌೣିௌ೘೔೙ሻ

ଵ.ହ
      (4) 250 

 251 
Where Döll empirically derives the release coefficient, 𝑘௥ௗ = 0.01, 𝛥𝑡 is the simulation 252 

time step (s), and 𝑆௧ is the current volume of storage [m3 s-1] at time “t”.  For this 253 

studyanalysis of the Döll methodD03ology, 𝑘௥ௗ was varied usingat values of 0.01, 0.02, 254 

0.04, 0.06, 0.08, 0.10, 0.20, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90 in this study. The results 255 

for the sensitivity analysis are discussed in the section 3.3. 256 

The sensitivity analysis of 𝑘௥�� and 𝑘௥ௗ  ��� can provide useful information on 257 

how coefficients may vary based on geographical and reservoir characteristics such as the 258 

impoundment ratio. The two methods were evaluated and results compared to actual 259 

outflow records provided by the USACE Districts. Two approaches were used to evaluate 260 

model performances: hydrograph assessment of daily and monthly reservoir outflow and 261 

statistical evaluation. Tthe statistical evaluation was performed for daily and monthly 262 

averaged simulated results vs. observations using the Kling-Gupta efficiency (KGE, Gupta 263 

et al., 2009), coefficient of determination (R-Squared), and root mean square error 264 

(RMSE). The KGE value ranges from negative infinity to one. Four levels of performance 265 

were defined for KGE in this study (Tavakoly et al., 2017): poor performance (KGE < 0), 266 

acceptable (0 < KGE < 0.4), good (0.4 < KGE < 0.7), and very good (0.7 < KGE). 267 
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Goodness-of-fit values were evaluated to compare simulated discharge to the actual 268 

outflow records provided by the USACE Districts. These are indicators of how well the 269 

models perform. The same goodness-of-fit values are calculated to compare actual 270 

discharge with observed inflow to assess baseline performance. The baseline condition 271 

represents the treatment of reservoir outflow as naturalized, altogether neglecting reservoir 272 

operations. Thus, the baseline condition is that inflow into the reservoir equals outflow 273 

from the reservoir.  To be viable, the reservoir routing scheme should improve results over 274 

the baseline condition in virtually all cases. 275 

A true directly measured observed daily inflow is not available for most nearly all 276 

reservoirs, including those maintained by the USACE.  There are two ways that one can 277 

acquire a daily reservoir inflow; estimated using a streamflow model (as in Masaki et al., 278 

2017; Zajac et al., 2017) or use a estimated using a back calculated inflow based on the 279 

known dischargederived from observed reservoir outflow and observed changes in 280 

reservoir storage fluctuation (as in De Vos, 2015).  The authors have chosen to utilize a 281 

back calculated inflow because this methodology inherently accounts for all other 282 

withdraws from the reservoir, such as irrigation, evapotranspiration, seepage, etc.  This 283 

allows the study to focus exclusively on the reservoir routing methodology.  utilized with 284 

no need to.  This is also the reason that we do not the need to account for such withdraws. 285 

In fact, that in this study; as this would be double counting withdrawals from the reservoir.   286 

 287 

2.2. Study Area 288 

The model tests and evaluations were conducted on 60 reservoirs in the United 289 

States maintained by the U.S. Army Corps of Engineers (USACE).  Figure 1 illustrates 290 



 

 

reservoirs used in this study. The primary purpose of 43 of the reservoirs are flood control, 291 

six are hydroelectric, four are recreation, three are water supply, two are classified as other, 292 

one is irrigation, and one is a fish and wildlife pond. Despite most reservoirs in the sample 293 

being primarily purposed as flood control reservoirs, only three of these reservoirs are 294 

exclusively purposed for flood control.  Table 1 describes pertinent characteristics of each 295 

reservoir in this analysis.  296 

 297 

Figure 1. USACE districts and location of reservoirs in this study. 298 
 299 
Table 1.  Select statistical characteristics of reservoirs analyzed in this study. 300 
Characteristic	 Range	 Mean	 Standard	

Deviation	
Minimum	
Storage	(m3	*	
106‐6MCM)	

0 - 12,377 827 2,553 

Maximum	
Storage	(m3	*	
10‐6MCM)	

25 - 32,070 2,695 6,184 

Annual	Inflow	
(m3	s‐1cms)	

0.64 - 780 118 202 

Annual	
Outflow	(m3	s‐
1cms)	

0.66 – 776 113 195 

Impoundment	
Ratio	

0.03 -15.50 1.96 2.33 
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 301 

3. Results and Discussion 302 

3.  This section describes reviews the overall results of the study.  There is 303 

significant improvement in skill over the baseline run-of-the-river condition (the use of 304 

inflow as an estimate of outflow) when the optimal best D03 coefficient is chosen.  305 

Because D03 tends to outperform the baseline. and H06 generally mirrors the results of 306 

the baseline. For this reason tbeyond the initial review of the results, the discussion 307 

largely focuses on D03.  The authors examine the distribution of best fitting 308 

𝑘௥ௗ  ���values.  We discuss how dam systems, annual variabilitywet and dry years, and 309 

simulation time step can influence the capability of D03 to estimate reservoir outflow.  310 

