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Abstract. Sensitivity analysis is an effective tool for identifying important uncertainty sources and improving model 15 

calibration and predictions, especially for integrated systems with heterogeneous parameter inputs and complex processes 

coevolution. In this work, an advanced hierarchical global sensitivity analysis framework, which integrates the concept of 

variance-based global sensitivity analysis with hierarchical uncertainty framework, was implemented to quantitatively 

analyze several uncertainties of a three-dimensional, process-based hydrologic model (PAWS). The uncertainty sources 

considered include model parameters, model structures (with/without overland flow module), and climate forcing. We apply 20 

the approach in a ~9000 km2 Amazon catchment modeled at 1 km resolution to provide a demonstration of multiple 

uncertainty source quantification using a large-scale process-based hydrologic model. The sensitivity indices are assessed 

based on three important hydrologic outputs: evapotranspiration (ET), ground evaporation (EG), and groundwater 

contribution to streamflow (QG). It is found that, in general, model parameters (especially those within the streamside model 

grid cells) are the most important uncertainty contributor for all sensitivity indices. In addition, the overland flow module 25 

significantly contributes to model predictive uncertainty. These results can assist model calibration and provide modelers a 

better understanding of the general sources of uncertainty in predictions of complex hydrological systems in Amazonia. We 

demonstrated a pilot example for comprehensive global sensitivity analysis of large-scale complex hydrological and 

environmental models in this research. The hierarchical sensitivity analysis methodology used is mathematically rigorous 

and capable of being implemented into a variety of large-scale hydrological models with various sources of uncertainty. 30 
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1 Introduction 

Large-scale three-dimensional Process-Based Hydrologic Models (PBHMs) are being increasingly applied not only for 

evaluating watershed hydrologic responses to climate forcing, but also for understanding ecosystem energy balance, 

biogeochemistry, and ecological functioning from basin to continental scales (Shen et al., 2013; Maxwell et al., 2014; Riley 

and Shen 2014). PBHMs can simulate interacting states and fluxes of the integrated surface and subsurface hydrological 35 

processes and accurately predict large-scale complex hydrologic system behaviours (Niu et al., 2014; Shen et al., 2014; Niu 

and Phanikumar, 2015; Niu et al., 2017). Distributed flow pathways, e.g., evapotranspiration (ET), overland flow, channel 

runoff, etc., can be distinguished by PBHMs simulations (Beven, 2002). In addition, the governing equations for subsurface 

flow are explicitly solved in PBHMs; thus, they can simulate detailed hydrological processes including root extraction, 

infiltration, soil evaporation, and groundwater discharge and recharge in the vadose zone (Maxwell et al., 2014). However, 40 

complexities and uncertainties inherent in PBHMs structures, heterogeneous model parameters, heterogeneous data sources 

(e.g., elevation, soil properties, groundwater conductivities), and climate forcing may produce high uncertainties in the 

modeling outputs (Shen et al., 2014; Qiu et al., 2019).  

Uncertainty in numerical modeling is inevitable and important (Neuman, 2003; Rojas et al., 2010), especially for PBHMs 

that represent a high level of physical process complexity. Previous comprehensive sensitivity analyses of large watershed 45 

models rarely apply complex PBHMs (Emery et al., 2016). Uncertainties could emerge from multiple sources, including 

climate forcing, lack of data or knowledge to capture some characteristics of the system, heterogeneity in natural 

characteristics, and equifinality of conceptual model parameters, etc. (Beven, 1993; Beven and Freer, 2001; Nossent et al., 

2011; Refsgaard et al., 2007, 2012; Ye et al., 2008; Sulis et al., 2011). Sensitivity analysis becomes important to identify the 

most influential uncertainty sources so that limited resources can be used to maximumly reduce model predictive uncertainty 50 

(Neuman, 2003; Saltelli et al., 2010; Lu et al., 2012; Song et al., 2015).  

In general, sensitivity analysis can be separated into local and global methods. The main limitation of local sensitivity 

analysis is that its results are only valid for a small range of parameter values (Gedeon et al., 2012; King and Perera, 2013; 

Wainwright et al., 2014; Dai and Ye, 2015). Comparing to the local method, global sensitivity analysis can provide 

sensitivity estimates for the entire range of uncertain parameters values (Saltelli et al., 2000, 2010; Razavi and Gupta 2015, 55 

2016). Because of this advantage, global sensitivity analysis has gained popularity in recent modeling analyses despite its 

high computational cost (Hamby, 1994; van Griensven et al., 2006; Sulis et al., 2011; Baroni et al., 2014). Among different 

global sensitivity analysis methods, the variance-based method has been widely used because its ability to accurately 

quantify the importance of uncertain parameters while considering their interactions (Saltelli and Sobol, 1995; Zhang et al., 

2013; Dai and Ye, 2015).  60 

There is still a lack of research for quantitative and representative global sensitivity analysis using large-scale PBHMs. Most 

sensitivity analysis research for hydrological models has used local sensitivity analysis methods (Chavarri et al., 2013; de 
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Paiva et al., 2013; Nijssen et al., 2001). Moreover, the conventional global sensitivity analysis only includes the uncertainty 

from model parameters and ignores other important sources of hydrological model uncertainties, including scenario 

uncertainty (caused by alternative unpredictable future climate conditions, e.g., precipitation, radiation intensity, temperature) 65 

and structural uncertainty (caused by different interpretations of the real situation and reflecting on the plausible models (Ye 

et al., 2005; Makler-Pick et al., 2011; Neumann, 2012; Dai and Ye, 2015; Song et al., 2015; Dai et al., 2017a,b )). 

