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1 Weighting methods 

1.1 Reliability ensemble averaging (REA) 

The reliability ensemble averaging method of Giorgi and Mearns (2002) considers two reliability criteria for a GCM. The 

first one is the model performance criterion that evaluates the ability of a climate model to simulate historical observation, and 

the other is the model convergence criterion that examines the difference of a model to the multi-model mean in the future 10 

period. The reliability factor of a model is defined as 

where ∈ represents the natural climate variability estimated by the interval between the maximum and minimum of 20-year 

moving averages of yearly observation series. 𝐵𝑖  is the bias of a simulation to the observation in terms of the climatological 

mean, and 𝐷𝑖  is the distance between the change of a given model and the REA-weighted mean change. The parameters 𝑚 

and 𝑛 represent the weight assigned to performance and convergence criteria, respectively, and are both set to 1 in this study.  15 

1.2 Weighing scheme accounting for performance and interdependence (PI) 

Since many climate models share similar modules or parts of codes, they cannot be regarded as independent of each other 

as in model democracy. Thus, Knutti et al. (2017) proposed a weighting scheme accounting for both performance and 

interdependencies (PI). The interdependence score I𝑖 of an 𝑖th model is evaluated as 

 
I𝑖 =

1

1 + ∑ 𝑒
−
𝐷𝑖𝑗
2

𝜎𝐷
2𝑁

𝑗≠𝑖

 
(S2) 

where 𝐷𝑖𝑗 measures the distance between the 𝑖th and the 𝑗th model in terms of the climatological mean. The uniqueness radius 20 

𝜎𝐷 determines how strongly the model interdependency criterion is stressed. When a model is far from all the other models, 

its interdependence score becomes larger but no more than 1. The performance score P𝑖 of an 𝑖th model is evaluated as 
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where 𝐵𝑖  measures the distance of the 𝑖th model to the observation in terms of the climatological mean. The skill radius 𝜎𝐵 

determines how strongly the model performance criterion is stressed. The overall score of an 𝑖th model is calculated by 

multiplying its interdependence score and performance score as follows:  

Two parameters, 𝜎𝐷 and 𝜎𝐵, are measured by the multiples of the median distances across all model pairs, and are chosen 

by visual inspection based on two standards. First, the choice of 𝜎𝐷 should attempt to guarantee that the group of models that 5 

are known to be similar (i.e. MIROC-ESM-CHEM, MIROC-ESM and MIROC5 in this study) should gain an I𝑖 about 1/𝑘 (𝑘 

is the number of alike models) (Sanderson et al., 2017). Second, 𝜎𝐵 is sampled via perfect model tests (cross validation), in 

which each model is alternatively regarded as the truth model and the others are used to calculate the PI weights (Knutti et al., 

2017). The determination of 𝜎𝐷 should attempt to guarantee that 80% of the truth models fall into the 10-90% range projected 

by the corresponding weighted ensemble in the future period. For the Manicougan-5 watershed, 𝜎𝐷 = 0.35 and 𝜎𝐵 = 2. For 10 

the Xiangjiang watershed, 𝜎𝐷 = 0.25 and 𝜎𝐵 = 2.8. 

1.3 Representation of the annual cycle (RAC) 

The skill score of representation of the annual cycle (RAC) is developed based on the Taylor diagram, which is used to 

indicate the similarity between a climate simulation series and an observation series (Taylor, 2001). The RAC method can be 

expressed as the following 4th order formulation. 15 

where 𝑟 is the correlation coefficient between the monthly observed and simulated series, and 𝑟0 is the maximum correlation, 

which is set to 1 in this study. The parameter 𝜎 = 𝜎𝑠 𝜎𝑜⁄  is the ratio between the standard deviation of a monthly simulated 

series and that of a monthly observed series. 

1.4 Upgraded reliability ensemble averaging (UREA) 

Since the REA method may artificially reduce uncertainty by its convergence criterion and only consider one metric (i.e. 20 

climatological mean), Xu et al. (2010) proposed upgraded reliability ensemble averaging (UREA) to eliminate the model 

convergence criterion and to introduce other statistics. Even though multiple climate variables were simultaneously evaluated 

by multiplying their skill scores in Xu et al. (2010), this study individually evaluated each variable as follows.  

where 𝐵𝑎,𝑖 and 𝐵𝑣,𝑖 are the biases of a climate simulation in the average and variance, respectively. ∈𝑎 and ∈𝑣 represent the 

natural climate variability in terms of annual average and inter-annual variation, respectively. The variation is measured by the 25 

standard deviation for temperature series and by the coefficient of variation for precipitation and runoff series. The parameters 

𝑚1 and 𝑚2 represent the weight assigned to two metrics and are both set to 1 in this study. 