The authors also discuss the potential for numeric instability in D03 simulations and offer 311 

an initial solution to this instability.  We also provide an overview of the limitations of 312 

this study and suggested future work. 313 

3.1. Overall Model Performances 314 

The goodness-of-fit metrics were calculated for each reservoir in the study. 315 

Observed inflow is compared with observed outflow to establish a benchmark used to show 316 

whether implementing the two non-data driven reservoir routing schemes improves 317 

estimates for reservoir outflow over the use of unregulated flow as the reservoir outflow 318 

estimate  simply treating as unregulated flow. Figure 2 illustrates the comparison of skill 319 

metrics between baseline (the use of inflow as an estimate of outflow) and the use of D03 320 

the Döll and Hanasaki methodsH06 to simulate outflow. The KGE, R-Squared, and RMSE 321 

for the Döll D03 and Hanasaki methodsH06 in Figure 2 represent the best fit results from 322 

the sensitivity study. Data points in Figure 2 that fall below the dashed line represent 323 
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instances where KGE, R-Squared, and RMSE are lower for the reservoir routing method 324 

compared to the baseline. Data points falling above the dashed line indicate instances 325 

where higher KGE, R-Squared, and RMSE were obtained than the baseline for this study. 326 

The Hanasaki MethodH06 tends to show produce minimal utility over the baseline 327 

scenario. In general, the Hanasaki MethodH06 does not appear to make outflow estimates 328 

worse. Estimates that have acceptable KGE values in the baseline scenario tend to produce 329 

acceptable results using the Hanasaki MethodH06. On the other hand, Figure 2 illustrates 330 

that the Döll MethodD03 generally tends to increase KGE and R-Squared, and with this 331 

increase in goodness-of-fitaccuracy, decrease RMSE.  Thus, the general conclusion is that 332 

selecting the optimum Döll D03 release coefficient will ultimately produce an improved 333 

estimate of reservoir outflow compared to the baseline.  Generally, the Hanasaki 334 

MethodH06 will produce an estimated reservoir outflow that performs similarly to the 335 

baseline scenario.     336 
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 337 

Figure 2. Scatter plots of skill metrics between the use of daily observed inflow as outflow (Baseline) and 338 
simulated outflow from best performing D03 and H06 simulations.  The dashed line indicates the plane 339 
separating increased and decreased skill that results from using either reservoir routing method. 340 

Figure 3 is a geographic representation of the KGE values from the baseline 341 

scenario as well as the best performing implementation of the two routing models for each 342 

reservoir. In general, the Döll MethodD03 outperforms the baseline and Hanasaki 343 

MethodH06, particularly in the Tulsa and Pittsburg Districts. H06 tends to provide, at best, 344 

minimal improvement in accuracy over the baseline. 345 

Furthermore, the Döll MethodD03 tends to improve KGE values at nearly all 346 

reservoirs and tends to preserve high KGE values at locations where the baseline is already 347 

a good or very good estimator of outflow. Only one of the 60 reservoirs in this study 348 

demonstrates a significant reduction in accuracy when D03 is applied.  This reservoir, 349 

Martis Creek Dam in the Sacramento District, appears to be an outlier in the reservoir 350 

sample. Reservoirs with a similar IR and average inflow to Martis Creek Dam and in the 351 
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same USACE district tended to experience improvement in model skill with D03.  Overall, 352 

when the appropriate 𝑘௥ௗ  ���value is applied, D03 improves simulation results over the 353 

baseline. 354 

Figure 3a illustrates the wide range of reservoir operating conditions present in the 355 

study. The reservoir dataset contains reservoirs in which the outflow correlates poorly with 356 

the inflow regime as others that correlates well. Figure 3a also portrays significant 357 

geographic clustering where reservoirs in certain regions tend to be less correlated with 358 

inflow and other clusters where observed inflow and observed outflow correlate strongly. 359 

This could indicate that operations at these reservoirs may have a particularly regional 360 

context and may bias towards a particular reservoir routing scheme. However, it can be 361 

seen that correlation between observed inflow and observed outflow and geographic 362 

proximity of the reservoirs does not influence the implementation of either the DöllD03 or 363 

Hanasaki methodH06. Thus, the results of this research indicate no significant geographic 364 

constraints in the context of this study. 365 
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 366 

Figure 3. Spatial distribution of KGE comparing observed daily outflow to the each best estimate of outflow: 367 
a) observed inflow b) Döll Method simulated outflow, c) Hanasaki Method simulated outflow for all 368 
reservoirs in this study.  KGE values for the Döll Method and the Hanasaki Method are the maximum KGE 369 
from all coefficient treatments. 370 
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Figure 4 presents a proportional bar chart comparing baseline KGE and the highest 371 

KGE value for the range D03 and H06 coefficients.  This plot categorizes KGE 372 

performance using the same bins as Figure 3.  Figure 4 indicates that the best performing 373 

H06 simulation provides only marginal improvement over the baseline condition.  374 

However, the best performing instance of D03 eliminates all poor performing baseline 375 

conditions.  Nearly 87% of all best performing D03 simulations are considered to be good 376 

or very good at accurately capturing reservoir outflows, a 22% increase above the baseline 377 

simulation.  378 

 379 

Figure 4. Proportional bar chart comparing the baseline outflow estimation and the best KGE results for D03 380 
and H06. 381 

From multivariate comparison, a substantial negative relationship between two of 382 

the best fit results (KGE and R-Squared) and reservoir IR was found. Figure 54 illustrates 383 

this comparison between IR and each goodness of fit metric for the baseline, DöllD03, and 384 
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Hanasaki methodsH06. Based upon Figure 54, KGE in particular appears to non-linearly 385 

correlated to IR. A similar, yet less significant, negative relationship was found between 386 