In this research, we applied a new hierarchical global sensitivity analysis approach to a PBHM (the Process-Based Adaptive 

Watershed Simulator; PAWS) at a watershed in the Amazon and considering multiple uncertainty sources. Hierarchical 

sensitivity analysis was first proposed by Dai and Ye (2015) and then applied to a groundwater modeling analysis for the 70 

Hanford 300 area in Washington, U.S. (Dai et al., 2017a). This new methodology integrates the concept of variance-based 

global sensitivity analysis with the hierarchical uncertainty quantification framework (Draper et al., 1999; Dai and Ye, 2015) 

to quantify sensitivity of important processes to model parametric and structural uncertainty. This new sensitivity analysis 

method considers three important sources of uncertainties (i.e., scenario, structural, and parametric) involved in hydrological 

models and dramatically decreases computational costs by combining uncertain inputs based on their characteristics and 75 

inter-dependencies. In this study, we revised the hierarchical sensitivity analysis method and defined a set of sensitivity 

indices to group and accurately quantify the importance of different uncertainty sources in PAWS when simulating 

hydrological processes in an Amazonian watershed. 

PAWS has been applied extensively in many watersheds, e.g., the large watersheds in Michigan state, USA (Niu et al., 2014, 

2017; Ji et al., 2015; Shen et al., 2013, 2014, 2016; Qiu et al., 2019) and the watershed in Amazon basin (Niu et al., 2017), 80 

and demonstrates high efficiency and good performances. We applied PAWS here in the Amazon because it consists of more 

than half of the tropical rainforests (Morley, 2000) and plays an essential role in the world carbon (Richey et al., 2002; 

Phillips et al., 2009; Lintner et al., 2017) and water (Fearnside, 2005; Phillips et al., 2009) cycles. Amazonian forest 

hydrology can affect many processes, including nutrient budgets (Lesack and Melack 1996), production and consumption of 

carbohydrates (Pegoraro et al., 2006), and root-zone moisture availability for plants (Oliveira et al., 2005; Tang et al., 2015). 85 

A large number of field (Lesack 1993; Leopoldo et al., 1995; Tomasella et al., 2008) and numerical modeling (Coe et al., 

2008; Sorribas et al., 2016; Yamazaki et al., 2012) studies have been done to improve our understanding of hydrologic 

processes in the Amazon. As some studies indicated that groundwater is the key controller of the Amazon hydrology 

(Leopoldo et al., 1995; Hodnett et al., 1997a,b; Beighley et al., 2009; Pokhrel et al., 2014; Niu et al., 2017), some researchers 

have already implemented simulations containing subsurface water in Amazon (Miguez-Macho and Fan, 2012a,b). The 90 

severe hydrological hazards that frequently occurred in Amazon in the past, such as the droughts in 2005, and 2010 and the 

floods of 2009 (Tomasella et al., 2008; Marengo et al., 2010; Espinoza et al., 2011), also raise the requirement of including 

climate scenario uncertainty and related model uncertainty in sensitivity analyses for the Amazon region. 

The PAWS model applied in this work was originally used in Niu et al. (2017) for simulating the hydrologic cycle in an 

Amazonian watershed. Here we build on that work by combing model system uncertainty sources into three groups: climate 95 
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scenarios (precipitation, radiation and temperature), model structure (with and without overland flow module), and 

parameters, including soil saturated hydraulic conductivity Ks (m day-1), unconfined aquifer hydraulic conductivity K1 (m 

day-1), confined aquifer hydraulic conductivity K2 (m day-1), Van Genuchten equation parameters α (unitless) and N (unitless) 

(Genuchten, 1980). Because of the high complexity and dimensionality of this model, the highly efficient parameter 

sampling method, Latin hypercube sampling (LHS) was applied to obtain parameter samples and estimate the new 100 

sensitivity indices. Through implementing the hierarchical sensitivity analysis method, we aim to provide a pilot example of 

comprehensive global sensitivity analysis for the large-scale PBHMs and investigate the most important uncertainty source 

for modeling hydrological processes in the Amazon. 

In section 2, we describe the hierarchical sensitivity analysis method and Latin hypercube sampling. The introduction of the 

study site and details about the implementation of sensitivity analysis using PAWS are exhibited in section 3. Then we 105 

display and discuss the results of sensitivity indices for three model outputs of interest: evapotranspiration (ET), ground 

evaporation (EG), and groundwater contribution to stream (QG) in section 4. Section 5 is the summarization of the key 

findings of this research. 

