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Abstract. Land surface models combined with river routing models are widely used to study the continental part of the water

cycle. They give global estimates of water flows and storages but not without non-negligible uncertainties; among which inexact

input parameters have a significant part. The incoming Surface Water and Ocean Topography (SWOT) satellite mission, with

a launch schedule for 2021, will be dedicated to measure water surface elevations, widths and surface slopes of rivers larger

than 100 meters at global scale. SWOT will provide a significant amount of new data for river hydrology and they could5

be combined, through data assimilation, to global-scale models in order to correct their input parameters and reduce their

associated uncertainty. The objective of this study is to present a data assimilation platform based on the asynchronous ensemble

Kalman filter (AEnKF) that assimilates synthetical SWOT observations of water elevations to correct the input parameters of

a large scale hydrologic model over a 21-day time window. The study is applied on the ISBA-CTRIP model over the Amazon

basin and focuses on correcting the spatial distribution of the river Manning coefficients. The data assimilation algorithm,10

tested through a set of Observing System Simulation Experiments (OSSE), is able to retrieve the true value of the Manning

coefficients within one assimilation cycle most of the time and shows perspectives in tracking the Manning coefficient temporal

variations. Ultimately, in order to deal with potential bias between the observed and the model bathymetry, the assimilation of

water elevation anomalies was also tested and showed promising results.

1 Introduction15

Global Hydrological Models (GHM) are extensively exploited to study the continental component of the global water cycle

(Doll et al., 2015; Sood and Smakhtin, 2015). Such models have been extensively developed over the past two decades in order

to quantify freshwater flows and storage changes over continental surfaces (Bierkens, 2015). Those models are based on the

coupling of a Land Surface Model (LSM) with a River Routing Model (RRM). As an example, the ISBA-CTRIP (Decharme

et al., 2019) hydrologic model results from the coupling of the ISBA LSM (Noilhan and Planton, 1989) and the TRIP RRM20

(Oki and Sud, 1998). LSMs simulate the energy and water balance at the interface soil-atmosphere-vegetation while RRMs
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emulate the lateral transfer of freshwater toward the continent-ocean interface. More particularly, the current study focuses on

the river component of the terrestrial water cycle simulated by RRM.

GHMs give a global view of the state of the water flow and storage at the model spatial and temporal resolutions. However,

there are multiple sources of model uncertainties such as the model structure, the external forcing and the input parameters

(Liu and Gupta, 2007; Renard et al., 2010). Model structure uncertainties initially arose from a lack of knowledge in the5

hydrologic processes or from simplifying assumptions made to limit simulation computational cost. However, with the increase

of computational power, models are more and more complex (Liu and Gupta, 2007; Melsen et al., 2016): they run at finer

spatial resolution, they include new physical processes and use an increasing number of fully distributed forcing and parameter

datasets (Liu et al., 2012). Inevitably, reducing the model structure uncertainty causes an increase in the number of model

input parameters and potentially inflates the model uncertainty in those parameters. Input parameters express the spatial and/or10

temporal properties of the system. However, for parameters measurable on the field, their spatial scale may differ from the

model scale while other conceptual parameters are not even directly observable and measurable on the field (Moradkhani

et al., 2005; Melsen et al., 2016) and are inferred using geomorphological empirical formula and/or indirect method such as

calibration (Gupta et al., 1998; Beven, 2012).

Another way to study the terrestrial water cycle is to use direct observations of this system. Most parts of the terrestrial15

water cycle are currently observed and measured from in situ or remote techniques (Sanoo et al., 2011; Vinukollu et al., 2011;

Rodell et al., 2015). For the observations of rivers, in situ techniques measure river water elevations at gauge stations. In situ

measurements are commonly very accurate and also frequent (i.e. sub-daily) but their main limitation is their spatially sparse

sampling and their decreasing number over the last decades at global scale (International Association of Hydrological Sciences

Ad Hoc Group on Global Water Sets et al., 2001). Coincidentally, remotely-sensed data provided by satellite missions have20

quite increased since the 90’s and deliver effective river observations. The most unequivocal instrument operating to assess

river water levels remains the nadir altimeter. Nadir altimetry gives localized water elevation measurements along the satellite

ground track. Initially, altimeters were designed to monitor ocean topography but they were broadened to the observation of

lakes (Cretaux et al., 2009), floodplains (Birkett et al., 2002) and later on, rivers (Silva et al., 2010). However, their main

limitation remains their limited spatial and temporal samplings: generally several days between two consecutive measurements25

at a limited number of locations. Besides, over continental surfaces, the signal is not always retrievable or with important

vertical error. Therefore, current river observations provide a more accurate view of the river system than models but they are

quite limited by their sparse availability in space and time.

However, the incoming Surface Water and Ocean Topography (SWOT) mission, jointly developed by NASA, CNES, CSA

and UKSA and scheduled for a launch in 2021, will be dedicated to the observation of continental free surface water with a30

better spatial and temporal coverage than the current nadir missions (such as EnviSat, the JASON series or also Sentinel-3A/B).

SWOT main payload called KaRIn, for Ka-band Radar INterferometer (Fj’́ortoft et al., 2014), will observe surfaces under two

swaths of 50 km each separated by a nadir-gap of 20 km and will have a near-global coverage. For hydrology, SWOT will

observe rivers wider than 100 meters as well as lakes and wetlands larger than 250×250 m2 within the latitudes 78◦ South and

78◦ North and with a repetitivity of 21 days. SWOT will provide two-dimensional images of water surface elevations with a35
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vertical accuracy of 10 cm when averaged over 1 km2 of water area. Along with water surface elevation measurements in rivers,

SWOT will also provide observations of river width, surface slope and estimates of discharge based on SWOT observations.

SWOT will provide a significant amount of new data for surface hydrology. It will give an ensemble of constraints that will

allow a better depiction of surface water in hydrological models. Those new data could be combined or integrated to global-

scale hydrological model in order to correct them and improve their performances and forecasting capabilities.5

Data assimilation techniques are a set of mathematical methods to combine a physical model and related external measure-

ments while encompassing their uncertainties. Data assimilation aims at improving the model ability to forecast and/or emulate

the physical system evolution. For this purpose, data assimilation methods are built to correct either the model’s outputs (state

estimation) or the model’s input parameters (parameter estimation or PE), sometimes both simultaneously. Data assimilation

for state estimation has been widely applied in meteorology and oceanography, and is more and more developed for large-scale10

terrestrial hydrology (Clark et al., 2008; Michailovsky et al., 2013; Paiva et al., 2013; Emery et al., 2018). Data assimilation

for PE in hydrology has been initially developed as a dynamic alternative to model calibration (Montzka et al., 2011; Panzeri

et al., 2013; Ruiz et al., 2013; Shi et al., 2015). In most models, parameters are assumed constant in time while, in reality, they

may vary seasonally or under evolving climate and/or anthropogenic conditions. Therefore, sequential data assimilation can

help track model parameters variations in time (Kurtz et al., 2012; Deng et al., 2016; Pathiraja et al., 2016). For example, PE is15

used to retrieve conceptual parameters of hydrologic models such as friction coefficients (Pedinotti et al., 2014; Oubanas et al.,

2018; Hafliger et al., 2019) or residence time of quick- and slow-flow reservoirs and partition of runoff excess (Vrugt et al.,

2012; Pathiraja et al., 2016).

Before launch, in the preparatory phase, Observing System Simulation Experiments (OSSE) can be done to assess the

benefits from assimilating SWOT data into a hydrological model. More particularly, several studies focus on the possibility of20

using SWOT data to retrieve critical river parameters such as the river bathymetry (Durand et al., 2008; Yoon et al., 2012; Mersel

et al., 2013) and/or the riverbed roughness/friction coefficient (Pedinotti et al., 2014; Oubanas et al., 2018; Hafliger et al., 2019).