IR and R-Squared. Little statistical correlation appears to occur between IR and RMSE. 387 

However, KGE and R-Squared values in Figure 54 indicate that the ability to predict 388 

outflow using the reservoir routing techniques applied in this study decreases with reservoir 389 

with high IR values. Proceeding sections investigate some of the possible reasons for this 390 

relationship between reservoir routing model performance and IR.   391 

 392 

Figure 54. Comparison of IR and best KGE, R-Squared, and RMSE from goodness of fit metrics for baseline, 393 
D03, and H06. 394 
 395 

3.2. Sensitivity Analysis of Models 396 

Because the Döll methodD03 consistently outperforms the Hanasaki methodH06 397 

at daily time steps, the Döll MethodD03 was selected for the sensitivity analysis at daily 398 
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time steps. The value of 𝑘௥ௗ coefficient was introduced as 0.01 in the Döll et al. (2003) 399 

study. In this study, 𝑘௥ௗ values were varied to obtain maximum KGE and R-Squared and 400 

minimum RMSE.  Figure 65 demonstrates the dispersion of 𝑘௥ௗ values which maximizeum 401 

the model skill to simulate reservoir routing for all selected reservoirs in this study. For all 402 

model skill metrics, 𝑘௥ௗ=0.90 tends to be the most prevalent 𝑘௥ௗ value that maximizes 403 

model skill. In only two of the 60 reservoirs (Sardis Dam and Enid Dam) 𝑘௥ௗ ൌ 0.01 404 

maximizes R-Squared and minimizes RMSE for the range of 𝑘௥ௗ coefficients. This 405 

research suggests that the 𝑘௥ௗ ൌ 0.01 is not necessarily the optimum coefficient to 406 

maximize model performance using a daily simulation time step.  407 

 408 

Figure 56. Bar charts of 𝑘௥ௗvalues that maximize KGE and correlation and minimize nRMSE. 409 



 

 

Investigating the linkage between dam characteristics and the best performing 𝑘௥ௗ  410 

yields no clear relationship. Evaluation of correlation between IRimpoundment ratio, 411 

coefficient of variation of inflow, ratio of average inflow to average outflow, and 412 

geographic location shows low correlation between each variable and best performing 𝑘௥ௗ 413 

value. However, the range of best performing 𝑘௥ௗ within this analysis and as demonstrated 414 

in Figure 56 suggests that the value is not constant across all reservoirs. Thus, as one 415 

implements the Döll MethodD03 within their hydrologic forecastingmodeling  framework, 416 

𝑘௥ௗ  may be adjusted to optimize bywhen comparing streamflow estimates to gage 417 

observations, like those curated by the Global Runoff Data Centre (GRDC, 2017), when 418 

available. 419 

3.3. Dam Systems and Reservoir Routing  420 

Reservoirs in the Vicksburg and Omaha districts were selected to evaluate 421 

performance of the Döll MethodD03 in environments where n complex drainage 422 

systemsreservoirs operate in a coordinated fashion.  We broadly refer to these as dam 423 

systems.  The case of the Vicksburg and Omaha district reservoirs highlights two distinct 424 

types of dam systems; one where the dams do not contribute inflow into one another but 425 

still coordinate their releases (in parallel) and another where upstream releases flow into 426 

downstream reservoirs (in series).  427 

A subset of the reservoirs in the Vicksburg District comprise the Yazoo Basin 428 

Headwaters Project.  Although these the reservoirs in the Yazoo Basin Headwaters Project 429 

are not directly connected, the reservoir operators coordinate operations in order to 430 

minimize flooding in the Louisiana Delta regions near the mouth of the Mississippi 431 

RiverMississippi’s Delta region (USACE, 2017; USACE, 1987). The operation of these 432 



 

 

reservoirs presents an interesting case in which the non-date driven models in this study do 433 

not characterize the nature of the dam releases well. The modeled results at four Vicksburg 434 

District dams yield only minimal improvement over unregulated (i.e. naturalized) flow at 435 

these reservoirs. The decrease in reservoir routing performance can be attributed to the 436 

large impoundment ratios at these dams indicating the reservoir storage is large relative to 437 

annual volume of inflow. 438 

The reservoirs of interest in the Vicksburg District include Arkabutla, Sardis, Enid, 439 

and Grenada. These dams function in parallel on tributaries of the lower Mississippi River, 440 

namely the Coldwater River, Little Tallahatchie River, Yocona River, and Yalobusha 441 

River, respectively. Together, these dams control flooding in northern Mississippi as part 442 

of the Yazoo Basin Headwaters Project (USACE, 2017; USACE, 1987). The Yazoo Basin 443 

reservoirs discharge directly into the heavily regulated Mississippi River (Meade and 444 

Moody, 2010). The reservoirs operate to ensure high releases are not concurrent with large 445 

flows upstream on the Mississippi to avoid devastating flooding to the low-lying Louisiana 446 

delta regions. This requires a high level of coordination throughout the Yazoo Basin 447 

Headwater Project and with regulation upstream on the Mississippi. Additionally, each of 448 

the Yazoo Basin reservoirs have a substantial impoundment ratio, ranging from 2.96-3.95. 449 

In other words, the reservoirs are capable of containing large volumes of water to mitigate 450 

downstream impacts. Thus, current pool levels and forecasted inflow at these four 451 

reservoirs do not substantially influence release decisions. The reservoirs also have the 452 

capacity to absorb large flood events. As a result, they do not seem to follow the same 453 

functional form as the majority of other dams in this study. 454 



 

