
We would like to thank the editor Elena Toth and the two referees Guillaume Thirel and Andreas Efstratiadis for their con-
structive suggestions and comments. Below we provide the Editor’s and Referee’s comments verbatim in black italic text and
our responses below each comment in blue text.

1 Response to editor decision5

Dear Authors,
as I wrote already, this revised work is indeed a significant step forward, and it is almost ready for publication.
Thank you for your careful reading.

Nonetheless the referees have some constructive suggestions for improving it even more: in addition to make some techni-10
cal minor changes suggested by both referees, Dr. Andreas Efstratiadis asks to provide a wider review of the state-of-the-art
and to add a short conclusive section, and I am sure you may add such parts.
Thank you for this suggestions, we added these two parts as you can see in our response to Dr Andreas Efstratiadis.

Andreas also believes that adding an analysis on a different benchmark would help the readers to better assess the value15
of your algorithm: I would invite to consider if it is possible for you to provide such different benchmark, unless it takes too
much time.
In the current working conditions due to the covid crisis, it is not possible for us to run new computations. This benchmark is
indeed a very interesting suggestion for further work.

20
I do invite you, therefore, to submit a last revision trying to address such comments, in order to make your work even more
appreciated by the HESS readers.
Thank you, here is the response to the reviewers suggestions for this revised version.

25

2 Response to suggestions for revision from Referee Andreas Efstratiadis

General comments and critique
This version is the revision of the technical note that has been submitted to HESSD, under the title “The caRamel R package
for Automatic Calibration by Evolutionary Multi Objective Algorithm”. The content and philosophy of the revised article is
very different, since the authors have made a large effort to provide a research paper rather than a short technical note. I am30
also very pleased for the detailed response letter, and the fact that many of my recommendations have been addressed.
Thank you for all these constructive recommendations.

I found this work much more comprehensive. The new algorithm is quite well presented, although I would expect a more
careful review of the current advances in the field of multiobjective optimization and its applications in hydrological mod-35
elling, in order to justify the importance of this new methodology. In this context, I encourage the authors to address this
important issue, which stands for any new research.
We added this paragraph: "In hydrology, Madsen (2003) have implemented automatic multi-objective calibration of MIKE
SHE model (Refsgaard et Storm , 1995) on the Danish Karup catchment (440 km2) with the SCE algorithm (Duan et al.
, 1992). Yang et al. (2014) run a multi-objective optimization of the distributed hydrologic model MOBIDIC (Campo et al.,40
2006) on the Davidson catchment (North Carolina, 105 km2) with the Non-dominated Sorting Genetic Algorithm II (NSGA-II,
Deb et al., 2002). More recently Smith et al. (2019) lead a multi-objective ensemble approach to hydrological modelling in the
UK over 303 catchments for historic drought reconstruction with GR4J conceptual model (Coron et al., 2017) by using Latin
hypercube sampling (McKay et al. , 1979) and Pareto-optimising ranking approach accounting for non-acceptable trade-offs
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(Efstratiadis and Koutsoyiannis, 2010). Mostafaie et al. (2018) have compared five different calibration techniques on GR4J45
lumped hydrological model using in situ runoff and daily data from the Gravity Recovery And Climate Experiment (GRACE,
Tapley et al. , 2004). They conclude that according to the diversity based metrics NSGA-II method is the best one, according
to the accuracy metric Multi-objective Particle Swarm Optimization (MPSO,Reddy and Nagesh Kumar , 2007) is ranked first
and finally, the performance of all algorithms is found the same, while considering the cardinality measure."

50
Another suggestion involves the presentation of results. I found them quite poor. To my opinion, the benchmark problem can
be further developed, e.g. by running the three methods with much lower budget (instead of allowing 50 000 evaluations) and
also changing the population size. You may take some ideas from the work by Tsoukalas et al. (2016), as well as many other
similar works in the optimization literature. This will better reveal the pros and cons of the CaRamel method, and ensure a
clearer comparison with respect to MEAS and NSGA-II.55
We added more comments to improve our presentation of results. The benchmark strategy that you suggest is interesting. Un-
fortunatelywe can’t conduct it, specifically in the current context where we don’t have access to our computational resources.
Thus we suggest to mention it as a perspective in our optimization evaluation framework.
"We chose to run an important number of model evaluations and optimizations to get representative results and assess the re-
producibility of the optimization. Others benchmark methodology would be conceivable, such as presented by Tsoukalas et al.60
(2016) where several test functions and two water resources applications are implemented to compare the Surrogate-Enhanced
Evolutionary Annealing Simplex algorithm (SEEAS) to four other mono-objective optimization algorithms. In this study, two
alternative computational budget (indicated by the maximal number of model evaluations) are considered which impacts the
paramaters of the optimizers."

65
Finally, I do think that a short section conclusive is missing, with guidance for optimal setting of algorithmic inputs.
We added:" An optimization algorithm might be delicate to use because of the choice of input arguments which are specific
to the algorithm and might require some "expert knowledge". The sensitivity to caRamel internal parameters has not been
presented in this manuscript, but we have done some sensitivity analysis with the Morris method (Morris, 1991) to recommend
some default values for the user. First it is recommended to give the same weight to each generation rule by indicating the70
same number of parameter sets to generate. It is interesting to generate a small number of sets by generation to reduce the
number of model evaluations and have a more rapid convergence. By default, five sets are generated for each rule. The size of
the initial population should be large enough to have enough variability (at least 50 sets for a complex model). Moreover, as
convergence can be sensitive to the randomly chosen initial population, it is recommended to run two or three optimizations to
assess reproducibility. "75

There are also few additional comment and editorial correction, which are listed below. In this respect, my overall recom-
mendation is for a moderate revision.

Specific comments80
Page 2, lines 32-33: “Most of multi-objective algorithms rely mainly on stochastic generation rules, with few deterministic
aspects”. This argument requires some development, since it denotes the motivation of your research. If possible, also add
references.
We corrected: "Madsen (2003) indicates that the global population-evolution-based algorithms are more effective than multi-
start local search procedures, which in turn perform better than pure local search methods. However most of multi-objective85
algorithms rely mainly on stochastic generation rules, with few deterministic aspects, as it is the case in the widely used NSGA-
II for instance."

Page 6, line 123: Please explain the meaning of “secondary optimum”.
We corrected as "local optimum".90

Page 6, section 3.1.3: Please, explain the criteria for selecting the so-called “a priori variance” of each parameter.
We added: "The a priori variance is computed for each parameter from the bounds of variation indicated as input of the opti-
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mizer."
95

Minor editorial comments
Page 1, line 24: Please, change to read “have been” instead of “have become”. ok

Page 2, line 25: Please, change to read “. . . problems that are too complex. . . ” ok
100

Page 2, line 26: “The advantage of these evolutionary algorithms lies not only. . . .” This sentence is unclear.
We rephrased it as: "The advantage of these evolutionary algorithms lies not only because there are few alternatives for search-
ing substantially large spaces for multiple Pareto-optimal solutions but also due their inherent parallelism and capability to
exploit similarities of solutions by recombination, that enables them to approximate the Pareto-optimal front in a single opti-
mization run."105

Page 2, line 31: Please, change to read “to meet the need for an automatic calibration”. ok

Page 6, line 126: “. . . to make the variance of parameters independent from each other”. This statement is unclear. Vari-
ance and independence are two different notions.110
We reprased it as: "to make the parameters varying independently from each other."