In the present work, a data assimilation framework is used to correct input parameters of the large-scale ISBA-CTRIP model.

More specifically, synthetical SWOT observations of water surface elevations are assimilated in order to correct the spatially-

distributed riverbed friction coefficients (or Manning coefficients). This choice was made following the results from the ISBA-25

CTRIP sensitivity analysis in Emery et al. (2016). In this preliminary study, the sensitivity of the simulated water elevations

to several river input parameters (such as riverbed width, depth, slope and also friction coefficient) was evaluated. The results

showed that the highest sensitivity was to the Manning coefficient. Furthermore, this study is built on the conclusions from

Pedinotti et al. (2014) work: an Ensemble Kalman Filter (EnKF) is used (instead of the Extended Kalman Filter in Pedinotti

et al. (2014)) to better account for the nonlinearities of the system and better estimate the model errors. Also, Pedinotti et al.30

(2014) chose to update the Manning coefficient distribution at the grid cell scale and rose the question of equifinality (Beven

and Freer, 2001) in the results. For the current study, it was decided to update the Manning coefficient distribution at a coarser

regional scale identical to the one used in Emery et al. (2016). Finally, Pedinotti et al. (2014) used an assimilation window of

2 days. This configuration resulted in updated Manning coefficient time series displaying "unrealistic jumps" with a frequency
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of about 20 days that were associated to the orbit repetitivity (longer than the 2-day window). Then, to avoid this phenomenon,

the present study will use an assimilation window of 21 days corresponding to the current SWOT orbit repetitivity.

Section 2 will first give a description of the ISBA-CTRIP model used for this study. Then, Section 3 will present the particular

data assimilation method developed for this study and finally, after presenting the assimilation strategy in Section 4, Sections 5

and 6 will give the data assimilation results.5

2 Model

2.1 The ISBA-CTRIP large-scale hydrological model

The ISBA model (Noilhan and Planton, 1989) is a LSM defined at global-scale on a 0.5◦× 0.5◦ regular mesh grid that es-

tablishes the energy and water budget over the continental surfaces. This study operates the ISBA-3L version based on a

three-layers soil (Boone et al., 1999). The budget equations are solved separately on every grid cell. Still, larger-scale spatial10

patterns in the radiative and precipitation forcing, the soil composition and the vegetation cover ensure spatial correlations

between those cells. (for more details, see Decharme et al., 2012, 2019). In particular, ISBA gives a diagnostic of the surface

runoff (QISBA,sur) and the gravitational drainage (QISBA,sub) later used as forcing inputs for the RRM denoted CTRIP.

The CTRIP model (Decharme et al., 2010, 2012, 2019), is defined on the same mesh grid as ISBA and follows a river netwok

to laterally transfers water from one cell to another, down to the interface with the ocean (Oki and Sud, 1998). The study is15

based on the CTRIP version from Decharme et al. (2012) with three reservoirs, as illustrated in Figure 1a. The water mass

[kg] stored in a groundwater reservoir G and a floodplain reservoir F interacts with the water mass in the surface reservoir S

representing the river. Only the surface reservoir S is related to the river network and fills with the surface runoff QISBA,sur,

the outflow from upstream cells and the delayed drainage QISBA,sub by means of the groundwater reservoir. Occasionally, when

the amount of water in the river exceeds a given threshold (defined by the water level in the reservoir), the river empties in the20

flooplains.

2.2 CTRIP parameters

Within a 0.5◦× 0.5◦ cell, the surface reservoir is an unique river channel that may gather multiples real river branches. Its

rectangular cross-section is described by its slope s [-], its width W [m], its bankful depth Hc [m], its length L [m] and finally

a Manning or friction coefficient N [s m−1/3] that assesses the reach resistance at the bottom of the river.25

Each cell’s elevation is deduced from the STN-30p Digital Elevation Model (http://daac.ornl.gov/ISLSCP_II/islscpii.shtml).

These elevations are then compared to determine the riverbed slope s. Global empirical geomorphologic relationships are used

to define the river width W and bankful depth Hc. The arc length between grid cell centers, inflated by a meandering factor

µ, fixes the river reach length L. More details on these parameters can be found in Oki and Sud (1998) and Decharme et al.

(2012).30
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The Manning coefficient N is generally more complicated to estimate. Following Maidment (1993), it should take values

between 0.025 and 0.03 for natural streams and values between 0.75 and 1 for smaller and mountainous tributaries and also

floodplains. Therefore, global studies usually apply a constant Manning coefficient. However, it is ordinarly accepted that this

parameter should vary in space and even in time over the river catchment. Consequently, CTRIP uses a spatially-distributed

Manning coefficient based on a simple linear relationship between the relative stream size in the current cell, denoted SO, and5

the size at the river mouth and the source cells, such that:

N =Nmin + (Nmax−Nmin)
SOmax−SO

SOmax−SOmin
, (1)

with SO being the stream size relative measure at the current cell; SOmax = 0.06 the same measure at the river mouth and

SOmin = 0.04 the measure at source cells (Decharme et al., 2012). The Manning coefficient is then set to be constant in time

while its spatial values decrease as the cells approaches the river outlet (following the river network).10

All these parameters are eventually essential to estimate the spatially- and time-varying surface flow velocity v(t) following

the Manning formula (Manning, 1891):

v(t) =
s

1
2

N

(
WhS(t)

W + 2hS(t)

) 2
3

, (2)

where hS is the river water depth estimated by

hS =
S

ρWL
, (3)15

and ρ the water density. The flow velocity is ultimately used to estimate the discharge leaving the CTRIP cell:

QS
out(t) =

v(t)
L
S(t). (4)

However, all these parameters have uncertainties because their true values are usely not known or also because most of these

parameters are based on empirical relationships.

2.3 CTRIP implementation over the Amazon basin20

In this study, we present an OSSE test case over the Amazon river basin which hydrology is carefully described in Molinier

et al. (1993); Wisser et al. (2010). This choice was motivated as the present work follows and complements studies over the

same domain (Emery et al., 2016, 2018).

For ISBA-CTRIP, the Amazon basin is composed of a total number of 2028 cells. Based on the basin geomorphology

and hydrology (Meade et al., 1991), the basin has been split into 9 spatial regions. These zones, illustrated in Figure 1b,25

were initially introduced in (Emery et al., 2016) and will be re-exploited here. This subdivision will be used within the data

assimilation platform to represent the spatially-distributed errors. For a detailed description of the zones, the reader can refer

to (Emery et al., 2016).
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2.4 ISBA-CTRIP forcing

For the present study, ISBA-CTRIP needs external atmospheric forcing to run. Similarly to Emery et al. (2016), such data are

provided by the Global Soil Wetness Projet 3 (GSWP3, http://hydro.iis.u-tokyo.ac.jp/GSWP3) at a 3-hours time resolution. In

the entire study, those forcing are considered perfect.