 

Figure 76 from Sardis Dam in the Yazoo Basin Headwaters Project demonstrates 455 

the hydrograph comparing observed inflow and outflow and the modeled outflow that 456 

provides the highest KGE (Döll methodD03, krd=0.90) for the year 2008. Figure 76 457 

demonstrates that peak outflows do not tend to correspond to the time at which peak inflow 458 

occurs. In fact, release rates at Sardis Dam are at a minimum during the peak inflow time 459 

period.  This pattern repeats at each of the reservoirs in the Yazoo Basin Headwaters Project 460 

indicating that inflow and consumed storage are not substantial predictors of outflow 461 

timing at these reservoirs.  This exemplifies the lack of correlation between observed 462 

inflow and observed outflow at reservoirs within the Yazoo Basin Headwaters Project. 463 

 464 

Figure 76. Hydrographs of observed inflow and outflow versus simulated outflow with the highest KGE 465 
value at Sardis Dam (Döll method krd=0.90). KGE comparing observed Inflow and outflow = - 0.34; KGE 466 
comparing simulated and observed outflows= 0.095 467 
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 468 

Dams operating in series represent a specific case where compounding model error 469 

is a particular concern. USACE operates several large dams in series on the Missouri River. 470 

These include Fort Peck, Garrison, Oahe, Big Bend, Fort Randall, and Gavins Point within 471 

in the Omaha District (Lund and Ferreira, 1996). For this cascading system on the Missouri 472 

River, inflow appears to be a progressively stronger predictor of outflow from upstream to 473 

downstream. At the upstream end inflow the baseline yielded a KGE=0.43 at Fork Peck 474 

with a KGE=0.99 downstream at Gavins Point Dam. Figure 87 provides a comparison of 475 

observed inflow and outflow along with simulated outflow for Gavins Point Dam. The Döll 476 

methodD03 tends to provide a slightly better estimate of outflow compared with inflow, 477 

except in the instance of Big Bend Dam. At Big Bend Dam, the Hanasaki methodH06 478 

produces an estimate of outflow more consistent with observed outflow than either the Döll 479 

methodD03 or inflow alone. However, the differences are almost trivial considering how 480 

well inflow alone performed in this case. The Döll methodD03 is particularly accurate 481 

during peak inflow conditions, for example the large hydrologic event in mid-2011 at 482 

Gavins Point Dam in Figure 87. The performance of non-data driven approaches in this 483 

instance is promising since compounding errors are a large concern in this type of system. 484 

Other instances involving dams in series should be evaluated to determine find out if these 485 

findings hold more generally. 486 



 

 

 487 

Figure 8. Hydrographs of observed inflow and outflow versus simulated outflow with the highest KGE value 488 
at Gavins Point Dam (Döll method krd kr=0.04). KGE comparing observed Inflow and outflow = 0.99; KGE 489 
comparing simulated and observed outflows= 0.99. 490 
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 491 
RThe reservoir management is unique in both the Yazoo Basin Headwaters Project 492 

and the Missouri River. The operators of dams within the Yazoo Basin Headwaters Project 493 

tend to regulate outflow in a manner that is more in line with downstream conditions. The 494 

attention to downstream conditions is due mainly to the impact that downstream floods will 495 

have on the low-lying communities within the Louisiana Delta. The dams in the Yazoo 496 

Basin Headwaters Project have among the highest impoundment ratios, which inherently 497 

reduces the influence of upstream conditions in discharge decisions. The non-data driven 498 

approaches evaluated here do not account for downstream conditions and thus do not 499 

perform well in this instance, particularly where large impoundment ratios allow operators 500 

considerable leeway.  501 

 
Figure  SEQ Figure \* ARABIC 7. Hydrographs of observed inflow and outflow versus simulated 
outflow with the highest KGE value at Gavins Point Dam (Döll method kr=0.04). KGE comparing 
observed Inflow and outflow = 0.99; KGE comparing simulated and observed outflows= 0.99.  



 

 

On the other hand, the non-data driven approaches tend to perform well when 502 

inflow conditions dictate discharge decisions as we see on the Missouri River system. 503 

Reservoirs with smaller impoundment ratios are naturally more responsive to inflow 504 

requiring greater consideration for upstream conditions. The Döll MethodD03 showed 505 

relatively small improvement of outflow estimates compared to inflow as a predictor of 506 

outflow in the Yazoo Basin Reservoirs, while the method provided reasonable estimates in 507 

dam systems like the Missouri River system. Therefore, it can be inferred that the Döll 508 

methodD03 is more applicable for dam systems where reservoir management focuses on 509 

upstream hydrologic conditions, while large impoundment ratios may be indicative of 510 

reservoirs where downstream conditions are more likely to prevail. This would likely apply 511 

for the Hanasaki MethodH06 as well since that method links outflow to inflow more 512 

directly. 513 

3.4. Wet and Dry Year Comparison 514 

Figure 8 shows results for wet and dry years at two reservoirs considered to be 515 

representative of this study. The Döll MethodD03 provides a relatively good estimate of 516 

outflow at Union City Dam (Pittsburg District) in Figure 98a and Figure 98c.  D03 It 517 

performs relatively poorly at Arcadia Lake (Tulsa District) in Figure 98b and Figure 98d. 518 

