
We would like to thank the editor Elena Toth and the two referees Guillaume Thirel and Andreas Efstratiadis for their con-
structive suggestions and comments. Below we provide the Editor’s and Referee’s comments verbatim in black italic text and
our responses below each comment in blue text.

1 Response to editor decision5

Dear Authors, I would like to warmly thank the two Referees, who have uploaded their detailed and very constructive comments
very timely and are both waiting for your revised version, to be written accordingly to the intentions you have listed in your
replies. Their comments were, as I expected, mainly positive on the content/value of presenting the proposed algorithm, but
asking a major revision of the applications and of the presentation.

We would also thank the two Referees who have given very helpful recommendations. The major changes in our paper are10
the following points :

– we want to change the title of our paper to "Multi-objective calibration by combination of stochastic and gradient-like
parameter generation rules: the caRamel algorithm" in order to focus on the algorithm itself,

– we added a more detailed description of the algorithm,

– we added a comparison with MEAS for each case study, as Andreas Efstratiadis kindly gave us a code for MEAS,15

– we added an example of calibration of an open source hydrological model with open source data (GR4J model, as
suggested by Guillaume Thirel).

The paper has been proofread by a native English speaker. The marked-up manuscript version is given bellow.

I keep thinking that you need a comparison not only with NSGA but also with MEAS, which is more similar in its concepts20
than the NSGA: perhaps our Referee Andreas Efstratiadis may help you in this.

This comparison has been added for all the selected case studies.

And I look forward to see the application of both the open-source hydrological model and MORDOR over more than one
catchment: since you chose option c) among the alternatives given by A. Efstratiadis, the paper needs an interpretation of the25
results you will obtain both changing the model and changing the catchment.

We add the calibration of open source hydrological model GR4J on a fictional catchment (Coron et al., 2017, 2019) and we
also present the calibration of MORDOR-TS model on two contrasted catchments (one mainly pluvial, the other with snow
influence).

30
I agree with the referees on the need to improve/explain better: - The 5 rules (section 2.1.1)
This is done in the new section 3.1

- The relationship between Caramel and the two ’inspiring’ algorithms
The section 3 has been expanded.35

- The metrics for assessing optimization algorithm (section 3)
This is done on section 4.2

- The meaning of the algorithm internal parameters/weights and the reasons for their choice (inside the Kursawe test function40
section, where their impact may be examined). Show impact of using different values for such parameters (not only ’feelings’)

We have run many optimizations to select the more appropriate configuration for each optimizer. We then chose to present
only one configuration by case study to have more readable results.
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- The hydrological models (once you will have two): while GR is well-known and plenty of documentation is accessible,45
whereas for MORDOR you need to better explain how it works and especially its differences from GR.

The main difference between GR4J and MORDOR-TS is that the model is spacially distributed. MORDOR-TS model is
presented in Rouhier et al. (2017).

- The catchments (once you will have two): their climate, dominant hydrological processes and differences (possibly chose50
catchment with different hydro-climatic regimes)

We chose two French catchments Tarn River at Millau and Durance River at La Clapière. The Tarn River regime is pluvial
while Durance River regime is strongly influenced by the snow. We also add a graph of hydrological regime for each catchment
(Fig. 6).

55
On A. Efstratiadis’ comment on p. 1, ll 24-25: it is not a matter of adding the references but of explaining the main reasons

for applying a multi-objective calibration, that is not solely due to addressing the statistical properties of the errors.
We added this sentence: "In addition, Efstratiadis and Koutsoyiannis (2010) list other advantages of multi-objective cali-

bration such as ensure parsimony between the number of objectives against parameters to optimize, fit distributed responses
of models on multiple measurements, recognize the uncertainties and structural errors related to model configuration and the60
parameters estimation procedure, handling objectives having contradictory performance."’

On hydrological modelling performances (A. Efstratiadis’ comment on p. 7): I would suggest, rather than adding Nash-
Sutcliffe, to analyse the three separate components of the KGE.

We followed this suggestion for the calibration of GR4J model.65

2 Response to interactive comment of Editor Elena Toth

Dear Authors, as I anticipated in the submission phase, I have two main suggestions: 1) adding a comparison not only with
NSGA-II, but also with the other optimization model you merge in the Caramel (MEAS), since you are proposing an algorithm
that should be an improvement above each one of the previous approaches.

We added the comparison with MEAS.70

2) the algorithm, in terms of hydrological modelling, is only tested on a single catchment (and in addition, the details of such
application are lacking): in order to prove the generality of the improvement allowed by the proposed approach, you should
test the calibration of at least another study catchment.

We added another example on a new catchment and using the open source hydrological model GR4J (Coron et al., 2017;75
Coron et al., 2019). We also suggest to change the title of the paper as "Multiobjective calibration by combination of stochastic
and gradient-like parameter generation rules: the caRamel algorithm" to be more in the scope of the journal.

On the abstract/introduction phrasing: p. 1, l. 13: "caRamel()" why the parentheses?
We suppressed this sentence.80

p. 1, l "The comparison with another well-known optimizer (i.e. NSGA-II) confirms the quality of the algorithm"
We wrote: "The comparison with other optimizers on hydrological case studies (i.e. NSGA-II, MEAS) confirms the quality

of the algorithm."
85

p. 2, ll. 7-14: I would replace with: "CaRamel was initially developed and used for the calibration of hydrological models:
Le Moine et al., 2015, Rothfuss et al., 2012, Magand et al., 2014, Monteil et al., 2015 (previously to the R package release) and
Rouhier et al. (2017). The interesting performances of caRamel algorithm in such studies prompted us to describe in detail the
algorithm in the present paper, and in particular its use as an R package, that can be used for any model in the R environment.
The user has simply to define a vector-valued function (at least 2 objectives) for the model to calibrate and lower and upper90
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bounds for the calibrated parameters. This paper aims at describing the principles of caRamel algorithm and its use as an
R-package, through the analysis of its results when used for the parametrisation of an hydrological model. A comparison with
the widely used NSGA-II (available in the R package, "Multiple Criteria Optimization" MCO, Mersmann et al., 2014), is also
presented."

We corrected id95

3 Response to interactive comment of Referee Guillaume Thirel

The topic of R packages that are dedicated to hydrology is relevant to HESS, as demonstrated the very recent review paper
by Slater et al. (2019) in which I participated. I think that this paper should be mentioned in the manuscript, not because I
co-authored it, but because it justifies the interest of such packages to the hydrological community. Indeed, a basic search for100
the word "package" in the titles or abstracts of HESS papers does not provide so many results.

Thank you for this very interesting paper, we added the reference.

I understand from discussions between the editor and the authors (not available online) that a first version was submitted to
another journal and it was suggested to focus more on the package than on actual comparison of algorithms impacts. That can105
be true for model-oriented journals, such as EM&S and GMD (see for instance our airGR paper in EMS, Coron et al., 2017,
which was a Short Communication). However in my opinion HESS is different: describing software and providing pieces of
codes is very much appreciate (for the sake of reproducibility), but we also need science. Simply describing packages or tools
is not the main aim of HESS. Here the science is a new calibration algorithm and its impact. As a consequence, more emphasis
should be put on that two points, but the Editor Elena Toth already commented on that and I agree with her. In the end, I’m110
wondering if this paper will remain a Technical note or become a full research article.

We added a new example of hydrological calibration with GR4J in order to have more results to discuss. We also changed the
paper title to focus more on the algorithm and less on the R package: "Multiobjective calibration by combination of stochastic
and gradient-like parameter generation rules: the caRamel algorithm".

115
Overall, the paper is good, it is of interest for the HESS readers in my opinion, and provided that the objectives of the paper

are modified as mentioned below and above, I am confident that it will be published later on.
Thank you.

Main criticism: My main criticism regards the fact that the authors submitted a manuscript into an open journal, for pre-120
senting an open source software, but they illustrate it with an hydrological model that is not open! While I know that MORDOR
is the historical EDF hydrological model and using the MORDOR model with caRamel makes sense for the authors, this in my
opinion is much less obvious for the readers. I guess that the aim of the authors is to make readers understand that caramel
is a valuable tool for calibrating hydrological models available in R. However, no mention is ever made of the fact that there
are hydrological models available in the R environment, justifying the interest of this new package. Indeed, readers cannot125
manipulate the MORDOR model, they only have brief knowledge of the parameters meaning from this paper and they cannot
run the lines of codes provided by the authors to handle the package. I think that this is a pity, as the authors made a laudable
effort to provide an open source software, some vignettes and also some lines of codes. In addition to the fact that the model
is not available, no example data are provided. All of this does not prevent from using the package, but I find it damageable to
stop so close to total openness. As one of the developers of the airGR R package, as you know, I tested the caRamel algorithm130
with a simple GR4J model and an example dataset included in the airGR package. It is not difficult to make it work, but from
what was provided it is not straightforward (I guess that the fact that I know well my package helped, but for people using
caRamel with a package they did not develop it could be more difficult). I provide the lines of codes I wrote at the end of this
review. I would therefore suggest to the authors to include a full example, i.e. one that could be reproduced by the readers, with
one open (and well-known if possible!) hydrological model and one open dataset. I don’t think this is much work and I don’t135
think that would deeply impact the paper, but I feel that would be useful. Of course, as I provide some lines of codes in this
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review (see the figures 1, 2, 3, as well as the supplement for the R file) and as some authors know well the GR models, airGR
would be a straightforward solution, but as highlighted in Slater et al. (2019) (see section 3.5), other well-known hydrological
models are openly available in other R packages.

