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DISCUSSIONS	

The	results	presented	here	are	preliminary	investigations	to	the	assimilation	of	SWOT	water	surface	
elevations	product	 into	a	 large-scale	hydrological	model.	This	 study	 focused	on	 the	correction	of	a	
critical	river	parameter,	the	river	Manning	coefficient.	
	
For	all	 simulations,	 the	Manning	coefficient	distribution	 is	set	 to	be	constant	 in	 time.	For	each	grid	
cell,	one	value	of	the	Manning	coefficient	is	used	for	the	entire	simulation.	However,	 in	reality,	 it	 is	
commonly	accepted	that	this	parameter	could	vary	in	time,	depending	on	the	seasonal	cycle	or	also	
some	 extreme	 hydrological	 event	 such	 as	 large	 flooding	 events,	 which	 can	 even	 modify	 the	
bathymetry	itself	[R#1-m#19].	The	results	showed	that,	for	this	OSSE,	the	data	assimilation	is	able	to	
converge	 quite	 quickly	 towards	 the	 true	 value.	 For	 example,	 for	 the	 left-bank	 tributaries	 zones,	
namely	 zones	 4	 and	 5,	 in	 every	 experiment,	 the	 associated	 control	 variable	 converges	 toward	 the	
true	value	in	only	one	assimilation	cycle.	Then,	in	a	real-case	experiment,	we	could	expect	to	retrieve	
the	temporal	variations	of	the	Manning	coefficient	from	one	assimilation	cycle	to	another.	The	good	
performances	 of	 the	 assimilation	 platform	 are	 mainly	 related	 to	 the	 fact	 that,	 in	 the	 ISBA-CTRIP	
model,	 the	water	depth	diagnostic	variables	are	sensitive	 to	 the	Manning	coefficient	 (Emery	et	al.,	
2016).	 Thus,	 when	 simulated	 water	 depth	 are	 not	 that	 sensitive	 to	 the	 Manning	 coefficient	 (e.g.	
right-bank	 tributary	 zones	during	 the	 low	 flow	season),	 the	data	assimilation	performances	slightly	
degrade.	These	results	are	specific	to	the	ISBA-CTRIP	model.	To	apply	the	same	method	to	another	
model	and	even	another	 region,	one	need	to	 first	 study	 the	sensitivity	of	 the	 (other)	model	 to	 the	
(other)	study	region.	
	
Secondly,	 the	 study	 investigates	 the	 potential	 of	 assimilating	 water	 surface	 anomalies	 instead	 of	
direct	water	surface	elevations.	The	use	of	water	surface	anomalies	 is	driven	by	 the	need	 to	avoid	
potential	 bias	 between	 the	 control	 and	 the	 observed	 variables.	 Indeed,	 a	 bias	 will	 likely	 be	
introduced	 from	 a	 discrepancy	 between	 the	 elevation	 of	 the	 river	 bed	 in	 the	 model	 and	 in	 the	
observations	with	respect	to	a	reference	surface	such	as	a	geoid	or	an	ellipsoid	(see	Figure	4).	Under	
the	assumption	that	the	water	variations	are	the	same	between	the	model	and	the	observations,	the	
use	of	anomalies	as	observed	variables	should	prevent	this	bias	from	affecting	the	results.	
	
Another	likely	bathymetry	error	corresponds	to	error	on	the	river	bankful	depth,	the	river	width	and	
more	generally,	representativeness	errors	due	to	the	use	of	a	simplified	bathymetry	[R#2-M#2].	This	
type	of	error	was	artificially	introduced	by	perturbing	the	model	bankful	depth	in	PE3.	Specifically	to	
ISBA-CTRIP,	the	river	bankful	depth	controls	when	the	model	floods,	which	has	a	direct	impact	on	the	
water	 depth	 dynamics.	 Therefore,	 background	 anomalies	 and	 observed	 anomalies	 may	 present	
different	 dynamics	where	 either	 the	observed	 variables	 flood	while	 the	model	 variables	 do	not	 or	
inversely.	 The	 experiment	 PE3	 illustrated	 the	 effect	 of	 this	 bias	 on	 the	 variations	 of	 Manning	
coefficients.	Instead	of	being	maintained	at	the	true	value,	their	value	slightly	varies	around	the	true	
values	to	account	for	the	difference	in	dynamics	between	the	model	and	the	observations.	However,	
one	could	expect	even	more	variations	in	the	updated	control	variables	around	the	true	value	if	more	
and	 different	 errors	 in	 the	 bathymetry	 exist	 (which	 will	 likely	 happen	 with	 more	 realistic	
experiments)	[R#2-M#2].	
	
Furthermore,	 real-case	experiment	may	suffer	 from	another	 type	of	bias	originating	 from	errors	 in	
the	atmospheric	 forcing	and	 in	 the	surface	and	sub-surface	 runoff	provided	by	 the	LSM	(i.e.	 ISBA).	
Both	 control	 the	 amount	 of	 water	 entering	 the	 river	 system.	 A	 basic	 idea	 to	 attenuate	 this	 issue	
would	 be	 to	 consider	 their	 uncertainties	 when	 generating	 the	 background	 ensemble	 [R#1-m#11].	
This	 approach	may	become	 limited	when	 the	 errors	 in	 the	 forcing	 are	 very	 large	 and	may	 lead	 to	
unrealistic,	 even	 non-physical,	 updated	 Manning	 coefficient	 values.	 Besides,	 when	 correcting	 the	



model’s	 parameters,	 we	 only	 re-distribute	 the	 water	 volume	 within	 the	 basin	 while	 such	 type	 of	
errors	could	actually	require	adding/withdrawing	water	in/from	the	system.	Therefore,	the	potential	
solution	 would	 be	 to	 include	 such	 forcing	 or	 LSM	 variables	 in	 the	 control	 vector	 or,	 to	 update	
variables	closer	to	the	observations,	including	CTRIP’s	state	variables	such	as	the	water	storage.	This	
would	 change	 the	 current	 framework	 to	 a	 dual	 state-parameter	 estimation	 approach	 [R#1-
M#1][R#1-m#18].	
	