In the case of Union City Dam, the Döll MethodD03 tends to produce a noticeable 519 

improvement in model skill during both a relatively wet year and a relatively dry year. The 520 

performance (Figure 98a and Figure 98c) seems to be independent of wet or dry conditions, 521 

at least on an annual basis. This does not hold for Arcadia Lake. The model shows modest 522 

skill at Arcadia Lake during the wet year (Figure 98b), but almost none during the dry year.   523 



 

 

There appears to be a difference in the timing discharges between at the two 524 

locations in Figure 98. The Döll MethodD03 appears to estimate the right amount of 525 

volume released during the wet year at Arcadia Lake (Figure 98b).  However, the timing 526 

of the observed actual release is delayed until a relatively dry period beginsfrom the 527 

estimate given by the model. The lag could indicate that water is being retained, possibly 528 

for use in irrigation or domestic supply. In this instance, Arcadia Lake supplies water to 529 

the city of Edmond, Oklahoma which may influence release decisions (Arcadia Lake Park 530 

Office, 2018).,  531 

The Döll MethodD03 performs much more poorly during the 2006 dry year at 532 

Arcadia Lake (Figure 98d). The model does not predict the sporadic releases throughout 533 

the year. The inflow events in that year are not substantial enough to affect storage 534 

meaningfully, thus we see almost no response in the modeled output. Observed outflows 535 

demonstrate that beyond two relatively high-volume reservoir releases during 2006, the 536 

reservoir releases are restricted to practically no outflow the rest of the year. The Döll 537 

MethodD03 does not anticipate the two large releases, as the reservoir storage does not 538 

dramatically shift in either instance. D03Arcadia Dam appears to be operating in a 539 

conservation mode for nearly the entire year. The Döll MethodD03 does not account for 540 

this. Instead, it estimates a near constant discharge over the entire year with almost no 541 

storage change. 542 

Results for wet years and dry years appear to be fairly mixed. Indications are that 543 

the performance of the Döll MethodD03 could be somewhat site specific. However, 544 

reservoirs that tend to be less responsive to storage fluctuations are not represented well in 545 

the Döll MethodD03 since storage fluctuations drive the model. Arcadia Lake has an IR of 546 



 

 

about 4.75 which is relatively high. Union City Dam has an IR of about 0.24, which is 547 

relatively low. IR is a good indicator of reservoir responsiveness to storage fluctuations.  A 548 

lack of reservoir responsiveness to storage fluctuations could result in two different types 549 

of error when the Döll MethodD03 is implemented within a large-spatial-scale hydrologic 550 

model. First, forecasted outflow could easily mistime a hydrologic event, particularly 551 

during wet years, as Figure 89b demonstrates. Second, the authors anticipate that if the 552 

storage does not dramatically fluctuate during a dry year the estimated reservoir release 553 

likely will not anticipate sporadic releases for irrigation and other purposeful discharges. 554 

Unaccounted for, these large but short duration releases may lead to a consistent 555 

overestimation of reservoir outflow for the entire dry year period.   556 



 

 

(a): Union City, Representative Wet Year (2011) (b): Arcadia Lake, Representative Wet Year (2007) 

(c): Union City, Representative Dry Year (2012) (d): Arcadia Lake, Representative Dry Year (2006) 



 

 

Figure 98. Two reservoirs where the Döll MethodD03 tends to perform very good and poor: outflow: a) 
wet year Union City Dam 2011; b) wet year Arcadia Lake 2007; c) dry year Union City Dam 2012; and d) 
dry year Arcadia Lake 2006. 
 557 

3.5. Effects of Time Step on Model Performance 558 

Model comparisons are conducted for daily and monthly time steps. Table 2 559 

illustrates the results at Fort Peck, Garrison Dam, Oahe Dam, and Fort Randall Dam, each 560 

of which appears in the Hanasaki et al. (2006) study and this research. Table 2 also contains 561 

Sardis Dam, Mosquito Creek Dam, and Prado Dam, which are not included in Hanasaki et 562 

al. (2006). Results illustrate that the time scale at which comparisons are conducted can 563 

influence simulation results. The monthly comparison amongst Fort Peck, Garrison, Oahe, 564 

and Fort Randall is in agreement with the conclusions of Hanasaki et al. (2006). However, 565 

when the simulation time step changes to a daily time step, the skill of Hanasaki 566 

MethodH06 and the Döll methodD03 reverse and the Döll methodD03 tends to outperform 567 

the Hanasaki MethodH06. In additional reservoirs (Sardis and Prado), the results indicate 568 

that the Döll methodD03 outperformed the Hanasaki MethodH06 at both daily and monthly 569 

time steps, based upon KGE. However, the results at Mosquito Creek reservoir tend to 570 

follow the original Hanasaki et al. (2006) results.   571 

The time-scale effect upon model performance may relate to how well observed 572 

inflow correlates with observed outflow. Examining Table 2, Hanasaki MethodH06 573 

outperforms the Döll MethodD03 when observed inflow and observed outflow are 574 

relatively well correlated. The effect is nullified when the inverse is true. The Hanasaki 575 

MethodH06 estimates outflow as a ratio of inflow, which may be a better estimate of 576 

outflow at the monthly time scale, particularly when discharge tracks closely with inflow. 577 

However, the Hanasaki MethodH06 will fluctuate at the smaller time steps due to inherent 578 



 

 

variations in inflow. The Döll MethodD03 tends to vary less at a daily time step and may 579 

be a better estimate of outflow at sub-monthly time steps.   580 

The hydrographs from Fort Randall Dam further illustrate the relationships between 581 

time step and model skill, particularly during high flow events. Daily and monthly 582 

comparisons between observation and simulations for Fort Randall Dam are shown in 583 