Thank you very much for these lines of code. We added an example of multiobjective calibration of GR4J, with the data140
from the R package airGR (Coron et al., 2017; Coron et al., 2019)

Major remarks:
Introduction: nothing is said about composite criteria (e.g. an average of KGEs). I think it should be mentioned and discussed
on the base of a couple of references. That’s what I tested in the code I provided and the results in terms of performance are145
quite similar to the multi-objective calibration with the same objectives. This is also much faster, but I guess that the choice of
the convergence threshold of caRamel is important in this example.

The idea of multiobjective calibration is to provide a family of parameter sets and not only one set. This results in a envelope
of simulated discharges whose parameters sets are on the Pareto Front (Fig. 11).

150
Heterogeneous spelling in the text: see for instance "Multi Objective" in the title, "multiobjective" and "multiobjective" in

the abstract. Or "modelling is the abstract but "modelling" in L. 2, P. 2. "R package" in the title and "R-package" in L. 8, P. 2.
"Pareto-front" in P. 5, L. 14 and "Pareto front" in P. 5, L. 28, "Pareto Front" in P. 9, L. 12. Please try to be consistent all over
the manuscript! I did not spot all of them here.
Thank you, we corrected it.155

About section 2.1.1, which describes the generation of parameters. I had difficulties to understand the complete functioning
of the 5 rules. First, are these 5 rules or in fact 5 steps that are undertaken successively? In addition, a figure is presented
for the first two steps, but it is not used efficiently to make things clear for the readers. I have the feeling that this could be
improved easily. For example, why not using only 2 parameters instead of 3, as 3D plots are not possible here? That would160
simplify things. There are also terms in the legend that are not explained, such as "Example" or "Simplexes". Since the figure
is quite complex, with many points, triangles, arrow, it is necessary to help us to read it. I would also maybe suggest a concrete
example somehow, especially about the evolution of the parameters sets number, as it is stated at L. 20 that it is necessary to
reduce the number of sets. Maybe specify that no parameter set is discarded during the 5 rules stuff?

We expanded this section to give more explanations.165

Section 2.1.2: quite similarly to the previous section, I find that Fig. 2 is underexploited / underexplained. Levels 2 and 3 are
never referred to either in the text or in the caption.

Level 2 and 3 are dominated levels.
170

Section 4.1: Results are presented for the Kursawe function in Fig. 3. Here again some improvement is possible that would
help our reading. What is the optimum for the two objectives? Caption: MCO is not mentioned regarding the number of
evaluations; is it 1000? Or does that mean that Fig. 3a only concerns caRamel? If so, why? (I guess this is the case from the
reading of the text, but then the caption could be improved). We could have a similar graph for mco.

We add Figure 7 with Pareto front from all optimizers175

Section 4.2.4: Figure 5 is quite difficult to read, in the sense that there are too many points and the superposition of the two
algorithms results does not permit to see the differences. Maybe you should separate the two algorithms in two different graphs
for each panel? In addition, we don’t know from which algorithm are chosen the red points, if I’m not wrong. Red points are
chosen from the caRamel optimization, we will mention it in the text. Regarding the name of the package, I recommend, if you180
use LaTeX, to use the texttt font. This is what we did in Slater et al. (2019) and I think it helps the reading a lot. In addition,
it helps making the distinction between the package and the main function, which have the exact same name. We also adopted
the spelling "R package" instead of "R-package".

Thank you for this suggestion, we use this package for the new version of the paper.
185
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References:
- Efstratiadis and Koutsoyiannis: this is a conference abstract. What do you think about citing their HSJ paper entitled "One
decade of multi-objective calibration approaches in hydrological modelling: A review ?

We mention this paper in the introduction and we also add another reference to a book chapter for MEAS.
190

- Garavaglia et al. : this paper has been published in 2017, please update. OK

- Le Moine 2009: I think we need a link towards the pdf of this report.
We added an internet link.

195
- Monteil et al.: any paper or accessible report or presentation instead of this EGU abstract?
We added a link toward the presentation.

- Riquelme et al.: Conférence is written in French Ok, we corrected it.
200

Minor typos and miscellaneous minor stuff:
I found a bunch of very minor typos that could easily be dealt with by the authors. As a non-native speaker myself, I hope I’m
correct when suggesting these modifications and also that I’m not too picky... I also do not guarantee that I spotted all of them!
Page 1:
L. 12: remove "algorithm" after NSGA-II as the A of NSGA stands for "algorithm" ok205
L. 20: The first sentence of the introduction is the same as the first one of the abstract, except for the word "calibration" that is
replaced with "prescription". I personally prefer "calibration". ok
L. 22: I would add a comma after "precisely" ok
L. 23: not 100% sure, but I think that here "statistic" should be spelt "statistics" ok
L. 24: "well-knowN" ok210
Page 2:
L. 7-8: please revise the format of citations (i.e. add commas around the years). In addition, I think that the citations should be
ordered either by alphabetical or by chronological order. ok
L. 8: as I guess this is the case for all citations, I would rephrase the parenthesis as follows: "all previously to the release of
the R package" ok215
L. 9: "of THE caramel algorithm" ok
L. 11: I would say "simply has" instead of "has simply" ok
L. 17: as it is an adjective to the word "objective", I think that "low-flow" is more correct. At this line and all other occurrences,
I would remove the capital letter to "hydrology". ok
L. 22: either "one additional objective" or "additional objectiveS". "Constrain", not "constraint". ok220
L. 24: "THE caRamel algorithm belongs to THE. . ." ok
L. 26: "THE caRamel..." ok
Page 3:
L. 2: I would say "The caRamel algorithm" ok
L. 16: "fRont" ok225
L. 20: "each generation": does each of the 5 rules counts for one generation?
One generation is created by calling each of the five rules. So one rule is only a part of a generation.
Page 4:
L. 6: "this syntax". In addition, please remove the space after "caRamel" and before the parenthesis. ok
L. 9-10 "the minimization or maximization goal": from the way it is written, I was expecting a value. Actually, it is a Boolean230
used for saying if this is a maximization (minmax = TRUE) or not. I would suggest rephrasing. In addition, I think that the
name of the argument, minmax, is not well chosen. minmax is ok if the choices are "min" and "max", but not if the choices are
"TRUE" or "FALSE".
We put this section as an appendix. We will take your renaming suggestion into account for the next version of the caRamel
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package.235
L. 15: I would say "choice of a parallel or sequential computation" ok
L. 18: not clear. Which kind of managing?
The user can choose the number of parameters generated by each rule for a generation. For example, this number is set by
default to 5 new sets generated by each rules at each generation, but the user may choose to give more weight to some rules.
L. 19: there are six elements when I tried it, but the last one (gpp) is not explained in the package.240
We added the description of ggp.
L. 23: I would say "of objective values", as otherwise we don’t know if these are names or values. ok
Page 5:
L. 6: "an R vignette that gives" ok
L. 14, 15, 17: I would add a comma after accuracy, diversity, cardinality. ok245
L. 20: please add ", which" after "(GS)" ok
L. 21: please add a comma after "(HV)" and an hyphen in "volume-based" ok
L. 24: I would rather say "the R package mco ("Multiple Criteria Optimization", Mersmann et al., 2014)". Please also make
sure in the whole manuscript that the package name is written as mco, not MCO. ok
Page 6:250
L. 2: "with THE Kursawe...". In addition, I think it is necessary to introduce a bit what this function, is, what is its aim. I’m not
familiar with it and I guess that some other hydrologists also are not.
We added a short description of Kursawe function in section 4.3.1.
L. 4: "THE population size" ok
L. 5 and 8: "THE caRamel ..." ok255
L. 10: double typo: "show that caRamel" ok
Page 7:
L. 11: maybe specify on which spatial unit the model is semi-distributed. In this example, the spatial discretization is based on
an elevation zone approach is not used. We will correct it in the text.
Page 8:260
L. 2 then is the snow part of the model active?
A simplified snow model is active for the Tarn at Millau case study.
L. 8: define the KGE acronym. ok
L. 10: maybe replace "is the result of" with "reflects" ok
L. 16: here and everywhere else, I would write "parameter sets" with no S at parameter. ok265
Page 9:
L. 4: "In the mco. . ." ok
L. 17: "optimizerS" and "getS" ok
L. 18-19: what is the meaning of reproducible? I don’t get it. Reproducibility refers to the ability of one optimizer to give
the same results in given conditions. In our case study, the optimization have been run 40 times to check if the results are270
reproducible. On Fig. 6c, the envelope with mco is much larger than the one with caRamel, which means that optimization
results are more variable with mco.
Page 10:
L. 4: "provide", not "provides" ok
L. 5: "give", not "giving" ok275
L. 6: I quite disagree regarding the "cel" parameter as especially for mco, the spread seems quite large on Fig. 7.
We were considering the distance between the first and third quartile that is quite narrow.
L. 13: any idea about how many parameter sets that represents?
We added the number of Pareto vectors for each optimizer on the beginning of section 5.1.
Page 11:280
L. 10: "in an R..." ok
L. 11: "THE result" ok
L. 14: "from THE mco R package. . ." ok
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L. 18: "provided that" ok
L. 21: "as an R package" ok285
Appendix A and B:
In the code, some spaces are randomly put before or after commas. That could be cleant. ok
Table 1: caption: "of THE caRamel. . ." ok
I have a couple of comments regarding the description of the main function of the package: - nvar: why not using the word
parameter instead of variable? See the description of argument bounds, which uses the name "parameter" ok290
- minmax: somehow it should appear that several values are possible (e.g. "whether the objectives are. . .") ok
- func: "the R objective function" ok
- objnames: "nameS" ok
- write_gen: that would be much more logical to have a logical here instead of an integer
We will take that comment into account for the next version of the package.295
- func and funcinit: these two arguments do not take characters but functions. If we enter "kursawe" it does not work, we have
to put the name of the function. See FUN argument of tapply for instance. ok
Table 2: cetp is a "multiplicative" correction factor ok

