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Abstract. The Total Water Storage Change (TWSC) over land is a major component of the global water cycle, with a large

influence on climate variability, sea level budget and water resources availability for human life. Its first estimates at large-scale

were made available with GRACE observations for the 2002-2016 period, followed since 2018 by the launch of GRACE-FO

mission. In this paper, using an approach based on the water mass conservation rule, we proposed to merge satellite-based

observations of precipitation and evapotranspiration along with in situ river discharge measurements to estimate TWSC over5

longer time periods (typically from 1980 to 2016), compatible with climate studies. We performed this task over five major

Asian basins, subject to both large climate variability and strong anthropogenic pressure for water resources, and for which

long term record of in situ discharge measurements are available. Our SAtellite Water Cycle (SAWC) reconstruction provides

TWSC estimates very coherent in terms of seasonal and interannual variations with independent sources of information such as

(1) TWSC GRACE-derived observations (over the 2002-2015 period), (2) ISBA-CTRIP model simulations (1980-2015), and10

(3) multi-satellite inundation extent (1993-2007). This analysis shows the advantages of the use of multiple satellite-derived

data sets along with in situ data to perform hydrologically coherent reconstruction of missing water component estimate. It

provides a new critical source of information for long term monitoring of TWSC and to better understand their critical role in

the global and terrestrial water cycle.

1 Introduction15

Continental freshwater, excluding ice caps, represents only few percents of the total amount of water on Earth. Nevertheless

they have a major impact on terrestrial environment and human life and activities and play a very important role in climate

variability. Thus, understanding and predicting continental water storage variations is a topic of great importance for climate

research, global water cycle studies (IPCC, 2014) and water resource management. In particular, the Total Water Storage

Change (TWSC), comprising of all water mass variations from surface waters (wetland, floodplains, lakes, rivers and man-20
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made reservoirs), soil moisture, snow pack, glaciers and groundwater, is of high interest because it represents a good indicator

of potential long-term water cycle (WC) modifications related to natural or anthropogenic factors (Rodell et al., 2018).

Therefore, monitoring long-term spatio-temporal changes in continental freshwater storage has become fundamental. This

question is particularly important for regions such as South Asia that experienced drastic changes over the last decades. The

region includes some of the worlds largest rivers (Fig. 1), originating in the Himalayas and crossing densely inhabited areas of5

the Indian subcontinent or South-East Asia, where changes in freshwater availability (Babel and Wahid, 2008) might threaten

food and security for more than a billion people (Shamsudduha and Panda, 2019; Wijngaard et al., 2018).

Given the limited availability of in situ data in the region, satellite observations are unique to monitor the dynamic of

terrestrial waters (Tiwari et al., 2009; Papa et al., 2015; Salameh et al., 2017) and analyzed their recent large-scale changes

(Rodell et al., 2009; Asoka et al., 2017; Khaki et al., 2018). In particular, since 2002, the GRACE mission (Tapley et al., 2004)10

monitors the mass gravity field variation and provides an estimation of the TWSC at the monthly scale (for the period 2002-

2016), followed since 2018 by the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO). However, GRACE

data time span is still too limited to study the long-term behavior of the WC related to climate changes or to human practices.

If classical approaches to retrieve TWS rely on Land Surface Model (LSM) (Decharme et al., 2019b; Tootchi et al., 2018),

studies have recently attempted to use instead statistical models fed with various climate drivers. For instance, Humphrey et al.15

(2017) have reconstructed the TWSA using a linear regression from precipitation and temperature; and Chen et al. (2019)

have use an artificial neural network to reconstruct TWSA based on precipitation, temperature and surface variables (e.g.

soil moisture and NDVI). Yang et al. (2018) reviewed and compared several statistical methods (linear, random forest, artificial

neural network and support vector machine) to reconstruct TWSA from soil moisture, canopy water and snow water equivalent.

These studies have focused on TWSA, without monitoring the whole WC. In fact, if statistical methods offer the opportunity20

to estimate TWS anomalies at global scale in a simpler way than LSMs, they do not consider the water balance and the related

TWS estimate may not be coherent with the other water components.

Several studies have attempted to monitor the WC and provide independent estimates of TWSC using satellite observa-

tions (Lawford et al., 2007; Pan et al., 2012; Rodell et al., 2015; Munier and Aires, 2017; Tang et al., 2017). These analyses

potentially allow new opportunities for the WC monitoring over long time-records in regions with limited access to in situ25

measurements. The use of satellite data to study the WC is however not straightforward. (1) Various datasets exist for the same

geophysical variable and (2) they all have uncertainties (systematic bias and random errors), which lead to (3) the inconsistency

between estimate of the same variable or among the variable estimates of the WC (Pellet et al., 2018). No singular estimate can

be considered as perfect and many authors preferred to combine various available products (Sheffield et al., 2009; Sahoo et al.,

2011; Azarderakhsh et al., 2011; Lorenz et al., 2014). For that purpose, some have focused on the water conservation equation:30

∆S = P −E−D (1)

where ∆S is the TWSC, P the Precipitation, E the Evaporation, and D the Discharge (expressed in mm/month, area-

normalised). This closure of the WC budget allows to better constrain the integration of the datasets. For instance, Pan et al.