3 Method: Synthetic parameter estimation on ISBA-CTRIP5

3.1 OSSE framework

In OSSE, we introduce beforehand a reference configuration for the model input parameters that we will consider thereafter

as the truth. From those true parameters, we directly deduce the true run from a ISBA-CTRIP model integration. On the one

hand, the synthetic observations used within data assimilation are obtained from perturbing the true observables (variables

that are used as observations) using an error model that is representative of the real observation errors. On the other hand,10

the control variables (the model variables to be corrected with data assimilation) first guess, at the beginning of the data

assimilation experiment, are obtained by directly perturbing the true control variables. Control error also has to be chosen to

be representative of the real modeling errors. OSSEs are prerequisite tests to ensure the implementation of the EnKF algorithm

is correct and adapted to the hydrologic problem under consideration (temporal/spatial length-scales, sources of uncertainty,

observation operator...).15

3.2 Data assimilation variables

3.2.1 Observation variables and their errors

The observation vector, denoted yo
k at the assimilation cycle k, is composed of the ny available observations at cycle k:

yo
k =

[
yo

k,1, yo
k,2, . . . , yo

k,ny

]
(5)

where yo
k,j , j = 1 . . .ny , is the j-th observation among the ny at cycle k.20

In the present study, the observed variables are water depths issued from a SWOT simulator. As in Biancamaria et al. (2011)

and Pedinotti et al. (2014), this SWOT simulator replicates SWOT spatio-temporal coverage. At a given date, the simulator

selects the ISBA-CTRIP cells contained (at least 50% of their area) in the SWOT ground tracks. Figure 2 shows some selected

ISBA-CTRIP cells under the real swaths over the Amazon basin. The true run is used as a basis to get the true water depths

yt
k. Then, to generate the observation vector yo

k from the extracted true water depths, each of them is randomly perturbed by25

adding a white noise characterized by a standard deviation σo such that:

∀ j = 1 . . .ny, y
o
k,j = yt

k,j + εoj , ε
o
j 'N (0,σo). (6)

The observation error is the addition of the measurement error and the representativeness error. The first is associated to

inherent instrumental errors when processes are observed and the second represents the error introduced when the observed
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and simulated variables are not exactly the same (in nature or scale). Following the SWOT uncertainty requirements (Este-

ban Fernandez, 2017), SWOT-like water surface elevation measurements have a vertical accuracy of 10 cm (when averaged

over a water area of 1 km2). This uncertainty accounts for measurement errors due to the remotely-sensed acquisition such as

instrumental thermal noise, speckle, troposphere and ionosphere effects. Moreover, we omit error correlations along the swath

so that observation errors follow a white noise model. Accounting for spatially-correlated observation errors is an active re-5

search area in the field of data assimilation that is beyond the scope of demonstrating the feasibility of assimilating SWOT-type

data (Guillet et al., 2018). Finally, in the framework of OSSE, observed and simulated water depths have the same scale as the

ISBA-CTRIP model is used to generate both. Therefore, in the following, we assume there is no representativeness error in the

system. Ultimately, σo is chosen equal to 10 cm.

3.2.2 Control, observation space and their errors10

The control vector is denoted by xk ∈ Rnx . It includes the nx uncertain variables to be estimated through the k-th data assimi-

lation cycle. The choice of the control variables determines the observation operatorHk:

yk =Hk(xk), (7)

where yk are the simulated observables, i.e. the mapping of the control variables onto the observation space. They are then

compared to the measured observations yo
k during the data assimilation experiment. This comparison is referred to as the15

innovation vector.

In the present study, the control vector is composed of the nx multiplying factors Nmult,i, i= 1 . . .nx, applied to correct the

spatial distribution of the river Manning coefficient:

xk = [Nmult,1 . . .Nmult,nx
]T . (8)

Here, nx = 9 as each multiplying factor is applied to one of the hydro-geomorphological areas defined in Section 2.3 and20

illustrated in Figure 1b.

The observation operator Hk maps the control variables (Manning coefficients dimensionless multiplying factors) into the

observables (river water depths in meters) as follows:

1. first, apply the ISBA-CTRIP modelM[k−1,k] over the assimilation window [k− 1,k] to determine the model states that

correspond to the Manning coefficients (xk);25

2. then, turn the CTRIP surface water storage into equivalent water depths following Eq. 3 (we denote by Zk the diagnostic

operator turning the surface storage variable into the water depth variable);

3. finally, select the simulated water depths under the SWOT swath mask (we denote by Sk this operator).

Therefore, the observation operator is the composition of three operators:

yk =
(
Sk ◦Zk ◦M[k−1,k]

)
(xk) =Hk(xk). (9)30
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Such non-linear observation operatorHk is difficult to formulate explicitly. That is why we use an EnKF algorithm to estimate

the Kalman gain in a statistical way.

3.3 The EnKF general formulation

In the EnKF framework, the modelM[k−1,k] and observationHk operators are not linear. The main assumption for the EnKF

is to use stochastic ensembles to represent first- and second-order moments (namely the means and the covariances) of the5

control variable errors (Evensen, 1994, 2003). Indeed, it is assumed that the distribution of the ensemble is similar to that of

the error of the control vector and it is also assumed that the Probability Density Function (PDF) of the error is gaussian, thus

well described by its first and second moments. Therefore, the background control variables xb
k (the first guess) are represented

by an ensemble of ne members:

Xb
e,k =

[
xb,[1]

k xb,[2]
k . . . xb,[ne]

k

]
, (10)10

To avoid ensemble collapse, a supplementary noise is added to the observation vector yo
k (Burgers et al., 1998). An observa-

tion ensemble is generated:

Yo
e,k =

[
yo,[1]

k yo,[2]
k . . . yo,[ne]

k

]
. (11)

Note that there exists alternatives to the observation randomization chosen here. However, for the present study, we choose to

use a full stochastic filter.15

Finally, the EnKF analysis step is applied to each member of the ensemble such that

∀ l = 1 . . .ne, x
a,[l]
k = xb,[l]

k +Ke,k

(
yo,[l]

k −Hk(xb,[l]
k )

)
, (12)

where Ke,k is the the Kalman gain. It is built from the control and observation error covariance matrices P and R and the

linearized observation operator H such that (see Appendix A for more details):

Ke,k = [PHT ]e,k

(
[HPHT ]e,k +Rk

)−1

. (13)20

Figure 3 summarizes the general OSSE framework used for the present study. The figure reads from top to bottom and

from left to right. An assimilation cycle [k− 1, k] includes a forecast step where is integrated an ensemble of ISBA-CTRIP

simulations, each member having a different spatially-distributed Manning coefficient; an analysis step where the ensemble of

Manning coefficients is corrected using synthetic observations through the Kalman filter update in Eq. 12; and a cycling step

where the ISBA-CTRIP model is re-run with these analysis estimates to obtain updated model states.25

3.4 SWOT-based data assimilation special feature

3.4.1 Choice of the assimilation window

We use a 21-day assimilation window corresponding to SWOT orbit revisit period. Therefore, during one assimilation window,

every pixel under the observation mask is observed at least once. However, its implies that new observations are available

8
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at times different from the update time. Such case has already been addressed in several studies. The Ensemble Kalman

Smoother (EnKS) for example, introduced by Evensen and Leeuwen (2000), is a direct extension of the EnKF. It consists in,

when a new observation is available, generating an update of the control variables taking into consideration the present and

all past observations. The EnKS is actually a sequential version of the Ensemble Smoother (Leeuwen and Evensen, 1996).