2 Methodology 

We start with the introduction of hierarchical uncertainty framework and the new sensitivity indices of different uncertainty 110 

sources in Section 2.1. Thereafter the numerical evaluation of new sensitivity indices using Latin hypercube sampling is 

exhibited in Section 2.2.  

2.1 Hierarchical uncertainty framework and new sensitivity index 

In this study, we built the hierarchical uncertainty framework containing three layers (Fig. 1) to represent the uncertain 

inputs and outputs of the PAWS model system used in this research. Fig. 1 demonstrates three major uncertain inputs for 115 

generating the model output are placed in appropriate positions: (1) the climate scenarios, (2) the conceptualization of the 

numerical model, and (3) model parameters. The climate scenarios (e.g., precipitation, radiation intensity, temperature) are 

the driving forces of the model system. Numerical model uncertainty represents the different possible conceptualization 

describing the study site. Each model can contain a different set of parameters and their values are subjected to parameter 

uncertainty (Meyer et al., 2007). These three sources of uncertainty were put into the proper level of hierarchy in the 120 

uncertainty framework based on their dependence relationships.  

For a model: ( ) ( )1,..., mf X f X X= = , where   is the model output and  1 ,..., mX X X=  is a group of model uncertain 

inputs, using the law of total variance, the total variance of   can be decomposed as:  

( ) ( )( ) ( )( )
~ ~X X

Δ Δ Δ
i i i iX i X iV V E X E V X= + , (1) 
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where the first term of partial variance on the right-hand side is the within-
iX  partial variance and represents the variance 125 

contribution by 
iX , and X i

, represents all the inputs except 
iX . The second term on the right-hand side represents the 

variance contributed by the model inputs excluding 
iX  as well as the interactions of all the inputs. Based on the definition of 

first-order sensitivity index ~
( ( | ))

( )

Xi iX i

i

V E X
S

V


=


 , the percentage of uncertainty contributed by input 

iX  can be quantified 

accurately. 

Using the hierarchical framework in Fig. 1, the variance-based sensitivity analysis method enables the decomposition of the 130 

total variance into individual contributors following:   

( ) ( )( ) ( )( )
( )( ) ( )( )

~ ~CS CSCS CS CS CS

CS CSNM, PR CS NM, PR CS

Δ Δ CS Δ CS

        Δ CS Δ CS

V V E E V

V E E V

= +

= +
,  (2) 

where CS  represents the set of alternative climate scenarios, NM  represents the multiple plausible numerical models, and 

PR  is the uncertain parameters. The term CS  represents the uncertain inputs excluding climate scenarios, which are 

NM  and PR  in this study. The term NM,PR CS   represents the change of combination of model and parameter under 135 

one fixed climate scenario. The first term of partial variance on the right-hand side of this equation represents the variance 

caused by multiple climate scenarios. The second term on the right-hand side is the partial variance caused by other 

uncertain inputs and can be further decomposed as: 

( ) ( )( ) ( )( )NM, PR CS NM CS PR NM, CS NM CS PR NM, CS
Δ CS Δ NM, CS Δ NM, CSV V E E V= + , (3) 

where the first partial variance term on the right-hand side of this equation represents the uncertainty contributed by multiple 140 

plausible models. The subscripts NM CS  and PR NM,CS  refer to the change of models under one climate scenario and 

the change of parameters under one model and climate scenario respectively. The second term represents the within-model 

partial variance which is caused by the uncertain parameters. By substituting Eq. (3) back into Eq. (2), we can get that: 

( ) ( ) ( )( )
( )

( ) ( )

( )

| |

|

| |

|

CS NM|CS PR|NM, CS NM|CS PR|NM, CS

CS NM|CS PR|NM, CS

CS NM|CS PR|NM, CS CS NM|CS PR|NM, CS

CS NM|CS PR|NM, CS

Δ Δ NM, CS Δ NM, CS

        Δ NM, CS

        Δ NM, CS Δ NM, CS

        Δ NM, CS

        

V E E V V E

V E E

E E V E V E

V E E

= +

+

= +

+

= ( ) ( ) ( )PR NM CSV V V+ +

. (4) 
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The three terms on the right-hand side of Eq. (4) represent the partial variances contributed from parameter, model and 145 

climate scenario, respectively. The equation indicates that the total variance can be decomposed into the variances 

contributed from the alternative climate scenarios CS , plausible numerical models NM , and uncertain parameters PR . 