(2012) have used an assimilation approach based on a Kalman filtering in the Variable Infiltration Capicity (VIC) model to
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derive a coherent analysis of the four terrestrial water variables (P , E, D and ∆S) at bassin scale and Zhang et al. (2017)

derive the methodology at the 0.5◦ LSM pixel. Tang et al. (2017) use implicitly the water conservation through the Budyko

model to estimate long term annual TWSC based on P, E and R. This approach is not based on the assimilation of satellite

observations but rather on the calibration of model parameters to match observed TWSC. Rodell et al. (2015) used variational

3D-VAR strategy to optimize the water cycle estimates at the global and annual scales.5

Other approaches perform this integration independently from any model, which allows the integrated datasets being inter-

esting for the calibration/validation of the model (Aires, 2014; Munier et al., 2014; Pellet et al., 2019). Pan and Wood (2006);

Aires (2014) have presented several methodologies to integrate coherently different hydrological datasets based on a budget

closure. Munier et al. (2014) applied one of them (Aires, 2014) over the Mississippi basin using remote sensing observation

for P , E and ∆S and in situ measurment for D. The optimal integration is based on, first, a Simple Weighting (SW) average,10

then, a closure Post-Filtering (PF). The SW+PF method improved the WC components estimate compared to in situ obser-

vation. The uncertainties of integrated product are reduced compared to the original datasets, the coherency is improved, and

the residuals of the WC budget closure are decreased. Furthermore, the authors have develloped a calibration approach based

on the integrated product, able to correct each original estimate in an independent way. This calibration led to a significative

reduction of the budget residual (see also Pellet et al. (2019)). It was shown in Munier et al. (2014) that when three out of15

four WC components in Eq. (1) are available, the reconstruction of the missing one can be attempted. This is possible if the

signal-to-noise ratio is sufficient: discharge reconstruction was not possible in Munier et al. (2014) but the TWSC could be

obtained in a very simple way, with results quality comparable to a complex assimilation into a hydrologic model.

In this study, we propose to use this methodology to reconstruct the long-term evolution of the TWSC over large South

Asian basins, based on satellite and in situ measurements and no hydrological model. We denote “SAWC" this SAtellite Water20

Cycle reconstruction. Section 2 introduces the tools used in this study, including a description of the region, the data sets used

and the methodology. Section 3 presents the results and evaluations while section 4 draws the conclusions and perspectives.

2 Materials and methods

2.1 Basins

Table 1 lists the basins considered in this study. They are also represented in Fig. 1. They were defined by first choosing river25

discharge (D) in situ measurement stations close to the sea, over the major Himalayan rivers, with a long-enough time record.

The HydroSHEDS topography (Lehner et al., 2006) was then used to determine the drainage area and basin delineation. The

basins were selected based on: (1) their spatial domain needs to be large enough compared to the spatial resolution of the

GRACE instrument, (2) the river discharge measurements need to cover the GRACE period (2002-2015).

Five basins were chosen:30

– Mekong: The Mekong Delta is one of the largest deltas in the world. It is a vast plain (55000 km2) mostly lower than 5 m

above sea level. Due to the seasonal variation in water level, the area presents extensive wetlands. The Mekong Delta
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region that represents only 12% of the total Vietnam area, allows 50% of the annual rice production (up to three harvests

per year on some provinces), 50% of the fisheries, and 70% of the fruit production. Furthermore, questions related to

oceanic water intrusions, change of agriculture practices (e.g. number of rice harvest in one year), dam construction,

ground water pumping and resulting land depletion, all have an impact on the TWSC and would therefore benefit from

its monitoring.5

– Ganges and Brahmaputra: The Ganges-Brahmaputra is the major river basin of the Indian Sub-Continent supplying

more than 700 millions people. It covers an area of 1.7 million km2, at the crossroad of Bangladesh, India, China,

Bhutan and Nepal and is the third largest freshwater provider to the world’s oceans (after the Amazon and the Congo

rivers) with a high influence on the regional climate. The basin is seasonally subject to the monsoon and faces strong

climate variability between drought and floods periods. Furthermore, water management is an issue because of the10

increasing needs the population and the demands for the industry and agriculture sectors. Thus, the freshwater supply

leads to an over-abstraction of groundwater stock during dry-season, and then to a rapid fall of groundwater tables.

– Godavari: The Godavari River is the second longest river of India after Ganges, covering a total drainage area of 312000

km2 and accounting for nearly 9.5% of the total geographical area of the country. It flows for a length of about 1465

km, from its origin near the Arabian Sea before outfalling in to the Bay of Bengal, crossing several states of India. The15

basin receives its maximum rainfall during the southwest monsoon, from June to September. The major part of basin

is covered with agricultural land accounting up to 60% of the total area, while 3.5% of the basin are covered by water

bodies. Godavari basin faces several hydroclimatic problems with a large portion of the basin being prone to drought,

while flooding problems are common in its lower reaches and its coastal areas are cyclone-prone.

– Irrawaddy: Running over a length of 2100km mainly within the boundaries of Myanmar, the Irrawaddy River is the most20

important river of the country. The basin takes up the northwestern part of the Indochina Peninsula, with its source on

the south slopes of the Himalayas Mountains and emptying into the Andaman Sea of the Indian Ocean. The river basin

area covers more than 400000 km2 and collects 2/3 of the surface water volume of Myanmar. It is subject to a tropical

and subequatorial monsoon climate and its hydrological regime, similarly to other large rivers of south Asia, is fed with

water on the slopes of the Himalayas Mountains, mainly from rains during the southwest monsoon period and melt water25

of glaciers. The river is vital for human activities, water supply, and irrigation and hosts a high biodiversity. It is prone

to extreme events, such as floods from very heavy monsoon rains or extreme weather events like cyclones and severe

droughts and under climate change impacts, the region is facing major challenges for water resources.

2.2 Datasets

2.2.1 Datasets used in the integration30

The datasets presented in this section will be used in the integration process to obtain an optimised description of the WC over

the Himalayan basins. Most of them are satellite products. Only global satellite products have been considered. In order to
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integrate them, the datasets have been projected onto a common 0.25◦ spatial resolution grid using a conservative interpolation

(Jones, 1999), and re-sampled at the monthly scale.

