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GENERAL COMMENTS

• In summary, this article tries to reconstruct Total Water Stor-
age Change (TWSC) using satellite-based integrated water cycle
components of P and E, and observation-based D in five larger
basins in South Asia. Then, TWSC obtained from GRACE, ISBA,
and GLDAS were used to evaluate the performance of the recon-
structed TWSC here. The topic is interesting, but many attempts
have already been made by previous studies (Tang et al., 2017;
Humphrey et al., 2017). Major revision is needed before publica-
tion, here, a few suggestions that authors should consider while
revising are listed below:
- Thank you for your comments, we hope that the new version of the
manuscript is now in a better shape.

The introduction describes better the state of the art in the reconstruc-
tion of TWS anomalies (TWSA) and change (TWSC) in the literature and
states the novelty of this article : If classical approaches to retrieve TWS rely
on land surface model (Decharme et al., 2019; Tootchi et al., 2018), stud-
ies have recently attempted to using statistical model and various climate
drivers. For instance, Humphrey et al. (2017) reconstruct the TWSA us-
ing a linear regression from precipitation and temperature, while Chen et al.
(2019) use an artificial neural network to reconstruct TWSA based on precip-
itation, temperature and surface variables (e.g. soil moisture and NDVI).
Yang et al. (2018) review and compare several statistical methods (linear,
random forest, artificial neural network and support vector machine) to re-
construct TWSA from soil moisture, canopy water and snow water equiva-
lent. These studies focus on the TWSA without monitoring the whole WC.
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If statistical methods offer the opportunity to estimate TWS anomalies at
global scale in a simpler way than the LSM, they do not consider the water
balance and the related TWS estimate may not be coherent with the other
water components. The water balance at basin scale has been used to esti-
mate TWSC using satellite observations. For instance, Tang et al. (2017)
use the Budyko model to estimate annual TWSC based on P and E. A more
sophisticated method has been developed where satellite observation were as-
similated in the Variable Capicity Model (VIC) at basin scale (Pan et al.,
2012) and at the 0.5◦ LSM pixel (Zhang et al., 2017). In order to obtain a
TWSC estimate independent of the LSM, another framework has been de-
veloped (Aires, 2014; Munier et al., 2014; Pellet et al., 2019). It is based on
an integration of satellite observations and in situ river discharge measure-
ment, using the conservation of the water as a constraint, to optimize all
sources of information. It has been shown that using the constraint on the
observations gives as good results as with the assimilation framework (Mu-
nier et al., 2014). We follow here on this framework to reconstruct TWSC
with good accuracy.

• First, as shown in Fig. 2 and Fig. 4, SAtellite Water Cycle
(SAWC) estimates generally has higher correlation with that from
GRACE, ISBA and GLDAS except for the Irrawaddy Basin. As
for the correlation of anomalies, relative higher correlation be-
tween SAWC estimates and the other three were found in Mekong
and Ganges basins, while much lower correlation was found in
the left basins especially in Brahmaputra basin. This highlighted
the spatial and temporal variation of the performance of SAWC
estimates, therefore, more discussions on such uncertainties are
needed.
- Thank you for this remark. Indeed, the performance of all TWSC estimates
varies spatially and numerous factors explain these differences mainly the
accuracy of GRACE estimate in terms of seasonal anomalies over the small
sub-basins and the large uncertainty of the evapotranspiration estimates
used in SAWC. This is now clearer in the text: SAWC estimate has gener-
ally high correlation values with GRACE, ISBA and GLDAS estimates (ex-
cept for the Irrawaddy Basin). In terms of correlation of anomalies, SAWC
estimate is always closer to ISBA than to GRACE even if SAWC has high
correlation of anomalies with GRACE (between 0.69 and 0.79) except over
the Brahmaputra basin (0.36). Comparatively, GLDAS estimate is less cor-
related to GRACE over the four basins (except Brahmaputra basin). The
RMSD and RMSD of anomalies show similar pattern than the correlation
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values over all the basins. GRACE presents relatively low spatial resolution
(300 km2 at the equator) that can decrease the accuracy of TWSC anomaly
estimate for small basins (e.g. Godavari, Irrawaddy). The smaller the basin
is, the larger the gap between SAWC-GRACE and SAWC-ISBA correla-
tion becomes. SAWC estimate is based on precipitation and evapotranspi-
ration obtained at finner spatial resolution than GRACE (0.25◦). There-
fore, SAWC, as ISBA (at the 0.25◦ spatial resolution) better represents the
anomaly over small basins as far as the precipitation and evapotranspiration
are accurate. Over the Brahmaputra basin, the large uncertainty of satellite
evapotranspiration products over the mountainous area (see the impact of the
calibration for the evapotranspiration estimate over this basin in Figure 3)
might impact the SAWC TWSC accuracy and explains why GLDAS and
ISBA are better over this basin. This assumption is later confirmed in Fig-
ure 6 in which precipitation in ISBA and SAWC are close but the anomalies
of E differ. Finally, the discrepancy between simulated TWSC from ISBA
and GLDAS can be explained by the different representation of aquifers in
these two models. While a two-dimensional diffusive groundwater scheme in
ISBA represents unconfined aquifer processes (Vergnes and Decharme, 2012;
Vergnes et al., 2012), the Noah land model used in the GLDAS simulations
did not include surface and groundwater storage. Therefore, the simulated
mean seasonal cycle and the inter-annual variability of the TWSC is im-
proved in ISBA (Decharme et al., 2019). On the contrary, deviations from
GRACE TWSC can thus be expected with GLDAS (Syed et al., 2008).