Then, we can define the new sensitivity indices for PR , NM  and CS  following the first-order sensitivity index definition: 

( )

( )

( )

( )

|CS NM|CS PR|NM, CS

PR

Δ NM, CS PR

Δ Δ

E E V V
S

V V
= = , (5) 

( )

( )

( )

( )

|CS NM|CS PR|NM, CS

NM

Δ NM, CS NM

Δ Δ

E V E V
S

V V
= = , (6) 150 

( )

( )

( )

( )

|CS NM, CS PR|NM, CS

CS

Δ NM, CS CS

Δ Δ

V E E V
S

V V
= = . (7) 

2.2 Sensitivity indices estimation using the Latin hypercube sampling  

In this research, the parameters were sampled within the feasible range via Latin hypercube sampling (LHS) (Kanso et al., 

2006; Zhang and Pinder, 2003). LHS is a constrained Monte Carlo sampling, which can accurately reflect the function 

distribution of the input data. Compared with Monte Carlo sampling, LHS greatly reduces the demand for sample size and 155 

computation time and is widely used in modeling simulation and optimization calculations. For a function: ( )Y Xf= , 

where  1 2 3, ,...,X X X X= , by using LHS, the range of 
iX , 1,2,...,i k=  can be divided into n non-overlapping intervals 

with equal probabilities. The n values obtained from 
1X  are paired with n values obtained from 

2X  randomly, these n paired 

values then combined with those n values from 
3X . We repeat this process until the new n k  matrix X  is developed. This 

sample matrix X  can be used to calculate the sensitivity index for the model output. More details about LHS are described 160 

in previous studies (McKay, 1979; Owen, 1998; Helton, 2003). 

Assuming there are l alternative climate scenarios, and under each climate scenario, there are k plausible models and we have 

n sampled parameter sets for each model and climate scenario. Using the variance definition, the partial variance of ( )PRV  

can be expressed as: 

( ) ( )

( ) ( )( )( )22

|

| |

CS NM|CS PR|NM, CS

CS NM|CS PR|NM, CS PR|NM, CS

PR Δ NM, CS

           Δ NM, CS Δ NM, CS

V E E V

E E E E

=

= −
. (8) 165 
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After applying the formula of expectation and LHS method then the terms of ( )PRV , ( )NMV  and ( )CSV  can be 

expressed as: 

( ) ( ) ( )( )( )

( ) ( )

( ) ( )

22

2

2

1 1

2

2

1 1

| |

1 1
| , | ,

1 1
| , | ,

CS NM|CS PR|NM, CS PR|NM, CS

CS NM|CS

PR Δ NM, CS Δ NM, CS

           

           

n n

j k l j k l

j j

n n

j k l j k ll k
j j

V E E E E

E E PR NM CS PR NM CS
n n

PR NM CS PR NM CS P
n n

= =

= =

= −

  
 =  −  
   

  
 =  −  
   

 

    ( ) ( )|k l lNM CS P CS

, (9) 

( ) ( )

( )

( )

( ) ( )

2

1

2

1

|

1
| , ( | )

1
| , |

CS NM|CS PR|NM, CS
NM Δ NM, CS

            

n

j k l k lk
j

ll
n

j k l k lk
j

V E V E

PR NM CS P NM CS
n

P CS

PR NM CS P NM CS
n

=

=

=

  
  − 
  

=  
   

     
   

 



 

,  (10) 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

1

2

1

Δ |

1
           | | ,

1
           | | ,

CS NM, CS PR|NM, CS
CS NM, CS

n

l k l k j k ll
j

n

l k l k j k ll k
j

V V E E

P CS P NM CS PR NM CS
n

P CS P NM CS PR NM CS
n

=

=

=

  
=    

  

  
−    

  

 

  

. (11) 170 

Where n and j represent the parameter LHS sample number and index respectively, ( )k lP NM CS  represents the weight of 

model 
kNM  under climate scenario 

lCS  with ( ) 1k lk
P NM CS =  and ( )lP CS  is the weight of different climate scenario 

situations satisfying ( ) 1ll
P CS = . The values of weights for alternative models or climate scenarios could be selected 

using their prior knowledge or objective criteria, e.g., posterior probabilities of the Bayesian theorem (Neumann, 2012; 

Schoniger et al., 2014). In this study, we only use the equal prior weights for different models and scenarios considering the 175 

calculations of these weights are not the focus of this research. 

3 Study area and model setup 

3.1 Site description and data set 

The study site locates in the north of the Manaus, Brazil (Fig. 2), with a drainage area of ~9,000 km2. Within the central 

Amazon, the watershed is mostly covered by tropical forest with ~12% cropland and ~5% wetland (based on Community 180 
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Land Model (CLM) land surface data; Niu et al., 2017). The average precipitation for this region has large seasonal 

variability. From December to May is the wet season while from June to November is the dry season. With the relative high 

elevation (90 – 210 m) of upper landscape and the relative low elevation (45 – 55 m) of swampy valleys, a dense drainage 

network was formed in the region. The watershed has 4 rivers: Urubu, Preto da Eva, Tarumã-açu, and Tarumã-mirim Rivers.  