The latter takes into consideration all past and future observations but turned out to be less effective than the EnKF and the5

EnKS (Evensen, 1997; Evensen and Leeuwen, 2000). Alternatively, Hunt et al. (2004) developed the 4D-EnKF (4D as in the

4D-VAR variational assimilation methods ; Talagrand and Courtier, 1987), which also assimilates observations available at

different time-steps. In the 4D-EnKF, all model observations are expressed as a linear combination of the model observations

at analysis time and the problem is transformed into a classical EnKF problem. Similarly, Hunt et al. (2007) also presented an

asynchronous version of the Local Ensemble Transform Kalman Filter (Bishop et al., 2001; Ott et al., 2004). In the framework10

of the present study, we apply an Asynchronous Ensemble Kalman Filter (AEnKF) as described by Sakov et al. (2010) and

Rakovec et al. (2015). The principle is to increase the dimension of the state in order to consider observations at past and

analysis times. This increases the dimension of the matrices which contain covariances between observations available at

different times. To our knowledge, the AEnKF has not been used for parameter estimation, as Sakov et al. (2010) and Rakovec

et al. (2015) described the method for state estimation experiments.15

3.4.2 The Asynchronous EnKF

To start with, k represents the assimilation cycle index but it needs to be distinguished from the day index (within the assimi-

lation cycle) which is the time unit for the observations. Then, we will denote by k(i), i= 1 . . .21, the i-th day in the current

assimilation cycle.

At the i-th day of the k-th assimilation cycle, the ny,k(i) observations are gathered in the vector yo
k(i). Then, the overall20

observation vector at cycle k, yo
k, concatenates the 21 daily observation vectors yo

k(i) such as:

yo
k =

[
yo,T

k(1) . . . y
o,T
k(21)

]T
∈ Rny,k , ny =

21∑

i=1

ny,k(i). (14)

Similarly to the observation vector, the overall observation operator at the k-th cycle, Hk, is the concatenation of the daily

observation operators Hk(i), defined from Eq. 9, but by considering the operator M integrating the model between k(0)

(=(k− 1)(21)) and k(i) as well as the diagnostic and selection operators a time step k(i), Zk(i) et Sk(i).25

The observation error covariance matrix Rk is the concatenation of the daily observation error covariance matrices:

Rk =




Rk(1)

Rk(2) 0

0
. . .

Rk(21)




with Rk(i) = (σo)2Iny,k(i) , (15)

where Iny,k(i) is the identity matrix of size ny,k(i)×ny,k(i). It turns out that:

Rk = (σo)2Iny . (16)

9
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Following the same equations as the EnKF, the AEnKF generates, for each member l = 1 . . .ne of the control ensemble, an

analysis control vector xa,[l]
k .

3.4.3 Generation of the ensemble

The ensemble of background control vectors Xb
e,k, of size nx×ne, is generated such as xb,[l]

k , l = 1 . . .ne, follows a gaussian

law of mean xb
k and covariance matrix Pb

e,k. For the first assimilation cycle, the control variables mean value xb
1 is arbitrary5

chosen as the openloop run input parameter (the openloop or free run is the model run without any assimilation step) and the

background error covariance matrix Pb
e,1 is a diagonal matrix defined as

Pb
e,1 =

(
(σb)2Inx

)

with Inx
the identity matrix of size nx×nx and σb the vector that gathers the initial control variable error standard deviation.

Once the analysis ensemble Xa
e,k is determined, the next step is to propagate the correction in time. In a standalone PE10

framework, it is necessary to re-run the ensemble model runs during the current assimilation window with the analysis param-

eters as inputs. Then, the contribution of the updated parameters is propagated through the model, up to the end of the current

assimilation window and put into the model initial condition for the next assimilation cycle.

For the next assimilation cycles, the background mean estimate is set equal to the analysis mean estimate from the previous

cycle:15

xb
k = xa

k−1.

There are different ways of defining Pb
e,k. One could choose to stochastically estimate Pa

e,k−1 from the analysis ensemble at

the previous cycle and use it as Pb
e,k. Contrary to state estimation experiment where the analysis error covariance matrix is

propagated in time using the model along with the control variables, parameter estimation experiment directly uses it as the

background error covariance matrix since there is no dynamical model for the Manning coefficient. The issue with this approach20

is that the analysis ensemble variance can be strongly reduced and give too small ensemble spread to have efficient AEnKF

update in time. To ensure that enough uncertainty is maintained in the ensemble, one can maintain the initial background error

covariance matrix through all cycles or impose a minimal value for the variance elements (see Section 5.4).

The background error cross-covariance matrix [PHT ]e,k and covariances matrix [HPHT ]e,k are directly built from the

definition suggested by Evensen (2004), Moradkhani et al. (2005) and Durand et al. (2008), see Appendix A for more details.25

The matrices are of size nx×ny,k and ny,k ×ny,k respectively. The elements in the error cross-covariance matrices directly

result from the characterization of the background ensemble, namely the parameter uncertainties accounted for to generate the

control matrix Xb
e,k andH(Xb

e,k).
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4 Assimilation strategy

In the incoming experiments, the true control variables xt are:

xt =
[
1.65 0.85 0.85 0.95 0.90 0.95 0.90 1.30 1.40

]
(17)

and the background for the first assimilation cycle xb
1 are:

xb
1 =

[
1.50 0.50 0.50 0.50 0.50 0.50 0.50 1.50 1.50

]
. (18)5

Basically, we increase the Manning value in mountainous zones (zones 1 in the Andes and zones 8 and 9 over the shields) and

lower the Manning value over the other zones with the lowest values (in zones 2 and 3) corresponding to the main stem. Both

true and background values were chosen accordingly.

4.1 Sensitivity tests

During one EnKF assimilation cycle, the analysis potentially depends on the following parameters: model spin up, time period10

(high/low flow), size of the ensemble, control error. Note that the observation error also have an impact on the analysis but its

value is already fixed for all subsequent experiments (see Section 5).

A first set of experiments (either model runs or data assimilation runs) will serve as sensitivity tests for the data assimilation

platform with respect to the above features. During these sensitivity tests, the different features are tested individually. Table 1

details the range of variations for each tested feature.15

4.2 Assimilation tests

Following the sensitivity tests, a set of three data assimilation experiments will be run and is presented in Table 2. The data

assimilation experiments are divided in two categories: the first one uses water depths as observations and the second one

considers water depth anomalies. All experiments are run over a year, corresponding to 17 assimilation cycles of 21 days.

The first experiment, denoted as PE1, is configured from the aforementionned sensitivity test outcome. The parameters20

defining the experiment (spinup, starting date, ensemble size, control error) will be those giving the best results in the sensitivity

tests in Table 2. Also, the reference level between the observed and simulated water depths is the same. In other words, there

is no bias in the observation. This first idealized experiment serves as proof-of-concept.

The next step is to go towards more realistic experiments by including new sources of uncertainties in the data assimilation

system and see how to address them. In this context, two additional experiments denoted as PE2 and PE3 will be carried out.25

As an example of new uncertainties, SWOT will actually observe water elevations (water surface elevation as referenced to a

geoid or an ellispsoid) while CTRIP produces water depths (water surface elevation as referenced to the bottom of the river

bed). To perform data assimilation, one needs to convert CTRIP water depths (hCTRIP
S ) into CTRIP water elevations (HCTRIP

alti ) or

inversely for SWOT. It is highly plausible that this operation induces a bias between the modeled and observed water elevations.

A simplified example of such situation is illustrated in Figure 4. In this case, SWOT catches the right water elevation dynamic30
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(as hSWOT
S and hCTRIP

S are equal) but the direct assimilation of SWOT water elevationHSWOT
alti will induce a bias as the elevations

of the river bed (HSWOT
bed and HCTRIP

bed ) are different between CTRIP and SWOT.