 PI𝑖 = P𝑖 × I𝑖 (S4) 
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1.5 Bayesian model averaging (BMA) 

Bayesian model averaging (BMA) is a statistical inference approach to obtain probabilistic forecasts from multi-model 

ensemble simulations based on Bayes theory. BMA has been used to develop probabilistic predictions for ensembles of weather 

forecasting models, climate models or hydrological predictions (Duan et al., 2007; Min et al., 2007; Raftery et al., 2005). 

Denote 𝑦 as the variable to be predicted, 𝐷 = [𝑦1
𝑜 , 𝑦2

𝑜 , … , 𝑦𝑇
𝑜] as the observed series with a length of 𝑇, and 𝑓 = [𝑓1, 𝑓2, … , 𝑓𝑁] 5 

as the ensemble of series simulated by climate models. Based on the total probability rule, the probability density function of 

the prediction 𝑝(𝑦|𝐷) can be presented as follows. 

where each simulation 𝑓𝑖  is associated with a conditional probability density function, 𝑝𝑖(𝑦|𝑓𝑖, 𝐷) , which represents the 

conditional distribution of 𝑦 on 𝑓𝑖, given that 𝑓𝑖 is regarded as the best simulation for 𝐷. The posterior probability 𝑝(𝑓𝑖|𝐷) 

represents the likelihood that a simulation is the right simulation. It can also be seen as the weight, 𝑤𝑖 = 𝑝𝑖(𝑦|𝑓𝑖 , 𝐷), which 10 

reflects the capability of a simulation to reproduce the observation. Then, the posterior mean is as follows. 

As the use of BMA in Duan et al. (2007), this study assumed that 𝑝𝑖(𝑦|𝑓𝑖, 𝐷) consists of a Gaussian distribution; monthly 

data series were then adopted as model simulated series 𝑓𝑖. For the variables that do not follow a Gaussian distribution (i.e. 

precipitation and streamflow in this study), the Box-Cox transformation was used to transform the variables before the BMA 

algorithm. This study used the Expectation-Maximization algorithm to solve the BMA weights. More details of this algorithm 15 

can be found in Duan et al. (2007). 

1.6 Climate prediction index (CPI) 

The Climate prediction index (CPI) was introduced by Murphy et al. (2004) to weight climate models based on their 

relative reliability to correctly simulate climate observation. Assuming that the simulated variable belongs to the Gaussian 

distribution, the likelihood of a simulated statistic is proportional to the following equation. 20 

where the climatological mean of a simulated series 𝑠𝑖 is assumed to have a Gaussian distribution with an expectation of 𝑜𝑖  

(the observational climatological mean) and a variance simply estimated by 𝜎𝐴𝑁𝑁
2  (the inter-annual variance of the simulated 

series). 

1.7 Evaluation of the probability density function (PDF) 

Perkins et al. (2007) proposed a skill score to evaluate climate models’ ability to reproduce the probability density functions 25 

(PDF) of observation. Expressed formally, the skill score of a climate simulation is given as 

 𝑝(𝑦|𝐷) =∑𝑝(𝑓𝑖|𝐷) ∙ 𝑝𝑖(𝑦|𝑓𝑖 , 𝐷)
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where the probability density function of simulated or observed daily series is separated into 𝐾 bins, and 𝑍𝑠 and 𝑍𝑜 represent 

the frequency in a given bin, respectively. 
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Figure S1. Weights assigned 8 weighting methods based on raw temperature (RT) and precipitation (RP) of GCM outputs and bias-

corrected temperature (DT) and precipitation (DP) of GCM outputs for two watersheds. (Equal weight is presented in white, weights 

larger than equal are presented in red, and weights lower than equal are in blue.) 
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Figure S2. The envelope of monthly mean streamflows simulated by 29 raw and bias-corrected GCM outputs and the multi-model 

ensemble means of monthly mean streamflows weighted by 8 weighting methods based on raw temperature (RT) and precipitation 

(RP) of GCM outputs in both watersheds for the reference period (OBS = the hydrograph simulated from meteorological 

observation). 5 
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Figure S3. Bias in mean annual streamflow, mean peak streamflow and mean center of timing of annual flow (tCMD) simulated 

using 29 raw or bias-corrected GCM outputs and the multi-model means (MMM) combined by weights based on raw temperature 

(RT) and raw precipitation (RP) in both watershed for the reference period. (The depth of pink in bars of MMM represents the level 

of inequality of weights as indicated in Table 3.) 5 
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Figure S4. Box plot of changes in four hydrological indices simulated by raw GCM-simulated streamflows over both watersheds. 

The changes of hydrological variables were sampled through the Monte-Carlo approach based on the weights calculated using raw 

temperature (RT) and precipitation (RP) of GCM outputs. (The depth of pink represents the level of inequality of weights.) 
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