Page 6, line 139: It may be preferable using MT for transpose matrix. Most readers are familiar with this symbol. ok, we
used it.

115
Page 9, line 195: Please, open parenthesis. ok

3 Response to suggestions for revision from Referee Guillaume Thirel

This is my second review of this manuscript.120
I read with attention the new version of the manuscript and the answers to the reviewers and editor comments. The authors
made a very serious job in taking into account all the comments.
First, the format of the manuscript complies now much more with the format of the HESS article. This is not anymore the de-
scription of a package, but the description and analysis of a calibration method, using an R package. As such, I feel it belongs
now clearly to the research article category of HESS. The title was modified accordingly. The description of the algorithm was125
extended. Not sure whether it is too long, in any case I do not have suggestions for shortening. A new algorithm was used for
comparison and this comparison was extended. As a consequence, I would be in favor of publication.
Thank you for the helpful suggestions you made to us and for these nice comments.

130
I only have a couple of minor remarks:
Abstract: some suggestions: "add" -> "adding"; "find" -> "finding"; "low-constrained" -> "poorly-constrained" ok

Regarding the goals of the paper (lines 44-47): I would add the information that pieces of codes are provided in the ap-
pendix.135
We added this sentence in the introduction: "Pieces of codes are provided in the appendix."

I would also replace “for each case study” with something like “for an analytical example and for three river case stud-
ies”, as these case studies were not introduced yet at this point of the manuscript. ok, we replaced it.
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140
L. 101: proper definitions of “vertex” and “simplex” could be useful for newcomers to multi-objective optimization.
We added: "For the rules 1 and 2, we use the notion of simplex which is a generalization of the notion of a triangle to higher
dimensions: a 0-simplex is a point,a 1-simplex a line segment, a 2-simplex is triangle, a 3-simplex a tetrahedron. A vertex is a
point where two or more edges meet."
L. 239 (and following): the Blue River is a real catchment and data are real.145

We were referring to the documentation of airGR package: "L0123001, L0123002 or L0123003 are fictional catchments."
We corrected it in the paper.

L. 274-275: I would move the sentence “The theoretical. . . ” after “at Montdauphin)” in line 279 for better readability. ok,150
we moved it.

L. 289: “changeS” ok

In the document we have both “discharges” and “stream flow” terms. I would pick one and stick to it.155
We corrected all "stream flow" terms by "discharges".

Figure 10: the GR4J parameter values are provided in the transformed space. I suggest transforming them back to the real
space through the TransfoParam_GR4J function and I would also suggest adding the units of these parameters. As the trans-
formations are not linear, the boxplots should somehow be modified.160
Figure 10 displays now the parameters whith theirs units.

Caption figure 10: “Durance River” ok

L. 353: “parameter sets” ok165

Appendix C: several R assignations (“<-“) were wrongly modified to “«-“. "«-" is used to declare global variables.

Also, line 411, the square sign is erroneous. ok, we corrected it.
170

References: Mersmann et al.: please add the package version you used. ok, it is version 1.0-15.1
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Abstract. Environmental modelling is complex, and models often require calibration of several parameters not directly evalu-

able from a physical quantity or field measurement. Multi-objective calibration has many advantages such as adding constraints

in a poorly-constrained problem or finding a compromise between different objectives by defining a set of optimal parameters.

The caRamel optimizer has been developed to meet the need of an automatic calibration procedure that delivers not just one but

a family of parameter sets that are optimal with regard to a multi-objective target. The idea in caRamel is to rely on stochastic5

rules while also allowing more "local" mechanisms, such as extrapolation along vectors in the parameter space. The caRamel

algorithm is a hybrid of the Multi-objective Evolutionary Annealing Simplex method (MEAS) and the Non-dominated Sort-

ing Genetic Algorithm II (ε-NSGA-II). It was initially developed for calibrating hydrological models but can be used for any

environmental model. CaRamel is well adapted to complex modelling. The comparison with other optimizers on hydrological

case studies (i.e. NSGA-II, MEAS) confirms the quality of the algorithm. An R package caRamel has been designed to easily10

implement this multi-objective algorithm optimizer in the R environment.

1 Introduction

Environmental modelling is complex, and models often require calibration of many parameters that cannot be directly estimated

from a physical quantity or a field measurement. Moreover, as models’ outputs exhibit errors whose statistical structure may

be difficult to characterize precisely, it is frequently necessary to use various objectives to evaluate the modelling performance.15

Put differently, it is often difficult to find a rigorous likelihood function or sufficient statistics to be maximized/minimized

(Fisher, 1922): for example, it is well-known that errors in a simulated discharge time series are not normally distributed, and

do not have constant variance and auto-correlation (Sorooshian and Dracup, 1980). In addition, Efstratiadis and Koutsoyiannis

(2010) list other advantages of multi-objective calibration such as ensuring parsimony between the number of objectives against

parameters to optimize, fitting distributed responses of models on multiple measurements, recognizing the uncertainties and20

structural errors related to model configuration and the parameter estimation procedure, and handling objectives that have

contradictory performance.

Multi-objective calibration allows for finding a compromise between these different objectives by defining a set of optimal

parameters. Practical experiences show that single-objective calibrations are efficient for highlighting a certain property of a

1
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system, but this might lead to increasing errors in some other characteristics (Mostafaie et al., 2018). Evolutionary algorithms25

have been widely used to explore the Pareto-optimal front in multi-objective optimization problems that are too complex to be

solved by descent methods with classical aggregation approaches. The advantage of these evolutionary algorithms lies not only

because there are few alternatives for searching substantially large spaces for multiple Pareto-optimal solutions but also due to

their inherent parallelism and capability to exploit similarities of solutions by recombination, that enables them to approximate

the Pareto-optimal front in a single optimization run (Zitzler et al., 2000).30

Many studies used the multi-objective approach in environmental modelling (Oraei Zare et al., 2012; Ercan and Goodall,

2016) or in land-use models (Gong et al., 2015; Newland et al., 2018). In hydrology, Madsen (2003) have implemented auto-

matic multi-objective calibration of MIKE SHE model (Refsgaard et Storm , 1995) on the Danish Karup catchment (440 km2)

with the SCE algorithm (Duan et al. , 1992). Yang et al. (2014) run a multi-objective optimization of the distributed hydro-

logic model MOBIDIC (Campo et al., 2006) on the Davidson catchment (North Carolina, 105 km2) with the Non-dominated35

Sorting Genetic Algorithm II (NSGA-II, Deb et al., 2002). More recently Smith et al. (2019) lead a multi-objective ensemble

approach to hydrological modelling in the UK over 303 catchments for historic drought reconstruction with GR4J conceptual

model (Coron et al., 2017) by using Latin hypercube sampling (McKay et al. , 1979) and Pareto-optimising ranking approach

accounting for non-acceptable trade-offs (Efstratiadis and Koutsoyiannis, 2010). Mostafaie et al. (2018) have compared five

different calibration techniques on GR4J lumped hydrological model using in situ runoff and daily data from the Gravity Re-40

covery And Climate Experiment (GRACE, Tapley et al. , 2004). They conclude that according to the diversity based metrics

NSGA-II method is the best one, according to the accuracy metric Multi-objective Particle Swarm Optimization (MPSO,Reddy

and Nagesh Kumar , 2007) is ranked first and finally, the performance of all algorithms is found the same, while considering

the cardinality measure.