4 Response to interactive comment of Referee Andreas Efstratiadis300

My overall opinion about this article is positive, yet in its current form cannot stand neither as a technical note not as research
paper. Actually, it rather resembles to an extended abstract of a clearly hard and long research, which may be useful as a
brief documentation for the R community, but is not suitable for a top hydrological journal such as HESS. First of all, the
authors have to decide the orientation and the objectives of this article. There are several alternatives, i.e. (a) a state-of-the-
art discussion of the multiobjective calibration problem in hydrology; (b) a comprehensive description and justification of305
the algorithm and its technological advances, accompanied by extended tests of its performance against problems of varying
complexity and against other well established methodologies, and (c) a more synoptic description of the algorithm, with
emphasis to its application to few (not only one) representative hydrological calibration problems of varying difficulty, to be
presented and discussed in detail.

We orientated this new version of the paper with the alternative (c), by giving more details on the algorithm and by adding a310
two new applications in hydrology with the code GR4J (Coron et al., 2017; Coron et al., 2019) and the calibration of a snowy
catchment. We also want to change the title as "Multiobjective calibration by combination of stochastic and gradient-like pa-
rameter generation rules: the caRamel algorithm".

Specific comments315
Page 1, lines 13-14: "The main function of the package, caRamel(), requires to define a multi-objective calibration function as
well as bounds on the variation of the underlying parameters to optimize". Too obvious technical detail to be referred in the
abstract.

Thank you, we removed it.
320

Page 1, lines 24-25: ". . . it is well-know that errors in a simulated discharge time series are not normally distributed, and
do not have constant variance and autocorrelation." This statement is true (a reference would be helpful, e.g. Sorooshian and
Dracup, 1980), but is not so much evidently linked with the need for multiobjective calibration. Actually, the multiobjective
approach in hydrological modelling covers much more cases, including fitting to multivariable and multisite data, as well as
soft information (cf., Madsen, 2003; Efstratiadis Koutsoyiannis, 2010).325

We will added the references you mentioned and other application of multi-objective calibration.

Page 1, lines 28-29: "Evolutionary algorithms have become widely used to explore the Pareto-optimal front in multi-objective
optimization problems that are too complex to be solved by descent methods". Do they exist descent methods for multiobjective
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optimization? Maybe you refer to classical aggregation approaches (e.g. weighting of criteria) that have to be solved multiple330
times with different weighting values, in contrast to evolutionary approaches that only require "a single optimization run", as
correctly mentioned just after (page 2, line 2).

Yes, we refer to descent methods with aggregation approaches.

Page 2, lines 5-6: "The caRamel optimizer has been developed to meet the need of an automatic calibration procedure that335
delivers not only one but a family of parameters sets that are optimal regarding a multi-objective target". There do exist many
algorithms covering this general objective. Is there any specific objective for the development of caRamel? Which shortcomings
of the existing algorithms have you detected before deciding building a new method?

Our feeling is that most of MOEA rely mainly on stochastic generation rules, with few deterministic aspects. The idea in
caRamel is of course to keep these stochastic, "global" mechanisms (such as recombination or multivariate sampling using the340
covariance) but also to make place for more "local" mechanisms, such as extrapolation along vectors in the parameter space
which are associated with an improvement in all objective functions (a "gradient-like" approach extended to the set of objective
functions, in a qualitative way). A shared feature between caRamel and MEAS is the use of the simplexes in which generational
rules are applied. However, in MEAS these simplexes are randomly chosen, with the sole constraint that at least one vertex is
in the approximated Pareto front; conversely, in caRamel the choice of the simplexes is entirely deterministic since they are345
the result of the Delaunay triangulation of the individuals in the objective space (with each objective scaled by the specified
precision), and the probability of using a given simplex for generating new individuals is proportional to the volume of this
simplex in the scaled objective space. The same kind of geometrical rationale applies for the selection of edges along which an
"expansion" is tested (see the description of the rules section 3.1).

350
Page 2, line 17: Terms "flood objective" and "low flow objective" are unclear (at least for a non-expert).

We changed the objectives of calibration to Nash-Sutcliffe and Kling-Gupta Efficiencies at two internal gauging points and at
the oulet .

Page 2, lines 17-19: "Multi-objective calibration is also a way to add some constraints to an underconstrained problem355
when many parameters have to be quantified. This can help to reduce the equifinality of parameters sets". More discussion
should be made here (for 30 years, equifinality remains a hot topic in hydrology), including some representative references,
e.g. Her and Seong (2018).

We added: "Her and Seong (2018) showed that the introduction of an adequate number of objective functions could improve
the quality of calibration without requiring additional observations. The amount of equifinality and output uncertainty overall360
decreased while the model performance was maintained as the number of objective functions increased sequentially until four
objective functions."

Page 2, lines 20-21: "Equifinality may be caused by the model structure, when two sets of parameters give similar results.
Another kind of equifinality is related to the calibration objectives, when two different model results give similar objective365
values." Term "result" is unclear - probably you refer to the model outputs, by means of response time series. In this respect,
two different parameter sets, except if they are very close, cannot provide the same outputs (i.e., similar individual values),
they can provide outputs with similar statistical characteristics, and thus similar performance metrics, as correctly stated in
the second phrase.

We propose to rephrase: "Equifinality may be caused by the model structure, when two sets of parameters give similar model370
outputs due to interactions between model parameters."

Page 2, line 28: Please, also cite the more detailed and peer-reviewed paper by Efstratiadis and Koutsoyiannis (2008),
published as book chapter.

We added the reference.375

Page 3, section 2.1.1 (Generation rules): The description of the algorithm is very poor and only provides a very general idea
about the generation mechanisms. How are these rules associated with the ones used in MEAS? I see quite many differences
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and very interesting ideas implemented here, but the text is too short to allow understanding and evaluating the methodology
(and its potential novelties). Figure 1 is also little helpful; for instance, green and blue points, indicating new sets, are missing,380
although they are referred in the legend.

We added the section 3.1 for the rules description.

Page 3, line 25: Why you keep points of the lower level? Aren’t they dominated by points of the upper one?
The non-dominated level number is 1, so points of upper level are dominated by points of lower levels.385

Pages 4-5, section 2.2 (The caRamel R package): This section is very technical and not so much relevant with the broader
philosophy of HESS.

We moved it to appendix A.
390

Page 5, line 15: "The diversity which can be described with two aspects: the spread of the set . . ." Diversity may refer both
to the parameter and the objective space. Which of the two sets are used here?

We refer to diversity in the objective space.

Page 5, line 25: Please, cite Deb et al. (2002) who developed NSGA-II.395
We added the reference.

Page 6, lines 12-13: "Comparison with MCO (NSGA-II only) shows that the use of MEAS makes the optimization process
converge more rapidly but with a lower diversity". Can you explain the reason of this behavior? Is this an inherent drawback
of caRamel, or is due to the algorithmic inputs used in this experiment? As shown in Table 1 (and similarly to all hybrid400
optimization schemes), caRamel uses quite a large number of input arguments that need manual tuning. Did you run the
algorithm by testing alternative set-ups? Do you have any recommendations for the users, regarding the selection of these
inputs?

The user may choose to give more weight to some of the rules in the input arguments. We tested different combinations to
conclude that it is better to have a "balanced" approach with the same number of parameter sets generated for each rule (5 sets405
for each rule for the default version).

Page 7, section 4.2 (Hydrological modeling): Your case study does not allow extracting safe conclusions about the perfor-
mance of your method and its comparison against NSGA II. The key reason is that the use of a single overall metric, i.e. KGE,
ensures almost perfect fitting to observations (KGE = 95).410

We chose to change the objective to get more variability.