Various inputs are needed for watershed modeling using PAWS. 90-m resolution NASA Shuttle Rader Topography Mission 185 

(SRTM) (U.S. Geological Survey; http://eros.usgs.gov) is applied as DEM input, but for channel network and watershed 

boundary delineation the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) provides the 30-m 

resolution Global Digital Elevation Model version 2 (GDEM V2) instead. Default CLM CRU-NCEP (CRUNCEP) dataset 

(Piao et al., 2012) serves as the climate forcing of the model, e.g., temperature, humidity, short- and long-wave solar 

radiation, wind speed, and land surface air pressure. We replaced the input CRUNCEP precipitation with NASA’s Tropical 190 

Measuring Mission (TRMM) data (http://trmm.gsfc.nasa.gov/), since the model fails to capture the peak stream discharges 

using CRUNCEP rainfall data (Niu et al., 2017). CLM land surface data is applied as land use and land cover (LULC) input. 

More details about the model inputs can be found in Niu et al. (2017). 

3.2 Model setup 

PAWS uses an effective non-iterative scheme to couple hydrologic processes including both land surface and subsurface 195 

water. The details of numerical implementation and the governing equations can be found in Shen and Phanikumar (2010) 

and Niu et al. (2014) (Fig. 3). Briefly, four flow domains are simulated in PAWS, including stream channel, overland flow, 

vadose zone, and saturated groundwater. Structured grid-based finite-volume method is the main numerical scheme applied 

to discretize the governing equations in various hydrologic components. PAWS also simulates two land surface subdomains, 

i.e., infiltration and evaporation are depicted in the ponding subdomain while the overland flow occurs in the surface flow 200 

subdomain. PAWS considers the horizontal interaction of both surface runoff and groundwater flow between the model grids, 

which represents the actual hydrological processes and is often ignored by other regional and global hydrologic models. The 

1D diffusive wave equation is solved to simulate channel flow and the 2D version for overland flow. The leakance concept is 

the basis applied to simulate the exchange between the channel and groundwater explicitly. PAWS has been coupled with 

CLM (Shen et al., 2013), which calculates the surface energy balance and soil and plant carbon and nitrogen cycles. Canopy 205 

interception and ET demand (both transpiration and soil evaporation) are also computed in CLM at each time step. 

A 1 km × 1 km grid was used for horizontal discretization, resulting in 118 × 122 grid cells for the study site. To discretize 

the vadose zone 20 vertical layers were used, and for the fully saturated groundwater there were two layers-the unconfined 

aquifer on the top layer while the confined aquifer on the bottom. The depth from water table to bedrock was fixed as 100 

meters. The initial groundwater head was obtained from the global groundwater table depth data (Fan et al., 2013) for the 210 

hydrologic component spin-up. From the initial carbon and nitrogen states, an uncoupled version of CLM (i.e., not coupled 

with PAWS) was run for 525 simulation years; the resulting states were then used to initialize the PAWS+CLM coupled 
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simulation. The spun-up states were verified through analysis of leaf area index (LAI). The model calibration and testing use 

multiple datasets, including the stream discharge observations at two stream gauges (15042000 in Preto da Eva River and 

16010000 in Urubu River; Fig. 1 in Niu et al. (2017)) from the Agência Nacional de Águas (ANA) Hidroweb Sistema de 215 

Informações Hidrológicas (http://hidroweb.ana.gov.br/), MODIS monthly ET (MODIS 16A2) data (Mu et al., 2007, 2011), 

and GRACE land grid equivalent water thickness data (http://geoid.colorado.edu/grace/dataportal.html). The details of these 

data can be referred to Niu et al. (2017). 

The Tropical Measuring Mission (TRMM) 3B42 daily V7 data from NASA (available at http://trmm.gsfc.nasa.gov/), which 

has 0.258 spatial resolution, was used as weather data in this model. Two simulations extend periods from 1 September 1999, 220 

1:00 AM to 1 June 2000, 1:00 AM and from 1 March 2000, 1:00 AM to 27 November 2000, 1:00 AM each with a duration 

of 6,528 hours (272 days, ~9 months). We chose the climate datasets of the years of 1999 and 2000 because it avoids severe 

drought or flood situations which will help us better understand the hydrology of the normal dry and wet seasons in the 

central Amazon. More detailed information about data input and simulation details are described in Niu et al. (2017). 

3.3 Uncertainty sources 225 

There are three main uncertainty sources for the hydrologic processes modeling by using PAWS+CLM in the central 

Amazon: (1) climate scenarios, including the precipitation, radiation intensity and temperature at different seasons; (2) the 

conceptualization of numerical model, i.e., the optional overland flow module; and (3) parameters. These uncertainty sources 

follow the hierarchical structure shown in Fig. 1. The model simulation time was 6,528 hours under each climate scenario. 

The first 2,208 hours (92 days, ~3 months) were regarded as initialization and the remaining 4,320 hours (180 days, ~6 230 

months) were used for analysis. One simulation period of 4,320 hours from 2 December 1999, 1:00 AM to 29 May 2000, 

00:00 PM was established as climate scenario 
1CS , while the other simulation period of 4,320 hours from 1 June 2000, 1:00 

AM, to 27 November 2000, 00:00 PM was established as climate scenario 
2CS . 