The caRamel optimizer has been developed to meet the need for an automatic calibration procedure that delivers not only45

one, but a family of parameter sets that are optimal with regard to a multi-objective target. Madsen (2003) indicates that the

global population-evolution-based algorithms are more effective than multi-start local search procedures, which in turn perform

better than pure local search methods. However most of multi-objective algorithms rely mainly on stochastic generation rules,

with few deterministic aspects, as it is the case in the widely used NSGA-II for instance. The idea behind caRamel is not

just to keep these stochastic "global" mechanisms (such as recombination or multivariate sampling using the covariance) but50

also to allow more "local" mechanisms, such as extrapolation along vectors in the parameter space that are associated with an

improvement in all objective functions (a "gradient-like" qualitative approach extended to the set of objective functions).

CaRamel was initially developed and used for the calibration of hydrological models: Rothfuss et al., 2012; Magand et al.,

2014; Le Moine et al., 2015; Monteil et al., 2015 (all previous to the R package release) or Rouhier et al. (2017, R version,

calibration of a hydrologic model over the Loire basin, 35,707 km2). The interesting performances of the caRamel algorithm55

in such studies prompted us to describe in detail the algorithm in the present paper. Considering the increasing use of R in

hydrology (Slater et al., 2019), we decided to build a R package, caRamel, for use in any model in the R environment. The

user has simply to define a vector-valued function (at least 2 objectives) for the model to calibrate as well as lower and upper

bounds for the calibrated parameters.
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Figure 1. Notations to describe a model calibration: with θ a vector from the parameter space Eθ , y a vector of observed values in the

observable space Ey and f(θ,y) an objective vector in the objective space Ef .

This paper aims to describe the principles of the caRamel algorithm, through analysis of its results when used for parametriza-60

tion of hydrological models. Pieces of codes are provided in the appendix. For an analytical example and for three river case

studies, a comparison with the two calibration algorithms that have inspired caRamel (the Non-dominated Sorting Genetic

Algorithm II, NSGA-II, Reed and Devireddy, 2004, and the Multi-objective Evolutionary Annealing Simplex method, MEAS,

Efstratiadis and Koutsoyiannis, 2008) is also presented.

2 Context and notations65

The intent of multi-objective calibration is to find sets of parameters that provide a compromise between several potentially

conflicting objectives; for instance, how to achieve a good simulation of both flood and low-flow in a hydrological model.

Multi-objective calibration is also a means of adding some constraints to an under-constrained problem when many parameters

have to be quantified. This can help to reduce the equifinality of parameter sets. Her and Seong (2018) showed that the

introduction of an adequate number of objective functions could improve the quality of calibration without requiring additional70

observations. The amount of equifinality and output uncertainty overall decreased while the model performance was maintained

as the number of objective functions increased sequentially until four objective functions.

To introduce our notation, Figure 1 shows a simplified calibration problem in which there is:

– a model with nθ = 2 parameters to calibrate ( θ1 and θ2). The model structure is thus unequivocally represented by the

vector θ = (θ1,θ2) in a nθ = 2 dimensional space, called parameter space Eθ.75

– a vector y of ny observed values that should be simulated by the model. For example, for daily times series of 1 year at

2 gauging stations, ny = 2 ∗ 365 = 730. The simulation is represented by a vector ŷ(θ) in a ny dimensional space (that

cannot be illustrated graphically), called observable space Ey .

– a vector of nf objective values f(θ,y). For the example in Fig. 1, f = (f1,f2) in a space with nf dimensions, called

objective space Ef .80

We will use the following notations: vector or matrix written in bold (θ, y, f , Σ . . . ), vector element and scalar written

normally (θ1, θ2, λ, . . . ), space or ensemble written in cursive (Eθ, F , A, . . . ).
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Figure 2. Flowchart of caRamel algorithm.

Figure 1 also illustrates the relevance of multi-objective calibration with regard to two kinds of equifinality:

1. equifinality of structure: the two points θ and θ′ quite distant in the parameter space Eθ become quite near in the

observation space Ey .85

2. equifinality related to the objective: the vectors θ et θ′′ are equifinal regarding f1, and the additional objective f2 help to

discriminate them. The use of additional objectives may then help to better constrain the calibration.

The purpose of a multi-objective algorithm is to approach the Pareto front, F , of non-dominated solution in the objective

space by an ensemble of points called the approximated Pareto front F̂ . We call archive Â the ensemble of parameter sets from

Eθ for which simulation outputs are in F̂ .90

3 CaRamel algorithm description

The caRamel algorithm belongs to the genetic algorithm family. The idea is to start from an ensemble of parameter sets

(called "population") and to make this population evolve following some generation rules (Fig. 2). At each generation, new

sets are evaluated regarding the objectives and only the more "suitable" sets are kept to build the new population. The caRamel

algorithm is largely inspired by:95

1. the Multi-objective Evolutionary Annealing Simplex method (MEAS, Efstratiadis and Koutsoyiannis, 2005; Efstratiadis

and Koutsoyiannis, 2008), for the directional search method, based on the simplexes of the objectives space,

2. the Nondominated Sorting Genetic Algorithm II (ε-NSGA-II, Reed and Devireddy, 2004), for the classification of pa-

rameter vectors and the management of precision by ε-dominance.

This section describes the functioning of caRamel algorithm. This algorithm has been implemented in a R package caRamel100

that is described in Appendix A.
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3.1 Generation rules

The caRamel algorithm has five rules for generating new solutions at each generation: (1) interpolation, (2) extrapolation, (3)

independent sampling with a priori parameter variance, (4) sampling with respect to a correlation structure, and (5) recombi-

nation.105

The first two rules (interpolation, extrapolation) are based on a nθ-dimensional Delaunay triangulation in the objectives space

Ef . They assume that two neighboring points in the objectives space Ef have two adjacent points in the parameter space Eθ as

antecedents, and therefore one can try to "guess" the directions of improvement in the parameter space from the improvement

directions (in a Pareto sense) in the objective space, at least near the optimal zone.

