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Abstract. Land surface models combined with river routing models are widely used to study the continental part of the water

cycle. They give global estimates of water flows and storages but they are not without non-negligible uncertainties among

which inexact input parameters play a significant part. The incoming Surface Water and Ocean Topography (SWOT) satellite

mission, with a launch scheduled for 2021 and with a required lifetime of at least three years, will be dedicated to the measuring

of water surface elevations, widths and surface slopes of rivers wider than 100 meters, at a global scale. SWOT will provide5

a significant amount of new observations for river hydrology and maybe combined, through data assimilation, with global-

scale models in order to correct their input parameters and reduce their associated uncertainty. Comparing simulated water

depths with measured water surface elevations remains however a challenge and can introduce within the system large bias.

A promising alternative for assimilating water surface elevations consists of assimilating water surface elevation anomalies

which do not depend on a reference surface. The objective of this study is to present a data assimilation platform based on10

the asynchronous ensemble Kalman filter (AEnKF) that can assimilate synthetic SWOT observations of water depths and

water elevation anomalies to correct the input parameters of a large scale hydrologic model over a 21-day time window. The

study is applied to the ISBA-CTRIP model over the Amazon basin and focuses on correcting the spatial distribution of the

river Manning coefficients. The data assimilation algorithm, tested through a set of Observing System Simulation Experiments

(OSSE), is able to retrieve the true value of the Manning coefficients within one assimilation cycle much of the time (basin-15

averaged Manning coefficients RMSEn is reduced from 33% to [1%-10%] after one assimilation cycle) and shows promising

perspectives with assimilating water anomalies (basin-averaged Manning coefficients RMSEn is reduced from 33% to [1%-

2%] when assimilating water surface elevation anomalies over one year) which allows us to overcome the issue of unknown

bathymetry.
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1 Introduction

Global Hydrological Models (GHM) are extensively exploited to study the continental component of the global water cycle

(Doll et al., 2015; Sood and Smakhtin, 2015). Such models have been extensively developed over the past two decades in order

to quantify freshwater flows and storage changes over continental surfaces (Bierkens, 2015). They are based on the coupling

of a Land Surface Model (LSM) with a River Routing Model (RRM). As an example, the ISBA-CTRIP (Decharme et al.,5

2019) hydrologic model results from the coupling of the ISBA LSM (Noilhan and Planton, 1989) and the TRIP RRM (Oki

and Sud, 1998). LSMs simulate the energy and water balance at the soil-atmosphere-vegetation interface while RRMs emulate

the lateral transfer of freshwater toward the continent-ocean interface. The current study focuses on the river component of the

terrestrial water cycle simulated by RRM.

GHMs give a global view of the state of the water flow and storage at model spatial and temporal resolutions. Nonetheless,10

they suffer from multiple sources of uncertainties which are related to the model structure, the external forcing and the input

parameters (Liu and Gupta, 2007; Renard et al., 2010). Model structure uncertainties initially arose from a lack of knowledge in

the hydrologic processes or from simplifying assumptions made to limit simulation computational cost. Still, with the increase

of computational power, models are more and more complex (Liu and Gupta, 2007; Melsen et al., 2016): they run at finer

spatial resolution, they include new physical processes and use an increasing number of fully distributed forcing and parameter15

datasets (Liu et al., 2012). This has led to an increase in the number of model input parameters and potentially inflates the

model uncertainty in those parameters. Input parameters express the spatial and/or temporal properties of the system. The

spatial scale of parameters measurable on the field may differ from the model scale, while other conceptual parameters are

not directly observable and measurable on the field (Moradkhani et al., 2005; Melsen et al., 2016) and are inferred using

geomorphological empirical formula and/or indirect methods such as calibration (Gupta et al., 1998; Beven, 2012).20

Another way in which to study the terrestrial water cycle is to use direct observations of the system. Most parts of the terres-

trial water cycle are currently observed and measured from in situ or remote techniques (Sanoo et al., 2011; Vinukollu et al.,

2011; Rodell et al., 2015). For the observations of rivers, in situ techniques measure river water elevations at gauge stations.

In situ measurements are commonly very accurate and also frequent (i.e. sub-daily) but their main limitation is their spatially

sparse sampling and their decreasing number over recent decades at a global scale (International Association of Hydrological25

Sciences Ad Hoc Group on Global Water Sets et al., 2001). Coincidentally, remotely-sensed data provided by satellite missions

have increased quite significantly since the 90’s and deliver effective river observations. The most common instrument operat-

ing to assess river water levels remains the nadir altimeter. Nadir altimetry gives localized water elevation measurements along

the satellite ground track. Initially, altimeters were designed to monitor ocean topography but their application has broadened

to the observation of lakes (Cretaux et al., 2009), floodplains (Birkett et al., 2002) and later on, rivers (Silva et al., 2010). Yet,30

their main limitation remains their limited spatial and temporal samplings: generally several days between two consecutive

measurements at a limited number of locations. Besides, over continental surfaces, the signal is not always retrievable. Current

river observations therefore provide a more accurate view of the river system than models but they are quite limited by their

sparse availability in space and time.
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The incoming Surface Water and Ocean Topography (SWOT) mission, jointly developed by NASA, CNES, CSA and UKSA

and scheduled for a launch in 2021, will be dedicated to the observation of continental free surface water with a better spatial

and temporal coverage than the current nadir missions (such as EnviSat, the JASON series or also Sentinel-3A/B). SWOT main

payload called KaRIn, for Ka-band Radar INterferometer (Fj’́ortoft et al., 2014), will observe surfaces under two swaths of 50

km each separated by a nadir-gap of 20 km and will have a near-global coverage. For hydrology, SWOT will observe rivers5

wider than 100 meters as well as lakes and wetlands larger than 250×250 m2 within the latitudes 78◦ South and 78◦ North and

with a revisit time of 21 days. SWOT will provide two-dimensional images of water surface elevations with a vertical accuracy

of 10 cm when averaged over 1 km2 of water area. Along with water surface elevation measurements in rivers, SWOT will also

provide observations of river width, surface slope and estimates of discharge based on SWOT observations. SWOT will provide

a significant amount of new data for surface hydrology. It will give an ensemble of constraints that will allow a better depiction10

of surface water in hydrological models. This new data could be combined or integrated into global-scale hydrological models

in order to correct them and improve their performances and forecasting capabilities.

Data assimilation techniques are a set of mathematical methods which combine a physical model and related external mea-

surements taking their relative uncertainties into account. Data assimilation aims at improving the model ability to forecast

and/or emulate the physical system’s evolution. For this purpose, data assimilation methods are built to correct either the15

model’s outputs (state estimation) or the model’s input parameters (parameter estimation or PE), sometimes both simulta-

neously. Data assimilation for state estimation has been widely applied in meteorology and oceanography, and is more and

more developed for large-scale terrestrial hydrology (Clark et al., 2008; Michailovsky et al., 2013; Paiva et al., 2013; Emery

et al., 2018). Data assimilation for PE in hydrology has been initially developed as a dynamic alternative to model calibration

(Montzka et al., 2011; Panzeri et al., 2013; Ruiz et al., 2013; Shi et al., 2015). In most models, parameters are assumed to20

be constant in time whereas, in reality, they may vary seasonally or under evolving climate and/or anthropogenic conditions.

Sequential data assimilation can therefore help track model parameters variations in time (Kurtz et al., 2012; Deng et al., 2016;

Pathiraja et al., 2016). PE is also used to retrieve conceptual parameters of hydrologic models such as friction coefficients

(Pedinotti et al., 2014; Oubanas et al., 2018; Hafliger et al., 2019) or residence time of quick- and slow-flow reservoirs and

partition of runoff excess (Vrugt et al., 2012; Pathiraja et al., 2016) which can not be directly measured.25

Before launch, in the preparatory phase, Observing System Simulation Experiments (OSSE) can be performed in orderto

assess the benefits ofassimilating SWOT data into a hydrological model and to evaluate the most adapted methodologies to

assimilate this data into models. Several studies assimilating synthetic and/or simplified SWOT like data have been published

so as to evaluate the correction of river model state namely river depth (Andreadis et al., 2007; Biancamaria et al., 2011), river

storages (Munier et al., 2015) and river discharges (Andreadis and Schumann, 2014) at various scales. But also, several studies30

focused on the possibility of using SWOT data to retrieve critical river parameters such as river bathymetry (Durand et al., 2008;

Yoon et al., 2012; Mersel et al., 2013) and/or riverbed roughness/friction coefficient (Pedinotti et al., 2014; Oubanas et al., 2018;

Hafliger et al., 2019). Indeed, SWOT is a scientific mission with a three year nominal lifetime. Therefore, SWOT observations

will help to better calibrate hydrological models and to improve their performances even over time periods beyond its lifetime.