Page 8, line 8: Please, better explain criteria (2) and (3) and the associated signatures. Have been these criteria used
elsewhere? If yes, please also provide the associated references.

We changed these criteria to Nash-Sutcliffe and Kling-Gupta Efficiencies which are much more usual.415

Page 9, lines 3-4: "MCO has been used with crossover probability set to 0.5 and mutation probability to 0.3". Have you
made any preliminary tests before selective these values? Which are the values applied to the input arguments of caRamel?

We have run a sensitivity analysis with mco to chose the values. We will add the values of the input arguments for caRamel.
420

Page 9, Figure 5: I find your figure a little bit misleading. In the vertical axis, the spread of solutions is very small, and within
the anticipated range of uncertainty induced in any hydrological calibration exercise. For instance, the lower value of KGEamd
is 0.83, while the higher is 0.86. From my point-of-view, such differences do not make sense in the real world.

We changed these criteria to Nash-Sutcliffe and Kling-Gupta Efficiencies at the oulet and at two interior gauging station to
have more variability.425

Page 10, line 12: How did you selected the best compromise parameter set? What do you mean by term "observed set"?

9



We added: "To illustrate the results on the simulated stream flow, a "best-compromise set" has been selected regarding to the
distance to the point (1,1,1) in the objective space for each hydrological case studies"

430
Page 11, section 5 (Conclusions): This section is poorly developed. It has to be written from scratch, to highlight the advan-

tages and weaknesses of the methodology and also discuss ideas for future research.
We re-writed it.

Minor editorial comments435
Page 2, line 10: In which of the aforementioned papers do you describe the algorithm? It is not clear here.
These papers refer to research work using caRamel but the algorithm itself was not described.

Page 2, line 17: Term "Hydrology" should not start with capital.
We corrected it.440

Page 2, line 18: Please, change "underconstrained" to read "unconstrained".
We corrected it.

Page 3, line 3: Please, change to read "with respect to".445
We corrected it.

Page 8, line 16: Please, change to read "parameter sets".
We corrected it.

450
Page 9, line 7: Please, change to read "Pareto fronts".

We corrected it

Page 9, lines 16-17: Please, change to read "The GS metric exhibits a larger variability, thus a larger envelope for both
optimizers".455
We corrected it.

10



References

Coron, L., Thirel, G., Delaigue, O., Perrin, C. and Andréassian, V. The Suite of Lumped GR Hydrological Models in an R package. Environ-
mental Modelling and Software, 94, 166-171. DOI: 10.1016/j.envsoft.2017.05.002, 2017.460

Coron, L., Delaigue, O., Thirel, G., Perrin, C. and Michel, C. airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling.
R package version 1.3.2.23. https://CRAN.R-project.org/package=airGR, 2019.

Efstratiadis, A., and Koutsoyiannis, D.: One decade of multiobjective calibration approaches in hydrological modelling: a review. Hydrolog-
ical Sciences Journal, 55(1), 58-78, doi:10.1080/02626660903526292, 2010.

Her, Y., and Seong, C.: Responses of hydrological model equifinality, uncertainty, and performance to multi-objective parameter calibration,465
Journal of Hydroinformatics 20 (4): 864–885, https://doi.org/10.2166/hydro.2018.108, 2018.

Rouhier, L., Le Lay, M., Garavaglia, F., Le Moine, N., Hendrickx, F., Monteil, C., and Ribstein, P.: Impact of mesoscale
spatial variability of climatic inputs and parameters on the hydrological response. Journal of Hydrology 553, 13-25.
http://dx.doi.org/10.1016/j.jhydrol.2017.07.037, 2017.

11

https://CRAN.R-project.org/package=airGR


Multi-objective calibration by combination of stochastic and
gradient-like parameter generation rules: the caRamel algorithm
Céline Monteil1, Fabrice Zaoui1, Nicolas Le Moine2, and Frédéric Hendrickx1

1EDF R&D LNHE - Laboratoire National d’Hydraulique et Environnement, Chatou, 78400, France
2UMR 7619 Metis (SU/CNRS/EPHE), Sorbonne Université, 4 Place Jussieu, Paris, 75005, France

Correspondence: Céline Monteil (celine-c.monteil@edf.fr)

Abstract. Environmental modelling is complex, and models often require calibration of several parameters not directly evalu-

able from a physical quantity or field measurement. Multi-objective calibration has many advantages such as add constraints

in a low-constrained problem or find a compromise between different objectives by defining a set of optimal parameters. The

caRamel optimizer has been developed to meet the need of an automatic calibration procedure that delivers not just one but a

family of parameter sets that are optimal with regard to a multi-objective target. The idea in caRamel is to rely on stochastic5

rules while also allowing more "local" mechanisms, such as extrapolation along vectors in the parameter space. The caRamel

algorithm is a hybrid of the Multi-objective Evolutionary Annealing Simplex method (MEAS) and the Non-dominated Sort-

ing Genetic Algorithm II (ε-NSGA-II). It was initially developed for calibrating hydrological models but can be used for any

environmental model. CaRamel is well adapted to complex modelling. The comparison with other optimizers on hydrological

case studies (i.e. NSGA-II, MEAS) confirms the quality of the algorithm. An R package caRamel has been designed to easily10

implement this multi-objective algorithm optimizer in the R environment.

1 Introduction

Environmental modelling is complex, and models often require calibration of many parameters that cannot be directly estimated

from a physical quantity or a field measurement. Moreover, as models’ outputs exhibit errors whose statistical structure may

be difficult to characterize precisely, it is frequently necessary to use various objectives to evaluate the modelling performance.15

Put differently, it is often difficult to find a rigorous likelihood function or sufficient statistics to be maximized/minimized

(Fisher, 1922): for example, it is well-known that errors in a simulated discharge time series are not normally distributed, and

do not have constant variance and auto-correlation (Sorooshian and Dracup, 1980). In addition, Efstratiadis and Koutsoyiannis

(2010) list other advantages of multi-objective calibration such as ensuring parsimony between the number of objectives against

parameters to optimize, fitting distributed responses of models on multiple measurements, recognizing the uncertainties and20

structural errors related to model configuration and the parameter estimation procedure, and handling objectives that have

contradictory performance.

Multi-objective calibration allows for finding a compromise between these different objectives by defining a set of optimal

parameters. Evolutionary algorithms have become widely used to explore the Pareto-optimal front in multi-objective optimiza-
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tion problems too complex to be solved by descent methods with classical aggregation approaches. The advantage of these25

evolutionary algorithms lies not only in a dearth of alternatives for searching substantially large spaces for multiple Pareto-

optimal solutions. Their inherent parallelism and capability to exploit similarities of solutions by recombination, also enables

them to approximate the Pareto-optimal front in a single optimization run (Zitzler et al., 2000). Many studies in environmental

modelling (Madsen, 2003; Oraei Zare et al., 2012; Ercan and Goodall, 2016; Smith et al., 2019) or land-use models (Gong et

al., 2015; Newland et al., 2018) use the multi-objective approach.30

The caRamel optimizer has been developed to meet the need of an automatic calibration procedure that delivers not only

one, but a family of parameter sets that are optimal with regard to a multi-objective target. Most of multi-objective algorithms

rely mainly on stochastic generation rules, with few deterministic aspects. The idea behind caRamel is not just to keep these

stochastic "global" mechanisms (such as recombination or multivariate sampling using the covariance) but also to allow more

"local" mechanisms, such as extrapolation along vectors in the parameter space that are associated with an improvement in all35

objective functions (a "gradient-like" qualitative approach extended to the set of objective functions).

CaRamel was initially developed and used for the calibration of hydrological models: Rothfuss et al., 2012; Magand et al.,

2014; Le Moine et al., 2015; Monteil et al., 2015 (all previous to the R package release) or Rouhier et al. (2017, R version,

calibration of a hydrologic model over the Loire basin, 35,707 km2). The interesting performances of the caRamel algorithm

in such studies prompted us to describe in detail the algorithm in the present paper. Considering the increasing use of R in40

hydrology (Slater et al., 2019), we decided to build a R package, caRamel, for use in any model in the R environment. The

user has simply to define a vector-valued function (at least 2 objectives) for the model to calibrate as well as lower and upper

bounds for the calibrated parameters.

This paper aims to describe the principles of the caRamel algorithm, through analysis of its results when used for parametriza-

tion of hydrological models. For each case study, a comparison with the two calibration algorithms that have inspired caRamel45

(the Non-dominated Sorting Genetic Algorithm II, NSGA-II, Reed and Devireddy, 2004, and the Multi-objective Evolutionary

Annealing Simplex method, MEAS, Efstratiadis and Koutsoyiannis, 2008) is also presented.