A solution to handle this issue is to assimilate water depth anomalies instead of water depths. Therefore, the next data

assimilation experiments, denoted as PE2 and PE3, will test the feasability of assimilating anomalies. In these experiments,

the water depth anomalies are generated by substracting a time-averaged reference water depth to the current water depth.5

For all runs (true, openloop or analysis), this time-averaged reference water depth is computed as the mean (true, openloop or

analysis) water depth over the year before the start of the assimilation window. It is therefore different for each member of the

ensemble. First, in experiment PE2, there will still be no bias between the observed and simulated river bed slopes to see how

the assimilation of anomalies performs. Finally, the last experiment PE3, which introduces a constant relative bias between

CTRIP and SWOT, will be carried out.10

5 Assimilation sensitivity tests

5.1 Model spinup sensitivity tests

The objective of the spinup sensitivity tests is to evaluate the minimum spinup period required by the model before applying

data assimilation. For this purpose, the model is run several times over two years, from December 19th, 2006 to December

22nd, 2008, which corresponds to 35 windows of 21 days (735 days).15

A first simulation is run using the true Manning spatial distribution (see Eq. 17) over the two-year time period. Then, we run

18 additional simulations over the same period with a varying length of the spinup period (see Table 1). Initially, the simulation

setup corresponds to the openloop configuration with the openloop Manning spatial distribution (see Eq. 18). At a given time

during the first year, the Manning spatial distribution is instantaneously changed to the true distribution (see Eq. 17) and the

model is run until the end of the two years with the true Manning spatial distribution. Table 3 summarizes for each run, the date20

when the Manning coefficients are changed. The spinup period (expressed as a number of windows of 21 days) corresponds to

the period between when the Manning distribution is changed and the start of the second year, i.e. January 1st, 2008.

To evaluate the spinup impact, the relative difference between the reference run and the test runs is evaluated over the second

year of simulation (from January 1st to December 22nd, 2008) and averaged over every window of 21 days. Figure 5 presents

the results for the spinup sensitivity test. Each test run (on the x-axis) is identified by its corresponding spinup period length25

(expressed as the number of windows of 21 days, see Table 3). Then, we count (on the y-axis) the number of 21-day windows

during which the relative error between the test run and the reference run is higher than a given threshold. We assume that

the spinup period is long enough when this number is equal to 0. This number is evaluated from the basin-averaged relative

difference and from the relative difference at the downstream station of Obidos, both in terms of water depth and discharge.

Note that in Figure 5, when the number of spinup windows of 21 days is equal to 4 on the x-axis, the change from the openloop30

Manning distribution to the true one is imposed on October 9th, 2007. Similarly, when this number is equal to 10, the change

is imposed on June 5th, 2007. Note also that two thresholds are considered, 0.01 and 0.001. Basin-averaged results are not
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sensitive to this threshold. There are some differences at Obidos; however, we retain the upper case to evaluate the required

model spinup period.

From all the results we conclude that a minimum spinup period of 4 windows of 21 cycles, i.e. 84 days, is required. In the

following sensitivity tests, the model runs start on October 9th, 2007, to be consistent with these results.

5.2 Data assimilation starting date sensitivity tests5

To evaluate the impact of the starting date, a set of 17 one-cycle-long data assimilation experiments is carried out over the

second running year. All experiments have the same general configuration except for the initial date starting from January 1st,

2008 and shifted by 21 days until December 22nd, 2008. This means that the last experiment starts on December 2nd, 2008.

The performance of each experiment is evaluated by simply evaluating the spatial average difference between the analysis and

the true Manning coefficients. Results presented in Figure 6a-b indicate that there is no significant differences between the data10

assimilation experiments (for all 17 experiments, the error of the updated Manning coefficients with respect to the true value

of the coefficients is below 5 %).

Note that the results in Figure 6a-b show a light increase of the statistics for the experiment starting at the end of the year,

presently starting from September 9th to December 2nd, 2008. This period corresponds to the low-flow season in the Amazon

hydrological cycle. Back to the sensitivity analysis results (Emery et al., 2016), the water depths showed a very low sensitivity15

to the Manning coefficient during the low flow season. As a consequence for data assimilation, the EnKF is less performant

in low flow season to correct the Manning coefficient. Therefore, the analysis relative error (in Figure 6a) and the analysis

ensemble dispersion (in Figure 6b) is higher in low flow season.

Thus, for all next sensitivity tests, we only consider one-assimilation-cycle experiments starting on January 1st, 2008.

5.3 Ensemble size sensitivity tests20

The next sensitivity test is dedicated to the ensemble size ne, which is a critical parameter of any EnKF algorithm. This

parameter has to be high enough to accurately estimate the Kalman gain matrix but low enough to limit the computational cost

(the higher ne, the more model runs are required over each data assimilation window to obtain the analysis estimate of the

Manning coefficients).

We consider different ensemble sizes through a one-assimilation-cycle experiment, ne varies between 10 and 200. Figure 6c25

compares the analysis Manning coefficient relative error for each ensemble size ne as in Figure 6a. Results show that the

analysis relative error decreases when the ensemble size ne increases. For an ensemble size ne equal to 20, the analysis error

is below 5 %. Also, for an ensemble size ne higher than 50, the analysis relative error has converged to a constant value while

the analysis ensemble dispersion showed in Figure 6d stabilises.

These results indicate the ensemble size for future data assimilation experiments should be at least equal to 20; we consider30

ne = 25 in the present study to limit computational time.
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5.4 Model error standard deviation sensitivity tests

In this work, we only consider parameter estimation, implying that the background error covariance matrix is associated with

the parameter space. We assume that the errors in the Manning coefficients are independent so that the background error

covariance matrix is initially specified as a diagonal matrix, where all diagonal elements correspond to the error variances in

the spatially- varying Manning coefficients and are equal to the same variance (σb)2, where σb is the background error standard5

deviation. Similarly to previous sensitivity tests, we study here the sensitivity of the data assimilation results to the value of

σb through a one-assimilation-cycle experiment. Figure 6c shows, in logarithmic-scale on the x-axis, the relative error of the

updated Manning coefficient with respect to the true coefficient. The analysis error curve shows a decreasing behavior until σb

is on the order of 0.4, and then increases again.

Note that the actual Manning coefficient error before data assimilation is equal to 0.33 (see the blue curve in Figure 6c10

showing the openloop Manning coefficient error). Consistently, the best data assimilation results are obtained when σb provides

a good approximation of the real error standard deviation. Note also that when σb becomes too small, data assimilation is less

effective. The EnKF algorithm is known to be under-dispersive. Therefore, for future data assimilation experiments, when

updating the error covariance matrix from one cycle to another, we will need to make sure that the ensemble dispersion is high

enough to cover possible model behavior over the forecast time window by imposing a minimum value for the error variance.15

Given the sensitivity test results, the minimum value for σb is set to 0.005. Thus, in the following data assimilation experiments,

we use the analysis error covariance matrix as the background error covariance matrix for the next assimilation cycle, while

applying the minimum threshold value on the matrix diagonal terms.

6 Data assimilation results

We present now the results from the data assimilation experiments presented in Table 2 and in Section 4.4.2. Recall that these20

experiments aim at correcting the spatially-varying Manning coefficient in the nine zones covering the Amazon basin.

6.1 Assimilation of water depths (PE1)

Figure 7 gives, for each zone, the time evolution of the mean analysis control variable (red) with its dispersion (even though

it is very narrow) compared to the truth (black) and the first guess (blue). Similarly, Figure 8 shows, for each zone, the time

evolution of the analysis water depth (red) compared to the truth (black) and the openloop (blue). To generate one plot per25

zone, we use, for each time step, the ensemble of water depths over all cells in the zone and estimate the median value, the first

decile and the ninth decile.