Moreover, other studies using real remote-sensing data have also been published and give insight into the challenges related35
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to the assimilation of space-borne products such as Michailovsky et al. (2013); Michailovsky and Bauer-Gottwein (2014) and

Emery et al. (2018) which assimilate nadir radar altimetry data.

In the present study, a data assimilation framework is used to correct input parameters of the large-scale ISBA-CTRIP model.

More specifically, synthetic SWOT observations of water surface depths and anomalies are assimilated in order to correct the

spatially-distributed riverbed friction coefficients (or Manning coefficients). As SWOT will not directly measure water depths5

(it provides water elevation and the bathymetry is required to derive water depth), the purpose of this study is to evaluate

the possibility of assimilating water elevation anomalies to correct the model’s parameters and to assess how the assimilation

performances are impacted, compared to the direct assimilation of water depths. Assimilating water elevation anomalies is

done to overcome a potential lack of bathymetry data.

This study is presented as a complementary study to that of Emery et al. (2018) which is dedicated to the state estimation10

(river storage and discharge) of the same ISBA-CTRIP model, using real satellite-based discharge products. The choice of the

roughness coefficient as control variable was made following the results from the ISBA-CTRIP sensitivity analysis in Emery

et al. (2016). In this preliminary study, the sensitivity of the simulated water depths and also anomalies to several river input

parameters (such as riverbed width, depth, slope and also friction coefficient) was evaluated. The results showed that the highest

sensitivity was in the Manning coefficient.15

This study is, furthermore, also built on the conclusions from the work of Pedinotti et al. (2014). In our study, an Ensemble

Kalman Filter (EnKF) is used (instead of the Extended Kalman Filter in Pedinotti et al. (2014)) to better account for the

nonlinearities of the system and to better estimate the model errors. Also, Pedinotti et al. (2014) chose to update the Manning

coefficients distribution at the grid cell scale and the question of equifinality arose (Beven and Freer, 2001) in their results. For

the current study, it was decided to update the Manning coefficient distribution not at the grid-cell resolution, but at a coarser20

zonal resolution, by applying multiplying correcting factors uniformly over each zone, identical to the one used in Emery

et al. (2016). Finally, Pedinotti et al. (2014) used an assimilation window of 2 days. This configuration resulted in updated

Manning coefficient time series displaying "unrealistic jumps" with a frequency of about 20 days associated to the orbit repeat

cycle (longer than the 2-day window). To avoid this phenomenon, the present study uses an assimilation window of 21 days

corresponding to the current SWOT orbit repeat cycle.25

Section 2 will first give a description of the ISBA-CTRIP model used for this study. Section 3 will present the particular

data assimilation method developed for this study and finally, after presenting the assimilation strategy in Section 4, Sections 5

and 6 will give the data assimilation results.

2 Model

2.1 The ISBA-CTRIP large-scale hydrological model30

The ISBA model (Noilhan and Planton, 1989) is a LSM defined at global-scale on a 0.5◦× 0.5◦ regular mesh grid that estab-

lishes the energy and water budget over continental surfaces. This study operates the ISBA-3L version based on a three-layer

soil (Boone et al., 1999). The budget equations are solved separately on eachgrid cell. Still, larger-scale spatial patterns in
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the radiative and precipitation forcing, the soil composition and the vegetation cover ensure spatial correlations between those

cells. (for more details, see Decharme et al., 2012, 2019). In particular, ISBA gives a diagnostic of the surface runoff (QISBA,sur)

and the gravitational drainage (QISBA,sub, , i.e. water percolating to the deep layers of the soil) later used as forcing inputs for

the RRM denoted CTRIP.

The CTRIP model (Decharme et al., 2010, 2012, 2019), is defined on the same mesh grid as ISBA and follows a river5

network to laterally transfer water from one cell to another, down to the interface with the ocean (Oki and Sud, 1998). The

study is based on the CTRIP version from Decharme et al. (2012) with three reservoirs, as illustrated in Figure 1a. The water

mass [kg] stored in a groundwater reservoirG and a floodplain reservoir F interacts with the water mass in the surface reservoir

S representing the river. Only the surface reservoir S is related to the river network and fills with the surface runoff QISBA,sur,

the outflow from upstream cells and the delayed drainage QISBA,sub by means of the groundwater reservoir. Occasionally, when10

the amount of water in the river exceeds a given threshold (defined by the water level in the reservoir), the river spills into the

floodplains.

2.2 CTRIP parameters

Within a 0.5◦× 0.5◦ cell, the surface reservoir is a unique river channel that may gather multiple real river branches. Its

rectangular cross-section is described by its slope s [-], its width W [m], its bankful depth Hc [m], its length L [m] and finally15

a Manning or friction coefficient N [s m−1/3] that assesses the reach resistance at the bottom of the river.

Each cell’s elevation is deduced from the STN-30p Digital Elevation Model (http://daac.ornl.gov/ISLSCP_II/islscpii.shtml).

These elevations are then compared to determine the riverbed slope s. Global empirical geomorphologic relationships are used

to define the river width W and bankful depth Hc. The arc length between grid cell centers, inflated by a meandering factor µ,

results in the river reach length L. More details on these parameters can be found in Oki and Sud (1998) and Decharme et al.20

(2012).

The Manning coefficient N is generally more complicated to estimate. Following Maidment (1993), it should take values

between 0.025 and 0.03 for natural streams and values between 0.075 and 0.1 for smaller and mountainous tributaries and

also floodplains. Global studies can apply either a constant (Beighley et al., 2009; Biancamaria et al., 2009) or a spatially-

distributed (Decharme et al., 2012) Manning coefficient. However, it is ordinarily accepted that this parameter should vary in25

space and even in time across the river catchment. Consequently, CTRIP uses a spatially-distributed Manning coefficient based

on a simple linear relationship between the relative stream size in the current cell, denoted SO, and the size at the river mouth

and the source cells, so that:

N =Nmin +(Nmax−Nmin)
SOmax−SO

SOmax−SOmin
, (1)

SO is the stream size relative measure at the current cell; SOmax (whose value depends on the network depth) the same30

measure at the river mouth and SOmin = 1 the measure at source cells (namely, cells without any upstream cells, according to

the river network). The Manning coefficient is then set to be constant in time while its spatial values decrease towards the river

outlet (following the river network), with values between Nmin = 0.04 and Nmax = 0.06.
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All these parameters are eventually essential to estimate the spatially- and time-varying average cross-sectional flow velocity

in the surface reservoir v(t) following the Manning formula (Manning, 1891):

v(t) =
s

1
2

N

(
WhS(t)

W +2hS(t)

) 2
3

, (2)

where hS is the river water depth estimated from the river storage S by

hS =
S

ρWL
, (3)5

and ρ the water density. The flow velocity is ultimately used to estimate the discharge leaving the CTRIP cell:

QS
out(t) =

v(t)

L
S(t). (4)

As the definition of most of these parameters is based on empirical relationships, we have to be aware that they inevitably

have substantial uncertainties.

2.3 CTRIP implementation over the Amazon basin10

In this study, we present an OSSE test case over the Amazon river basin whose hydrology is carefully described in Molinier

et al. (1993); Wisser et al. (2010). This choice was motivated as the present work follows and complements studies over the

same domain (Emery et al., 2016, 2018).

For ISBA-CTRIP, the Amazon basin is composed of a total number of 2028 cells. Based on the basin geomorphology and

hydrology (Meade et al., 1991), the basin has been split into 9 spatial regions. These zones, illustrated in Figure 1b, were15

initially introduced in (Emery et al., 2016) and will be re-exploited here within the application of data assimilation. For a

detailed description of the zones, the reader can refer to (Emery et al., 2016).

2.4 ISBA-CTRIP forcing

For the present study, ISBA-CTRIP needs external atmospheric forcing in order to run. Similarly to Emery et al. (2016),

such data is provided by the Global Soil Wetness Projet 3 (GSWP3, http://hydro.iis.u-tokyo.ac.jp/GSWP3) at a 3-hourly time20

resolution.

3 Method: Synthetic parameter estimation on ISBA-CTRIP

3.1 OSSE framework

In OSSE, we introduce beforehand a reference configuration for the model input parameters that we will consider thereafter as

the truth. From those true parameters, we directly deduce the true run from a ISBA-CTRIP model integration. The synthetic25

observations used for data assimilation are obtained from perturbing the true observables (variables that are used as observa-

tions) using an error model that is representative of the real observation errors. The control variables (the model variables to be

6
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corrected with data assimilation) first guess are obtained by directly perturbing the true control variables. Control error also has

to be chosen to be representative of the real modeling errors. OSSEs are prerequisite tests to ensure that the implementation

of the EnKF algorithm is correct and adapted to the hydrologic problem under consideration (temporal/spatial length-scales,

sources of uncertainty, observation operator...).

3.2 Data assimilation variables5

3.2.1 Observation variables and their errors

The observation vector, denoted yo
k at the assimilation cycle k, is composed of the ny available observations at cycle k:

yo
k =

[
yok,1, yok,2, . . . , yok,ny

]
(5)

where yok,j , j = 1 . . .ny , is the j-th observation among the ny at cycle k.