Precipitation, P - Three datasets based on remote-sensing observations have been selected. All are products calibrated using

gauges measurements: the Global Precipitation Climatology Project (GPCP-V2, Adler et al., 2003); the Tropical Rainfall Mea-

suring Mission Multi-satellite Precipitation Analysis (TMPA,3B42-V7, Huffman et al., 2007); and the Multi-Source Weighted-5

Ensemble Precipitation (MSEWP) dataset Beck et al. (2017). All these global datasets are widely used in the community. GPCP

and TMPA use a same Threshold Matched Precipitation Index (TMPI) algorithm to estimate instantaneous precipitation from

multiple satellites by combining high-quality passive micro-wave observations and infrared data: their approach differ only in

the use of gauge analyses (GPCC) to obtain calibrated estimates. While TMPA is based on an inverse random-error variance

weighting of the gauge data, GPCP assumes that the precipitation distribution estimated from the combined satellite estimates10

is optimal and uses the gauge observations only for debiasing. The MSWEP dataset merges the highest quality precipitation

data sources available as a function of timescale and location. It uses a combination of rain gauge measurements, the two

previous satellite datasets, and a reanalysis. These datasets have been compared in terms of uncertainties and performance in

Sun et al. (2018). It should be noted that these datasets are not independent from each other but represent the best up-to-date

precipitation estimates for hydrological studies.15

Evapotranspiration, E - Three satellite-based products were chosen to describe evapotranspiration over land. All these

datasets are assumed to be satellite-based products even if their retrieval algorithms can use auxiliary information and a model.

The Global Land Evaporation Amsterdam Model (GLEAM-V3B, Martens et al., 2016; Miralles et al., 2011) uses Priest-

ley and Taylor (1972) empirical energy-based equation to calculate the reference evapotranspiration and separately estimate

the different components of land evaporation: transpiration, bare-soil evaporation, interception loss, open-water evaporation20

and sublimation. GLEAM uses reanalysis (vA) or satellite (vB) precipitation inputs. The global observation-driven Penman-

Monteith-Leuning (CSIRO, Zhang Yongqiang et al., 2016) evapotranspiration introduced by the Commonwealth Scientific

and Industrial Research Organisation (CSIRO) and the MODIS Global Evapotranspiration Project (MOD16, Mu et al., 2011)

are both evapotranspiration estimates based on Penman-Monteith equations (PENMAN, 1948; Monteith, 1965). We choose

these three datasets due to their different equations for the evapotranspiration. Inter-comparison of global evapotranspiration25

algorithms and datasets can be found in (Michel et al., 2016).

Total Water Storage Change (TWSC), ∆S - The TWSC estimates are all based on the GRACE satellite measurements (Tapley

et al., 2004). These estimates include the surface (wetland, floodplains, lakes, rivers and man-made reservoirs), soil moisture,

snow pack, glaciers and groundwater waters. Satellite datasets are based either on the spherical decomposition of GRACE(for

instance (JPL, Watkins and Yuan, 2014) or on the "MASCON" solution: the Jet Propulsion Laboratory (JPL, Watkins et al.,30

2015a, MSC) product that also includes a scaling factor for hydrological coherency. The CSR offers another MASCON so-

lution. The CSR and JPL MASCON solutions differ in their processing: the JPL solution is based on an explicit estimation

of mass anomalies at specific mass concentration block location using the analytical partial derivatives of the inter-satellite

range-rate measurements (Watkins et al., 2015b). The CSR MASCON solution is first based on a spherical decomposition of

the inter-satellite range-rate measurements that is truncated spatially at the location of mass concentration (Save et al., 2016).35
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The two solutions have been compared to the spherical solutions in terms of uncertainty in both min-max range and trend,

in (Scanlon et al., 2016; Save et al., 2016). We choose here the JPL solution because it is more independent of the spherical

solution.

Based on preliminary tests, it was observed that the MASCON solution for TWSC (∆S) was in better agreement with the

three other water component estimate, and in particular over the Irrawaddy basin, compared to the spherical solutions. This5

could be due to the local inversion in MASCON solution that prevent from the de-striping processing usually done in the

spherical decomposition of GRACE. It as been shown that de-striping could limit the capability of spherical solution over

particularly South/North oriented basin (Wahr et al., 2006; Rateb et al., 2017). In the following, the MASCON solution from

JPL is used. Fig. 2 represents the GRACE TWSC and TWSC anomaly (with respect to averaged season computed over the

2002-2015 period), over the five basins of the previous section. The annual cycle is well pronounced in each basin, showing10

the strong seasonality of the WC in these regions. The anomalies have strong inter annual variations showing the evolution of

the WC along the years.

Discharge, D - The Global Runoff Data Centre (GRDC) gathers discharge measurements at the global scale. However, for

large tropical rivers, and more particularly over South Asia, only few stations are available and they are not all updated to

recent periods. In particular, among the five considered rivers of this study (Fig. 1), four of them are not available at GRDC15

and we obtained them instead from personal communication and sharing of local colleagues (Table 1).

In the following, an a priori specification of the uncertainties for each one of these satellite sources are required. Such

characterizations are generally product-and-site-specific. Some studies (Pan et al., 2012; Sahoo et al., 2011; Zhang et al., 2017)

estimate the a priori uncertainty of particular water components based on the spread among the various estimates (taking the

spread of estimates as an estimate of the uncertainties can sometimes be dangerous). In our case, this approach would not20

take into account the fact that the precipitation estimates are not independent. The values used here are derived from (Munier

et al., 2014) in which the authors reviewed carefully the literature on this topic. The partitioning of uncertainty between P and

E has however been modified to allow larger uncertainty in P since datasets are dependent in our case. As the objective of

the current study is to reconstruct GRACE TWSC, the approach assumes lower errors in the GRACE estimate that becomes

our reference. For the three precipitation datasets, we specify a 14 mm/month STD (STandard Deviation) error. Similarly, for25

three evapotranspiration datasets, we specify a 7 mm/month STD. River discharge is an in situ measurement so a 3 mm/month

STD is chosen. Since the objective is the reconstruction of the GRACE observations over long time series, we specify a small

uncertainty (1 mm/month) to avoid changing these values during the integration.

2.2.2 Datasets used in the evaluation

• ISBA hydrological model - To evaluate our reconstruction of the long-term evolution of TWSC over large Himalayan basins,30

we also use the ISBA-CTRIP numerical land surface system. ISBA-CTRIP is a “state of the art" hydrological system that

simulates TWSC at the global scale with an good accuracy as shown in Decharme et al. (2019a). The ISBA-CTRIP TWSC all

water mass variation (river water mass and floodplains, snowpack, canopy water, total soil moisture and groundwater storage).