In general, the PE1 experiment gives very good results as the analysis mean for each zone retrieves the true value with a

very low dispersion. However, the data assimilation algorithm features spatially-dependent behavior, see Figure 7):

- First, the control variable for the zones 2, 3, 4 and 5 converges instantaneously (in only one assimilation cycle) toward30

the true values and remains at these true values for all following cycles.
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- A similar behavior can be observed for zones 6, 7 and 8 from the first cycle to around the ninth cycle. For the remain-

ing cycles, we notice an increase of the mean analysis estimate, along with the ensemble dispersion, until around the

thirteenth cycle and after, a decrease back to the true value.

- For the boundary zones, zones 1 and 9, the analysis estimates are closer to the truth than the first guess but there is no

clear convergence toward the true values.5

Those observations can be explained with the global sensitivity analysis results for water depths in Emery et al. (2016) and

using Figure 8:

- First, zones 1, 2 and 3 correspond to the river main stem, while zones 4, 5 and 9 correspond to the main left-bank

tributaries, namely the Caquetá/Japurá river (zone 4) and the Negro river (zone 5). In these zones, as the Manning

coefficient is directly corrected in the first assimilation cycle, the analysis water depths (red) overlap the true water depth10

(black). Furthermore, Figure 8 for these zones shows that the openloop (blue) and true (black) water depths have a very

similar variability in time but are different by a constant bias. The global sensitivity analysis results in these zones showed

a constant first-order sensitivity in time to the Manning coefficient all year long. This first-order sensitivity means that

the contribution of the Manning coefficient to the water depth is linear. Therefore, correcting the Manning coefficient in

these zone equates to correcting the bias between the openloop and the true water depths.15

- Subsequently, zones 6, 7 and 8 correspond to right-bank tributaries, namely the Juruá and Purus rivers (zone 6), the

Madeira river (zone 7) and the Tapajós and Xingu rivers (zone 8). These right-bank tributary zones are characterized

by a strong seasonal cycle (see Figure 8, zones 6-8). Then, by comparing the corresponding plots in Figures 7 and 8,

we notice that the period when the analysis control variable spreads from the truth corresponds to the low flow season

in these zones. According to the global sensitivity analysis results, water depths in these zones are not sensitive to the20

Manning coefficient in low flow conditions. Meanwhile, the EnKF still sees a positive discrepancy between the model

and the observations (i.e. the observations are higher than the model predictions), as seen in the time evolution per

zone of the innovation in Figure A1). Therefore, in order to increase the simulated water depth, the EnKF corrects the

Manning coefficient so that its value gets higher (a higher Manning coefficient means a slower flow velocity and then a

higher simulated water depth). However, the water being insensitive to the Manning coefficient during this period, the25

correction is not transferred to the simulated water depth and the Manning coefficient value keeps being increased during

the low flow season. Finally, once the low flow season ends, the analysis Manning coefficient converges back to the truth

(see the last assimilation cycles).

6.2 Assimilation of water anomalies (PE2 and PE3)

The assimilation of anomalies has been tested over two experiments denoted PE2 and PE3 (see Table 2). Note that the obser-30

vation error standard deviation σo remains equal to 10 cm as, with these experiments, we only aim at testing the feasibility of

assimilating water depth anomalies. In the PE2 experiment, there is no difference of bathymetry elevation between the DEM
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used for the simulated water anomalies and the DEM used for the observed water anomalies while two different bathymetries

are used in the PE3 experiment. Figure 9 gives, for each zone, the time evolution of the mean analysis control variable for PE2

(orange) and PE3 (purple) with their dispersion compared to the truth (black) and the first guess (blue).

The general configuration of the experiments PE1 and PE2 is the same. The only difference between the two experiments

is the nature of the observations: water depths for PE1 and water anomalies for PE2. Like experiment PE1, experiment PE25

(the orange line in Figure 9) gives very good results. All control variables converge toward the true values more or less rapidly.

The control variable for the zones 4 to 8 instantaneously (in only one assimilation cycle) converges toward the true value while

the convergence is slower for the remaining zones as around five assimilation cycles are needed to retrieve the true value. This

slower convergence for these zones can be explained by the fact that the magnitude of the observed water anomalies is generally

smaller, compared to the water depths assimilated in PE1. Then, the ratio between the observation error and the observations10

themself is also smaller, resulting in a smaller EnKF gain. Therefore, the control variable correcting increment is smaller for

the anomalies than for the water depth and more cycles are needed to converge.

Now, as for the PE3 experiment results - the purple line in Figure 9 - the assimilation still gives good results but not as

good as the previous experiments. The control variables still instantaneously converge toward the truth in the zones 4, 5 and

6 but, for the other zones, the control variables get closer to the truth without really converging (zones 2 and 3) or sometimes15

temporarily deviate from the truth during the experiment (zones 1, 7, 8 and 9). Still, despite the control variables not clearly

converge toward the truth, the simulated water depths using the analysis control variables, presented in Figure 10, are shown to

be really close to the true water depths anyway, confirming the general good performance of the data assimilation procedure.

Comparing the control variables and water depth time variations, it appears that the control variables are deviating from the

truth mainly when the water depths are decreasing, in between the high flow and low flow seasons. During this period, the20

model goes from a state where floods occur to a state where there is no flood, particularly in the zones 2-3 and 7-8 with a

clear seasonal cycle. On the other hand, no flood event was spotted in zones 4, 5 and 6 where the best results were obtained.

In ISBA-CTRIP, the activation/deactivation of the flooding scheme is triggered by the simulated water depth exceeding/getting

lower than the river bankful depth. Yet, in the experiment PE3, this river bankful depth is different between the model and

the observation because we artificially inserted a bias between the simulated and observed water depths. More specifically, the25

river bankful depth is lower in the model than in the observations. Therefore, the control variables deviating from the true value

when the water depth is decreasing are indicative of the simulated water depths presenting floods while there is no flood in the

observations. The activation of the flood scheme changes the dynamics of the water depth in the river. As part of the water in

the river is spilled into the floodplains, water level variations in the river are slower. Then, the flooded model needs a stronger

variations of the Manning coefficient to catch the non-flooded observed water level. Ultimately, the stronger variations of the30

estimated Manning coefficient allow to retrieve the true water depths.
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7 Discussions

In this study, we introduce the assimilation of water surface anomalies in order to handle a potential bias between the simulated

and observed water depths. This bias originates from a discrepancy between the elevation of the river bed in the model and in

the observations with respect to a reference surface such as a geoid or an ellipsoid (see Figure 4). Under the assumption that

the water variations are the same between the model and the observations, the use of anomalies as observed variables should5

prevent this bias from affecting the results. However, in this study, we did not have access to water surface elevations referenced

to a geoid/ellipsoid as we led OSSE and we used the ISBA-CTRIP mode to create the observations. Therefore, the bias was

artificially introduced by perturbing the model bankful depth. Thus, we actually introduced another type of bias in the system.