Figure 910. Figure 10 This figure compares the daily and monthly simulations with 584 

observations. Figure 910a shows that the H06 Hanasaki simulations perform better than 585 

the Döll MethodD03 for monthly time steps, particularly during the high inflow periods 586 

events in 2011.  The Döll methodD03 tends to overestimate reservoir outflow, while the 587 

Hanasaki MethodH06 correlates well with inflow and better matches the peak flow of 588 

2011. At a diurnal time step (Figure 109b), the Hanasaki MethodH06 tends to be 589 

hypersensitive to inflow variations and overestimates outflow, whereas the Döll 590 

methodD03 provides a better approximation of outflow during the 2011 high flow event at 591 

a daily time step. 592 

 593 

 594 

Table 1. Comparison of daily and monthly KGE values at selected reservoirs. The α and krd values 595 
represent the highest KGE values for Hanasaki and Döll methods respectively. 596 

Reservoir 
Daily KGE Monthly KGE 

Inflow Hanasaki Döll Inflow Hanasaki Döll 

Fort Peck 
α=0.95 krd=0.04 

0.43 0.53 0.78 0.54 0.62 0.51 

Garrison Dam  
α=0.95 krd=0.06 

0.73 0.76 0.88 0.78 0.80 0.59 

Oahe Dam 
α=0.95 krd=0.20 

0.78 0.81 0.83 0.84 0.86 0.76 

Fort Randall Dam 
α=0.95 krd=0.20 

0.91 0.88 0.95 0.96 0.93 0.67 

Sardis Dam 
α=0.95 krd=0.90 

-0.34 -0.17 0.09 0.06 -0.03 0.16 

Mosquito Creek Dam 
α=0.45 krd=0.70 

-0.46 -0.29 0.51 0.49 0.60 0.39 



 

 

Prado Dam  
α=0.95 krd=0.50 

-0.02 0.01 0.61 0.32 0.61 0.71 
 597 
  598 

Table 2. Comparison of daily and monthly KGE values at selected reservoirs. The α and krd values 
represent the highest KGE values for Hanasaki H06 and Döll D03 methods respectively. 

  

It is possible that the conclusions of Hanasaki et al. (2006) suggesting better performance 599 

of the Hanasaki MethodH06 at the monthly-scale depend on how closely discharge from 600 

the dam tracks inflow. The Döll methodD03 may be a better candidate for integration into 601 

daily flow forecasting models. 602 

Reservoir 
Daily KGE Monthly KGE 

Inflow Hanasaki Döll Inflow Hanasaki Döll 

Fort Peck 
α=0.95 krd=0.04 

0.43 0.53 0.78 0.54 0.62 0.51 

Garrison Dam  
α=0.95 krd=0.06 

0.73 0.76 0.88 0.78 0.80 0.59 

Oahe Dam 
α=0.95 krd=0.20 

0.78 0.81 0.83 0.84 0.86 0.76 

Fort Randall Dam 
α=0.95 krd=0.20 

0.91 0.88 0.95 0.96 0.93 0.67 

Sardis Dam 
α=0.95 krd=0.90 

-0.34 -0.17 0.09 0.06 -0.03 0.16 

Mosquito Creek Dam 
α=0.45 krd=0.70 

-0.46 -0.29 0.51 0.49 0.60 0.39 

Prado Dam  
α=0.95 krd=0.50 

-0.02 0.01 0.61 0.32 0.61 0.71 
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Figure 9. Comparison of simulated outflow for the Fort Randall Dam with Hanasaki and Döll methods 
for (a) monthly and (b) daily time steps 

(A)	

(B)	



 

 

Figure 10. Comparison of simulated outflow for the Fort Randall Dam with Hanasaki and Döll methods for 604 
(a) monthly and (b) daily time steps. 605 

 606 
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 607 

Figure 910. Comparison of simulated outflow for the Fort Randall Dam with Hanasaki and Döll methods for 608 

(a) monthly and (b) daily time steps. 609 

3.6. Model Stability 610 

Although the Döll MethodD03 outperformed the Hanasaki MethodH06 when using 611 

a daily time step, the Döll MethodD03 demonstrated some instability for high 𝑘௥ௗ values. 612 

This instability occurs at three reservoirs in this study. The cause of the instability is a 613 

combination of a reservoir having a low IRimpoundment ratio and a sharp change in the 614 

inflow to a reservoir. For instance, inflow into Old Hickory Dam in the Nashville District 615 

(IR = 0.04) increased by roughly two orders of magnitude in a matter of a few days in May 616 

2010. During this event, the available storage filled up, necessitating a substantial increase 617 

in release flow to prevent overtopping.  This occurred within a single time step in the model 618 



 

 

(Döll MethodD03) and the outflow responded in kind in the next subsequent time step 619 

which then drained the reservoir below the specified minimum storage resulting in a non-620 

computable imaginary number as the next solution.  621 

Several solutions are posited to address Döll MethodD03 instability. One solution 622 

could be to varying 𝑘௥ௗ values dynamically to mimic reservoir behavior. During large 623 

hydrologic events the value of 𝑘௥ௗ could reduce the peak of the outflow hydrograph, and 624 

then increase during normal events. Another solution is the inclusion of rules and an 625 

expanded system of equations that govern the solution. Because the intention of the Döll 626 