The following two rules create new parameter sets by exploring the parameter space in a non-directional and less local way:110

either by independent variations in each parameter, or by multivariate sampling using the covariance structure of all parameter

sets located near the estimated Pareto front at the current iteration.

Finally, the recombination rule consists in creating new parameter sets using two partial subsets derived from a pair of

previously evaluated parameter sets (inspired by Baluja and Caruana, 1995).

3.1.1 Rule 1: Interpolation115

For the rules 1 and 2, we use the notion of simplex which is a generalization of the notion of a triangle to higher dimensions:

a 0-simplex is a point,a 1-simplex a line segment, a 2-simplex is triangle, a 3-simplex a tetrahedron. A vertex is a point where

two or more edges meet. The explanation of the first rule is based on Fig. 3(a). First a triangulation of the points in the objective

space Ef is established: simplexes built with these points f(θi) are a partition of the explored zone in this space (Efstratiadis

and Koutsoyiannis, 2005).120

Let us consider a simplex with at least one vertex on the approximated Pareto front. This simplex is the result of the function

f from an ensemble of (nf +1) points from the nθ-dimensional parameter space Eθ. Under the hypothesis of continuity of f ,

a linear combination of the form θ̃ = w1θ1 + . . .+w(nf+1)θ(nf+1), with the barycentric coordinates wi ≥ 0 and
∑
iwi = 1,

might give a new Pareto-optimal solution f(θ̃) inside this zone.

First the triangulation is established, then simplex volumes are computed. The probability of generating one new point with125

a simplex is proportional to its volume when it has at least one point on the Pareto front (0 otherwise). If the simplex is selected,

then a set of barycentric coordinates are computed by randomly generating (nf+1) values εi in a uniform distribution on [0,1]

(Eq. 1).

wi =
εi∑(nf+1)

j=1 εj
(1)

3.1.2 Rule 2: Extrapolation130

Extrapolation is based on the same hypothesis of continuity as interpolation. In this case, it is tested to find if an improvement

may be obtained by extrapolating from some directions. These directions are computed from the triangulation by selecting

5
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Figure 3. Illustration of rules 1 and 2 based on a Delaunay triangulation in the objectives space for a maximization problem with 2 parameters

(θ1 and θ2) and 2 objectives (f1 and f2): (a) Interpolation computes a new parameters vector for each simplex with a non-dominated vertex;

(b) Extrapolation derives a new vector for each direction of improvement.

the edges that have only one vertex on to the approximated Pareto front (the second vertex is dominated by the first). These

oriented edges computed from the objective space represent directions of improvement in the parameter space (Fig. 3(b)).

135

The length L= ‖f(θ1)−f(θ2)‖ of each selected edge and the mean length L are computed. The probability of using an

edge is proportional to its length L. In this case, the research vector in the parameter space is defined in Eq. (2) and a new

parameter set is generate by θ̃ = θ1 +λU , where λ is a scalar from an exponential distribution with average of 1.

U =
L

L
(θ1−θ2) (2)140

3.1.3 Rule 3: independent sampling with a priori parameter variance

The drawback of the first two rules is that the generation of new vectors is only based on a small number of existing vectors.

To compensate this search by gradient and avoid convergence toward a local optimum, this third generation rule has two goals:

– To make the parameters varying with a larger range than with local rules,

– To make the parameters varying independently from each other.145
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When considering a vector θ from the archive Â, the third rule is to generate nθ new vectors (θ̃k with k from 1 to nθ) by

making each element of θ (Eq. (3) vary individually with σ2
i the a priori variance of the i-th parameter, and εi a value from

a normal distribution of average 0 and variance 1). The a priori variance is computed for each parameter from the bounds of

variation indicated as input of the optimizer.

∀i ∈ [1 : nθ]i 6=k θ̃ki = θi ; if i= k θ̃ki = θki+σiεi (3)150

The algorithm selects the nθ vectors that maximize individually each element of the objective vector and an additional vector

that represents a "central" point of the Pareto front. To select this vector, the minimum of each vector θ ∈ Â is computed and

the vector that maximizes this value is chosen.

One generation of this rule is then generating (nf +1)×nθ new vectors. For this reason, this rule is applied every K

generation, withK to be defined by the user. By default, K is computed so that each rule generates in average the same number155

of vectors.

3.1.4 Rule 4: sampling with respect to a correlation structure

The variance-covariance matrix Σ is computed by Eq. (4) where E[X] is the expectancy of a random variable X , θ is a vector

from the archive A, µ= Eθ∈A [θ] is the barycenter of A, andMT is the transpose of the matrixM .

Σ = Eθ∈A
[
(θ−µ) (θ−µ)T

]
(4)160

This matrix reflects the correlation structure between the parameter sets. For instance in the case of a hydrological model,

parameters are frequently not independent of each other. This rule intends to obtain an estimate Σ̂ of Σ and µ̂ of µ in order

to generate new parameter vectors that respect this correlation structure and so limit the risk of generating "non-functional"

parameter sets.

There are many possibilities in selecting the vector for evaluating the covariance matrix:165

1. Having a library of "historical" vectors for the calibrated model. The drawback is that this library has to be previously

established and it does not take into account progression of the running calibration.

2. Selecting vectors from the archive Â that give points on the approximated Pareto front at the running generation. The new

vectors are frequently improving the front, but as the variance is low, they do not allow getting out of a local optimum.

3. Selecting all vectors of the running population. It helps to keep a diversity but has a high computational cost as few new170

vectors will make the front to progress.

Finally, the algorithm uses a mix between item 2 and 3: all simplexes from the first rule triangulation that have at least a

vertex in the approximated Pareto front are selected. Reference vectors for computation of the variance-covariance matrix are
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defined by the ensemble G from the objective space whose images by f are all the vertices of these simplexes. The estimates

Σ̂ and µ̂ are computed in Eq. (5-6).175

µ̂= Eθ∈G [θ] (5)

Σ̂ = Eθ∈G
[
(θ− µ̂) (θ− µ̂)T

]
(6)

This operation increases significantly the number of selected points for the averages computation. However, the risk is still

of having too low a variance. To reduce this risk, the variance of all the parameters is increased by the same factor (empirically180

doubled): ˆ̂
Σ = 2Σ̂.

The new vectors are obtained from a classical procedure for multivariate generation:

1. computation of the upper triangular matrix T with T T T =
ˆ̂
Σ, by Cholesky decomposition;

2. generation of vectors θ̃ = µ̂ + T T · ε, where ε is a vector with nθ independent and normally distributed components

with average 0 and variance 1.185

This fourth rule enables us to randomly explore some area of space Eθ while implicitly reducing its dimension through the

correlations between parameters. It reduces the number of evaluations needed of the objective function.