1CS  represents the wet season with average 

precipitation of 10.8 mm day-1, average radiation intensity of 544.1 MJ day-1m-2, and average temperature of 27.1℃, while 

2CS  represents the dry season, with average precipitation of 5.0 mm day-1, average radiation intensity of 589.8 MJ day-1m-2, 235 

and average temperature of 27.8℃. In general, the scenario 
1CS  has more frequent heavy rains and weaker radiation 

intensity comparing with scenario 
2CS  (Fig. 4).  

Two alternative conceptual models, consisting of different PAWS modules, were considered in this study. One model 

contains the overland flow module while the other model excludes the overland flow module. Therefore, there are two 

models (
1NM  and 

2NM ) under each climate scenario. In this study, we used equal weights for the different models and 240 

climate scenarios, leading to ( ) ( ) 0.5l k lP CS P NM CS= = . 
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We adjusted the values of five model parameters to explore total parameter sensitivity: Van Genuchten soil parameters α and 

N, soil saturated conductivity Ks, unconfined aquifer conductivity K1, and confined aquifer conductivity K2 (Table 1). In 

order to make sensitivity analysis uncomplicated and computationally tractable, each grid was taken the same value for a 

specific parameter. The soil saturated conductivity Ks (m2day-1), unconfined aquifer conductivity K1 (m2day-1), and confined 245 

aquifer conductivity K2 (m2day-1) were assumed to follow lognormal distributions (log-N (1.6094, 0.42142), log-N (3.4012, 

0.42142), and log-N (1.6094, 0.42142), respectively). The lower bounds of these three lognormal distributions were all zero 

and the higher bounds were 10, 60, and 10, respectively. The remaining two parameters (VG parameters α and N) were 

assumed to follow a uniform distribution: U (0.1, 4) and U (1.03, 5), respectively. This set of parameters was used in each 

model under each climate scenario.  250 

4 Results and discussion 

4.1 Model predictions 

The total number of PAWS+CLM simulations considering all possible combinations of three uncertain factors was 

2 2 100 400  = , which represents two climate scenarios, two model conceptualizations (with and without overland flow 

module), and 100 sampled parameter sets. The results of these 400 realizations for three outputs of interest: ET, EG and QG 255 

are summarized in Fig. 5, and demonstrate that the predictions of ET, EG, and QG all exhibited substantial uncertainty that 

varied across different time steps. The results also demonstrate that the overland flow significantly influences QG predictions 

because the simulation results without the overland flow module (red and yellow dots in Fig.4) are higher than those with 

overland flow module (blue and green dots). 

4.2 Sensitivity indices for evapotranspiration 260 

We first calculated the sensitivity indices for the spatial averaged ET of the whole watershed at all time steps using Eqs. (5) - 

(7). In this study, one time-step represents one hour. Six time points (the simulation times = 1777 h, 1785 h, 2521 h, 2529 h, 

3265 h, and 3273 h) were chosen as examples to show sensitivity indices (Fig. 6). Simulation times of 1777 h, 2521 h, and 

3265 h, which belonged to different days, but all correspond to 1:00 AM local time. At these time points, the model 

uncertainty (
NM

S ) was the most important contributor to the total ET prediction uncertainty, accounting for 46-66% of total 265 

uncertainty, and climate scenarios (
CS

S ) contributed the least uncertainty. However, at different time points of (1785 h, 2529 

h, and 3273 h, corresponding to 9:00 AM local time), the climate scenarios were the dominant uncertainty contributor with 

CS
S  ranging from 74-90%. These results indicate that the sensitivity to various factors is strongly temporally dependent (Fig. 

7 shows the ET prediction sensitivity indices at 1:00 AM, 5:00 AM, 9:00 AM, 1:00 PM, 5:00 PM, and 9:00 PM local time). 

All the sensitivity indices fluctuate strongly with time and there is no clear periodic information in these values (Fig. 7). 270 

Furthermore, the results exhibit a regular pattern that climate scenarios generally were the most important uncertainty source 
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between 5:00 AM and 5:00 PM, while during the night time (1:00 AM to 9:00 PM), the effects of parameter uncertainty 

dominated. This pattern can be explained by the fact that the ET predictions are directly influenced by climate scenario 

related inputs: solar radiation and precipitation, and both precipitation and solar radiation forcing used in this research have 

their maximum values around 12:00 PM (and there is no radiation at night).  275 

We also calculated the sensitivity indices for every grid cell within the model domain using the time averaged ET predictions 

over all simulation period (4320 hours) (Fig. 8) to investigate the spatial variability of sensitivity indices for temporal mean 

ET predictions. The maps demonstrate that along the streams, model parameters are the most important uncertainty 

contributor to ET predictions (
PR

S >0.50). This sensitivity occurs because model cells along the streams always having 

intense surface slope and rapid water-exchange activities, and parameters having significant influences on soil moisture and 280 

infiltration, implying these grid cells are very sensitive to parameters. This pattern was also confirmed by the previous 

studies of Sun et al. (2017) and Teuling et al. (2009). Besides the area along the streams, the model uncertainty dominates 

the total uncertainty of ET predictions (
NM

S >0.51). Comparing with these two uncertainty sources, climate scenario is the 

least important factor for temporal mean predictions of ET.  