2 Context and notations

The intent of multi-objective calibration is to find sets of parameters that provide a compromise between several potentially

conflicting objectives; for instance, how to achieve a good simulation of both flood and low-flow in a hydrological model.50

Multi-objective calibration is also a means of adding some constraints to an under-constrained problem when many parameters

have to be quantified. This can help to reduce the equifinality of parameter sets. Her and Seong (2018) showed that the

introduction of an adequate number of objective functions could improve the quality of calibration without requiring additional

observations. The amount of equifinality and output uncertainty overall decreased while the model performance was maintained

as the number of objective functions increased sequentially until four objective functions.55

To introduce our notation, Figure 1 shows a simplified calibration problem in which there is:
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Figure 1. Notations to describe a model calibration: with θ a vector from the parameter space Eθ , y a vector of observed values in the

observable space Ey and f(θ,y) an objective vector in the objective space Ef .

– a model with nθ = 2 parameters to calibrate ( θ1 and θ2). The model structure is thus unequivocally represented by the

vector θ = (θ1,θ2) in a nθ = 2 dimensional space, called parameter space Eθ.

– a vector y of ny observed values that should be simulated by the model. For example, for daily times series of 1 year at

2 gauging stations, ny = 2 ∗ 365 = 730. The simulation is represented by a vector ŷ(θ) in a ny dimensional space (that60

cannot be illustrated graphically), called observable space Ey .

– a vector of nf objective values f(θ,y). For the example in Fig. 1, f = (f1,f2) in a space with nf dimensions, called

objective space Ef .

We will use the following notations: vector or matrix written in bold (θ, y, f , Σ . . . ), vector element and scalar written

normally (θ1, θ2, λ, . . . ), space or ensemble written in cursive (Eθ, F , A, . . . ).65

Figure 1 also illustrates the relevance of multi-objective calibration with regard to two kinds of equifinality:

1. equifinality of structure: the two points θ and θ′ quite distant in the parameter space Eθ become quite near in the

observation space Ey .

2. equifinality related to the objective: the vectors θ et θ′′ are equifinal regarding f1, and the additional objective f2 help to

discriminate them. The use of additional objectives may then help to better constrain the calibration.70

The purpose of a multi-objective algorithm is to approach the Pareto front, F , of non-dominated solution in the objective

space by an ensemble of points called the approximated Pareto front F̂ . We call archive Â the ensemble of parameter sets from

Eθ for which simulation outputs are in F̂ .

3 CaRamel algorithm description

The caRamel algorithm belongs to the genetic algorithm family. The idea is to start from an ensemble of parameter sets75

(called "population") and to make this population evolve following some generation rules (Fig. 2). At each generation, new

sets are evaluated regarding the objectives and only the more "suitable" sets are kept to build the new population. The caRamel

algorithm is largely inspired by:
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Figure 2. Flowchart of caRamel algorithm.

1. the Multi-objective Evolutionary Annealing Simplex method (MEAS, Efstratiadis and Koutsoyiannis, 2005; Efstratiadis

and Koutsoyiannis, 2008), for the directional search method, based on the simplexes of the objectives space,80

2. the Nondominated Sorting Genetic Algorithm II (ε-NSGA-II, Reed and Devireddy, 2004), for the classification of pa-

rameter vectors and the management of precision by ε-dominance.

This section describes the functioning of caRamel algorithm. This algorithm has been implemented in a R package caRamel

that is described in Appendix A.

3.1 Generation rules85

The caRamel algorithm has five rules for generating new solutions at each generation: (1) interpolation, (2) extrapolation, (3)

independent sampling with a priori parameter variance, (4) sampling with respect to a correlation structure, and (5) recombi-

nation.

The first two rules (interpolation, extrapolation) are based on a nθ-dimensional Delaunay triangulation in the objectives space

Ef . They assume that two neighboring points in the objectives space Ef have two adjacent points in the parameter space Eθ as90

antecedents, and therefore one can try to "guess" the directions of improvement in the parameter space from the improvement

directions (in a Pareto sense) in the objective space, at least near the optimal zone.

The following two rules create new parameter sets by exploring the parameter space in a non-directional and less local way:

either by independent variations in each parameter, or by multivariate sampling using the covariance structure of all parameter

sets located near the estimated Pareto front at the current iteration.95

Finally, the recombination rule consists in creating new parameter sets using two partial subsets derived from a pair of

previously evaluated parameter sets (inspired by Baluja and Caruana, 1995).
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Figure 3. Illustration of rules 1 and 2 based on a Delaunay triangulation in the objectives space for a maximization problem with 2 parameters

(θ1 and θ2) and 2 objectives (f1 and f2): (a) Interpolation computes a new parameters vector for each simplex with a non-dominated vertex;

(b) Extrapolation derives a new vector for each direction of improvement.

3.1.1 Rule 1: Interpolation

The explanation of this rule is based on Fig. 3(a). First a triangulation of the points in the objective space Ef is established:

simplexes built with these points f(θi) are a partition of the explored zone in this space (Efstratiadis and Koutsoyiannis, 2005).100

Let us consider a simplex with at least one vertex on the approximated Pareto front. This simplex is the result of the function

f from an ensemble of (nf +1) points from the nθ-dimensional parameter space Eθ. Under the hypothesis of continuity of f ,

a linear combination of the form θ̃ = w1θ1 + . . .+w(nf+1)θ(nf+1), with the barycentric coordinates wi ≥ 0 and
∑
iwi = 1,

might give a new Pareto-optimal solution f(θ̃) inside this zone.

First the triangulation is established, then simplex volumes are computed. The probability of generating one new point with105

a simplex is proportional to its volume when it has at least one point on the Pareto front (0 otherwise). If the simplex is selected,

then a set of barycentric coordinates are computed by randomly generating (nf+1) values εi in a uniform distribution on [0,1]

(Eq. 1).

wi =
εi∑(nf+1)

j=1 εj
(1)

3.1.2 Rule 2: Extrapolation110

Extrapolation is based on the same hypothesis of continuity as interpolation. In this case, it is tested to find if an improvement

may be obtained by extrapolating from some directions. These directions are computed from the triangulation by selecting
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the edges that have only one vertex on to the approximated Pareto front (the second vertex is dominated by the first). These

oriented edges computed from the objective space represent directions of improvement in the parameter space (Fig. 3(b)).

115

The length L= ‖f(θ1)−f(θ2)‖ of each selected edge and the mean length L are computed. The probability of using an

edge is proportional to its length L. In this case, the research vector in the parameter space is defined in Eq. (2) and a new

parameter set is generate by θ̃ = θ1 +λU , where λ is a scalar from an exponential distribution with average of 1.

U =
L

L
(θ1−θ2) (2)120

3.1.3 Rule 3: independent sampling with a priori parameter variance

The drawback of the first two rules is that the generation of new vectors is only based on a small number of existing vectors.

To compensate this search by gradient and avoid convergence toward a secondary optimum, this third generation rule has two

goals:

– To make the variance of parameters larger than with local rules,125

– To make the variance of parameters independent from each other.

When considering a vector θ from the archive Â, the third rule is to generate nθ new vectors (θ̃k with k from 1 to nθ) by

making each element of θ (Eq. (3) vary individually with σ2
i the a priori variance of the i-th parameter, and εi a value from a

normal distribution of average 0 and variance 1).

∀i ∈ [1 : nθ]i 6=k θ̃ki = θi ; if i= k θ̃ki = θki+σiεi (3)130

The algorithm selects the nθ vectors that maximize individually each element of the objective vector and an additional vector

that represents a "central" point of the Pareto front. To select this vector, the minimum of each vector θ ∈ Â is computed and

the vector that maximizes this value is chosen.

One generation of this rule is then generating (nf +1)×nθ new vectors. For this reason, this rule is applied every K

generation, withK to be defined by the user. By default, K is computed so that each rule generates in average the same number135

of vectors.

3.1.4 Rule 4: sampling with respect to a correlation structure

The variance-covariance matrix Σ is computed by Eq. (4) where E[X] is the expectancy of a random variable X , θ is a vector

from the archive A, µ= Eθ∈A [θ] is the barycenter of A, and tM is the transpose of the matrixM .

Σ = Eθ∈A
[
(θ−µ) t(θ−µ)

]
(4)140
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This matrix reflects the correlation structure between the parameter sets. For instance in the case of a hydrological model,

parameters are frequently not independent of each other. This rule intends to obtain an estimate Σ̂ of Σ and µ̂ of µ in order

to generate new parameter vectors that respect this correlation structure and so limit the risk of generating "non-functional"

parameter sets.

There are many possibilities in selecting the vector for evaluating the covariance matrix:145

1. Having a library of "historical" vectors for the calibrated model. The drawback is that this library has to be previously

established and it does not take into account progression of the running calibration.

2. Selecting vectors from the archive Â that give points on the approximated Pareto front at the running generation. The new

vectors are frequently improving the front, but as the variance is low, they do not allow getting out of a local optimum.

3. Selecting all vectors of the running population. It helps to keep a diversity but has a high computational cost as few new150

vectors will make the front to progress.