The ISBA land surface model explicitely solve the energy and water budgets at the land surface at any time step. The CTRIP
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river routing model simulates river discharges up to the ocean from the total runoff computed by ISBA. A two-way coupling

between ISBA and CTRIP allows to account for, (1) a dynamic river flooding scheme with explicit interactions betwen the

floodplains, the soil and the atmosphere (through free-water evaporation, precipitation interception and infiltration) and (2) a

two-dimensional diffusive groundwater scheme to represent unconfined aquifers and upward capillarity fluxes into the super-

ficial soil. More details can be found in Decharme et al. (2019a). In this study, we use a product derived from a global offline5

simulation at 0.5◦ resolution done with this ISBA-CTRIP configuration and driven at a 3-hourly time scale by the ERA-Interim

reanalysis over the 1979-2015 period. To ensure that realistic precipitation are fed to the ISBA-CTRIP system (Szczypta et al.,

2014), the ERA-Interim precipitation is, here, hybridized to match the monthly values from the gauge-based Global Precip-

itation Climatology Center (GPCC) Full Data Product V6 (Schneider et al., 2011, 2014). At each time step, ISBA-CTRIP

gives the variation of the total mass of water. The TWSC estimate from ISBA-CTRIP is then the monthly average of this field,10

which is slightly different than the reconstruction via Eq. (1) (see Appendix A). Since GRACE data are anomalies relative

to a reference geoid, the TWSC estimate from ISBA-CTRIP is also calculated in terms of anomaly over the analysed period.

To be consistent with the GRACE data, the simulated TWS were smoothed using a 200 km-width Gaussian filter which is

quasi-similar to the filter used for the GRACE products (Watkins et al., 2015a). In the following, ISBA-CTRIP is shortened in

ISBA.15

• GLDAS hydrological model - For comparison purpose, we also use the Noah 2.7.1 land hydrology model of the Global Land

Data Assimilation System (GLDAS). Its purpose is to ingest satellite- and ground-based observations using advanced land sur-

face modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes. GLDAS is

an uncoupled land surface modeling system that drives multiple models runs globally at the resolution of 0.25◦, and produces20

results in near-real time. The GLDAS system is described in (Rodell et al., 2004). GLDAS is a platform of assimilation and

differs from hydrological models. In particular, they do not model reservoirs. For our comparison, we use the Land Water

Content output of GLDAS.

These two global and well known models have been chosen for comparison even if none of them includes anthropogenic25

effects on the river discharge and groundwater storage. Significant efforts have been made during the last two decades to

incorporate anthropogenic impacts in LSM (Hanasaki et al., 2006; Haddeland et al., 2014) but crucial challenges still remain.

Most of these new schemes in LSMs have been developed and used offline for regional scale studies and without common and

standardized framework (Pokhrel et al., 2016; Döll et al., 2016). At global scale, a state of the art does not include the global

representation of flow regulation and irrigation water needs.30

2.3 Methodology

The notations are presented in this section but more methodological details can be found in Aires (2014),. The last version of

the integration methodology is well described in Pellet et al. (2019).
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2.3.1 Water cycle budget closure at basin scale

The first step of the integration process consists in merging the various datasets presented in Section 2.2.1. The "Simple

Weighting" estimate (i.e. ensemble mean) is used to describe each water component based on all the available datasets (Aires,

2014):

PSW =
1

p− 1

p∑
i=1

∑
k 6=i(σk)2∑
k(σk)2

Pi. (2)5

This equation is valid when there is no bias error in the Pis (thanks to a preliminary bias correction) and is optimal when the

errors εi are statistically independent from each other. This expression is valid for the other water components. The variance of

the PSW uncertainties is then given by:

σPSW
=

1

(p− 1)2

p∑
i=1

(∑
k 6=i(σk)2∑
k(σk)2

)2

σ2
i . (3)

A similar approach is used for the three estimates of the evapotranspiration. Following the error specification in Section 2.2.1,10

the uncertainty of the precipitation (resp. evapotranspiration) merged estimate is characterized by a 8 mm/month STD (resp.

4 mm/month STD). Only one discharge dataset is available and only the MASCON-JPL is used for TWSC. We denoteXSW =

(PSW ,ESW ,DSW ,∆SSW ) where SW stands for “Simple weighting" the results of the merging.

Following Aires (2014), it is then possible to write the conservation of water mass at the basin scale as a constraint applied

on the state vector X = (P,E,D,∆S). The WC budget constraint is expressed in Eq. (4). A relaxed constraint is considered15

(Pellet et al., 2019): the WC budget is closed within an error r that follows a normal distribution with specified uncertainty

(Yilmaz et al., 2011). The problem can be written in the following way:

Xt = (P, E, D, ∆S)

G= [1, −1, −1, −1] (4)

Xt ·Gt = r with r ∼N (0,Σ),20

where t is the transpose sign. G the closure operator and Σ the variance of the relaxation r. The optimised solution of this

problem can be expressed as:

XPF = (I −KPF ·GΣ−1Gt) ·XSW , (5)

where KPF = (B−1 +GΣ−1Gt)−1, PF stands for the “Post-Filtering" of the previous solution XSW , and B is the a priori

error covariance matrix of XSW that is specified here as :25

B =


8 0 0 0

0 4 0 0

0 0 3 0

0 0 0 1


2

. (6)

This methodology allows obtaining a solution XPF that closes the WC budget (within the relaxation r).