Based on the results presented in Figure 4, we decided to compare our
SAWC solution over the long time period only to ISBA. Nevertheless, none
of these models included anthropogenic effects and this is now also discussed
(see next comment).

• Second, ISBA was used to evaluate the SAWC estimates due to
the long series historical data. However, ISBA model does not
represent anthropogenic factors such as groundwater extraction,
river regulation or irrigation, which may significantly impact D
and TWSC. This is much different from SAWC estimates which
might already considered the anthropogenic disturbances. This
difference can lead to some big discrepancy as shown in Fig.5 and
Fig. 6 for the terms of D and delta S. Therefore, the authors are
encouraged to clarify which anthropogenic disturbances have been
considered in SAWC estimates and how they affect the discrep-
ancy among different basins in corresponding years.
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- Thank you for this remark. With the use of actual river discharge obser-
vations, SAWC estimate considers all anthropogenic effects that impact the
river along its path (mainly water withdrawal for irrigation and flow regu-
lation by dams). Several points have been added to the comments on the
results in order to discuss the impact of dams construction on the Mekong
river discharge in the observation and in the model:

• In Figure 6, Mekong river discharge anomalies show lower min-max
range in the observations than in ISBA. Li et al. (2017) highlight the
impact of the construction of the Xiaowan and the Nuozhadu dams
starting in 1991. The dam reduces the streamflow in particularly wet
seasons and increases the streamflow in particularly dry seasons which
lowers the anomaly variations.

• D is more correlated to precipitation in ISBA (0.94) than in SAWC so-
lutions (0.63). This shows that D in a model is more straightforwardly
dependent of the precipitation than in observe state.

• On the contrary, TWSC anomaly is less linked to precipitation in the
ISBA model than in SAWC solutions where natural recharge is better
represent. These difference is also discussed in the Appendix A.

• Also, if possible, adding the results from other hydrological mod-
els that considers the human activity is highly encouraged.
- Significant efforts that have been made during the last two decades to in-
corporate anthropogenic impacts in LSM (Hanasaki et al., 2006; Haddeland
et al., 2014). These new schemes in LSM are developed offline and mainly at
regional scale but significant challenges still remain in their standardization
into global LSM as in the availability of the observations (e.g. irrigation,
pumping rate) (Pokhrel et al., 2016). Global LSM do not include the global
representation of flow regulation and irrigation water needs. Therefore, an-
alyzing the impact of anthropogenic effect into a LSM is beyond the scope
of the study. The previous citations and comment have been added to the
manuscript in Section 2.2.2.: ”These two global and well known models have
been chosen for comparison even if none of them included anthropogenic
effects on the river discharge and groundwater storage. Significant efforts
have been made during the last two decades to incorporate anthropogenic
impacts in LSM (Hanasaki et al., 2006; Haddeland et al., 2014) but crucial
challenges still remain. Most of these new schemes in LSMs have been de-
veloped and used offline for regional scale studies and without common and
standardized framework (Pokhrel et al., 2016; Döll et al., 2016). At global
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scale, a state of art does not include the global representation of flow regu-
lation and irrigation water needs.”