MethodD03 is to approximate flow at a free-flowing weir, coupling operational rules with 627 

the simulation may better approximate reality.  The rules may be as simple as switching 628 

behavior or the algorithm when storage approaches either minimum or maximum reservoir 629 

storage. A simple condition was tested for when storage drops below the minimum storage 630 

during the daily time step: 631 

       ((5) 632 

This condition prevents the reservoir from falling below the minimum storage. Outflow 633 

from Old Hickory Dam was re-simulated with 𝑘௥ௗ ൌ 0.9 and the new minimum storage 634 

condition (Equation 5). The proposed modification resulted in simulated outflow shown in 635 

Figure 110. Outflow is substantially overestimated for one-time step and drops to zero at 636 

the next time step. While an oversimplification of actual operations, this condition is 637 

similar to an emergency spillway discharge to prevent overtopping. The dam releases 638 

tremendous flow for a brief period, when the maximum storage is nearly exceeded and then 639 

inhibits the discharge when the storage is at the minimum capacity. The benefit of this 640 



 

 

modification is that additional reservoir information is not required. However, further 641 

testing and evaluation should be performed to validate this refinement. 642 

 643 

 644 

Figure 110.  Outflow simulation for the Old Hickory Dam using the proposed modification of the Doll 645 
method for krd=0.4. 646 

3.7. Limitations 647 

This study is limited to models that require only reservoir inflow and storage, 648 

primarily to provide insight into the reliability of these measures as indicators of reservoir 649 

outflow. The inclusion of additional demand and evapotranspiration parameters could 650 

improve the results, but could also add considerable uncertainty. Of the two models, only 651 

Hanasaki et al. (2006) currently includes an estimate for withdrawals of any nature.  652 

Another limitation of this study is the inflow that drives the simulations. All inflow 653 

utilized in this study, except for the Nashville district, is back -calculated from observed 654 
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changes in storage and known discharges. This indirect method can lead to negative inflow 655 

values when losses due to seepage, evapotranspiration, or other types of withdrawals are 656 

underestimated. De Vos (2015) also noted that they used back-calculated inflow in their 657 

study. It is unclear whether Hanasaki et al. (2006) made use of direct observations, but it 658 

is worth noting that direct observations of total reservoir inflow are not readily available in 659 

most casesdifficult to acquire. 660 

This study is limited to models that only require inputes related to only reservoir 661 

inflow and storage, primarily to provide insight into the reliability of these measures as 662 

indicators of reservoir outflow. The inclusion of additional demand and evapotranspiration 663 

parameters could improve the results, but could also add considerable uncertaintyBecause 664 

this studyies utilizes a back calculated reservoir inflow, inclusion of reservoir withdrawal 665 

would also lead to an overestimationover estimation of water withdrawals from the 666 

reservoir.  Both D03 and H06 can account for withdrawalswith drawals but becauseon the 667 

basis of the focus of this study and the data utilized, the authors do not pursue an estimation 668 

of reservoir withdrawal in this study.   Of the two models, only Hanasaki et al. (2006) 669 

currently includes an estimate for withdrawals of any nature.  670 

 671 

Beyond this studies sensitivity analysis, no formal calibration procedure was 672 

undertaken.  A formal calibration of 𝑘௥ௗ  in both D03 and H06 would be better suited for 673 

the insertion of the reservoir routing scheme within a hydrologic routing scheme.  This 674 

study is investigating the feasibility of these methods in 0-10 day lead time,medium range, 675 

diurnal forecasting and is a precursor to implementation in hydrologic routing schemes.  676 

There is limited benefit to standalone calibration of the 𝑘௥ௗ coefficients, given that 677 
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reservoir outflow information is rarely available at global scales.  Operational calibration 678 

of 𝑘௥ௗ would be challenging without reservoir release records.  Zajac et al. (2017) discuss 679 

the need for an open access database of daily reservoir records, but no such database is 680 

known to be available at this time.  Thus, this study does not undertake any standalone, 681 

formal calibration of 𝑘௥ௗ. 682 

Because the vast majority of reservoirs in the sample we considered are primarily 683 

purposed as flood control reservoirs with secondary purposes, we are unable to make an 684 

assertion about the effect the operating objective has on reservoir routing performance.   685 

3.8. Future Work 686 

D03The non-data driven approaches evaluated consistently improved simulated, 687 

daily  streamflow estimates over naturalized flow conditions, suggesting that D03these 688 

approaches can potentially improve global streamflow forecasting that do not already 689 

account for lakes and reservoirs. The Döll MethodD03 performed particularly well at daily 690 

time steps commensurate with many large-scale stream routing models. The incorporation 691 

of the Döll MethodD03 into to the RAPID code, a large-scale river routing model for 692 

simulating streamflow throughout distributed stream networks over large spatial extents 693 

(David et al., 2011), is under development. This will enable widespread testing and 694 

evaluation over large hydrologically diverse areas. 695 

The non-data-driven methods we consider are conceptualizations of reservoir 696 

operations that can be adapted to utilize remotely sensed information, much like the data-697 

driven methods previously mentioned.  Non-data-driven methods can be linked to 698 

statistical fitting techniques, but they are capable of being employed independent of such 699 

pairings.  However, Rthe non-data-driven reservoir routing schemes could be enhanced by 700 



 