Indeed, in ISBA-CTRIP, the river bankful depth controls when the model floods, which has a direct impact on the water depth

dynamics. Therefore, the bias that we introduced is linked to a different water elevations dynamics when either the observed10

variables flood and the model variables do not (and inversely). Furthermore, the experiment PE3 illustrated the effect of this

bias on the variations of Manning coefficients. Instead of being maintained at the true value, their value slightly vary around

the true values to account for the difference in dynamics between the model and the observations. In future work, in order to

fully assess the assumption that the anomalies can prevent a bias due to the reference surface, we actually need to introduce

the elevation of the river bed into the data assimilation system.15

Following these remarks, we emphasize that the DEM and the bathymetry used for the model are critical parameters for

assimilation. As observed in the PE3 experiment, during an assimilation experiment, the error introduced by a high discrepancy

between the model DEM/bathymetry and the observations/reality DEM/bathymetry is transferred to the control variables (here

the Manning coefficients) as these variables are considered as the most uncertain. If this uncertainty were to get higher, we

could expect higher divergence of the Manning coefficients from the true values and even get non-physical/non-realistic values.20

Therefore, it is essential to limit this bias and its impact on the assimilation. Noting this, there may be an additional advantage

in assimilating water anomalies instead of the direct water depths. Comparing the Kalman gain between the PE1 experiment

(that assimilated direct water depths) and the PE2/PE3 experiments (that assimilated water anomalies), the gain magnitude for

the water anomalies is lower than the water depth gain magnitude. This is to be expected as the Kalman gain is stochastically

estimated from an ensemble of model runs and the magnitude of the simulated water anomalies is lower than the simulated25

water depth magnitude. The consequence of this lower gain is the correction applied to the control variable is also lower. If the

convergence toward the true value takes more than one assimilation cycle, the divergence from it in the presence of bias is also

diminished.

Moreover, the Manning coefficient distribution is set to be constant in time. For each grid cell, one value of the Manning

coefficient is used for the entire simulation. However, in reality, it is commonly accepted that this parameter should vary in time,30

depending on the seasonal cycle or also some exceptional hydrological event. The results showed that the data assimilation is

able to converge quite quickly towards the true value. For example, for the left-bank tributaries zones, namely zones 4 and 5,

in every experiment, the associated control variable converges toward the true value in only one assimilation cycle. Then, in
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a real-case experiment, we could expect to retrieve the temporal variations of the Manning coefficient from one assimilation

cycle to another.

The good performances of the assimilation platform are mainly related to the fact that, in the ISBA-CTRIP model, the water

depth diagnostic variables are sensitive to the Manning coefficient (Emery et al., 2016). Thus, when the simulated water depth

is not that sensitive to the Manning coefficient, for example in the right-bank tributary zones during the low flow season,5

the data assimilation performances slightly degrade. These results are specific to the ISBA-CTRIP model. To apply the same

method to another model and even another region, one need to first study the sensitivity of the (other) model to the (other)

study region.

The results presented here are preliminary investigations to the assimilation of the SWOT water surface elevations product

into a large scale hydrological model. The real SWOT data will have a finer resolution than the synthetical SWOT data currently10

used. Still, the coarser resolution observations are found to provide information to constraint the model and improve the value

of the spatially-varying Manning coefficients. Then, when moving to real-data assimilation experiments, we can consider

averaging the fine-scale SWOT product over a coarse grid cell corresponding to an ISBA-CTRIP cell so that the resolution of

the observations and the model matches.

8 Conclusions15

This study presents a series of OSSE that assimilates SWOT-like synthetic observations of water elevations into the large-

scale hydrological model ISBA-CTRIP in order to correct the spatially-distributed Manning coefficient. The study is applied

over the Amazon river basin. Prior to the actual data assimilation experiments, a series of sensitivity tests was conducted to

study the sensitivity of the data assimilation performance to the different features of the EnKF, in particular the size of the

ensemble. Then, three full-year data assimilation experiments were run based on the outcomes of the sensitivity tests. For all20

three experiments, the assimilation was able to track back the true value of the Manning coefficient distribution.

The sensitivity tests successively studied the sensitivity of the data assimilation platform to model spinup period, the exper-

iment starting date through the hydrogical year, the size of the ensemble for the EnKF and the initial control variable standard

deviation. These tests showed first that a spin up of four windows of 21 days are enough to go through the transitional period

due to a sudden change in the Manning coefficient distribution in the model. Then, the second sensitivity test demonstrated25

that the data assimilation performance is not clearly sensitive to the period of the hydrological year when the experiment is

done. The next sensitivity test informed us that an ensemble of 25 members was enough to obtain good EnKF performances.

Finally, the last sensitivity test studied the effect of the control variable error standard deviation and the best performances were

obtained for prior standard deviation between 0.05 and 0.75, which corresponds to the order of magnitude of the actual error

between the true and openloop control variables.30

Using these results, we run three data assimilation experiments over approximately one year (the year 2008). The first

experiment (PE1) assimilated direct pseudo-observations of water depths. Results showed the capability of the data assimilation

algorithm to converge very quickly toward the true value, generally in only one assimilation cycle. Still, during the low flow
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season, the assimilation was less effective in the zones with a clear seasonal cycle. This was explained by the fact that during

this period, the water depths are less sensitive to the Manning coefficient.

The two other experiments (PE2 and PE3) introduced and tested the assimilation of water surface anomalies. The anomalies

were obtained by substracting a yearly-averaged water depths to the current water depth in both the model and the observations.

The first water anomalies assimilation experiment (PE2) gave very good results with also all the control variables converging5

toward their associated true values. However, the convergence was slightly slower than during the assimilation of the water

depth (between 1 and 5 assimilation cycles). This is explained by a lower Kalman gain when updating the Manning coefficient.

The last experiment also assimilated water anomalies (PE3). But, for this particular experiment, a bias was artificially

introduced in the river bathymetry. For this experiment, the assimilation was still able to get closer to the true value but, for the

some zones like the mainstream zones, there was no convergence as the control variables kept varying around the true value.10

This phenomenon was explained by the detection of floods in the model but not in the observations. Still, the statistics of the

Manning coefficient distribution and the simulated water depths after assimilation remain improved compared to the openloop

simulations. Ultimately, these two experiments demonstrated the feasibility of assimilating water surface anomalies to correct

the Manning coefficient.

These experiments offer several perspectives. They mainly consist in going towards more realistic data assimilation ex-15

periments that take into account more source of uncertainties between the model and the observations (such as correlated

observation errors). To test the limit of the platform performances regarding the DEM/bathymetry bias issue, one can use sim-

ulated water surface elevations referenced to a geoid instead of water depth from the model or even assimilate water depth

from another model where the bathymetry is different. Along with observations of water surface elevations, SWOT will also

provide two-dimensional maps of river width and surface slope. One can also study the possibility of assimilating such product20

to correct the corresponding parameters in ISBA-CTRIP such as the model river width or maybe constrain other parameters

such as the bankful depth that controls the model flooding scheme.

Code and data availability. The CTRIP code is open source and is available as a part of the surface modelling platform called SURFEX,

which can be downloaded at http://www.cnrm-game-meteo.fr/surfex/. SURFEX is updated approximately every 3 to 6 months and the

CTRIP version presented in this paper is from SURFEX version 7.3. If more frequent updates are needed, please follow the procedure to25

obtain a SVN or Git account in order to access real-time modifications of the code (see the instructions at the previous link). The ISBA-

CTRIP model is coupled to the DA codes via the OpenPalm coupler available at http://www.cerfacs.fr/globc/PALM_WEB/. To get the

DA routines coupled to ISBA-CTRIP with OpenPalm, please directly contact C. Emery (charlotte.emery@jpl.nasa.gov) or S. Biancamaria

(sylvain.biancamaria@legos.obs-mip.fr). To obtain the GSWP3 forcings, please refer to the following url: http://search.diasjp.net/en/dataset/

GSWP3_EXP1_Forcing (https://doi.org/10.20783/DIAS.501).30
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Appendix A: Definition of error covariance matrices

The background error cross-covariance matrices [PHT ]e,k and [HPHT ]e,k are defined based on Evensen (2004); Moradkhani

et al. (2005); Durand et al. (2008) such that:

[PHT ]e,k = (ne− 1)−1
(
Xb

e,k −Xb
•,k.1

T
ne

)(
H(Xb

e,k)−H(Xb
•,k).1T

ne

)T

, (A1)

and5

[HPHT ]e,k = (ne− 1)−1
(
H(Xb

e,k)−H(Xb
•,k).1T

ne

)(
H(Xb

e,k)−H(Xb
•,k).1T

ne

)T

. (A2)

In those definitions, Xb
e,k is the control matrix storing the ne control vectors xb,[l]

k , l = 1 . . .ne, from the background ensem-

ble such that

Xb
e,k =

[
xb,[1]

k . . . xb,[Ne]
k

]

.10

Next,H(Xb
e,k) represents the same control matrix but mapped into the observation space:

H(Xb
e,k) =

[
H(xb,[1]

k ) . . . H(xb,[ne]
k )

]
.