In the present study, the observed variables are water depths issued from a simplified SWOT simulator. Note that this10

simulator will produce water depths while the real SWOT satellite will provide water elevations. As in Biancamaria et al.

(2011) and Pedinotti et al. (2014), this SWOT simulator replicates SWOT spatio-temporal coverage. At a given date, the

simulator selects the ISBA-CTRIP cells contained (at least 50% of their area) in the SWOT ground tracks. Figure 2 shows

some selected ISBA-CTRIP cells under the real swaths over the Amazon basin. The true run is used as a basis to get the true

water depths yt
k. Then, in order to generate the observation vector yo

k from the extracted true water depths, each of them is15

randomly perturbed by adding a white noise characterized by a standard deviation σo so that:

∀ j = 1 . . .ny, y
o
k,j = ytk,j + εoj , ε

o
j 'N (0,σo). (6)

Using water depth observations is a strong simplification of the real SWOT product. Therefore, in order to take into account

that SWOT will provide water elevations and not directly water depths, this study will look at the assimilation of both water

depths and water anomalies. The method for generating these anomalies will be further detailed in Section 4.2.20

The observation error is the addition of the measurement error and the representativeness error. The first is associated with

inherent instrumental errors when processes are observed and the second represents the error introduced when the observed and

simulated variables are not exactly the same (in nature or scale). Following the SWOT uncertainty requirements (Esteban Fer-

nandez, 2017), SWOT-like water surface elevation measurements have a vertical accuracy of 10 cm (when averaged over a

water area of 1 km2). This uncertainty accounts for measurement errors due to the remotely-sensed acquisition such as instru-25

mental thermal noise, speckle, troposphere and ionosphere effects. Moreover, we omit error correlations along the swath so that

observation errors follow a white noise model. Accounting for spatially-correlated observation errors is an active research area

in the field of data assimilation (Guillet et al., 2018) which is beyond the scope of demonstrating the feasibility of assimilating

SWOT-type data. In the framework of OSSE, observed and simulated water depths have the same scale as the ISBA-CTRIP

model which is used to generate both. In the following, we assume therefore that there is no representativeness error related to30

the scale in the system. However, it is worth acknowledging that we should expect higher errors on water depths, compared to
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water elevations, as we do not know the bathymetry. Assimilation of water depths is performed as a benchmark, against which

assimilation of water anomalies will be compared. Ultimately, σo is chosen as being equal to 10 cm for all observed variables

(i.e. both water depths and water elevation anomalies).

3.2.2 Control, observation space and their errors

The control vector is denoted by xk ∈ Rnx . It includes the nx uncertain variables to be estimated through the k-th data assimi-5

lation cycle. The choice of the control variables determines the observation operatorHk:

yk =Hk(xk), (7)

where yk are the simulated observables, in other words, Hk maps the control variables onto the observation space. They are

then compared to the measured observations yo
k during the data assimilation experiment. This difference is referred to as the

innovation vector.10

Following the conclusions from Emery et al. (2016), we determined that assimilating water-depth-like observations would

be efficient for the correction of the distribution of the river Manning coefficients. These coefficients are spatially-distributed

at the grid-cell scale. However, from Pedinotti et al. (2014), equifinality issues were raised through the correcting of the

distribution at this scale. They also affected its upstream-to-downstream spatial distribution.We chose to correct it therefore by

applying multiplying factors defined at a coarser scale, namely at the scale of the 9 hydro-geomorphological areas defined in15

Section 2.3 and illustrated in Figure 1b. Within the same area, the Manning coefficient values are all identically modified by

being multiplied by the same factor.

The control vector is composed therefore of the nx multiplying factors Nmult,i, i= 1 . . .nx, applied to the correcting of the

spatial distribution of the river Manning coefficient:

xk = [Nmult,1 . . .Nmult,nx
]
T
, (8)20

giving nx = 9.

The observation operator Hk maps the control variables (Manning coefficients dimensionless multiplying factors) into the

observables (river water depths in meters) as follows:

1. first, apply the multiplying factors (xk) to the Manning coefficients distribution;

2. then, apply the ISBA-CTRIP modelM[k−1,k] over the assimilation window [k−1,k] to determine the model states that25

correspond to the perturbed Manning coefficients distribution;

3. after, turn the CTRIP surface water storage into equivalent water depths following Eq. 3 (we denote by Zk the diagnostic

operator turning the surface storage variable into the water depth variable);

4. finally, select the simulated water depths under the SWOT swath mask (we denote by Sk this operator).
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The observation operator is therefore the composition of three operators:

yk =
(
Sk ◦Zk ◦M[k−1,k]

)
(xk) =Hk(xk). (9)

Such a non-linear observation operator Hk is difficult to formulate explicitly which is why we use an EnKF algorithm to

estimate the Kalman gain in a statistical way.

3.3 The EnKF general formulation5

In the EnKF framework, the modelM[k−1,k] and observation Hk operators are generally not linear. The main assumption for

the EnKF is to use stochastic ensembles to represent first- and second-order moments (namely the means and the covariances)

of the control variable errors (Evensen, 1994, 2003). Indeed, it is assumed that the distribution of the ensemble is similar to that

of the error of the control vector and it is also assumed that the Probability Density Function (PDF) of the error is gaussian, thus

well described by its first and second moments. The background control variables xb
k (the first guess) are therefore represented10

by an ensemble of ne members:

Xb
e,k =

[
x
b,[1]
k x

b,[2]
k . . . x

b,[ne]
k

]
, (10)

To avoid the collapsing of the ensemble, the observation vector in Eq. 5 is randomized by adding a supplementary white

noise with the same observation error standard deviation σo (Burgers et al., 1998) so that

∀ j = 1 . . .ny, ∀ l = 1 . . .ne, y
o,[l]
k,j = yok,j + ε

o,[l]
j , εoj 'N (0,σo). (11)15

An observation ensemble is generated:

Yo
e,k =

[
y
o,[1]
k y

o,[2]
k . . . y

o,[ne]
k

]
. (12)

Note that alternatives exist to the observation randomization chosen here. However, for the present study, we choose to use a

full stochastic filter.

Finally, the EnKF analysis step is applied to each member of the ensemble so that20

∀ l = 1 . . .ne, x
a,[l]
k = x

b,[l]
k +Ke,k

(
y
o,[l]
k −Hk(x

b,[l]
k )

)
, (13)

where Ke,k is the the Kalman gain. It is built from the control and observation error covariance matrices P and R and the

linearized observation operator H so that (see Appendix A for more details):

Ke,k = [PHT ]e,k

(
[HPHT ]e,k +Rk

)−1

. (14)

Figure 3 summarizes the general OSSE framework used for the present study. The figure reads from top to bottom and25

from left to right. An assimilation cycle [k− 1, k] includes a forecast step where an ensemble of ISBA-CTRIP simulations is

integrated, each member having a different spatially-distributed Manning coefficient; an analysis step where the ensemble of

Manning coefficients is corrected using synthetic observations through the Kalman filter update in Eq. 13; and a cycling step

where the ISBA-CTRIP model is re-run with these analysis estimates to obtain updated model states.
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3.4 SWOT-based data assimilation special feature

3.4.1 Choice of the assimilation window

We use a 21-day assimilation window corresponding to a SWOT orbit revisit period. During one assimilation window, every

pixel under the observation mask is therefore observed at least once. However, its implies that new observations are available

at times which differ from the update time. Such a case has already been addressed in several studies. The Ensemble Kalman5

Smoother (EnKS) for example, introduced by Evensen and Leeuwen (2000), is a direct extension of the EnKF. It consists

ofgenerating an update of the control variables taking into consideration the present and all past observations when a new

observation is available. The EnKS is actually a sequential version of the Ensemble Smoother (Leeuwen and Evensen, 1996).

The latter takes into consideration all past and future observations but turned out to be less effective than the EnKF and the

EnKS (Evensen, 1997; Evensen and Leeuwen, 2000). Alternatively, Hunt et al. (2004) developed the 4D-EnKF (4D as in the10

4D-VAR variational assimilation methods; Talagrand and Courtier, 1987), which also assimilates observations available at

different time-steps. In the 4D-EnKF, all model observations are expressed as a linear combination of the model observations

at analysis time and the problem is transformed into a classic EnKF problem. Similarly, Hunt et al. (2007) also presented an

asynchronous version of the Local Ensemble Transform Kalman Filter (Bishop et al., 2001; Ott et al., 2004). In the framework

of the present study, we apply an Asynchronous Ensemble Kalman Filter (AEnKF) as described by Sakov et al. (2010) and15

Rakovec et al. (2015). The principle is to increase the dimension of the state in order to consider observations at past and

analysis times. This increases the dimension of the matrices which contain covariances between observations available at

different times. To our knowledge, the AEnKF has not been used for parameter estimation, as Sakov et al. (2010) and Rakovec

et al. (2015) described the method for state estimation experiments.