8



2.3.2 The calibration for the temporal extension of the closure constraint

An important limitation of the closure integration is the need for a common coverage period for all sources of information used

in the integration. The optimised dataset cannot be provided for time steps with a missing component. To overcome this issue,

a calibration to correct independently each water component towards the closure solution has been introduced (Munier et al.,

2014). This calibration is based on a statistical regression between the merged observations XSW and the optimised estimates5

XPF , assuming that this optimised dataset represents the reference. In Pellet et al. (2019), the calibration is not strictly linear

in order to avoid correcting null water fluxes (Munier and Aires, 2017). The following regression is used for P , E and D:

XCAL = a ·XSW + b · (1− e
−XSW

c ) (7)

so that XCAL becomes closer to XPF . This calibration is close to a linear calibration, but zero-values are kept unchanged. a,

b and c are the calibration parameters. The calibration is performed not only during the GRACE period (2002-2015) but over10

the complete record of each satellite dataset. It was shown in previous studies that the calibration does not allow for a perfect

balance of WC, but it greatly reduces the WC budget residuals compared to the original estimates.

The calibration of Eq. (7) is applied independently on each dataset of Section 2.2.1. Table 2 shows the original (XSW )

versus the calibrated (XCAL) Root Mean Squares of the WC budget residuals. It can be seen that the calibration is a significant

improvement in each basin, with a decrease of the error from 25 to 54%.15

Fig. 3 compares in row the original (XSW ) and calibrated (XCAL) estimates of the four water components with the WC

budget residuals, for the Ganges and the Brahmaputra basins, over the GRACE period. It can be seen that for the Ganges,

the water components are not particularly impacted by the calibration. This is due to the overall coherency of the various

water components estimates and the relatively low WC budget residual for this particular basin. Only a small improvement

can be noticed in the WC budget residuals. For the Brahmaputra basin, precipitation and evapotranspiration are much more20

impacted by the calibration. The discharge is slightly changed because we specified a low uncertainty on this in situ variable

(i.e. STD=1mm/month). The resulting WC budget residuals are much smaller for the calibrated solution meaning that this

solution is more coherent hydrologically.

2.3.3 SAtellite Water Cycle (SAWC) reconstruction

Similarly to Munier et al. (2014), the three available water components (P , E, D) are used to estimate the fourth one, the25

TWSC ∆S. This allows extending temporally the monitoring of the TWSC before and after the GRACE period (2002-2015).

In addition, GRACE satellite is down for maintenance every six month since 2011. The calibration approach allows filling

gaps measurement in GRACE observation with high accurancy (Munier et al., 2014). Following Landerer et al. (2010) and to

avoid temporal mismatching between GRACE-derived TWSC and the monthly estimate of the other water components, we

use a centred differences of the mean TWS anomalies to compute the TWSC ∆S(t). The right-hand side of Eq. (1) is therefore30

computed for each month t as:

∆S(t) = 1
4X
′
CAL(t− 1) + 1

2X
′
CAL(t) + 1

4X
′
CAL(t+ 1) (8)
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where X ′CAL = (PCAL−ECAL−DCAL), and ∆S is the centered mass rates:

∆St = S(t+1)−S(t−1)
2 . (9)

2.3.4 Uncertainty characterisation

Estimating product uncertainty is a valuable information for instance in an assimilation framework. Most uncertainty estimation

approaches require defining first a reference: in situ, reanalysis, or a consensus of all available data. In this work, the chosen5

reference is the optimized product (XPF ), this is a solution that is hydrologically more coherent and reliable than the original

datasets. All original satellite datasets are compared to this reference to compute bias (not shown) and uncertainty (standard

deviation) errors. For instance, for precipitation: σ2
P = E[(P−PPF )2]. Such an approach was used in Munier and Aires (2017);

Pellet et al. (2019).

Table 3 gathers the a posteriori uncertainty estimates (computed as the distance between the original datasets and the10

reference) for all the original satellite datasets, for P , E and D, over the five considered basins. These a posteriori uncertainty

estimates are in line with the specifications that were taken a priori for each of the datasets (Section 2.2.1). It can be seen that

the Brahmaputra has higher uncertainties, especially for precipitation. MSEWP appears less reliable than GPCP or TMPA for

precipitation; and GLEAM seems more reliable than MOD16 or CSIRO over these five basins.

It is possible to compute the SAWC reconstruction of TWSC based on Eq. (10). Once calibrated, PCAL, ECAL and DCAL15

estimates are available over a long time period. They can be used to infer ∆S using the WC budget equation (Eq. (1)), before

and after the GRACE period:

∆SSAWC = PCAL−ECAL−DCAL. (10)

The reconstruction of TWSC has a different temporal coverage for the five basins because D (and then DCAL) availability

varies (see Table 1). The measurement errors of P ,E, andD of Table 3 are assumed to be independent and normally distributed.20

In this case, the error in the SAWC reconstruction of ∆S is given by:

σ2
∆S = σ2

P +σ2
E +σ2

D, (11)

where σP , σE , σD are the a posteriori uncertainties merged estimate using Eq. (3) with the values of a posteriori estimate in

Table 3.

3 SAWC reconstruction of TWSC and evaluation25

3.1 Evaluation over the GRACE period (2002-2015)

The resulting SAWC time series can be observed (red) and compared to GRACE measurements (blue) over the 2002-2015

period in Fig. 2, over the five basins, for the raw and the anomalies. The ISBA simulation is represented too (green). The

seasonality is well represented in every estimate. The specific seasonality of each basin is well characterised by the SAWC
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reconstruction, see for instance the difference between the Mekong and the Brahmaputra seasons. The SAWC reconstruction

uses the GRACE data to calibrate the other datasets, but once the P , E and D calibrations are done, the SAWC data in

Eq. (10) does not use the GRACE data anymore. This is a good demonstration that GRACE-compatible TWSC estimates can

be obtained from the other water components. The rich inter-annual signal in the anomalies is well captured too by SAWC

times series. Some extreme years are well captured: e.g. the high extremes of the 2008 year over the Ganges basin, which are5

depicted also by the ISBA model.

In order to quantify the agreement of these times series, Fig. 4 represents the correlation, the correlation of the anomalie,

and the Root Mean Square of the Difference (RMSD) between the four estimate (GRACE, SAWC, ISBA and GLDAS), over

the five Himalayan basins, for the GRACE period (2002-2015). It can be see that the SAWC times series is highly correlated

(0.96 on average) to the GRACE data, better than the ISBA (0.94); GLDAS has much lower agreement with GRACE (0.91)10

because it misses completely the season in the Irrawaddy basin for some years (not shown for clarity in Fig. 2). Again, it is not

surprising that SAWC is close to GRACE because it has been designed to do that.