4.3 Sensitivity indices for ground evaporation  285 

The same procedures of sensitivity analysis as described in the above section were conducted for the model predictions of EG 

(Fig. 9). These sensitivity analysis results show a distinct pattern comparing with the results of ET: the parameters in general 

are the most important uncertainty contributor and the climate scenarios are the least important for spatial mean EG 

predictions. The parameters are important because they affect EG directly through controlling soil water movement and root 

water uptake efficiency according to the soil evaporation function. The values of 
PR

S  reach their maxim immediately after 290 

precipitation peaks around 1:00 PM because soil parameters strongly affect soil water redistribution processes after rainfall. 

The results in Fig. 9 also demonstrate no clear periodic pattern and model uncertainty is more important at night (1:00 AM, 

5:00 AM, and 9:00 PM) which coincides with the fact that the overland flow always occurs hours after the precipitation 

event, reaching its peak during the night. The climate scenarios are unimportant for EG predictions because the radiation and 

precipitation have relatively small effects on ground evaporation. 295 

The sensitivity maps for time-averaged EG predictions (Fig. 10) exhibit a similar pattern compared to ET predictions (Fig. 8): 

the model parameters contribute the most to the total uncertainty along the streams and model uncertainty generally 

dominates in the other modeled areas.  

4.4 Sensitivity indices for groundwater contribution to streamflow 

Groundwater is an important component of hydrologic processes in the central Amazon region, therefore it is essential to 300 

conduct sensitivity analysis for QG (Fig. 11). The results demonstrate that model parameters are the dominant contributor to 
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total QG prediction uncertainty, while the uncertainty contribution of climate scenarios is negligible. This pattern can be 

explained by the fact that the climate scenarios related variables having no direct immediate influence on groundwater flow. 

These results are consistent with the previous study of Niu et al. (2017) that groundwater has buffering effects on climate 

impacts from storms and droughts in the central Amazon. Comparing with the results of EG, the maximum values of 
NM

S  305 

occur at a later time (5:00 AM) which implies a longer time lag after precipitation because of the slow infiltration process 

from soil to aquifer. 

Because groundwater exchange with stream flow occurs only at grid cells along the streams, the sensitivity indices only 

having valid values in those stream grid cells (Fig. 12). Our results indicate that the model parameters are the most important 

contributor to total uncertainty of time averaged QG predictions. At some grid cells, the model uncertainty dominates, 310 

implying that overland flow is important at these locations.  

5 Conclusions 

In this study, we implemented an advanced hierarchical sensitivity analysis method into a complex large-scale process-based 

hydrological model (PAWS) to identify important uncertain inputs for ET, EG, and QG predictions in an Amazonia watershed. 

This sensitivity analysis method is capable of providing accurate measurements for importance of uncertain inputs through 315 

variance decomposition and it can also categorize and combine different uncertain inputs considering their dependence 

relationship to decrease the high dimensionality induced by the complex and large-scale problem. Three groups of 

uncertainty sources or uncertain inputs were considered in this research, including alternative climate scenarios, two 

plausible model structures, and uncertain model parameters (i.e., soil parameter, soil saturated conductivity,  unconfined 

aquifer conductivity, and confined aquifer conductivity). A hierarchical framework of uncertainty and a new set of 320 

sensitivity indices were defined for these uncertainty sources. The Latin hypercube sampling method was implemented to 

calculate the sensitivity indices to save the computational cost

The sensitivity analysis results in this research demonstrate strong temporal and spatial variations, and there is no single 

dominant uncertainty class for different model predictions. The climate scenarios are the most important uncertainty 

contributor for spatially-averaged ET predictions during daytime, while parameter uncertainty is the most important factor 325 

during night time. In contrast, parameter uncertainty is the most important contributor to total uncertainty of spatially-

averaged EG and QG predictions at all times. For the time averaged ET and EG predictions, parameters are also the most 

important uncertainty source at along streams, while the model uncertainty dominates at other areas in the watershed. For 

time-averaged QG predictions, parameter uncertainty dominates at most stream grid cells. In general, model parameters are 

the most important uncertainty contributor for all model predictions, especially those within streamside model grid cells. In 330 

addition, the overland flow module induced model uncertainty plays a non-ignorable influence in model predictive 

uncertainty. The distinct sensitivity analysis result patterns of different uncertain inputs can be explained by different 

physical processes involved in the conceptual model. 
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We demonstrated a pilot example for comprehensive global sensitivity analysis of large-scale hydrological models. The 

sensitivity analysis results can provide key information of model uncertainty sources for modelers and inform needed 335 

measurements and process representation improvements. We note that the proposed method is mathematically rigorous and 

general and can be applied to extensive large scale hydrological or environmental models with more or different sources of 

uncertainty.  
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Table 1: Five chosen parameters to be included in parameter uncertainty 