3.4.2 The Asynchronous EnKF20

To start with, k represents the assimilation cycle index but it needs to be distinguished from the day index (within the assim-

ilation cycle) which is the time unit for the observations. We will then denote by k(i), i= 1 . . .21, the i-th day in the current

assimilation cycle.

On the i-th day of the k-th assimilation cycle, the ny,k(i) observations are gathered in the vector yo
k(i). The overall observation

vector at cycle k, yo
k, then concatenates the 21 daily observation vectors yo

k(i) so that:25

yo
k =

[
yo,T
k(1) . . . y

o,T
k(21)

]T
∈ Rny,k , ny =

21∑
i=1

ny,k(i). (15)

Similarly to the observation vector, the overall observation operator at the k-th cycle, Hk, is the concatenation of the daily

observation operators Hk(i), defined from Eq. 9, but by considering the operator M integrating the model between k(0)

(=(k− 1)(21)) and k(i) as well as the diagnostic and selection operators a time step k(i), Zk(i) and Sk(i).
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The observation error covariance matrix Rk is the concatenation of the daily observation error covariance matrices:

Rk =


Rk(1)

Rk(2) 0

0
. . .

Rk(21)

 with Rk(i) = (σo)2Iny,k(i)
, (16)

where Iny,k(i)
is the identity matrix of size ny,k(i)×ny,k(i). It turns out that:

Rk = (σo)2Iny . (17)

Following the same equations as the EnKF, the AEnKF generates, for each member l = 1 . . .ne of the control ensemble, an5

analysis control vector xa,[l]
k .

3.4.3 Generation of the ensemble

To generate the background control ensemble, we solely stochastically perturb the variables within the control vector. Note

that it amounts to the assumption that all other features of the forward model, e.g. the atmospheric forcings, the LSM structure

and therefore the surface and sub-surface runoff, are perfect. While this applies for OSSEs, such features are never perfect in10

real-case experiments. This assumption is further discussed in Section 7.

The ensemble of background control vectors Xb
e,k, of size nx×ne, is generated so that xb,[l]

k , l = 1 . . .ne, follows a gaussian

law of mean xb
k and covariance matrix Pb

e,k. For the first assimilation cycle, the control variables mean value xb
1 is arbitrarily

chosen as the openloop run input parameter (the openloop or free run is the model run without assimilation) and the background

error covariance matrix Pb
e,1 is a diagonal matrix defined as15

Pb
e,1 =

(
(σb)2Inx

)
with Inx

the identity matrix of size nx×nx and σb the vector that gathers the initial control variable error standard deviation.

Once the analysis ensemble Xa
e,k is determined, the next step is to propagate the correction in time. In a PE framework, it

is necessary to re-run the ensemble model runs during the current assimilation window with the analysis parameters as inputs.

Then, the contribution of the updated parameters is propagated through the model, up to the end of the current assimilation20

window and put into the model initial condition for the next assimilation cycle.

For the next assimilation cycles, the background mean estimate is set equal to the analysis mean estimate from the previous

cycle:

xb
k = xa

k−1.

There are different ways of defining Pb
e,k. One could choose to stochastically estimate Pa

e,k−1 from the analysis ensemble at25

the previous cycle and use it as Pb
e,k. Contrary to state estimation experiments where the analysis error covariance matrix is

propagated in time using the model along with the control variables, parameter estimation experiments use it directly as the
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background error covariance matrix as there is no dynamical model for the Manning coefficient. The issue with this approach is

that the analysis ensemble variance can be strongly reduced and provide too small an ensemble spread to have efficient AEnKF

updates in time. To ensure that enough uncertainty is maintained in the ensemble, one can maintain the initial background error

covariance matrix through all cycles or impose a minimal value for the variance elements (see Section 5.4).

The background error cross-covariance matrix [PHT ]e,k and covariances matrix [HPHT ]e,k are directly built from the def-5

inition suggested by Evensen (2004), Moradkhani et al. (2005) and Durand et al. (2008), see Appendix A for more details. The

matrices are of size nx×ny,k and ny,k×ny,k respectively. The elements in the error cross-covariance matrices result directly

from the characterization of the background ensemble, namely the parameter uncertainties accounted for for the generating of

the control matrix Xb
e,k andH(Xb

e,k).

4 Assimilation strategy10

In the incoming experiments, the true control variables xt are:

xt =
[
1.65 0.85 0.85 0.95 0.90 0.95 0.90 1.30 1.40

]
(18)

and the a priori values at the first assimilation cycle xb
1 are:

xb
1 =

[
1.50 0.50 0.50 0.50 0.50 0.50 0.50 1.50 1.50

]
. (19)

We increase the Manning value in mountainous zones (zones 1 in the Andes and zones 8 and 9 over the shields) and lower the15

Manning value over the other zones with the lowest values (in zones 2 and 3) corresponding to the main stem. Both true and

background values were chosen accordingly.

4.1 Sensitivity tests

During one EnKF assimilation cycle, the analysis potentially depends on the following parameters: model spin up, time period

(high/low flow), size of the ensemble, control error. Note that the observation error also has an impact on the analysis but its20

value is already fixed for all subsequent experiments (see Section 5).

A first set of experiments (either model runs or data assimilation runs) will serve as sensitivity tests for the data assimilation

platform with respect to the above features. During these sensitivity tests, the different features are tested individually. Table 1

details the range of variations for each tested feature.

4.2 Assimilation tests25

Following the sensitivity tests, a set of three data assimilation experiments will be run and is presented in Table 2. The data

assimilation experiments are divided into two categories: the first one uses water depths as observations,the second considers

water depth anomalies. All experiments are run across a year, corresponding to 17 assimilation cycles of 21 days.
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The first experiment, denoted as PE1, is configured from the aforementioned sensitivity test outcome. The parameters defin-

ing the experiment (spinup, starting date, ensemble size, control error) will be those which provide the best results in the

sensitivity tests in Table 2. The reference level between the observed and simulated water depths is also the same. In other

words, there is no bias in the observation. This first idealized experiment serves as proof-of-concept as the observations type

matches exactly the type of the simulated variables. Consequently, with this experiment, we expect to retrieve the true value of5

the control variables and hence the correct water depths and discharges.

The next step is to head towards more realistic experiments by including new sources of uncertainties in the data assimilation

system and seeing how to address them. In this context, two additional experiments denoted as PE2 and PE3 will be carried

out. As an example of new uncertainties, SWOT will in fact observe water elevations (water surface elevation as referenced to

a geoid or an ellispsoid) whilst CTRIP produces water depths (water surface elevation as referenced to the bottom of the river10

bed). To perform data assimilation, one needs to convert CTRIP water depths (hCTRIP
S ) into CTRIP water elevations (HCTRIP

alti ) or

inversely for SWOT. It is highly plausible that this operation induces a bias between the modeled and observed water elevations.

A simplified example of such situation is illustrated in Figure 4. In this case, SWOT catches the right water elevation dynamic

(as hSWOT
S and hCTRIP

S are equal) but the direct assimilation of SWOT water elevationHSWOT
alti will induce a bias as the elevations

of the river bed (HSWOT
bed and HCTRIP

bed ) are different between CTRIP and SWOT.15

A solution for the handling of this issue is to assimilate water depth anomalies instead of water depths. The next data assim-

ilation experiments, denoted as PE2 and PE3, will therefore test the feasibility of assimilating anomalies. In these experiments,

the water depth anomalies are generated by subtracting a time-averaged reference water depth from the current water depth.

For all runs (true, openloop or analysis), this time-averaged reference water depth is computed as the mean (true, openloop

or analysis) water depth over the year before the start of the assimilation window. It is therefore different for each member20

of the ensemble. Firstly, in experiment PE2, there will still be no bias between the observed and simulated river bathymetry

to observe how the assimilation of anomalies performs. Similarly to PE1, we expect this experiment to be able to retrieve the

true control and state variables. Finally, the last experiment PE3, which introduces a constant relative bias between CTRIP and

SWOT, will be carried out. For this experiment, we anticipate that the assimilation will still be able to retrieve the model states

variables. The use of anomalies as observations should limit the impact of the inserted bias. We do not exclude however that it25

may be slightly echoed on the control variables.

5 Assimilation sensitivity tests

5.1 Model spinup sensitivity tests

The objective of the spinup sensitivity tests is to evaluate the minimum spinup period required by the model before applying

data assimilation. For this purpose, the model is run several times across two years, from December 19th, 2006 to December30

22nd, 2008, corresponding to 35 windows of 21 days (735 days).