In terms of correlation of anomalies, SAWC estimate is always closer to ISBA than to GRACE, even if SAWC has high

correlation of anomalies with GRACE (between 0.69 and 0.79) except over the Brahmaputra basin (0.36). This will be ana-

lyzed below. Comparatively, GLDAS estimate is less correlated to GRACE over the four basins (except Brahmaputra basin).15

The RMSD and RMSD of anomalies show similar pattern that of the correlation values, over all the basins. The RMSD statis-

tics are better for the SAWC (19 mm/month error) than for ISBA (26 mm/month error), but this is no surprise because the

season is a large part of these discrepancies. GRACE has a low spatial resolution (300 km2 at the equator), this can decrease

the accuracy of the TWSC anomaly estimates over small basins (e.g. Godavari or Irrawaddy). The smaller the basin is, the

larger the gap between SAWC-GRACE and SAWC-ISBA correlation becomes. SAWC estimate is based on precipitation and20

evapotranspiration obtained at a finner spatial resolution (0.25◦) than GRACE. Therefore, SAWC, as ISBA (at the 0.25◦ spatial

resolution) represents better the anomaly over small basins as far as precipitation and evapotranspiration are accurate enough.

Over the Brahmaputra basin, the large uncertainty of satellite evapotranspiration products over the mountains (see the impact

of the calibration for the evapotranspiration estimate over this basin in Fig. 3) might impact the SAWC TWSC accuracy and

explain why GLDAS and ISBA are better over this basin. This assumption is later confirmed in Fig. 6 in which precipitation in25

ISBA and SAWC are close but the anomalies of E differ. Overall, it can be concluded that SAWC seems closer to GRACE than

ISBA, for some events, as seen in the anomalies, over the Brahmaputra basin. GLDAS has a lower agreement with ISBA, in

particular over the Irrawaddy basin. The discrepancy between simulated TWSC from ISBA and GLDAS can be explained by

the different representation of aquifers in these two models. While a two-dimensional diffusive groundwater scheme in ISBA

represents unconfined aquifer processes (Vergnes and Decharme, 2012; Vergnes et al., 2012), the Noah land model used in the30

GLDAS simulations did not include surface and groundwater storage. Therefore, the simulated mean seasonal cycle and the

inter-annual variability of the TWSC is improved in ISBA (Decharme et al., 2019b). On the contrary, deviations from GRACE

TWSC can thus be expected with GLDAS (Syed et al., 2008). Based on these results SAWC solution is compared only to ISBA

in the following over the long time period.
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3.2 Comparison with ISBA TWSC

In Fig. 5, the SAWC reconstruction is compared to the ISBA simulation over a long time record. ISBA is available from 1980

to 2015, SAWC is available based on the river discharge in situ measurements coverage (see Table 1). The first important

remark to be done is the very good seasonal cycle agreement between SAWC and ISBA: correlations are larger than 0.93,

except for the Brahmaputra with a correlation of 0.88. This basin presents a particular water cycle in 2007 that is analyzed in5

Appendix (Fig. A3). In the following, the year 2007 has been removed from the comparison analysis. For the Ganges basin,

the main difference between the two estimates is that ISBA represents larger negative seasonal peaks and a slight phase in the

seasons over the Mekong. In terms of seasonal anomalies, the agreement is also satisfactory with correlations between 0.61

(Godavari and Irrawaddy) to 0.78 (Mekong that is always well represented in our analysis), except again for the Brahmaputra

(0.22 correlation). However, based on the 2007 analysis over the Brahmaputra (Fig. A3), we believe that the SAWC anomalies10

might be more reliable because they use measured in situ D compared to the models.

In Fig. 6, we analyse the long-term TWSC time series in terms of anomalies with respect to the climatological season.

Furthermore, the times series of these anomalies have been smoothed using a three-year moving window. For instance, a

peak value of 10 mm/month means that the time series was on average 10 mm higher than the climatological season, for 3

consecutive years (i.e. 360 accumulated mm in three years).15

In general, SAWC reproduces well the long-term anomalies of the MSEWP precipitation dataset. This satellite dataset

was used as input with two close other products (TMPA and GPCP calibrated using the same precipitation gauges) for the

SAWC reconstruction (while ISBA uses a mix between GPCC and ECMWF reanalysis, see section 2.b.2). In general, ISBA

precipitation inputs has some differences with MSEWP during the 80’s and in 2010-2015, this requires further investigations

beyond the scope of this study. The evapotranspiration anomalies are relatively flat for all basins, except for the Godavari20

where both SAWC and ISBA are in good agreement. By construction, the discharge D measurements are well reproduced by

SAWC, but some significant differences can be observed for the ISBA model. These important temporal variations of the D

anomalies have an important impact on the other WC components of the SAWC reconstruction. TWSC anomalies ∆S have a

rather constant behaviour in the ISBA analysis, but large variations are present in the SAWC reconstruction. For instance, there

is a large water deficit in the 1990-1991 over the Brahmaputra, or over the Ganges in 1985-1887.25

From this comparison, the following conclusions can be drawn. When precipitation from SAWC matches well precipitation

used to force ISBA, discharge simulated by ISBA is quite close to in situ measurements (discharge from SAWC), as for the

Mekong and the Godavari basins, which could be seen as an indicator of the good quality of PSAWC . On the contrary, main

differences between DISBA and DSAWC are either due to large differences between precipitations or to the TWSC dynamics.