 

assimilating remotely sensed data, e.g. near real-time changes in storage resolved from 701 

satellite altimetry, and eventually the planned NASA Surface Water and Ocean 702 

Topography (SWOT) Mission. This information could constrain reservoir simulations to 703 

improve global streamflow forecasts (Yoon and Beighley, 2015). These simulations could 704 

provide the training data necessary for more data intensive reservoir routing approaches, 705 

e.g. applying Artificial Intelligence and Machine Learning techniques to infer reservoir 706 

rule curves.   707 

Because D03 skill tends to decline with increases in IR, an over-year simulation 708 

capability similar to that proposed by De Vos (2015) may allow for a better means of 709 

simulating diurnal reservoirs from reservoirs with large IR.  Over-year reservoirs have high 710 

IRs and yearly cycles of water storage and release are not necessary (Adeloye and 711 

Montaseri, 2000; Vogel et al., 1999). Eventually, global streamflow forecasting models 712 

should leverage all available data to account for anthropogenic influence, utilizing 713 

techniques that range from simple to extremely complex.  714 

4. Conclusions 715 

This research compares two parsimonious reservoir routing methods (D03 and H06) 716 

with the intent to determine if these methods can be effective at estimating diurnal reservoir 717 

outflow in diurnal, medium-range streamflow forecasting.  that have previously been 718 

implemented in large-scale hydrologic modeling applications, namely the Döll D03 and 719 

Hanasaki MethodsH06. These methods were compared across 60 USACE operated 720 

reservoirs at a daily time step. Results show that the Döll MethodD03 tends to outperform 721 

the Hanasaki MethodH06 at a daily time step. An in depth examination of these results 722 

yields the following conclusions. 723 



 

 

● The complexity and data requirements of both Döll D03 and Hanasaki MethodsH06 724 

are low and thus computationally inexpensive. Both can be feasibly implemented 725 

at large spatial scales at a daily or sub-daily time step.  726 

● When the best performing 𝑘௥ௗ��� is implemented within D03 we find a substantial 727 

improvement in the model skill over the baseline for nearly all reservoirs in this 728 

study when compared at a daily time step.  H06 offers only a minimal improvement 729 

over the baseline when the best 𝑘௥ௗ ��is implemented for a daily time step.  For 730 

the categories of KGE specified (Tavakoly et al., 20176), the best performing D03 731 

eliminates all poor performing baseline conditions and increases the proportion of 732 

good or very good performing sites by 22%.     733 

● There is a statistical significant relationship between reservoir IR and two of the 734 

skill metrics applied (KGE and R-Squared). Given that reservoirs with high IR 735 

typically are less responsive to short-term fluctuations in inflow and storage, the 736 

correlation between these variables is plausible.  Further investigation of dam 737 

characteristics, such as if the dams operate in series or in parallel and wet and dry 738 

year considerations are further evidence of the correlation between the IR and Döll 739 

D03 and Hanasaki MethodsH06 skill. 740 

● Simulation time step appears to be anplays an important component part in 741 

reservoir routing skill. The comparison of the two methods by Hanasaki et al. 742 

(2006) are based on monthly reservoir outflows and conclusions may not hold 743 

within diurnal forecasting schemes. At overlapping locations, this study replicates 744 

the results reported by Hanasaki et al. for monthly time steps. However, the 745 

Hamasaki et al. findings do not hold for a daily time step evaluation.   746 
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● The best value for the empirical Döll coefficient,  𝑘௥ௗ, can vary. Optimal values 747 

were typically greater than the krd=0.01 value which Döll et al. (2003) derived. This 748 

suggests that 𝑘௥ௗ  could be a potential calibration parameter within a large-scale 749 

hydrologic modeling framework much like a weir coefficient, which is specific to 750 

a particular type of weir.  751 

● The Yazoo Basin Headwaters Project (USACE, 2017; USACE, 1987) is an 752 

interesting case study in how reservoir system complexity can be difficult to model. 753 

The Yazoo Basin Headwaters Project considers downstream flow conditions as the 754 

dominant criteria in dam operation. Thus, the inflow and available storage volume 755 

are poor predictors for determining reservoir discharge in this type of management 756 

scheme. The Döll MethodD03 appeared to scale flow correctly at these reservoirs 757 

and improve reservoir overall skill, but timing of the releases is not well represented 758 

and thus skill improvement is only minimal.   759 

● Dam discharges in the Missouri River Reservoir System (Lund and Ferreira, 1996) 760 

are more correlated with storage volume and inflow conditions, which lends itself 761 

to the two non-data-driven approaches evaluated here. The Döll MethodD03 is 762 

particularly capable of accurately modeling daily reservoir outflows in reservoir 763 

systems that correlate well with storage and inflow fluctuations. Concerns related 764 

to model error being compounded through a series dams may be mitigated 765 

somewhat by the fact that inflow appears to be a progressively stronger predictor 766 

of outflow further downstream in these types of systems. 767 

● Numerical stability of the Döll MethodD03 is a concern, particularly with higher 768 

𝑘௥ௗ  values. These stability concerns originate at reservoirs with small active storage 769 



 

 

capacity during high inflow events. Additional model refinement can overcome 770 

these stability concerns. 771 

● The Döll MethodD03 showed minimal bias during relatively wet and dry years. 772 

Timing of releases can be influenced by wet years and the magnitude appears to be 773 

affected during dry years. The Döll MethodD03 appears to be most applicable for 774 

dam systems where reservoir management focuses on upstream hydrologic 775 

conditions. Large IRimpoundment ratios could indicate reservoirs where 776 

downstream conditions are more likely to influence release decisions at the 777 

reservoir.   778 

  779 
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