A first simulation is run using the true Manning spatial distribution (see Eq. 18) over the two-year time period. We then

run 18 additional simulations over the same period with a varying length of the spinup period (see Table 1). Initially, the

13



simulation setup corresponds to the openloop configuration with the openloop Manning spatial distribution (see Eq. 19). At a

given time during the first year, the Manning spatial distribution is instantaneously changed to the true distribution (see Eq. 18)

and the model is run until the end of the two years with the true Manning spatial distribution. Table A1 summarizes for each

run, the date when the Manning coefficients are changed. The spinup period (expressed as a number of windows of 21 days)

corresponds to the period between when the Manning distribution is changed and the start of the second year, i.e. January 1st,5

2008.

To evaluate the spinup impact, the relative difference between the reference run and the test runs is evaluated over the second

year of simulation (from January 1st to December 22nd, 2008) and averaged over every window of 21 days. Figure 5 presents

the results for the spinup sensitivity test. Each test run (on the x-axis) is identified by its corresponding spinup period length

(expressed as the number of windows of 21 days, see Table A1). We then count (on the y-axis) the number of 21-day windows10

during which the relative error between the test run and the reference run is higher than a given threshold. We assume that

the spinup period is long enough when this number is equal to 0. This number is evaluated from the basin-averaged relative

difference and from the relative difference at the downstream station of Obidos, both in terms of water depth and discharge.

Note that in Figure 5, when the number of spinup windows of 21 days is equal to 4 on the x-axis, the change from the openloop

Manning distribution to the true one is imposed on October 9th, 2007. Similarly, when this number is equal to 10, the change15

is imposed on June 5th, 2007. Note also that two thresholds are considered, 0.01 and 0.001. Basin-averaged results are not

sensitive to this threshold. There are some differences at Obidos; however, we retain the basin-averaged results to evaluate the

required model spinup period.

From all of the results we conclude that a minimum spinup period of 4 windows of 21 cycles, i.e. 84 days, is required. This

period corresponds to the basin concentration time or, in other terms, the required time for the river network to totally empty.20

In the following sensitivity tests, the model runs start on October 9th, 2007, to be consistent with these results.

5.2 Data assimilation starting date sensitivity tests

To evaluate the impact of the starting date, a set of 17 one-cycle-long data assimilation experiments is carried out over the

second running year. All experiments have the same general configuration except for the initial date starting from January 1st,

2008 and shifted by 21 days until December 22nd, 2008. This means that the last experiment starts on December 2nd, 2008.25

The performance of each experiment is evaluated by simply evaluating the spatial average difference between the analysis and

the true Manning coefficients. Results presented in Figure 6a-b indicate that there are no significant differences between the

data assimilation experiments (for all 17 experiments, the error of the updated Manning coefficients with respect to the true

value of the coefficients is below 5 %).

Note that the results in Figure 6a-b show a slight increase in the errors for the experiment starting at the end of the year,30

presently from September 9th to December 2nd, 2008. This period corresponds to the low-flow season in the Amazon hydro-

logical cycle. Concerning the sensitivity analysis results (Emery et al., 2016), the water depths showed a very low sensitivity

to the Manning coefficient during the low flow season. As a consequence of data assimilation, the EnKF is less effectivein low
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flow seasonsin the correcting of the Manning coefficient. The analysis relative error (in Figure 6a) and the analysis ensemble

dispersion (in Figure 6b) is therefore higher in the low flow season.

For all of the following sensitivity tests, we are only considering therefore one-assimilation-cycle experiments, which will

start on January 1st, 2008.

5.3 Ensemble size sensitivity tests5

The next sensitivity test is dedicated to the ensemble size ne, a critical parameter of any EnKF algorithm. This parameter has

to be high enough so as to accurately estimate the Kalman gain matrix but low enough to limit the computational cost (the

higher ne, the more model runs are required over each data assimilation window to obtain the analysis estimate of the Manning

coefficients).

We consider different ensemble sizes through a one-assimilation-cycle experiment, ne varies between 10 and 200. Figure 6c10

compares the analysis Manning coefficient relative error for each ensemble size ne as in Figure 6a. Results show that the

analysis relative error decreases when the ensemble size ne increases. For an ensemble size ne equal to 20, the analysis error

is below 5 %. Also, for an ensemble size ne higher than 50, the analysis relative error has converged to a constant value while

the analysis ensemble dispersion showed in Figure 6d stabilises.

These results indicate that the ensemble size for future data assimilation experiments should be at least equal to 20; we15

consider ne = 25 in the present study to limit computational time.

5.4 Model error standard deviation sensitivity tests

In this study,we only consider parameter estimation, implying that the background error covariance matrix is associated with

the parameter space. We assume that the errors in the Manning coefficients are independent so that the background error

covariance matrix is initially specified as a diagonal matrix, where all diagonal elements correspond to the error variances in20

the spatially- varying Manning coefficients and are equal to the same variance (σb)2, where σb is the background error standard

deviation. Similarly to previous sensitivity tests, we study here the sensitivity of the data assimilation results to the value of

σb through a one-assimilation-cycle experiment. Figure 6c shows, in logarithmic-scale on the x-axis, the relative error of the

updated Manning coefficient with respect to the true coefficient. The analysis error curve shows a decreasing behavior until σb

is in the order of 0.4. It then increases again.25

Note that the actual Manning coefficient error before data assimilation is equal to 0.33 (see the blue curve in Figure 6c

showing the openloop Manning coefficient error). Consistently, the best data assimilation results are obtained when σb provides

a good approximation of the real error standard deviation. Note also that when σb becomes too small, data assimilation is less

effective. The EnKF algorithm is known to be under-dispersive. Therefore, for future data assimilation experiments, when

updating the error covariance matrix from one cycle to another, we will need to make sure that the ensemble dispersion is high30

enough to cover possible model behavior over the forecast time window by imposing a minimum value for the error variance.

Given the sensitivity test results, the minimum value for σb is set to 0.005. Thus, in the following data assimilation experiments,
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we use the analysis error covariance matrix as the background error covariance matrix for the next assimilation cycle, while

applying the minimum threshold value on the matrix diagonal terms.

6 Data assimilation results

We now present the results from the data assimilation experiments described in Table 2 and in Section 4.4.2. Recall that these

experiments aim at correcting a set of 9 multiplying factors applied to the Manning coefficients distribution and constant over5

9 hydro-geomorphological zones dividing the Amazon basin.

6.1 Assimilation of water depths (PE1)

Figure 7 gives, for each zone, the time evolution of the mean analysis control variable (red) with its dispersion (even though

it is very narrow) compared to the truth (black) and the first guess (blue). Similarly, Figure 8 shows, for each zone, the time

evolution of the analysis water depth (red) compared to the truth (black) and the openloop (blue). To generate one plot per10

zone, we use, for each time step, the ensemble of water depths over all cells in the zone and estimate the median value, the first

decile and the ninth decile. Furthermore, zone-averaged normalized Root Mean Square Error (RMSEn) statistics are given in

Tables A2 and A3 in Appendix D.

In general, the PE1 experiment gives very good results as the analysis mean for each zone retrieves the true value with a

very low dispersion. However, the data assimilation algorithm features spatially-dependent behavior, see Figure 7):15

- Firstly, the control variable for the zones 1, 2, 3, 4, 5 and 9 converges instantaneously (in only one assimilation cycle)

toward the true values and remains at these true values for all following cycles.

- A similar behavior can be observed for zones 6, 7 and 8 from the first cycle to around the ninth cycle. For the remain-

ing cycles, we notice an increase in the mean analysis estimate, along with the ensemble dispersion, until around the

thirteenth cycle and after, a decrease back to the true value.20

These observations can be explained with the global sensitivity analysis results for water depths in Emery et al. (2016) and

using Figure 8:

- Firstly, zones 1, 2 and 3 correspond to the river main stem, whilst zones 4, 5 and 9 correspond to the main left-bank

tributaries, namely the Caquetá/Japurá river (zone 4) and the Negro river (zone 5). In these zones, as the Manning

coefficient is directly corrected in the first assimilation cycle, the analysis water depths (red) overlap the true water depth25

(black). Furthermore, Figure 8 for these zones shows that the openloop (blue) and true (black) water depths have a very

similar variability in time but differ by a constant bias. The global sensitivity analysis results in these zones showed a

constant first-order sensitivity in time to the Manning coefficient all year long. This first-order sensitivity means that the

contribution of the Manning coefficient to the water depth is linear. Correcting the Manning coefficient in these zones

equates therefore to correcting the bias between the openloop and the true water depths.30
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- Subsequently, zones 6, 7 and 8 correspond to right-bank tributaries, namely the Juruá and Purus rivers (zone 6), the

Madeira river (zone 7) and the Tapajós and Xingu rivers (zone 8). These right-bank tributary zones are characterized by

a strong seasonal cycle (see Figure 8, zones 6-8). By comparing the corresponding plots in Figures 7 and 8, we notice

that the period when the analysis control variable spreads from the truth corresponds to the low flow season in these

zones. According to the global sensitivity analysis results, water depths in these zones are less sensitive to the Manning5

coefficient in low flow conditions. Additionally, there is very little water in the zones during this period and consequently,

the background control ensemble is not spread out enough for the EnKF to be efficient. Meanwhile, the EnKF still sees

that the observations are higher than the model predictions (as seen with the positive innovations in these zones shown in

Figure A2). In order to increase the simulated water depth, the EnKF therefore corrects the Manning coefficient so that its

value rises (a higher Manning coefficient means a slower flow velocity and then a higher simulated water depth). Finally,10

once the low flow season ends, the analysis Manning coefficient converges back to the truth (see the last assimilation

cycles).