In ISBA, the groundwater storage is a simple delayed reservoir (with a constant delay parameter) which tends to attenuate30

the river dynamics. It is then not able to simulate long term groundwater dynamics (Pedinotti et al., 2012). Moreover, the

ISBA model does not represent anthropogenic factors such as groundwater extraction, river regulation or irrigation, which

may significantly impact river discharges. For instance, in Fig. 6, the Mekong river discharge anomalies show lower min-

max range in the observations than in ISBA. Li et al. (2017) highlight the impact of the construction of the Xiaowan and the
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Nuozhadu dams starting in 1991. The dam reduces the streamflow in particularly wet seasons and increases the streamflow

in particularly dry seasons which lowers the anomaly variations. For this basin, D is more correlated to precipitation in ISBA

(0.94) than in SAWC (0.63) solutions. This shows that modeled D is more straightforwardly dependent of the precipitation

than in observations. On the contrary, TWSC anomaly is less linked to precipitation in the ISBA model than in SAWC where

natural recharge is better represented. This difference is also discussed in the Appendix A. The integration of anthropogenic5

processes are currently under development, as well as alternatives like data assimilation (Emery et al., 2018; Albergel et al.,

2017).

3.3 Indirect evaluation using GIEMS inundation area

An important component of the TWS corresponds to the surface waters. The GIEMS (Global Inundation Extent from Multi-

Satellite) database provides an estimation of the inundation extent from 1993 to 2007, at the global scale, on a 0.25◦ resolution10

equal-area grid (Prigent et al., 2007). GIEMS was fully assessed over Asian basins, especially using GRACE data (Papa et al.,

2008). The SAWC reconstruction of TWSC and the inundation area time series are represented jointly in Fig. 7 to measure their

coherency. Since surface waters are only one part of the TWS, we do not expect a perfect match between the two times series.

However, the coherency between them is noticeable, correlation ranges from 0.76 (Godavari) to 0.85 (Ganges). Furthermore,

the inter-annual variability of both times series can be measured by the seasonal anomalies, their correlations are significative;15

they oscillate from 0.24 (Irrawaddy) to 0.42 (Ganges) except for the Brahmaputra where problems were already noticed (see

Fig. 6). This comparison is not a direct evaluation of the TWSC, but the fact that coherency can be found between two

completely independent measurements on the water cycle is a positive point for the evaluation of the SAWC reconstruction.

4 Conclusion and perspectives

The Total Water Storage (TWS) and its Changes (TWSC) is a crucial element of the water cycle because of its impact on water20

management, and its role of tracer of human activity. The first measurement available to monitor it came from the GRACE

instrument in 2002. Longer time records being necessary for climate studies, we proposed here to use satellite observations

for precipitation and evapotranspiration with in situ river discharge measurements to estimate the TWSC over the period 1980-

2015. Our approach is based on the water conservation rule over each basin. We performed this task over five major Asian basins

because their evolution is related to importante questions about water management, climate change, and land-use changes. Our25

SAWC reconstruction of TWSC has been evaluated using (1) GRACE observations (over the 2002-2007 period), (2) ISBA

model simulations (1980-2015), and (3) surface inundation area (1993-2007). The seasonality and inter-annual variability of

SAWC’s TWS appear coherent with these independent sources of information.

The advantages of the proposed methodology are numerous. It is an integration method that gathers all the observations

available, satellite and in situ measurements. Contrarily to traditional assimilation, this methodology does not use any land30

or hydrological model, except the water conservation law. It uses the multiplicity of observations to reduce uncertainties on

each one of the water cycle components, and introduces more hydrological coherency among them. If the river discharge
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measurement is available, it allows to handle a true anthropized discharge (not an idealized natural one, as provided by models

in most cases). However, if this discharge is not available, the methodology cannot be applied; and if important uncertainties

on discharge measurements are present, these errors will be propagated to all the other water components.

We foresee many perspectives for this work. First, we would like to extend the TWSC estimation to other basins. This

work can be done over large basins (compatible with the GRACE spatial resolution) and where the in situ river discharge5

measurements are available. Once this is done over a sufficient number of large basins, the optimized databases can be used

as a reference to calibrate the satellite estimates at the global scale. This allows for the use of the satellite observations at the

global scale and not only over the basins where the integration was performed (Munier and Aires, 2017). River discharges

could potentially be estimated over un-monitored basins, or over longer time series than the monitoring. Total water storage

could also be estimated over monitored basins, over longer times series than the GRACE record (as it was done here). When10

discharge is not monitored, the use of modeled river discharges could be attempted.

Our methodology can also be used to detect incoherencies in our estimations of the water cycle components. For instance,

large budget errors could indicate regions where the evapotranspiration is biased (e.g. due to an under- or over-estimation of

the irrigation as in the Nile basin). Our approach could detect such problems and propose a bias-correction of the incriminated

water component.15

Finally, we expect to use a similar methodology over connected sub-basins. It is possible to estimate the surface water storage

using water extent and topography (Papa et al., 2015), but the horizontal underground transport of water cannot be measured

so far. The difference of total water storage and surface water storage should help us estimate the ground water storage and

characterise its horizontal transport. This would be a major achievement as this important process of the global water cycle is

largely unknown so far.20

Appendix A: Computation of Total Water Storage Change (TWSC)

For a given month, the TWSC corresponds to the variation of the Total Water Storage (TWS) between the first day of the

month and the first day of the following month. As show in Eq. (1), TWSC equals the sum of inflows into the domain (P )

minus outflows out from the domain (E+Q) during the whole month (P , E and Q represent monthly averages). The ISBA

land surface model may provide all variables, including TWS, at a daily time step, so that it is possible to compute TWSC as25

the above-mentioned difference. By construction, the water balance is closed in the ISBA model, and the absolute difference

between TWSC and (P −E−Q) does not exceed 10−6 mm/month (with a RMS of 10−9 mm/month). On the other hand, it

is not possible to compute the exact TWSC with GRACE data since TWS at the beginning of each month is not available.

Instead, GRACE data correspond to monthly averages of TWS anomalies (temporal mean removed). To approximate TWSC,

we used the centred difference from Eq. (9). Yet, this approximation introduces important errors compared to the true TWSC.30

Fig. A1 (left) shows the impact of this approximation with ISBA outputs (where the true TWSC is represented by P −E−Q).