Finally, the algorithm uses a mix between item 2 and 3: all simplexes from the first rule triangulation that have at least a

vertex in the approximated Pareto front are selected. Reference vectors for computation of the variance-covariance matrix are

defined by the ensemble G from the objective space whose images by f are all the vertices of these simplexes. The estimates

Σ̂ and µ̂ are computed in Eq. (5-6).155

µ̂= Eθ∈G [θ] (5)

Σ̂ = Eθ∈G
[
(θ− µ̂) t(θ− µ̂)

]
(6)

This operation increases significantly the number of selected points for the averages computation. However, the risk is still

of having too low a variance. To reduce this risk, the variance of all the parameters is increased by the same factor (empirically160

doubled): ˆ̂
Σ = 2Σ̂.

The new vectors are obtained from a classical procedure for multivariate generation:

1. computation of the upper triangular matrix T with tT T =
ˆ̂
Σ, by Cholesky decomposition;

2. generation of vectors θ̃ = µ̂+ tT ·ε, where ε is a vector with nθ independent and normally distributed components with

average 0 and variance 1.165

This fourth rule enables us to randomly explore some area of space Eθ while implicitly reducing its dimension through the

correlations between parameters. It reduces the number of evaluations needed of the objective function.
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Figure 4. Method for population downsizing for a maximization problem with 2 objectives: Pareto ranking (Level 1 is the current approxi-

mated Pareto front) and partition of the objective space according to the chosen δi precision (only one vector by hypercube is kept).

3.1.5 Rule 5: Recombination

As for rule 4, recombination considers that the parameters from a model are not independent. In a hydrological model, they can

frequently be grouped in functional blocks (for instance rapid runoff, base flow, snow dynamics, transfer...). A new parameter170

vector is simply generated by combining blocs of parameters from vectors of the archive Â. The parameter blocks are specific

to the calibrated model and are defined by the user.

3.2 Population downsizing

At the end of each generation, population is kept under a maximum size (Nmax sets). This limitation is set for memory reasons

(no need to keep poor parameter sets) and for computational time as the triangulation computation is done at each generation.175

The population downsizing is adapted from ε-NSGA-II (Reed and Devireddy, 2004) and is performed in 3 steps (Fig. 4):

1. Pareto ranking: the parameter vectors are sorted according to ranking order of the Pareto level to which they belong.

Points from level 1 are non-dominated, points from level 2 are dominated only by points from level 1, and so on ...

2. Downsizing according to the chosen precision: the objective space is partitioned by a nf -dimensional grid with the

precision δi for each of the nf objective values. All the points in the same hypercube are considered as equifinal with180

regard to accuracy, and only one point is kept. The selected point is the one which belongs to the lowest Pareto level.

When many points are the lowest level, the selected point is taken at random from among them.

3. Keeping the population size under Nmax: if the number of sets is still above Nmax, keeping only the Nmax sets of the

smaller level.

8
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4 Optimization evaluation framework185

The aim is to compare the performance of the caRamel algorithm to other optimizers on various case studies. Two optimizers

have been selected for the comparison: NSGA-II (Deb et al., 2002) and MEAS (Efstratiadis and Koutsoyiannis, 2008). The

comparison focuses on different aspects: optimization evolution evaluated by specific metrics, optimization results in the ob-

jective space, parameters space, and observable space. This section presents the optimizer configuration, the evaluation metrics

and the four case studies.190

4.1 Optimizer configurations

CaRamel is used in its general form, with a generation of five new parameters sets for each rule by iteration, involving an

average of 25 parameter sets by generation.

NSGA-II (Deb et al., 2002) is called by using the function nsga2 from the R package mco "Multiple Criteria Optimization",

Mersmann et al., 2014). The arguments are the function to minimize, the input and output dimensions, the parameter bounds,195

the number of generations, the size of the population and the values for crossover, mutation probability and distribution index.

Some previous calibration experiments have been conducted to determine the best parameters configuration. NSGA-II has been

used with crossover probability set to 0.5 and mutation probability to 0.3.

The MEAS algorithm (Efstratiadis and Koutsoyiannis, 2005) combines a performance evaluation procedure based on a

Pareto approach and concept of feasibility, an evolving pattern based on the downhill simplex method, and a simulated anneal-200

ing strategy, to control randomness during evolution. The algorithm evolution is sensitive to the value of mutation probability

which has been adapted to each case study according to its complexity (5% for Kursawe, 50% for the other case studies).

For each optimizer, the end of one optimization is set to a maximum number of model evaluations depending on the case

studies. As the algorithms use random functions, 40 optimizations of each test case have been run for each optimizer to obtain

representative results. In order to focus on the evolution of the optimization, the initial population is the same for each optimizer205

(40 initial populations for each case study).

4.2 Optimization metrics

To evaluate the optimizer performances, we chose metrics from the literature. Evaluating optimization techniques experi-

mentally always involves the notion of performance. In the case of multi-objective optimization, the definition of quality is

substantially more complex than for single-objective optimization problems, because the optimization goal itself consists of210

multiple objectives (Zitzler et al., 2000). Riquelme et al. (2015) categorize the metrics to evaluate three main aspects:

– The accuracy, which is the closeness of the solutions to the theoretical Pareto front (if known) or relative closeness;

– The diversity, which can be described with two aspects: the spread of the set (range of values covered by the solutions)

and the distribution (relative distance among solutions in the set);

– The cardinality, which qualifies the number of Pareto-optimal solutions in the set.215
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To quantify these aspects, we selected three different metrics that are evaluated in the objective space:

– Hypervolume (HV), which is a volume-based index that takes into account accuracy, diversity and cardinality (Zitzler and

Thiele, 1999), Hypervolume computes the volume between the vectors of the estimated Pareto front F̂ and a reference

point;

– Generational Distance (GD), which is a distance based accuracy performance index (Van Veldhuizen (1999), Eq. 7);220

GD =
(
∑n
i=1 d

2
i )

1/2

n
(7)

where n is the number of vectors in the approximated Pareto front F̂ and di is the Euclidean distance between each

vector and the nearest member of the reference front.

– Generalized Spread (GS), which evaluates the diversity of the set (Zhou et al., 2006; Jiang et al., 2014).

The evaluation of metrics GS and GD requires us to establish a reference front. For each case study, this reference front is225

built by evaluating the Pareto front on all the final optimization results of all optimizers.

4.3 Case studies

Four case studies have been designed to have an increasing complexity. (1) is an analytical example with a Kursawe test

function (Kursawe, 1991); (2) is a case study on a fictive catchment with a GR4J open source hydrological model (Coron et

al., 2017, 2019); (3) is a case study on a pluvial catchment with a MORDOR-TS semi-distributed model (Rouhier et al., 2017);230

(4) is a case study on a snowy catchment, also with a MORDOR-TS model.

4.3.1 Kursawe test function

The objective of a test function is to evaluate some characteristics of optimization algorithms. The final Pareto front has a

specific shape (non-convex) that the optimizer has to accurately reproduce. The Kursawe test function has three parameters

(x1, x2, x3) and two objectives (Obj1, Obj2) to minimize (Kursawe (1991), Eq. 8).235

 Obj1 =−10 · (e−0.2
√
x2
1+x

2
2 − e−0.2

√
x2
2+x

2
3)

Obj2 = |x1|0.8 +5 · sin(x31)+ |x2|0.8 +5 · sin(x32)+ |x3|0.8 +5 · sin(x33)
(8)

The optimizations are run on 50,000 model evaluations. The R script to run the Kursawe function optimization with caRamel

is available in Appendix B, or as a vignette in the caRamel package.

4.3.2 Calibration of GR4J model on a fictive catchment

The hydrological model GR4J is a widely used global rainfall-runoff model (Perrin et al., 2003) that has been implemented in240

an open-source R package airGR (Coron et al., 2017, 2019). This package contains a data sample from a fictive catchment
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Figure 5. Daily discharge regimes at the 3 studied catchments.

called "Blue River at Nourlangie Rock" (360 km2, code L0123001), which has a pluvial regime (Fig. 5a). The advantage of

using this case study is in having an open-source script with open-data.

GR4J has four parameters to calibrate: the production store capacity X1; the inter-catchment exchange coefficient X2; the

routing store capacity X3; and the unit hydrograph time constant X4.245

The calibration is done on the daily time series for the period 1990-1999. The Kling-Gupta Efficiency (KGE, Gupta et al.,

2009) is frequently used in hydrology. KGE can be split into three components that reflects the correlation between the simu-

lated and observed values (KGEr), the bias in standard deviation (KGEα), and the bias in volume (KGEβ). The calibration

is done on these 3 components (Eq.9).


KGEr = 1−

√
(1− r)2

KGEα = 1−
√
(1−α)2, with α= σs/σo

KGEβ = 1−
√

(1−β)2, with β = µs/µo

(9)250

where r is the linear correlation coefficient between simulated and observed time series, σs and σo represent their standard

deviations, and µs and µo their mean values.

For each component, the optimal value is 1 and the optimization consists in a maximization. At the end of the optimization

only the sets with KGEβ > 0 are considered, as a KGEβ with negative value indicates poor quality for hydrological results.