6.2 Assimilation of water anomalies (PE2 and PE3)

The assimilation of anomalies has been tested over two experiments denoted PE2 and PE3 (see Table 2). Note that the obser-

vation error standard deviation σo remains equal to 10 cm as, with these experiments, we only aim at testing the feasibility of15

assimilating water depth anomalies. In the PE2 experiment, there is no difference of bathymetry between the simulated and

observed water anomalies whilst the river bankful depth is different in the PE3 experiment. Figure 9 gives, for each zone, the

time evolution of the mean analysis control variable for PE2 (orange) and PE3 (purple) with their dispersion compared to the

truth (black) and the first guess (blue). Again, zone-averaged normalized Root Mean Square Error (RMSEn) statistics for these

experiments are given in Tables A2 and A3 in Appendix D.20

The general configuration of the experiments PE1 and PE2 is the same. The only difference between the two experiments

is the nature of the observations: water depths for PE1 and water anomalies for PE2. Like experiment PE1, experiment PE2

(the orange line in Figure 9) gives very good results. All control variables converge toward the true values more or less

rapidly. The control variable for the zones 4 to 8 instantaneously (in only one assimilation cycle) converges toward the true

value while the convergence is slower for the remaining zones as around five assimilation cycles are needed to retrieve the25

true value. This slower convergence for these zones can be explained by the fact that the magnitude of the observed water

anomalies is generally smaller, compared to the water depths assimilated in PE1. The ratio between the observation error and

the observations themselves is also then smaller, resulting in a smaller EnKF gain. The control variable correcting increment

is smaller for the anomalies therefore than for the water depth and more cycles are needed to converge.

As for the PE3 experiment results - the purple line in Figure 9 - the assimilation still gives good results but not as good as in30

previous experiments. The control variables still instantaneously converge toward the truth in the zones 4, 5 and 6. Concerning

the other zones, there is no clear convergence towards the true value. Instead, the analysis control variables either get closer

but remain distinct from the true value (zones 2 and 3) or temporarily deviate from the truth during the experiment (zones 1,

7, 8 and 9). Still, despite the control variables not clearly converging towards the truth, the simulated water depths using the
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analysis control variables, presented in Figure 10, display a very low deviation from the truth, confirming the general good

performance of the data assimilation procedure.

Comparing the control variables and water depth time variations, it appears that the control variables are deviating from

the truth mainly when water depths are decreasing, in between the high flow and low flow seasons. During this period, the

model goes from a state where floods occur to a state where there is no flood, particularly in the zones 2-3 and 7-8 with a5

clear seasonal cycle. On the other hand, no flood event was spotted in zones 4, 5 and 6 where the best results were obtained. In

ISBA-CTRIP, the activation/deactivation of the flooding scheme is triggered by the simulated water depth exceeding/becoming

lower than the river bankful depth. Yet, in the experiment PE3, this river bankful depth differs between the model and the

observation because we artificially inserted a bias between the simulated and observed water depths. More specifically, the

river bankful depth is lower in the model than in the observations. Therefore, the control variables deviating from the true value10

when the water depth is decreasing are indicative of the simulated water depths presenting floods when there is no flood in the

observations. The activation of the flood scheme changes the dynamics of the water depth in the river. As part of the water in

the river is spilled into the floodplains, water level variations in the river are slower. The flooded model needs then a stronger

variation of the Manning coefficient in order to catch the non-flooded observed water level. Ultimately, the stronger variations

of the estimated Manning coefficient allow the retrieval of the true water depths.15

7 Discussions

The results presented here are preliminary investigations into the assimilation of SWOT water surface elevations product into

a large-scale hydrological model. This study focused on the correction of a critical river parameter, here the river Manning

coefficient.

For all simulations, the Manning coefficient distribution is set to be constant in time. For each grid cell, one value of the20

Manning coefficient is used for the entire simulation. However, in reality, it is commonly accepted that this parameter could

vary in time, depending on the seasonal cycle or also some extreme hydrological event such as large flooding events, which

can even modify the bathymetry itself. The results showed that, for this OSSE, the data assimilation is able to converge quite

quickly towards the true value. For example, for the left-bank tributaries zones, namely zones 4 and 5, in every experiment,

the associated control variable converges toward the true value in only one assimilation cycle. In a real-case experiment, we25

could expect to retrieve the temporal variations of the Manning coefficient from one assimilation cycle to another. The good

performances of the assimilation platform are mainly related to the fact that, in the ISBA-CTRIP model, the water depth

diagnostic variables are sensitive to the Manning coefficient (Emery et al., 2016). Simulated water depths are not then that

sensitive to the Manning coefficient (e.g. in the right-bank tributary zones during the low flow season), the data assimilation

performances slightly degrade. These results are specific to the ISBA-CTRIP model. To apply the same method to another30

model and even another region, one needs to first study the sensitivity of the (other) model to the (other) study region.

Secondly, the study investigates the potential of assimilating water surface anomalies instead of direct water surface eleva-

tions. The use of water surface anomalies is driven by the need to avoid potential bias between the control and the observed
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variables. Indeed, a bias will likely be introduced from a discrepancy between the elevation of the river bed in the model and

in the observations with respect to a reference surface such as a geoid or an ellipsoid (see Figure 4). Under the assumption that

the water variations are the same between the model and the observations, the use of anomalies as observed variables should

prevent this bias from affecting the results.

Another likely bathymetry error corresponds to errors on the river bankful depth, the river width and more generally, repre-5

sentativeness errors due to the use of a simplified bathymetry. This type of error was artificially introduced by perturbing the

model bankful depth in PE3. Specifically to ISBA-CTRIP, the river bankful depth controls when the model floods, which has

a direct impact on the water depth dynamics. Background anomalies and observed anomalies may therefore present different

dynamics where either the observed variables flood while the model variables do not or inversely. The experiment PE3 illus-

trated the effect of this bias on the variations of Manning coefficients. Instead of being maintained at their true value, their10

value slightly varied around the true values to account for the difference in dynamics between the model and the observations.

However, one could expect even more variations in the updated control variables around the true value to increase if more and

different errors in the bathymetry exist (which will likely happen with more realistic experiments).

Furthermore, real-case experiments may suffer from another type of bias originating from errors in the atmospheric forcing

and in the surface and sub-surface runoff provided by the LSM (i.e. ISBA). Both control the amount of water entering the15

river system. A basic idea to attenuate this issue would be to consider their uncertainties when generating the background

ensemble. This approach may become limited when the errors in the forcing are very large. it may also lead to unrealistic, even

non-physical, updated Manning coefficient values. Besides, when correcting the model’s parameters, we only re-distribute the

water volume within the basin whilst such types of errors could actually require adding/withdrawing water to/from the system.

The potential solution would then be to include such forcing or LSM variables in the control vector or, to update variables closer20

to the observations, including CTRIP’s state variables such as the water storage. This would change the current framework to

a dual state-parameter estimation approach.

Noting this, there may be an additional advantage in assimilating water anomalies instead of the direct water depths. Com-

paring the Kalman gain between the PE1 experiment (which assimilated direct water depths) and the PE2/PE3 experiments

(whicha ssimilated water anomalies), the gain magnitude for the water anomalies is lower than the water depth gain magni-25

tude. This is to be expected as the Kalman gain is stochastically estimated from an ensemble of model runs and the magnitude

of the simulated water anomalies is lower than the simulated water depth magnitude. The consequence of this lower gain is

that the correction applied to the control variable is also lower. If the convergence towards the true value takes more than one

assimilation cycle, the divergence from it in the presence of bias is also diminished.

Beyond the bias issues, real-data assimilation configuration will raise the question of the unknown true parameter value, if30

it exists. Firstly, there will be no true estimates of the control variables with which to compare the assimilated simulations.

The assimilation will be evaluated against the observed variables directly. Then, with the real data, model structure error will

be introduced. To our knowledge, the model structure error is still a challenging error to estimate and most data assimilation

studies assume no model structure error. However, when using an ensemble-based model, a possibility for dealing with such

structure error is to enrich the background ensemble by considering more uncertainties from variables that are not necessarily35
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in the control vector (including errors in the forcing or parameters from both the LSM and the RRM). The capacity of such

ensembles to tackle model structure errors can be tested using synthetic observations based on a different hydrological model.