3.1.5 Rule 5: Recombination

As for rule 4, recombination considers that the parameters from a model are not independent. In a hydrological model, they can

frequently be grouped in functional blocks (for instance rapid runoff, base flow, snow dynamics, transfer...). A new parameter190

vector is simply generated by combining blocs of parameters from vectors of the archive Â. The parameter blocks are specific

to the calibrated model and are defined by the user.

3.2 Population downsizing

At the end of each generation, population is kept under a maximum size (Nmax sets). This limitation is set for memory reasons

(no need to keep poor parameter sets) and for computational time as the triangulation computation is done at each generation.195

The population downsizing is adapted from ε-NSGA-II (Reed and Devireddy, 2004) and is performed in 3 steps (Fig. 4):

1. Pareto ranking: the parameter vectors are sorted according to ranking order of the Pareto level to which they belong.

Points from level 1 are non-dominated, points from level 2 are dominated only by points from level 1, and so on ...

2. Downsizing according to the chosen precision: the objective space is partitioned by a nf -dimensional grid with the

precision δi for each of the nf objective values. All the points in the same hypercube are considered as equifinal with200

regard to accuracy, and only one point is kept. The selected point is the one which belongs to the lowest Pareto level.

When many points are the lowest level, the selected point is taken at random from among them.
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Figure 4. Method for population downsizing for a maximization problem with 2 objectives: Pareto ranking (Level 1 is the current approxi-

mated Pareto front) and partition of the objective space according to the chosen δi precision (only one vector by hypercube is kept).

3. Keeping the population size under Nmax: if the number of sets is still above Nmax, keeping only the Nmax sets of the

smaller level.

4 Optimization evaluation framework205

The aim is to assess the performance of the caRamel algorithm against two other optimizers on various case studies. Two

optimizers have been selected for the comparison: NSGA-II (Deb et al., 2002) and MEAS (Efstratiadis and Koutsoyiannis,

2008). The comparison focuses on different aspects: optimization evolution evaluated by specific metrics, optimization results

in the objective space, parameters space, and observable space. This section presents the optimizer configuration, the evaluation

metrics and the four case studies.210

4.1 Optimizer configurations

CaRamel is used in its general form, with a generation of five new parameters sets for each rule by iteration, involving an

average of 25 parameter sets by generation.

NSGA-II (Deb et al., 2002) is called by using the function nsga2 from the R package mco "Multiple Criteria Optimization"

(Mersmann et al., 2014). The arguments are the function to minimize, the input and output dimensions, the parameter bounds,215

the number of generations, the size of the population and the values for crossover, mutation probability and distribution index.

Some previous calibration experiments have been conducted to determine the best parameters configuration. NSGA-II has been

used with crossover probability set to 0.5 and mutation probability to 0.3.

The MEAS algorithm (Efstratiadis and Koutsoyiannis, 2005) combines a performance evaluation procedure based on a

Pareto approach and concept of feasibility, an evolving pattern based on the downhill simplex method, and a simulated anneal-220
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ing strategy, to control randomness during evolution. The algorithm evolution is sensitive to the value of mutation probability

which has been adapted to each case study according to its complexity (5% for Kursawe, 50% for the other case studies).

For each optimizer, the end of one optimization is set to a maximum number of model evaluations depending on the case

studies. As the algorithms use random functions, 40 optimizations of each test case have been run for each optimizer to obtain

representative results. In order to focus on the evolution of the optimization, the initial population is the same for each optimizer225

(40 initial populations for each case study).

We chose to run an important number of model evaluations and optimizations to get representative results and assess the

reproducibility of the optimization. Others benchmark methodology would be conceivable, such as presented by Tsoukalas

et al. (2016) where several test functions and two water resources applications are implemented to compare the Surrogate-

Enhanced Evolutionary Annealing Simplex algorithm (SEEAS) to four other mono-objective optimization algorithms. In this230

study, two alternative computational budget (indicated by the maximal number of model evaluations) are considered which

impacts the paramaters of the optimizers.

4.2 Optimization metrics

To evaluate the optimizer performances, we chose metrics from the literature. Evaluating optimization techniques experi-

mentally always involves the notion of performance. In the case of multi-objective optimization, the definition of quality is235

substantially more complex than for single-objective optimization problems, because the optimization goal itself consists of

multiple objectives (Zitzler et al., 2000). Riquelme et al. (2015) categorize the metrics to evaluate three main aspects:

– The accuracy, which is the closeness of the solutions to the theoretical Pareto front (if known) or relative closeness;

– The diversity, which can be described with two aspects: the spread of the set (range of values covered by the solutions)

and the distribution (relative distance among solutions in the set);240

– The cardinality, which qualifies the number of Pareto-optimal solutions in the set.

To quantify these aspects, we selected three different metrics that are evaluated in the objective space:

– Hypervolume (HV), which is a volume-based index that takes into account accuracy, diversity and cardinality (Zitzler and

Thiele, 1999), Hypervolume computes the volume between the vectors of the estimated Pareto front F̂ and a reference

point;245

– Generational Distance (GD), which is a distance based accuracy performance index (Van Veldhuizen (1999), Eq. 7);

GD =
(
∑n
i=1 d

2
i )

1/2

n
(7)

where n is the number of vectors in the approximated Pareto front F̂ and di is the Euclidean distance between each

vector and the nearest member of the reference front.

– Generalized Spread (GS), which evaluates the diversity of the set (Zhou et al., 2006; Jiang et al., 2014).250
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The evaluation of metrics GS and GD requires us to establish a reference front. For each case study, this reference front is

built by evaluating the Pareto front on all the final optimization results of all optimizers.

4.3 Case studies

Four case studies have been designed to have an increasing complexity. (1) is an analytical example with a Kursawe test

function (Kursawe, 1991); (2) is a case study on a pluvial catchment with a GR4J open source hydrological model (Coron et255

al., 2017, 2019); (3) is a case study on a pluvial catchment with a MORDOR-TS semi-distributed model (Rouhier et al., 2017);

(4) is a case study on a snowy catchment, also with a MORDOR-TS model.

4.3.1 Kursawe test function

The objective of a test function is to evaluate some characteristics of optimization algorithms. The final Pareto front has a spe-

cific shape (non-convex, asymmetric and discontinuous) with an isolated point that the optimizer has to accurately reproduce.260

The Kursawe function is a benchmark test for many researchers (Lim et al., 2015). It has three parameters (x1, x2, x3) and two

objectives (Obj1, Obj2) to minimize (Kursawe (1991), Eq. 8).