This leads us to exclude a few sets for calibration with NSGA-II and caRamel but not for MEAS.255

The R script to run an optimization of GR4J model with caRamel is available in Appendix C.
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Figure 6. Maps of the studied catchments: a) Tarn at Millau (2 335 km2) ; b) Durance at La Clapière (2 170 km2)

4.3.3 Calibration of MORDOR-TS model on two contrasted catchments

The spatially distributed rainfall-runoff MORDOR-TS model (Rouhier et al., 2017) is a spatialized version of the concep-

tual MORDOR-SD model (Garavaglia et al., 2017) widely used for operational applications at Électricité de France (EDF,

the French electric utility company). The catchment is divided into elementary sub-catchments connected according to the260

hydrographic network which constitutes a hydrological mesh.

This model was implemented at a daily time step for two French catchments with contrasted climates. The Tarn catchment

at Millau (Fig. 6a) covers an area of 2,335 km2, with middle altitude (350 to 1,600 m). The regime is pluvial, with almost no

influence of snow. The Durance at the La Clapière catchment (2,170 km2, Fig. 6b) is located in the French Alps, with elevations

ranging from 800 m to about 4000 m. Its hydrological regime is strongly influenced by the snow with a maximum during the265

melting season in June (Fig. 5c).

The hydrological meshes have been built with an average cell area of 100 km2, meaning 28 cells for the Tarn catchment and

22 cells for the Durance catchment.

MORDOR-TS has 22 free parameters in its comprehensive formulation. For the Tarn case study, a simplified formulation is

adopted with 12 free parameters to calibrate in order to describe the functioning of conceptual reservoirs, evapotranspiration270

correction and wave celerity (Table 1). For the Durance catchment, parametrization of the snow module of MORDOR-TS is

more complex and 16 parameters are to be calibrated for the hydrological model. The parameter distribution is uniform for

the two case studies, which means that the same set of parameters applies to all cells. Calibration is conducted over 10 years

(01/01/1991–31/12/2000) based on three objectives that have to be maximized. The theoretical optimum is the point (1, 1, 1)

in the objectives space.275

For the Tarn catchment, the calibration is based on the Nash-Sutcliffe efficiencies NS (Nash and Sutcliffe, 1970) at three

gauging stations: the catchment outlet (Tarn at Millau), and two interior points (Tarn at Montbrun and Dourbie at Gardiès).

For the Durance catchment, the Kling-Gupta efficiency KGE (Gupta et al., 2009) is computed at three gauging stations: the

catchment outlet (Durance at La Clapière), and two interior points (Durance at Val-des-Prés and Guil at Montdauphin).
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Figure 7. Pareto front after 50,000 model evaluations with caRamel (1,183 points), NSGA-II (1,780 points) or MEAS (687 points) for the

Kursawe test function.

5 Results of calibration evaluations280

Four aspects are considered for the results of the case studies: the shape of the final Pareto fronts; the dynamics of the opti-

mizations; the distribution of the calibrated parameters, and their consequences on simulated stream flow for the hydrological

case studies. To illustrate the results on the simulated stream flow, a "best-compromise set" has been selected regarding to the

distance to the point (1,1,1) in the objective space for each hydrological case studies.

5.1 Final Pareto front285

First of all, it is important to accurately reproduce the shape of the Pareto front for the Kursawe test function, and this is the

case for all the optimizers (Fig. 7).

For the 3 hydrological case studies, the Pareto fronts look quite similar for caRamel and NSGA-II and more narrow with

MEAS (Fig. 8) The number of sets on the Pareto front change depending on the case and there is no rank for the optimizers.

For the Blue River study, there are 1,172 sets with caRamel, 878 sets with NSGA-II, and 268 points with MEAS. Then there290

are 1,457, 789 and 1,882 sets for the Tarn study, and 708, 408, and 525 sets for the Durance study with caRamel, NSGA-II and

MEAS respectively.
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Figure 8. Pareto fronts over 40 optimizations with optimizers caRamel, NSGA-II and MEAS for each hydrological case study: Blue River

with GR4J (a-c), Tarn with MORDOR-TS (d-f) and Durance with MORDOR-TS (g-i). The red point represents a "best compromise" set that

is used to illustrate model results.
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Figure 9. Metrics evolution over 40 optimizations with caRamel, NSGA-II and MEAS: mean evolution and 10-90% quantiles of the metrics

regarding the number of model evaluations: (a-c) metrics for Kursawe test function; (d-f) metrics for GR4J calibration of at Nourlangie Rock;

(g-i) metrics for MORDOR-TS calibration of Tarn at Millau; (j-l) metrics for MORDOR-TS calibration of Durance at La Clapière.

5.2 Dynamics of the optimizations

Figure 9 summarizes the dynamics of the optimizations for the four case studies.

CaRamel is converging more quickly for accuracy (metrics HV and GD in most of the cases). CaRamel dynamics is closer295

to NSGA-II dynamics than to MEAS as they have almost the same final values for the three metrics.

GS dynamics is different for the Kursawe test case than for the hydrological case studies. For the Kursawe test case, the

optimal final front has a spread, so all optimizers give the same results. For the hydrological cases, the optimal solution is

a point (1,1,1) and so the Pareto front may get smaller with the optimization. NSGA-II and caRamel are generating more

diversity than MEAS (GS final values).300

The envelopes over 40 optimizations are comparable for the three optimizers, meaning reproducibility is similar.
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5.3 Parameter distribution

Figure 10 displays the distribution of parameters from the tree case studies.

In the parameter space, the optimizers provide very similar results that explore the equifinality of the model, meaning that

different parameter sets give similar performances (Fig. 10). Some parameters (such as kr or lkn) may have optimized values305

on the whole range defined by the bounds, while other parameters are better constrained (X1, cel). These constitute a family

of sets that are optimal with regard to the chosen objectives.

The difference in the diversity of the final sets is also visible in the parameter distributions. Distributions are quite similar

for caRamel and NSGA-II but much narrower for MEAS.

5.4 Impact on model results310

Consequences on the simulated streamflow are displayed on Fig. 11. The envelopes with NSGA-II and caRamel are quite

similar, whereas the envelope with MEAS is narrower. It confirms that caRamel and NSGA-II are generating more diversity

on their Pareto front. The red line represents the simulated streamflow with the "best-compromise" set and fits quite well

with the observed one. Multi-objective calibration allows having a range of variation of calibrated discharges around the best-

compromise simulation.315

Figure 11c) represents a flood event on the Tarn River at Millau. The observed streamflow points are in the envelope of

simulation. The best-compromised simulation does not accurately reproduce the flood peak. The figure also displays the sim-

ulated discharges obtained by optimizing parameters on the 3 gauging stations separately, and the simulation with the set that

optimizes NS at Millau fits better with the observed points.
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Figure 10. Calibrated parameters distribution for the sets on the Pareto front (y limits are the calibration bounds) with caRamel, NSGA-II,

and MEAS for the three hydrological case studies: Blue River (first bloc of four parameters), Durance river (second bloc of 16 parameters),

and Tarn River (third bloc of 10 parameters). Parameter values from the "best-compromise set" are displayed in red.
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Figure 11. Observed and simulated stream flow for the 3 case studies. "Observations": observed streamflow, "Best compromise": best-

compromise simulated streamflow, "Envelope": simulated streamflow envelope using all parameter sets on the Pareto front (over 40 opti-

mizations) with caRamel, NSGA-II, and MEAS. (a) Daily runoff regime of Blue River at Nourlangie Rock (1990–1999); (b) Daily runoff

regime of Durance at La Clapière (1991-2000); (c) Flood event of Tarn River at Millau (14/04/1993 - 03/06/1993)
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6 Conclusions320

CaRamel is an optimization algorithm for multi-objective calibration, its result is a family of parameter sets that are Pareto-

optimal with regard to the different objectives. The algorithm is a hybrid of the MEAS algorithm (Efstratiadis and Koutsoyian-

nis, 2005) by using the directional search method based on the simplexes of the objective space and the ε-NGSA-II algorithm

with archiving management of the parameter vectors classified by ε-dominance (Reed and Devireddy, 2004).The combination

of stochastic and gradient-like parameter generation rules helps convergence of optimization while preserving the diversity325

of the population in both objective and parameter spaces. Four examples of case studies of increasing complexity have been

used to compare caRamel with NSGA-II and MEAS. Results are quite similar between optimizers and show that optimization

converges more quickly with caRamel.

Multi-objective optimization may require thousands of evaluations, which can be a limitation for the calibration of time

consuming models. To cope with this issue, parallel computation is implemented in the R package caRamel. Moreover,330

as convergence can be sensitive to the randomly chosen initial population, it is recommended to run several optimizations

to ensure reproducibility. Finally, the sensitivity to caRamel internal parameters has not been presented in this manuscript.

Recommendation based on benchmark studies is to give the same weight to each of the five generation rules. In the default

version of the package, each rule generates five parameter sets.

A better consideration of equality or inequality constraints, such as relationship between two parameters, could be an im-335

provement. Another perspective would be the ability of caRamel to deal with discrete parameters.