Additionally, the real SWOT data will have a finer resolution than the synthetical SWOT data currently used. Still, the coarser

resolution observations are found to provide information to constrain the model and to improve the value of the spatially-

varying Manning coefficients. Then, when moving to real-data assimilation experiments, we can consider averaging the fine-5

scale SWOT product over a coarse grid cell corresponding to an ISBA-CTRIP cell so that the resolution of the observations

and the model matches.

Ultimately, heading towards more realistic experiments also implies more realistic representations of the observation errors.

But more complex errors should be expected for the real SWOT product. Some correlated errors along the swath should be

expected due to the instrument but also to the motion of the satellite and delays due to propagation of the electromagnetic10

waves in the ionosphere and atmosphere. Nevertheless, as part of the mission science requirements, the sum of all errors

should not exceed 10 cm when the measured data is averaged over 1 km2. There should also be additional errors affecting

the observations that can be described as "detectability errors" such as "dark water", "layover" and "false positive". "Dark

water" pixels will result in missing data and will not be included in the assimilation, "layover" pixels will have a higher vertical

error due to surrounding vegetation and topography, but should also be flagged (Biancamaria et al., 2016). Eventually, "false15

positive" pixels (i.e. pixels classified as water, whereas they correspond to land) will be the most complicated to anticipate.

With these additional errors taken into account in the assimilation framework, one could expect a slower convergence of the

control variables. Note that these aspects of the measurement errors are related to water surface elevation products.

8 Conclusions

This study presents a series of OSSE that assimilates SWOT-like synthetic observations of water depths and anomalies into20

the large-scale hydrological model ISBA-CTRIP in order to correct the spatially-distributed Manning coefficient. The study is

applied over the Amazon river basin. Prior to the actual data assimilation experiments, a series of sensitivity tests was conducted

to study the sensitivity of the data assimilation performance to the different features of the EnKF, in particular the size of the

ensemble. Then, three full-year data assimilation experiments were run based on the outcomes of the sensitivity tests. For all

three experiments, the assimilation was able to track back the true value of the Manning coefficient distribution.25

The sensitivity tests successively studied the sensitivity of the data assimilation platform to model spinup period, the experi-

ment starting date through the hydrological year, the size of the ensemble for the EnKF and the initial control variable standard

deviation. These tests showed first of all that a spin up of four windows of 21 days is sufficient for the transitional period due

to a sudden change in the Manning coefficient distribution in the model. The second sensitivity test then demonstrated that the

data assimilation performance is not clearly sensitive to the period of the hydrological year when the experiment is done. The30

next sensitivity test informed us that an ensemble of 25 members was enough to obtain good EnKF performances. Finally, the

last sensitivity test studied the effect of the control variable error standard deviation and the best performances were obtained

20



for prior standard deviation between 0.05 and 0.75, which corresponds to the order of magnitude of the actual error between

the true and openloop control variables.

Using these results, we run three data assimilation experiments over approximately one year (the year 2008). The first

experiment (PE1) assimilated direct pseudo-observations of water depths. Results showed the capability of the data assimilation

algorithm to converge very quickly toward the true value, generally in only one assimilation cycle. Still, during the low flow5

season, the assimilation was less effective in the zones with a clear seasonal cycle. This was explained by the fact that during

this period, water depths are less sensitive to the Manning coefficient.

The two other experiments (PE2 and PE3) introduced and tested the assimilation of water surface anomalies. The anomalies

were obtained by subtracting a yearly-averaged water depth from the current water depth in both the model and the observa-

tions. The first water anomalies assimilation experiment (PE2) provided very good results with all the control variables also10

converging towards their associated true values. However, the convergence was slightly slower than during the assimilation of

the water depth (between 1 and 5 assimilation cycles). This is explained by a lower Kalman gain when updating the Manning

coefficient.

The last experiment also assimilated water anomalies (PE3). For this particular experiment however a bias was artificially

introduced in the river bathymetry. For this experiment, the assimilation was still able to get closer to the true value but, for15

the some zones like the mainstream zones, there was no convergence as the control variables kept varying around the true

value. This phenomenon was explained by the detection of floods in the model but not in the observations. Still, the statistics

of the Manning coefficient distribution and the simulated water depths after assimilation remain as improved compared to the

openloop simulations. Ultimately, these two experiments demonstrated the feasibility of assimilating water surface anomalies

to correct the Manning coefficient.20

These experiments offer several perspectives. They mainly consist of approaching more realistic data assimilation exper-

iments which take into account more sources of uncertainties between the model and the observations, such as correlated

observation errors or uncertainties in the forcing and the LSM surface and sub-surface runoff. To test the platform’s limitations

regarding the DEM/bathymetry bias issue, one can use simulated water surface elevations referenced to a geoid instead of water

depths from the model or even assimilate water depths from another model where the bathymetry differs. As most applications25

generally require a good estimate of the river flow and river water volume, another lead of investigation could maintain the

SWOT-based OSSE framework but correct the simulated water storage and/or discharge, either as a single state estimation

framework or as a dual state-parameter estimation framework (similarly to dual discharge-bathymetry inference methods de-

veloped by Oubanas et al., 2018 and Brisset et al., 2018 for some hydraulic models). Moreover, along with observations of

water surface elevations, SWOT will also provide two-dimensional maps of river widths and surface slopes. One can also study30

the possibility of assimilating such products to constrain other parameters such as the bankful depth that controls the model

flooding scheme.
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Code and data availability. The CTRIP code is open source and is available as a part of the surface modelling platform called SURFEX,

which can be downloaded at http://www.cnrm-game-meteo.fr/surfex/. SURFEX is updated approximately every 3 to 6 months and the CTRIP

version presented in this paper is from SURFEX version 7.3. If more frequent updates are needed, please follow the procedure informing you

of how to obtain a SVN or Git account in order to access real-time modifications of the code (see the instructions inthe previous link). The

ISBA-CTRIP model is coupled to the DA codes via the OpenPalm coupler available at http://www.cerfacs.fr/globc/PALM_WEB/. To get the5

DA routines coupled to ISBA-CTRIP with OpenPalm, please directly contact C. Emery (charlotte.emery@jpl.nasa.gov) or S. Biancamaria

(sylvain.biancamaria@legos.obs-mip.fr). To obtain the GSWP3 forcings, please refer to the following url: http://search.diasjp.net/en/dataset/

GSWP3_EXP1_Forcing (https://doi.org/10.20783/DIAS.501).

Appendix A: Definition of error covariance matrices

The background error cross-covariance matrices [PHT ]e,k and [HPHT ]e,k are defined based on Evensen (2004); Moradkhani10

et al. (2005); Durand et al. (2008) so that:

[PHT ]e,k = (ne− 1)−1
(
Xb

e,k −Xb
•,k.1

T
ne

)(
H(Xb

e,k)−H(Xb
•,k).1

T
ne

)T
, (A1)

and

[HPHT ]e,k = (ne− 1)−1
(
H(Xb

e,k)−H(Xb
•,k).1

T
ne

)(
H(Xb

e,k)−H(Xb
•,k).1

T
ne

)T
. (A2)

In those definitions, Xb
e,k is the control matrix storing the ne control vectors xb,[l]

k , l = 1 . . .ne, from the background ensem-15

ble such that

Xb
e,k =

[
x
b,[1]
k . . . x

b,[Ne]
k

]
.

Next,H(Xb
e,k) represents the same control matrix but mapped into the observation space:

H(Xb
e,k) =

[
H(xb,[1]

k ) . . . H(xb,[ne]
k )

]
.20

Also, Xb
•,k andH(Xb

•,k) are the corresponding ensemble expectations such that

Xb
•,k =

1

ne

ne∑
l=1

x
b,[l]
k H(Xb

•,k) =
1

ne

ne∑
l=1

H(xb,[l]
k ).

These vectors dimension are nx and ny,k respectively. Finally, 1ne
is a vector of size ne containing only 1s.

Appendix B: Spinup sensitivity test additional tables

Table A1 summarizes for each run, the date when the Manning coefficients are changed. The spinup period (expressed as a25

number of windows of 21 days) corresponds to the period between when the Manning distribution is changed and the start of

the second year, i.e. January 1st, 2008.
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Appendix C: Sensitivity tests results per zones

Figure A1 displays the sensitivity tests results (as in Figure 6) but for each zone separately.

Appendix D: Assimilation performances at the zones scales

At each grid-cell of the study domain, we estimated the normalized Root Mean Square Error (RMSEn) before and after

assimilation by comparing the openloop and the mean analysis simulations respectively to the true simulation, for both the5

simulated water depth and discharge:

RMSEni =

√
1
N

∑N
n=1(V

∗
n,i−V t

n,i)
2

V t
.,i

, (D1)

where the state variable V is either the discharge or the water depth, n is the time indice, i is the grid-cell indice, the t superscript

represents the "truth" and the ∗ superscript represents either the openloop or the analysis ensemble average.