Obj1 =−10 · (e−0.2

√
x2
1+x

2
2 − e−0.2

√
x2
2+x

2
3)

Obj2 = |x1|0.8 +5 · sin(x31)+ |x2|0.8 +5 · sin(x32)+
|x3|0.8 +5 · sin(x33)

(8)

The optimizations are run on 50,000 model evaluations. The R script to run the Kursawe function optimization with caRamel

is available in Appendix B, or as a vignette in the caRamel package.265

4.3.2 Calibration of GR4J model on a pluvial catchment

The hydrological model GR4J is a widely used global rainfall-runoff model (Perrin et al., 2003) that has been implemented in

an open-source R package airGR (Coron et al., 2017, 2019). This package contains a data sample from a catchment called

"Blue River at Nourlangie Rock" (360 km2, code L0123001), which has a pluvial regime (Fig. 5a). The advantage of using this

case study is in having an open-source script with open-data.270

GR4J has four parameters to calibrate: the production store capacity X1; the inter-catchment exchange coefficient X2; the

routing store capacity X3; and the unit hydrograph time constant X4.

The calibration is done on the daily time series for the period 1990-1999. The Kling-Gupta Efficiency (KGE, Gupta et al.,

2009) is frequently used in hydrology. KGE can be split into three components that reflects the correlation between the simu-
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Figure 5. Daily discharge regimes at the 3 studied catchments.

lated and observed values (KGEr), the bias in standard deviation (KGEα), and the bias in volume (KGEβ). The calibration275

is done on these 3 components (Eq.9).


KGEr = 1−

√
(1− r)2

KGEα = 1−
√
(1−α)2, with α= σs/σo

KGEβ = 1−
√

(1−β)2, with β = µs/µo

(9)

where r is the linear correlation coefficient between simulated and observed time series, σs and σo represent their standard

deviations, and µs and µo their mean values.

For each component, the optimal value is 1 and the optimization consists in a maximization. At the end of the optimization280

only the sets with KGEβ > 0 are considered, as a KGEβ with negative value indicates poor quality for hydrological results.

This leads us to exclude a few sets for calibration with NSGA-II and caRamel but not for MEAS.

The R script to run an optimization of GR4J model with caRamel is available in Appendix C.

4.3.3 Calibration of MORDOR-TS model on two contrasted catchments

The spatially distributed rainfall-runoff MORDOR-TS model (Rouhier et al., 2017) is a spatialized version of the concep-285

tual MORDOR-SD model (Garavaglia et al., 2017) widely used for operational applications at Électricité de France (EDF,

the French electric utility company). The catchment is divided into elementary sub-catchments connected according to the

hydrographic network which constitutes a hydrological mesh.

This model was implemented at a daily time step for two French catchments with contrasted climates. The Tarn catchment

at Millau (Fig. 6a) covers an area of 2,335 km2, with middle altitude (350 to 1,600 m). The regime is pluvial, with almost no290

influence of snow. The Durance at the La Clapière catchment (2,170 km2, Fig. 6b) is located in the French Alps, with elevations

12



Figure 6. Maps of the studied catchments: a) Tarn at Millau (2 335 km2) ; b) Durance at La Clapière (2 170 km2)

ranging from 800 m to about 4000 m. Its hydrological regime is strongly influenced by the snow with a maximum during the

melting season in June (Fig. 5c).

The hydrological meshes have been built with an average cell area of 100 km2, meaning 28 cells for the Tarn catchment and

22 cells for the Durance catchment.295

MORDOR-TS has 22 free parameters in its comprehensive formulation. For the Tarn case study, a simplified formulation is

adopted with 12 free parameters to calibrate in order to describe the functioning of conceptual reservoirs, evapotranspiration

correction and wave celerity (Table 1). For the Durance catchment, parametrization of the snow module of MORDOR-TS is

more complex and 16 parameters are to be calibrated for the hydrological model. The parameter distribution is uniform for

the two case studies, which means that the same set of parameters applies to all cells. Calibration is conducted over 10 years300

(01/01/1991–31/12/2000) based on three objectives that have to be maximized.

For the Tarn catchment, the calibration is based on the Nash-Sutcliffe efficiencies NS (Nash and Sutcliffe, 1970) at three

gauging stations: the catchment outlet (Tarn at Millau), and two interior points (Tarn at Montbrun and Dourbie at Gardiès).

For the Durance catchment, the Kling-Gupta efficiency KGE (Gupta et al., 2009) is computed at three gauging stations: the

catchment outlet (Durance at La Clapière), and two interior points (Durance at Val-des-Prés and Guil at Montdauphin). The305

theoretical optimum is the point (1, 1, 1) in the objectives space.

5 Results of calibration evaluations

Four aspects are considered for the results of the case studies: the shape of the final Pareto fronts; the dynamics of the opti-

mizations; the distribution of the calibrated parameters, and their consequences on simulated discharges for the hydrological

case studies. To illustrate the results on the simulated discharges, a "best-compromise set" has been selected regarding to the310

distance to the point (1,1,1) in the objective space for each hydrological case studies.

5.1 Final Pareto front

First of all, it is important to accurately reproduce the disconnected Pareto front for the Kursawe test function, and this is the

case for all the optimizers (Fig. 7) with no noticeable differences between the solutions. This confirms on a low-dimension

research benchmark the effectiveness of three different algorithms for the multi-objective optimization.315
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Table 1. Parameters to calibrate for MORDOR-TS and bounds of variation

Parameter Units Prior range Description

cetp – [0.7, 1.3] PET multiplicative correction factor

cp – [0.9, 1.1] Precipitation multiplicative correction factor

gtz °C.100m−1 [-0.8, -0.4] Air temperature gradient

umax mm [30, 500] Maximum capacity of the root zone

lmax mm [30, 500] Maximum capacity of the hillslope zone

zmax mm [30, 500] Maximum capacity of the capillarity storage

evl – [1.5, 4] Outflow exponent of storage L

kr – [0.1, 0.9] Runoff coefficient

evn – [1, 4] Outflow exponent of storage N

lkn mm.h−1 [-8, -1] Outflow coefficient of storage N

kf mm.°C−1.day−1 [1, 5] Constant part of melting coefficient

kfp mm.°C−1.day−1 [0, 5] Variable part of melting coefficient

lts – [0.7, 1] Smoothing parameter of snow pack temperature

eft °C [-3, 3] Additive correction of melting temperature

efp °C [-3, 3] Additive correction of rain/snow partition temperature

cel km.h−1 [0.1, 10] Wave celerity

dif m2.s−1 [10, 5000] Wave diffusion

Figure 7. Pareto front after 50,000 model evaluations with caRamel (1,183 points), NSGA-II (1,780 points) or MEAS (687 points) for the

Kursawe test function.

Concerning the three hydrological case studies, solutions of the Pareto fronts look quite similar for caRamel and NSGA-II

and more narrow with MEAS (Fig. 8). The number of sets for the Pareto front changes depending on the case and there is no

rank for the optimizers. For the Blue River study, there are 1,172 sets with caRamel, 878 sets with NSGA-II, and 268 points

with MEAS. Then there are 1,457, 789 and 1,882 sets for the Tarn study, and 708, 408, and 525 sets for the Durance study

with caRamel, NSGA-II and MEAS respectively. The differences between Pareto fronts are not a priori in favour of a single320
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Figure 8. Pareto fronts over 40 optimizations with optimizers caRamel, NSGA-II and MEAS for each hydrological case study: Blue River

with GR4J (a-c), Tarn with MORDOR-TS (d-f) and Durance with MORDOR-TS (g-i). The red point represents a "best compromise" set that

is used to illustrate model results.