Code and data availability. The data analysis was performed with the open-source environment R (https://www.r-project.org). The algo-

rithm is provided as an R package caRamel, available from GitHub at https://github.com/fzao/caRamel, or from CRAN: https://cran.

r-project.org/package=caRamel. The case study of Blue River at Nourlangie Rocks has been run by using airGR package for the GR4J

hydrological model and for the data set, available at https://cran.r-project.org/package=airGR.340

Appendix A: The caRamel R package

The caRamel package has been designed as an optimization tool for any environmental model, provided that it is possible

to evaluate the objective functions in R. The main function, caRamel, is called with this syntax: caRamel(nobj, nvar, minmax,

bounds, func, popsize, archsize, maxrun, prec). Arguments are detailed in Table 2. The main argument of caRamel is the

objective function that has to be defined by the user. This enables flexibility as the user gives all the necessary information: the345

number and the definition of all the objectives, the minimization or maximization goal for each objective function, the number

of parameters to calibrate and their bounds, and other numerical parameters such as the maximum number of simulations

allowed. Additional optional arguments give the following possibilities:

– Creation of blocks/subsets of parameters that should be jointly recombined (for example parameters of a same module);
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– Choice of parallel or sequential computation;350

– Continuation of optimization starting from an existing population;

– Saving of the population after each generation or only the final one;

– Indicating the number of parameters sets generated by generation.

As a result, the function returns a list of six elements:

– success: a logical, "TRUE" if the optimization process ran with no errors,355

– parameters: matrix of parameter sets from the Pareto front (dimension [number of sets in the front, number of calibrated

parameters]),

– objectives: matrix of associated objective values (dimension [number of sets in the front, number of objectives]),

– save_crit: matrix that describes the evolution of the optimization process: for each generation, the first column is the

number of model evaluations, and the following ones are the optimum of each objective taken separately (dimension360

[number of generations, (number of objectives +1)]),

– total_pop: total population (dimension [number of parameters sets, (number of calibrated parameters + number of ob-

jectives)]).

– gpp: the calling period for the third generation rule (independent sampling with a priori parameters variance). It is

computed by the algorithm if the user does not fix it.365

The R package contains an R vignette that gives as examples benchmark functions with 2 objectives and 1 or 3 parameters

Schaffer (Schaffer, 1984) or Kursawe (Kursawe, 1991).

Appendix B: Example of R script for Kursawe test function optimization

# Kursawe function definition

kursawe <- function(i) {370

Obj1 <- -10 * exp(-0.2 * sqrt(x[i,1] ˆ 2 + x[i,2] ˆ 2)) - 10 * exp(-0.2 * sqrt(x[i,2] ˆ 2 + x[i,3] ˆ 2))

Obj2 <- abs(x[i,1]) ˆ 0.8 + 5 * sin(x[i,1] ˆ 3) + abs(x[i,2]) ˆ 0.8 + 5 * sin(x[i,2] ˆ 3) + abs(x[i,3]) ˆ 0.8 + 5 * sin(x[i,3] ˆ 3)

return(c(Obj1, Obj2))

}

# Parameters definition and caRamel run375

nobj <- 2 ; nvar <- 3 ; bounds <- matrix( c(rep(-5, nvar),rep(5, nvar)), ncol = 2 ) # range [-5, 5]

results <- caRamel (nobj = nobj , nvar = nvar , minmax = c(FALSE, FALSE) , bounds = bounds, func = kursawe, popsize =

100 , archsize = 100, maxrun = 5000, prec = rep(1.e-3,nobj) )
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Appendix C: Example of R script for GR4J optimization380

library(airGR)

library(caRamel)

# loading catchment data #

data(L0123001)

# preparation of the InputsModel object385

InputsModel «- CreateInputsModel(FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P,

PotEvap = BasinObs$E)

# run period selection

Ind_Run <- seq(which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1990-01-01"),

which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1999-12-31"))390

# preparation of the RunOptions object

RunOptions «- CreateRunOptions(FUN_MOD = RunModel_GR4J,InputsModel = InputsModel, IndPeriod_Run = Ind_Run)

# Observation object

Obs «- BasinObs$Qmm[Ind_Run]

395

# Definition of functions for the optimizer #

# Function for model evaluation #

EvalGR <- function(i)

# Transformation of the parameter set to real space

RawParamOptim <- airGR::TransfoParam_GR4J(ParamIn = x[i,],Direction = "TR")400

# Simulation given a parameter set

OutputsModel <- airGR::RunModel_GR4J(InputsModel = InputsModel,RunOptions = RunOptions,Param = RawParamOp-

tim)

# Evaluation of the 3 components of KGE

Sim <- OutputsModel$Qsim405

ix <- is.na(Obs + Sim)

B <- sum(Sim[!ix])/sum(Obs[!ix])

alpha <- sd(Sim[!ix],na.rm = TRUE)/sd(Obs[!ix],na.rm = TRUE)

rho <- cor(Obs[!ix],Sim[!ix])

KGE_3 <- c(rho , alpha, B)410

return(1-sqrt((1-KGE_3)2̂))

21

d28755
Texte surligné 



# Function for cluster initialization

InitGR <- function(cl,numcores)415

parLapply( cl, 1:numcores, function(xx)require(’airGR’))

clusterExport(cl=cl, varlist=c("InputsModel", "RunOptions", "Obs"))

# Optimization #420

# definition of the bounds of parameters (between -9.99 and 9.99)

nobj <- 3

bounds <- matrix(c(rep(-9.99, 4),rep(9.99, 4)), ncol = 2)

# Run

results <- caRamel(nobj = nobj, nvar = 4, minmax = rep(TRUE,nobj), bounds = bounds, func = EvalGR, funcinit = InitGR,425

popsize = 100, archsize = 100, maxrun = 5000, objnames = c("KGE_r","KGE_a","KGE_b"), prec = rep(1.e-4,nobj))

Author contributions. NLM developed the algorithm in the Scilab platform. FH, FZ and CM adapted the algorithm as R package and

performed various tests cases. CM prepared the manuscript with contributions from all co-authors.
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Table 1. Parameters to calibrate for MORDOR-TS and bounds of variation

Parameter Units Prior range Description

cetp – [0.7, 1.3] PET multiplicative correction factor

cp – [0.9, 1.1] Precipitation multiplicative correction factor

gtz °C.100m−1 [-0.8, -0.4] Air temperature gradient

umax mm [30, 500] Maximum capacity of the root zone

lmax mm [30, 500] Maximum capacity of the hillslope zone

zmax mm [30, 500] Maximum capacity of the capillarity storage

evl – [1.5, 4] Outflow exponent of storage L

kr – [0.1, 0.9] Runoff coefficient

evn – [1, 4] Outflow exponent of storage N

lkn mm.h−1 [-8, -1] Outflow coefficient of storage N

kf mm.°C−1.day−1 [1, 5] Constant part of melting coefficient

kfp mm.°C−1.day−1 [0, 5] Variable part of melting coefficient

lts – [0.7, 1] Smoothing parameter of snow pack temperature

eft °C [-3, 3] Additive correction of melting temperature

efp °C [-3, 3] Additive correction of rain/snow partition temperature

cel km.h−1 [0.1, 10] Wave celerity

dif m2.s−1 [10, 5000] Wave diffusion
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Table 2. Arguments of the caRamel() function. Optional arguments are printed in grey.

Name Type Description

nobj integer, length = 1 number of objectives to optimize (at least 2)

nvar integer, length = 1 number of parameters to calibrate

minmax logical, length = nobj vector of logicals that indicates for each objective whether it

should be maximized (TRUE) or minimized (FALSE)

bounds matrix, nrow = nvar, ncol = 2 lower and upper bounds for the variables

func character, length = 1 the function to optimize (defined by the user), with VecObj =

func(i) where i is the tested set index in the population matrix

(x), and VecObj is the vector of objectives for this set.

popsize integer, length = 1 population size for the genetic algorithm

archsize integer, length = 1 size of the Pareto front

maxrun integer, length = 1 maximum number of model runs

prec double, length = nobj desired precision for the objectives (used for downsizing popu-

lation)

repart_gene integer, length = 4 number of new parameter sets for each rule and per generation

gpp integer, length = 1 calling period for the rule (3)

blocks list of vector integer functional groups for parameters

pop matrix, nrow = nset, ncol = nvar

or nvar+nobj

initial population (used to restart an optimization)

objnames character, length = nobj names of the objectives

listsave list of character names of the listing files (NULL by default: no output)

write_gen integer, length = 1 if = 1, save files ’pmt’ and ’obj’ at each generation (= 0 by

default)

carallel logical, length = 1 run parallel computations (TRUE by default)

numcores integer, length = 1 number of cores for the parallel computations (all cores by de-

fault)

funcinit character, length = 1 the function (defined by the user) applied on each node of clus-

ter for initialization when parallel computation (for example

load of packages or copy of data). Arguments must be cl and

numcores.

graph logical, length = 1 plot graphical output at each generation (TRUE by default)
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