Parameters Units Description Allowable Range 

Ks m day-1 soil saturated hydraulic conductivity 0.0-10.0 

K1 m day-1 unconfined aquifer hydraulic conductivity 0.0-60.0 

K2 m day-1 confined aquifer hydraulic conductivity 0.0-10.0 

α  Van Genuchten parameter 0.1-4.0 

N  Van Genuchten parameter 1.03-5.0 

 530 

 

 

Figure 1: The hierarchical sensitivity analysis framework developed for PAWS applied in the central Amazon basins. The three 

uncertainty sources are placed into the appropriate hierarchy level according to their dependence relationships.  
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 535 

Figure 2: The 2-D map of watershed used in this study, showing the elevation, channels and watershed boundary. The study area 

extends from 1°57′36″S to 2°56′0″W and 59°14′48″W to 60°20′0″W.   

 

Figure 3: A schematic of the processes represented in PAWS (Shen and Phanikumar, 2010). T: transpiration, P: precipitation, Eg: 

evaporation from bare soil, EO: evaporation from overland flow/stream, ED: evaporation from depression storage, I: infiltration; R: 540 
recharge.  
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Figure 4: Precipitation (from TRMM 3B42 V7 precipitation data) and solar radiation (from CRUNCEP climate forcing data) 

forcing of two different climate scenarios 1CS  and 2CS . Average precipitation of 1CS  is 10.8 mm day-1 and average radiation 

intensity is 544.1 MJ day-1m-2. 2CS  represents the dry season, with average precipitation of 5.0 mm day-1, average radiation 545 

intensity of 589.8 MJ day-1m-2. 
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Figure 5: ET (a), EG (b), and QG (c) for 4320 hours simulation period (180 days, ~6 months) for all simulations. The blue, red, 

green, and yellow dots represent the results under wet season and with overland flow module, wet season without overland flow 

module, dry season with overland flow, and dry season without overland flow, respectively. Since there is 100-size sample of 550 
parameters under a fixed numerical model under a fixed climate scenario, each hour possesses 400 dots (100 dots of each color) in 

total. All results of ET, EG, and QG exhibited substantial uncertainty caused by climate scenario, overland flow and parameters.  
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Figure 6: Estimated sensitivities for the spatial averaged ET at 6 time points (the simulation times = 1777 h (Day 74, 1:00 AM), 

1785 h (Day 74, 9:00 AM), 2521 h (Day 105, 1:00 AM), 2529 h (Day 105, 9:00 AM), 3265 h (Day 136, 1:00 AM), and 3273 h (Day 555 
136, 9:00 AM)).  
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Figure 7: PRS , 
NM

S  and 
CS

S  of the spatial averaged ET predictions at (a) 1:00 AM (b) 5:00 AM (c) 9:00 AM (d) 1:00 PM (e) 5:00 

PM and (f) 9:00 PM extracted from all simulations. All the sensitivity indices fluctuate strongly with time and there is no clear 

periodic information in these values. 560 
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Figure 8: The maps of (a) PRS , (b) 
NM

S  and (c) 
CS

S  for mean value of ET predictions over the whole simulation period (the 

initialization period is excluded) exhibit a spatially determined pattern: ET is most sensitive to parameters within the stream grid 

cells while within the grid cells away from stream, ET is most sensitive to overland flow.  
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Figure 9: PRS , 
NM

S  and 
CS

S  of the spatial averaged EG predictions at (a) 1:00 AM (b) 5:00 AM (c) 9:00 AM (d) 1:00 PM (e) 5:00 

PM and (f) 9:00 PM extracted from all simulations. At 9:00 AM, 1:00 PM, 5:00 PM and 9:00 PM, the parameters are the most 

important uncertainty contributor. At night (1:00 AM, 5:00 AM and 9:00 PM) EG is very sensitive to model uncertainty. The 

climate scenarios are unimportant for EG predictions. 
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 570 

Figure 10: The maps of (a) PRS , (b) 
NM

S  and (c) 
CS

S  for mean value of EG predictions over the whole simulation period (the 

initialization period is excluded). They exhibit a similar pattern to ET (Fig. 8).  
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Figure 11: PRS , 
NM

S  and 
CS

S  of the spatial averaged QG predictions at (a) 1:00 AM (b) 5:00 AM (c) 9:00 AM (d) 1:00 PM (e) 

5:00 PM and (f) 9:00 PM extracted from all simulations. It indicates that model parameters are the dominant contributor to total 575 
QG prediction uncertainty while the uncertainty contribution of climate scenarios is negligible. 
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Figure 12: The patterns of (a) PRS , (b) 
NM

S  and (c) 
CS

S  for mean value of QG predictions over the whole simulation period (the 

initialization period is excluded). They suggest the model parameters are the most important contributor. 

 580 
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