• Third, compared with previous studies of TWSC derive, an in-
tegrated utilization of satellite products to retrieve TWSC seems
an advantage of this study, but similar idea has been reported in
(Pan et al., 2012; Zhang et al., 2017). , therefore, clear illustration
of the novelty of this study is needed.
- As now stated in the introduction, the Princeton (Pan et al., 2012; Sahoo
et al., 2011; Zhang et al., 2017) and the WATCHFULL / WACMOS-MED
initiatives (Aires, 2014; Munier et al., 2014; Pellet et al., 2019) are both based
on the combination of numerous satellite information and the physical law
of water conservation to optimize the latter. However, the first is based on
the assimilation of the satellite information into the VIC model while our
approach attempted to be as observational as possible. A study has already
compared TWSC reconstruction between Princeton and WATCHFULL ini-
tiative over the Mississippi (Munier et al., 2014). This is now indicated in
the introduction.

• Fourth, as shown in B of Eq.4, a priori specification of the uncer-
tainties seems important in obtaining optimized solution through
Post-Filtering”, so more explanations of the advantage for current
specification scheme is needed.
- Characterizing the uncertainties of satellite-retrieved products is a difficult
task. These specifications are now clearer in the text: ”Such characteriza-
tions are generally product and site specific. Some studies (Pan et al., 2012;
Sahoo et al., 2011; Zhang et al., 2017) estimate the a priori uncertainty
of particular water components based on the spread among the various es-
timates (taking the spread of estimates as an estimate of the uncertainties
can sometimes be dangerous). In our case, this approach would not take
into account the fact that the precipitation estimates are not independent.
The value used here are derived from (Munier et al., 2014) in which the
authors reviewed carefully the literature on this topic. The partitioning of
uncertainty between P and E has however been modified to allow larger un-
certainty in P since datasets are dependent in our case. As the objective of
the current study is to reconstruct GRACE TWSC, the approach assumes
lower errors in GRACE estimate that becomes our reference.”

SPECIFIC COMMENTS
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• Page 5, Line 60-65, this study used one gravity solution based
on MASCON-JPL. Other solutions from Center for Space Re-
search (CSR) at the University of Texas at Austin, and Geo-
ForschungsZentrum (GFZ) are available. The comparison of dif-
ferent solutions among different basins are needed to be clarified
to support the choice of the solution or using the resembled solu-
tion.
- I may misunderstand the comment. To our knowledge, GFZ does not pro-
vide a GRACE MASCON solution but only Spherical decomposition one.
The MASCON solutions from CSR and JPL differ in their processing and we
choose here the JPL solution because it is more independent of the spherical
solutions. This information has been added to the manuscript at Section
2.2.1: ”Another MASCON solution exists : the CSR-MASCON solution.
The MASCON solutions from CSR and JPL differ in their processing: while
JPL solution is based on the explicit estimation of mass anomalies at specific
mass concentration block location using the analytical partial derivatives of
the inter-satellite range-rate measurements (Watkins et al., 2015), the CSR
developed MASCON solution is first based on a Spherical decomposition of
the inter-satellite range-rate measurements that is truncated spatially at the
location of mass concentration (Save et al., 2016). The two solutions have
been compared to the spherical solutions in terms of uncertainty in both min-
max range and trend in (Scanlon et al., 2016; Save et al., 2016). We choose
here the JPL solution because it is more independent of the spherical so-
lution.”. If it is admitted that for a Spherical solution (JPL,CSR,GFZ),
the use of the ensemble mean (simple arithmetic mean of JPL, CSR, GFZ
fields) is the most effective in reducing the noise in the gravity field solutions
(Sakumura et al., 2014) this might not be the case for MASCON solution.
The community uses independently the JPL-MSC or CSR-MSC solutions
(Scanlon et al., 2016). In our preliminary test, the JPL-MSC overperforms
the spherical solution over particular latitudinal oriented river basin (e.g.
Irrawaddy).

• Page5, Line 70, ”with respect to averaged season”, the time
period should be specified.
- The time period used to computed the average season (2002-2015) is now
specified.

• Caption of fig. 3, for the original XSW (blue), it should be green
as shown in the figure.
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- Thank you. Caption has been modified.
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