Also, Xb
•,k andH(Xb

•,k) are the corresponding ensemble expectations such that

Xb
•,k =

1
ne

ne∑

l=1

xb,[l]
k H(Xb

•,k) =
1
ne

ne∑

l=1

H(xb,[l]
k ).

These vectors dimension are nx and ny,k respectively. Finally, 1ne
is a vector of size ne containing only 1s.15
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Figure 1. (a) The ISBA-CTRIP system for a given grid cell. ISBA surface runoff (QISBA,sur) flows into the river/surface reservoir S, ISBA

gravitational drainage (QISBA,sub) feeds groundwater reservoirG. The surface water is transferred from one cell to another following the TRIP

river routing network. (b) Hydro-geomorphological areas of the Amazon basin from Emery et al. (2016) with the gauge of Óbidos located

by the white circle at the entry of the zone 3.
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Figure 2. SWOT swaths at ISBA-CTRIP resolution over the Amazon basin.
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Figure 3. Data assimilation framework over the assimilation cycle [k−1, k] including (1) a forecast step to integrate the ensemble of ISBA-

CTRIP simulations, each member having a different spatially-distributed Manning coefficient, (2) an analysis step to correct this ensemble

of Manning coefficients using synthetic observations through the Kalman filter equation and (3) re-run the ISBA-CTRIP model with these

analysis estimates to obtain the updated model states.
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Figure 4. Illustration of a bias case between the water elevation as observed by SWOT (HSWOT
alti ) and the one simulated by CTRIP (HTRIP

alti )

because of a bias between model and true river beds.
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Figure 5. Results for the spinup sensitivity test. Each test run is represented along the x-axis and referenced by its number of spinup windows.

The y-axis displays the number of windows during which the relative difference between the true run and the openloop run in which the

Manning spatial distribution is modified is above the chosen threshold. These statistics are obtained for the discharge (a,c) and the water depth

(b,d) and evaluated over the entire basin (a,b) and at the downstream station of Óbidos (c,d). Note that the vertical dashed line corresponds

to the minimum model spinup period retained in this study.
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Figure 6. (Top) Relative error (to the truth) and (Bottom) dispersion of the analysis control ensemble (averaged over all control variables)

for the sensitivity tests to (a-b) the data assimilation starting date, (c-d) the ensemble size ne, (e-f) the background error standard deviation

σb. For each test, a set of one-cycle-long data assimilation experiments is run.
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Figure 7. Control variables assimilation results for the PE1 experiment: evolution of the ensemble-averaged analysis control variable (red

line) for each zone (one zone per subplot) with respect to the assimilation cycle and compared to the corresponding true value (black line)

and the openloop value (blue line).
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Figure 8. Water depths assimilation results for the PE1 experiment: daily evolution of the ensemble-averaged analysis water depth (red lines)

compared to the true water depths (black lines) and the openloop water depths (blue line). For each zone (one per subplot), the median (full

line), the first decile (dotted line) and the ninth decile (dashed line) of water depth ensemble over all grid cells in the zone are represented.
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Figure 9. Control variables assimilation results for the PE2 and PE3 experiments: evolution of the ensemble-averaged analysis control

variable for the PE2 experiment (orange line) and the PE3 experiment (purple line) for each zone (one zone per subplot) with respect to the

assimilation cycle and compared to the corresponding true value (black line) and the openloop value (blue line).
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Figure 10. Water depths assimilation results for the PE3 experiment: daily evolution of the ensemble-averaged analysis water depth (red

lines) compared to the true water depths (black lines) and the openloop water depths (blue line). For each zone (one per subplot), the median

(full line), the first decile (dotted line) and the ninth decile (dashed line) of water depth ensemble over all grid cells in the zone are represented.
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Parameter Nb run Range

Spinup 18 From 0 window to 17 windows of 21 days

Starting date 17 Starting January 1st, 2008 and on, every 21 days

ne 9 [ 10 20 30 40 50 75 100 150 200 ]

σb 13 [ 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1.0 1.2 1.5 1.75 ]
Table 1. Tested data assimilation parameters in the sensitivity tests.
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Simulation name Observation variables Bathymetry bias

PE1 Water depths No

PE2 Water depth anomalies No

PE3 Water depth anomalies Yes
Table 2. List of data assimilation experiments. All experiments are run over approximately one year (17 cycles of 21 days) starting on January

1st, 2008. The ensemble size is ne = 25, the observation error standard deviation is σo = 0.1 m and the initial control variable error standard

deviation is σb = 0.3.
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Run Starting date Manning distr. change Spinup length (in wdws of 21 days)

Reference Dec 16, 2006 - 18 (=378 days)

1 Dec 16, 2006 Jan 09, 2007 17 (=357 days)

2 Dec 16, 2006 Jan 30, 2007 16 (=336 days)

3 Dec 16, 2006 Feb 20, 2007 15 (=315 days)

4 Dec 16, 2006 Mar 13, 2007 14 (=294 days)

5 Dec 16, 2006 Apr 03, 2007 13 (=273 days)

6 Dec 16, 2006 Apr 24, 2007 12 (=252 days)

7 Dec 16, 2006 May 15, 2007 11 (=231 days)

8 Dec 16, 2006 Jun 05, 2007 10 (=210 days)

9 Dec 16, 2006 Jun 26, 2007 9 (=189 days)

10 Dec 16, 2006 Jul 17, 2007 8 (=168 days)

11 Dec 16, 2006 Aug 07, 2007 7 (=147 days)

12 Dec 16, 2006 Aug 28, 2007 6 (=126 days)

13 Dec 16, 2006 Sept 18, 2007 5 (=105 days)

14 Dec 16, 2006 Oct 09, 2007 4 (=84 days)

15 Dec 16, 2006 Oct 30, 2007 3 (=63 days)

16 Dec 16, 2006 Nov 20, 2007 2 (=42 days)

17 Dec 16, 2006 Dec 11, 2007 1 (=21 days)

18 Dec 16, 2006 Jan 01, 2008 0 (=0 days)
Table 3. Spinup sensitivity test set up: each run consists in an approximately-two-year-long ISBA-CTRIP run starting on Dec 16, 2006

(column 2) and ending on Dec 22, 2008. After a given number of 21-day windows during the first year (column 3), the Manning distribution

is changed to replicate an assimilation update step while the reference run (row 2) used the same Manning for the entire run. The period

between the instant when the Manning distribution is changed and the beginning of the second year of simulation corresponds to the spinup

period (column 4). The simulated water depth/discharge during the second year of run are then compared to the reference run to evaluate the

impact of the spin up.
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Figure A1. Evolution of the EnKF innovations ("
(
y

o,[l]
k −Hk(x

b,[l]
k )

)
" term in Eq. 12) with respect to the assimilation cycle for PE1 (red

line), PE2 (orange line) and PE3 (purple line). For each zone (one zone per subplot), the displayed innovation is the averaged of all the

innovations in the corresponding zones.
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