Table A2-A3 gives these statistics for all experiments averaged over each control zone. Table A2 shows the water depths10

zone-averaged RMSEn and Table A3 shows the discharge zone-averaged RMSEn.

Appendix E: Assimilation results additional figures

Figure A2 displays the evolution along the assimilation cycles of the averaged innovations. The sign of the innovation will

drive the direction of the correction brought by the assimilation:

- A positive innovation means that the observations are higher than the model. Physically, the simulated flow is too fast15

and the water leaves the river reservoir too quickly. This means that the river Manning coefficient needs to be increased

to slow the flow,

- A negative innovation means that the observations are lower than the model. Physically, the simulated flow is too slow

and the water remains in the river reservoir. This means that the river Manning coefficient needs to be increased to

accelerate the flow.20
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Figure 1. (a) The ISBA-CTRIP system for a given grid cell. ISBA surface runoff (QISBA,sur) flows into the river/surface reservoir S, ISBA

gravitational drainage (QISBA,sub) feeds groundwater reservoirG. The surface water is transferred from one cell to another following the TRIP

river routing network. (b) Hydro-geomorphological areas of the Amazon basin from Emery et al. (2016) with the gauge of Óbidos located

by the white circle at the entry of the zone 3.
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Figure 2. SWOT swaths at ISBA-CTRIP resolution over the Amazon basin.
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Figure 3. Data assimilation framework over the assimilation cycle [k−1, k] including (1) a forecast step to integrate the ensemble of ISBA-

CTRIP simulations, each member having a different spatially-distributed Manning coefficient, (2) an analysis step to correct this ensemble

of Manning coefficients using synthetic observations through the Kalman filter equation and (3) re-run the ISBA-CTRIP model with these

analysis estimates to obtain the updated model states.
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Figure 5. Results for the spinup sensitivity test. Each test run is represented along the x-axis and referenced by its number of spinup windows.

The y-axis displays the number of windows during which the relative difference between the true run and the openloop run in which the

Manning spatial distribution is modified is above the chosen threshold. These statistics are obtained for the discharge (a,c) and the water depth

(b,d) and evaluated over the entire basin (a,b) and at the downstream station of Óbidos (c,d). Note that the vertical dashed line corresponds

to the minimum model spinup period retained in this study.
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Figure 6. (Top) Relative error (to the truth) and (Bottom) dispersion of the analysis control ensemble (averaged over all control variables)

for the sensitivity tests to (a-b) the data assimilation starting date, (c-d) the ensemble size ne, (e-f) the background error standard deviation

σb. For each test, a set of one-cycle-long data assimilation experiments is run.
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Figure 7. Control variables assimilation results for the PE1 experiment: evolution of the ensemble-averaged analysis control variable (red

line) for each zone (one zone per subplot) with respect to the assimilation cycle and compared to the corresponding true value (black line)

and the openloop value (blue line).
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Figure 8. Water depths assimilation results for the PE1 experiment: daily evolution of the ensemble-averaged analysis water depth (red lines)

compared to the true water depths (black lines) and the openloop water depths (blue line). For each zone (one per subplot), the median (full

line), the first decile (dotted line) and the ninth decile (dashed line) of water depth ensemble over all grid cells in the zone are represented.
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Figure 9. Control variables assimilation results for the PE2 and PE3 experiments: evolution of the ensemble-averaged analysis control

variable for the PE2 experiment (orange line) and the PE3 experiment (purple line) for each zone (one zone per subplot) with respect to the

assimilation cycle and compared to the corresponding true value (black line) and the openloop value (blue line).
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Figure 10. Water depths assimilation results for the PE3 experiment: daily evolution of the ensemble-averaged analysis water depth (red

lines) compared to the true water depths (black lines) and the openloop water depths (blue line). For each zone (one per subplot), the median

(full line), the first decile (dotted line) and the ninth decile (dashed line) of water depth ensemble over all grid cells in the zone are represented.
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Parameter Nb run Range

Spinup 18 From 0 window to 17 windows of 21 days

Starting date 17 Starting January 1st, 2008 and on, every 21 days

ne 9 [ 10 20 30 40 50 75 100 150 200 ]

σb 13 [ 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1.0 1.2 1.5 1.75 ]
Table 1. Tested data assimilation parameters in the sensitivity tests.
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Simulation name Observation variables Bathymetry bias

PE1 Water depths No

PE2 Water depth anomalies No

PE3 Water depth anomalies Yes
Table 2. List of data assimilation experiments. All experiments are run over approximately one year (17 cycles of 21 days) starting on January

1st, 2008. The ensemble size is ne = 25, the observation error standard deviation is σo = 0.1 m and the initial control variable error standard

deviation is σb = 0.3.
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Figure A1. (Top) Relative error (to the truth) and (Bottom) dispersion of the analysis control ensemble for each zones for the sensitivity tests

to (a-b) the data assimilation starting date, (c-d) the ensemble size ne, (e-f) the background error standard deviation σb. For each test, a set

of one-cycle-long data assimilation experiments is run. (Top only) The relative error in zone 1 (dark blue line), zone 2 (orange line), zone

3 (yellow line), zone 4 (purple line), zone 5 (green line), zone 6 (light blue line), zone 7 (burgundy red line), zone 8 (pink line) and zone 9

(gray line) are compared to the basin-averaged openloop relative error (black line).
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Figure A2. Evolution of the EnKF innovations ("
(
y
o,[l]
k −Hk(x

b,[l]
k )

)
" term in Eq. 13) with respect to the assimilation cycle for PE1 (red

line), PE2 (orange line) and PE3 (purple line). For each zone (one zone per subplot), the displayed innovation is the averaged of all the

innovations in the corresponding zones.
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Run Starting date Manning distr. change Spinup length (in wdws of 21 days)

Reference Dec 16, 2006 - 18 (=378 days)

1 Dec 16, 2006 Jan 09, 2007 17 (=357 days)

2 Dec 16, 2006 Jan 30, 2007 16 (=336 days)

3 Dec 16, 2006 Feb 20, 2007 15 (=315 days)

4 Dec 16, 2006 Mar 13, 2007 14 (=294 days)

5 Dec 16, 2006 Apr 03, 2007 13 (=273 days)

6 Dec 16, 2006 Apr 24, 2007 12 (=252 days)

7 Dec 16, 2006 May 15, 2007 11 (=231 days)

8 Dec 16, 2006 Jun 05, 2007 10 (=210 days)

9 Dec 16, 2006 Jun 26, 2007 9 (=189 days)

10 Dec 16, 2006 Jul 17, 2007 8 (=168 days)

11 Dec 16, 2006 Aug 07, 2007 7 (=147 days)

12 Dec 16, 2006 Aug 28, 2007 6 (=126 days)

13 Dec 16, 2006 Sept 18, 2007 5 (=105 days)

14 Dec 16, 2006 Oct 09, 2007 4 (=84 days)

15 Dec 16, 2006 Oct 30, 2007 3 (=63 days)

16 Dec 16, 2006 Nov 20, 2007 2 (=42 days)

17 Dec 16, 2006 Dec 11, 2007 1 (=21 days)

18 Dec 16, 2006 Jan 01, 2008 0 (=0 days)
Table A1. Spinup sensitivity test set up: each run consists in an approximately-two-year-long ISBA-CTRIP run starting on Dec 16th, 2006

(column 2) and ending on Dec 22nd, 2008. After a given number of 21-day windows during the first year (column 3), the Manning distribution

is changed to replicate an assimilation update step while the reference run (row 2) used the same Manning for the entire run. The period

between the instant when the Manning distribution is changed and the beginning of the second year of simulation corresponds to the spinup

period (column 4). The simulated water depth/discharge during the second year of run are then compared to the reference run in order to

evaluate the impact of the spin up.
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Zones 1 2 3 4 5 6 7 8 9

Openloop 7.57 28.84 30.28 33.51 33.41 37.15 38.83 11.48 5.23

PE1 0.48 0.27 0.37 0.34 0.53 0.88 0.76 1.11 1.58

PE2 1.34 0.30 1.12 0.90 0.31 1.49 0.91 0.06 1.40

PE3 2.23 3.52 8.31 1.48 0.57 1.39 1.56 1.67 1.46

Table A2. Zone-averaged RMSEn for the openloop water depths (row 2) and the ensemble-averaged analysis water depths (rows 3-5)

compared to the true water depths.
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Zones 1 2 3 4 5 6 7 8 9

Openloop 2.73 4.65 6.46 3.89 5.57 4.63 9.46 3.50 3.26

PE1 0.35 0.38 0.34 0.15 0.25 0.53 0.29 0.30 0.59

PE2 0.74 0.14 0.22 0.08 0.04 0.34 0.85 0.12 0.45

PE3 1.20 4.52 7.52 0.15 0.30 0.35 2.21 1.65 2.14

Table A3. Zone-averaged RMSEn for the openloop discharges (row 2) and the ensemble-averaged analysis discharges (rows 3-5) compared

to the true discharges.
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