Noting	 this,	 there	may	 be	 an	 additional	 advantage	 in	 assimilating	water	 anomalies	 instead	 of	 the	
direct	 water	 depths.	 Comparing	 the	 Kalman	 gain	 between	 the	 PE1	 experiment	 (that	 assimilated	
direct	 water	 depths)	 and	 the	 PE2/PE3	 experiments	 (that	 assimilated	 water	 anomalies),	 the	 gain	
magnitude	 for	 the	 water	 anomalies	 is	 lower	 than	 the	 water	 depth	 gain	 magnitude.	 This	 is	 to	 be	
expected	 as	 the	 Kalman	 gain	 is	 stochastically	 estimated	 from	 an	 ensemble	 of	model	 runs	 and	 the	
magnitude	of	 the	 simulated	water	 anomalies	 is	 lower	 than	 the	 simulated	water	 depth	magnitude.	
The	consequence	of	this	 lower	gain	is	the	correction	applied	to	the	control	variable	is	also	lower.	If	
the	convergence	toward	the	true	value	takes	more	than	one	assimilation	cycle,	the	divergence	from	
it	in	the	presence	of	bias	is	also	diminished.	
	
Beyond	 the	bias	 issues,	 real-data	assimilation	configuration	will	 raise	 the	question	of	 the	unknown	
true	 parameter	 value,	 if	 it	 exists.	 First,	 there	will	 be	 no	 true	 estimates	 of	 the	 control	 variables	 to	
compare	 the	 assimilated	 simulations	 to.	 The	 assimilation	 will	 be	 evaluated	 against	 the	 observed	
variables	directly.	Then,	with	real	data,	model	structure	error	will	be	introduced.	To	our	knowledge,	
the	model	structure	error	 is	still	a	challenging	error	to	estimate	and	most	data	assimilation	studies	
assume	no	model	structure	error.	However,	when	using	ensemble-based	model,	a	possibility	to	deal	
with	 such	 structure	error	 is	 to	enrich	 the	background	ensemble	by	 considering	more	uncertainties	
from	 variables	 that	 are	 not	 necessarily	 in	 the	 control	 vector	 (including	 errors	 in	 the	 forcing	 or	
parameters	 from	 both	 the	 LSM	 and	 the	 RRM).	 The	 capacity	 of	 such	 ensemble	 to	 tackle	 model	
structure	error	can	be	 tested	using	synthetic	observations	based	on	a	different	hydrological	model	
[R#2-M#2].	
	
Additionally,	the	real	SWOT	data	will	have	a	finer	resolution	than	the	synthetic	SWOT	data	currently	
used.	 Still,	 the	 coarser	 resolution	 observations	 are	 found	 to	 provide	 information	 to	 constraint	 the	
model	 and	 improve	 the	 value	of	 the	 spatially-varying	Manning	 coefficients.	 Then,	when	moving	 to	
real-data	assimilation	experiments,	we	 can	 consider	averaging	 the	 fine-scale	 SWOT	product	over	a	
coarse	grid	cell	corresponding	to	an	ISBA-CTRIP	cell	so	that	the	resolution	of	the	observations	and	the	
model	matches.	
	
Ultimately,	 going	 towards	more	 realistic	 experiments	 also	 implies	more	 realistic	 representation	 of	
the	observation	errors.	The	current	study	uses	a	simple	white	noise	model	to	define	the	observation	
errors.	 But	more	 complex	 errors	 should	 be	 expected	 for	 the	 real	 SWOT	 product.	 Some	 correlated	
errors	along	the	swath	should	be	expected	due	to	the	instrument	but	also	to	motion	of	the	satellite	
and	delays	due	 the	propagation	of	 the	electromagnetic	waves	 in	 the	 ionosphere	 and	 atmosphere.	
Nevertheless,	as	part	of	the	mission	science	requirements,	the	sum	of	all	errors	should	not	exceed	10	
cm	when	the	measured	data	is	averaged	over	1	km2.	There	should	also	be	additional	errors	affecting	
the	observations	that	can	be	described	as	"detectability	errors"	such	as	"dark	water",	"layover"	and	
"false	 positive".	 "Dark	 water"	 pixels	 will	 result	 in	 missing	 data	 and	 will	 not	 be	 included	 in	 the	
assimilation;	 "layover"	 pixels	 will	 have	 a	 higher	 vertical	 error	 due	 to	 surrounding	 vegetation	 and	
topography,	but	should	also	be	flagged	(Biancamaria	et	al.,	2016).	Eventually,	"false	positive"	pixels	
(i.e.	 pixels	 classified	 as	 water,	 whereas	 they	 correspond	 to	 land)	 will	 be	 the	most	 complicated	 to	
anticipate.	With	these	additional	errors	taken	into	account	in	the	assimilation	framework,	one	could	
expect	a	slower	convergence	of	the	control	variables.	Note	that	these	aspects	of	the	measurement	
errors	are	related	to	water	surface	elevations	products	[R#1-m#12].	