MEAS-based algorithm. They are given for a limited number of cases which are not necessarily representative of a general

behavior.

5.2 Dynamics of the optimizations

Figure 9 summarizes the dynamics of the optimizations for the four case studies.

CaRamel is converging more quickly for accuracy (metrics HV and GD in most of the cases). CaRamel dynamics is closer to325

NSGA-II dynamics than to MEAS as they have almost the same final values for the three metrics. This confirms the distinctive

behavior between two class of algorithms.

On the diversity criteria, GS dynamics is different for the Kursawe test case than for the hydrological case studies. For the

Kursawe test case, the optimal final front has a spread, so all optimizers give the same results. For the hydrological cases, the

optimal solution is a point (1,1,1) and so the Pareto front may get smaller with the optimization. NSGA-II and caRamel look330

alike as they generate more diversity than MEAS (GS final values). On average, CaRamel gives better values than NSGA-II

for the three real cases.
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Figure 9. Metrics evolution over 40 optimizations with caRamel, NSGA-II and MEAS: mean evolution and 10-90% quantiles of the metrics

regarding the number of model evaluations: (a-c) metrics for Kursawe test function; (d-f) metrics for GR4J calibration of at Nourlangie Rock;

(g-i) metrics for MORDOR-TS calibration of Tarn at Millau; (j-l) metrics for MORDOR-TS calibration of Durance at La Clapière.

Finally the envelopes over 40 optimizations are comparable for the three optimizers, which means that reproducibility is

always obtained but with different regularities depending on the case or the optimizer without any notable feature. In some

cases, a smoother statistical GS convergence would have implied more optimizations.335

5.3 Parameter distribution

Figure 10 displays the distribution of parameters from the tree case studies.

In the parameter space, the optimizers provide very similar results that explore the equifinality of the model, meaning that

different parameter sets give similar performances (Fig. 10). Some parameters (such as kr or lkn) may have optimized values

on the whole range defined by the bounds, while other parameters are better constrained (X4, cel). These constitute a family340

of sets that are optimal with regard to the chosen objectives.
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Figure 10. Calibrated parameters distribution for the sets on the Pareto front (y limits are the calibration bounds, except for X1 to X4) with

caRamel, NSGA-II, and MEAS for the three hydrological case studies: Blue River (first bloc of four parameters), Durance River (second

bloc of 16 parameters), and Tarn River (third bloc of 10 parameters). Parameter values from the "best-compromise set" are displayed in red.

The difference in the diversity of the final sets is also visible in the parameter distributions. Distributions are quite similar for

caRamel and NSGA-II but much narrower for MEAS.This confirms once again the different behavior of MEAS with weaker

general performances for the cases studied here.

5.4 Impact on model results345

Consequences on the simulated discharges are displayed on Fig. 11. The envelopes with NSGA-II and caRamel are quite

similar, whereas the envelope with MEAS is narrower as expected. It confirms that caRamel and NSGA-II generate more
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Figure 11. Observed and simulated discharges for the 3 case studies. "Observations": observed discharges, "Best compromise": best-

compromise simulated discharges, "Envelope": simulated discharges envelope using all parameter sets on the Pareto front (over 40 opti-

mizations) with caRamel, NSGA-II, and MEAS. (a) Daily runoff regime of Blue River at Nourlangie Rock (1990–1999); (b) Daily runoff

regime of Durance at La Clapière (1991-2000); (c) Flood event of Tarn River at Millau (14/04/1993 - 03/06/1993)

diversity on their Pareto front. The red line represents the simulated discharges with the "best-compromise" set and fits quite

well with the observed one. Multi-objective calibration allows having a range of variation of calibrated discharges around the

best-compromise simulation.350

Figure 11c) represents a flood event on the Tarn River at Millau. The observed discharges points are in the envelope of

simulation. The best-compromised simulation does not accurately reproduce the flood peak. The figure also displays the sim-

ulated discharges obtained by optimizing parameters on the 3 gauging stations separately, and the simulation with the set that

optimizes NS at Millau fits better with the observed points.
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6 Conclusions355

CaRamel is an optimization algorithm for multi-objective calibration, its result is a family of parameter sets that are Pareto-

optimal with regard to the different objectives. The algorithm is a hybrid of the MEAS algorithm (Efstratiadis and Koutsoyian-

nis, 2005) by using the directional search method based on the simplexes of the objective space and the ε-NGSA-II algorithm

with archiving management of the parameter vectors classified by ε-dominance (Reed and Devireddy, 2004).The combination

of stochastic and gradient-like parameter generation rules helps convergence of optimization while preserving the diversity360

of the population in both objective and parameter spaces. Four examples of case studies of increasing complexity have been

used to compare caRamel with NSGA-II and MEAS. Results are quite similar between optimizers and show that optimization

converges more quickly with caRamel.

An optimization algorithm might be delicate to use because of the choice of input arguments which are specific to the

algorithm and might require some "expert knowledge". The sensitivity to caRamel internal parameters has not been presented365

in this manuscript, but we have done some sensitivity analysis with the Morris method (Morris, 1991) to recommend some

default values for the user. First it is recommended to give the same weight to each generation rule by indicating the same

number of parameter sets to generate. It is interesting to generate a small number of sets by generation to reduce the number of

model evaluations and have a more rapid convergence. By default, five sets are generated for each rule. The size of the initial

population should be large enough to have enough variability (at least 50 sets for a complex model). Moreover, as convergence370

can be sensitive to the randomly chosen initial population, it is recommended to run two or three optimizations to assess

reproducibility.

Multi-objective optimization may require thousands of evaluations, which can be a limitation for the calibration of time

consuming models. To cope with this issue, parallel computation is implemented in the R package caRamel.

A better consideration of equality or inequality constraints, such as relationship between two parameters, could be an im-375

provement. Another perspective would be the ability of caRamel to deal with discrete parameters.

Code and data availability. The data analysis was performed with the open-source environment R (https://www.r-project.org). The algo-

rithm is provided as an R package caRamel, available from GitHub at https://github.com/fzao/caRamel, or from CRAN: https://cran.

r-project.org/package=caRamel. The case study of Blue River at Nourlangie Rocks has been run by using airGR package for the GR4J

hydrological model and for the data set, available at https://cran.r-project.org/package=airGR.380

Appendix A: The caRamel R package

The caRamel package has been designed as an optimization tool for any environmental model, provided that it is possible

to evaluate the objective functions in R. The main function, caRamel, is called with this syntax: caRamel(nobj, nvar, minmax,

bounds, func, popsize, archsize, maxrun, prec). Arguments are detailed in Table A1. The main argument of caRamel is the

objective function that has to be defined by the user. This enables flexibility as the user gives all the necessary information: the385
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number and the definition of all the objectives, the minimization or maximization goal for each objective function, the number

of parameters to calibrate and their bounds, and other numerical parameters such as the maximum number of simulations

allowed. Additional optional arguments give the following possibilities:

– Creation of blocks/subsets of parameters that should be jointly recombined (for example parameters of a same module);

– Choice of parallel or sequential computation;390

– Continuation of optimization starting from an existing population;

– Saving of the population after each generation or only the final one;

– Indicating the number of parameter sets generated by generation.