To reduce this error, we followed Landerer et al. (2010) by computing P −E−Q using Eq. (6). Fig. A1 (right) shows a better

match between the approximated P −E−Q and the centred TWSC. Nevertheless, the reader should keep in mind that both
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approximations increase final uncertainties of about 5 to10 mm/month. This error has a quite high frequency and is reduced to

less than 1 mm/month when using a 3-year moving average as in Fig. 7.

Appendix B: Zoom on 2007 event over Brahmaputra

An extreme inundation has occurred in the Spring of 2007 over the Brahmaputra basin (Gouweleeuw et al., 2018; Islam et al.,

2010; Webster et al., 2010). It is interesting here to analyse how this was handled in the SAWC reconstruction and the ISBA5

model. The Fig. A3 compares them for the four water component estimates. The climatological seasons are also represented

(dashed lines) for comparison purpose. Two basins are illustrated: the Ganges and the Brahmaputra.

In this sample, it can be seen that the model follows a classical seasonality for each water component and both basins. In the

SAWC reconstruction, the seasonal anomaly is well reproduced for the dischargeD, which was expected since this observation

was used in the SAWC integration process. This translates into a pronounced anomaly in TWSC. This shows the benefits and10

the risks associated with the SAWC reconstruction: if the in situD is reliable, then SAWC will reproduce it well and the impact

on the other components can be important. If D measurements are erroneous, this can introduce considerable noise into the

WC analysis.

This relates also to the question of the natural versus real/anthropised discharge D. Hydrological model will generally

consider natural rivers. It is difficult to obtain all the necessary information to model true discharge (dams management,15

pumping for irrigation, etc.). An interesting way to constrain models to follow in situ measurements of the discharge would be

to assimilate these measurements into the model (Wang et al., 2018).
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Figure 1. Five Himalayan basins considered in this study.
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Figure 2. TWSC (top) and TWSC seasonal anomaly (bottom), for the three estimates (GRACE, SAWC and ISBA), for the five Himalayan

basins, over the GRACE time period.
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Figure 3. Comparison of the four water components estimates and the WC budget residuals (in row), for the original XSW (red) and

calibrated XCAL (green) estimates. The estimates are for the Ganges (top) and the Brahmaputra (bottom) basins.
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Figure 4. The correlation (left), the correlation of the anomalies (middle), and the Root Mean Square of the Difference (right) between the

four estimates (GRACE, SAWC, ISBA, GLDAS), for the five Himalayan river basins (in row), over the GRACE (2002-2015). Some of the

commented statistics are also indicated numerically.
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Figure 5. Times series of the TWSC (left) and seasonal cycle (right) from 1980 to 2015, for the SAWC and ISBA model estimates, over the

five considered basins. Correlations of raw and anomaly values are also provided.
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Figure 6. Times series of the WC components (mm/month) for 1980-2015, in terms of anomalies (with respect to the climatological season)

smoothed using a 3-year moving window; on the five considered basins; for SAWC (red) and ISBA (green) estimates. Observations are also

represented in black (MWEWP for P and in situ measurements for D).
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Figure 7. Evaluation of TWSC from the SAWC reconstruction using the GIEMS inundated area, from 1993 to 2007, over the figure consid-

ered basins. The correlation between them is also provided, together with the correlation of the anomalies.

28



Figure A1. Comparison between the two estimates of the TWSC over the Ganges basin: the closure at any time step in the ISBA model

(P -E-Q, in blue) and the centered difference of the observed TWS anomalies with GRACE (in red). The difference of the two estimate is

also shown (in green). The figure shows the original time series (top) and the seasonal anomalies (bottom).
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Figure A2. Same as Fig.A1 but the closure is now ensured with Eq.(8), following Landerer et al. (2010). This approximation lead to a better

match of the two estimates.
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Figure A3. Comparison between SAWC reconstruction (red) and the ISBA model output (Green) estimates; for the year 2007 with a large

inondation in the Brahmaputra basin; for the four water components estimates (in row); and the Ganges (left) and the Brahmaputra (right)

basins. The climatological season are also represented in dashed lines.
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Name Area (105 km2) Outlet station Location Time record Source

Mekong 7.7 Phonm Pehn 11.5◦N; 104.9◦E 1993-2016 pers. comm. (1)

Ganges 9.6 Hardinge 24.1◦N; 89.0◦E 1980-2013 pers. comm. (2)

Brahmaputra 5.2 Bahadurabad 25.1◦N; 89.7◦E 1980-2013 pers. comm. (2)

Godavari 3.2 Polavaram 17.2◦N; 81.7◦E 1965-2015 Water Resources Information System of India

Irrawaddy 3.6 Pyay 18.8◦N; 95.2◦E 1996-2010 GRDC
Table 1. Characteristics of the five considered basins and associate in situ measurement stations. (1) Personnal communication from Bianca-

maria et al., 2017, EGU. Data derived from radar altimetry water level estimations and calibrated against in situ measurements following a

similar technique as in (Papa et al., 2010) (2) personnal communication and obtained from BDWB (Bangladesh Water Development Board

(http://www.bwdb.gov.bd/) as in Papa et al. (2012)

.

Basin Original XSW Calibrated XCAL Improvement

(mm/month) (mm/month) (%)

Mekong 23 16 30

Ganges 20 15 25

Brahmaputra 61 28 54

Godavari 29 20 31

Irrawaddy 44 24 45
Table 2. RMS of the WC budget residuals in mm/month for the original (XSW ) and the calibrated (XCAL) estimates, over the five considered

basins.

Dataset Basins

Mekong Gang. Brahm. Goda. Irrawa.

P

GPCP 14 15 35 12 10

TMPA 14 13 31 13 11

MSEWP 15 17 32 16 19

E

GLEAM 6 5 6 6 6

MOD16 4 8 6 9 8

CSIRO 8 5 7 5 8

D In situ 3.4 2.7 4.7 2.8 7.7

Table 3. Uncertainty estimates (in mm/month) in terms of STD error compared to XPF , for P , E and D, over the five considered basins,

for the original datasets.
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