As a result, the function returns a list of six elements:

– success: a logical, "TRUE" if the optimization process ran with no errors,395

– parameters: matrix of parameter sets from the Pareto front (dimension [number of sets in the front, number of calibrated

parameters]),

– objectives: matrix of associated objective values (dimension [number of sets in the front, number of objectives]),

– save_crit: matrix that describes the evolution of the optimization process: for each generation, the first column is the

number of model evaluations, and the following ones are the optimum of each objective taken separately (dimension400

[number of generations, (number of objectives +1)]),

– total_pop: total population (dimension [number of parameters sets, (number of calibrated parameters + number of ob-

jectives)]).

– gpp: the calling period for the third generation rule (independent sampling with a priori parameters variance). It is

computed by the algorithm if the user does not fix it.405

The R package contains an R vignette that gives as examples benchmark functions with 2 objectives and 1 or 3 parameters

Schaffer (Schaffer, 1984) or Kursawe (Kursawe, 1991).

Appendix B: Example of R script for Kursawe test function optimization

# Kursawe function definition

kursawe <- function(i) {410

Obj1 <- -10 * exp(-0.2 * sqrt(x[i,1] ˆ 2 + x[i,2] ˆ 2)) - 10 * exp(-0.2 * sqrt(x[i,2] ˆ 2 + x[i,3] ˆ 2))

Obj2 <- abs(x[i,1]) ˆ 0.8 + 5 * sin(x[i,1] ˆ 3) + abs(x[i,2]) ˆ 0.8 + 5 * sin(x[i,2] ˆ 3) + abs(x[i,3]) ˆ 0.8 + 5 * sin(x[i,3] ˆ 3)
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Table A1. Arguments of the caRamel() function. Optional arguments are printed in grey.

Name Type Description

nobj integer, length = 1 number of objectives to optimize (at least 2)

nvar integer, length = 1 number of parameters to calibrate

minmax logical, length = nobj vector of logicals that indicates for each objective whether it

should be maximized (TRUE) or minimized (FALSE)

bounds matrix, nrow = nvar, ncol = 2 lower and upper bounds for the variables

func character, length = 1 the function to optimize (defined by the user), with VecObj =

func(i) where i is the tested set index in the population matrix

(x), and VecObj is the vector of objectives for this set.

popsize integer, length = 1 population size for the genetic algorithm

archsize integer, length = 1 size of the Pareto front

maxrun integer, length = 1 maximum number of model runs

prec double, length = nobj desired precision for the objectives (used for downsizing popu-

lation)

repart_gene integer, length = 4 number of new parameter sets for each rule and per generation

gpp integer, length = 1 calling period for the rule (3)

blocks list of vector integer functional groups for parameters

pop matrix, nrow = nset, ncol = nvar

or nvar+nobj

initial population (used to restart an optimization)

objnames character, length = nobj names of the objectives

listsave list of character names of the listing files (NULL by default: no output)

write_gen integer, length = 1 if = 1, save files ’pmt’ and ’obj’ at each generation (= 0 by

default)

carallel logical, length = 1 run parallel computations (TRUE by default)

numcores integer, length = 1 number of cores for the parallel computations (all cores by de-

fault)

funcinit character, length = 1 the function (defined by the user) applied on each node of clus-

ter for initialization when parallel computation (for example

load of packages or copy of data). Arguments must be cl and

numcores.

graph logical, length = 1 plot graphical output at each generation (TRUE by default)

return(c(Obj1, Obj2))

}
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# Parameters definition and caRamel run415

nobj <- 2 ; nvar <- 3 ; bounds <- matrix( c(rep(-5, nvar),rep(5, nvar)), ncol = 2 ) # range [-5, 5]

results <- caRamel (nobj = nobj , nvar = nvar , minmax = c(FALSE, FALSE) , bounds = bounds, func = kursawe, popsize =

100 , archsize = 100, maxrun = 5000, prec = rep(1.e-3,nobj) )

Appendix C: Example of R script for GR4J optimization420

library(airGR)

library(caRamel)

# loading catchment data #

data(L0123001)

# preparation of the InputsModel object425

InputsModel «- CreateInputsModel(FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P,

PotEvap = BasinObs$E)

# run period selection

Ind_Run <- seq(which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1990-01-01"),

which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1999-12-31"))430

# preparation of the RunOptions object

RunOptions «- CreateRunOptions(FUN_MOD = RunModel_GR4J,InputsModel = InputsModel, IndPeriod_Run = Ind_Run)

# Observation object

Obs «- BasinObs$Qmm[Ind_Run]

435

# Definition of functions for the optimizer #

# Function for model evaluation #

EvalGR <- function(i){
# Transformation of the parameter set to real space

RawParamOptim <- airGR::TransfoParam_GR4J(ParamIn = x[i,],Direction = "TR")440

# Simulation given a parameter set

OutputsModel <- airGR::RunModel_GR4J(InputsModel = InputsModel,RunOptions = RunOptions,Param = RawParamOp-

tim)

# Evaluation of the 3 components of KGE

Sim <- OutputsModel$Qsim445

ix <- is.na(Obs + Sim)

B <- sum(Sim[!ix])/sum(Obs[!ix])
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alpha <- sd(Sim[!ix],na.rm = TRUE)/sd(Obs[!ix],na.rm = TRUE)

rho <- cor(Obs[!ix],Sim[!ix])

KGE_3 <- c(rho , alpha, B)450

return(1-sqrt((1-KGE_3)ˆ2))

}

# Function for cluster initialization

InitGR <- function(cl,numcores){455

parLapply( cl, 1:numcores, function(xx)require(’airGR’))

clusterExport(cl=cl, varlist=c("InputsModel", "RunOptions", "Obs"))

}

# Optimization #460

# definition of the bounds of parameters (between -9.99 and 9.99)

nobj <- 3

bounds <- matrix(c(rep(-9.99, 4),rep(9.99, 4)), ncol = 2)

# Run

results <- caRamel(nobj = nobj, nvar = 4, minmax = rep(TRUE,nobj), bounds = bounds, func = EvalGR, funcinit = InitGR,465

popsize = 100, archsize = 100, maxrun = 5000, objnames = c("KGE_r","KGE_a","KGE_b"), prec = rep(1.e-4,nobj))
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