
Response to Editor 

Comments to the Author: 

Dear authors, 

three reviewers have given feedback on your manuscript. The reviewers give generally very 

positive feedbacks and state they were intrigued by the analysis and results. All find that it is a 

timely and valuable contribution to the field of global hydrology. The paper is well structured 

and written. The reviewers have also given constructive feedback and criticism and you have 

addressed several of those comments in your response.  

I agree with the assessment of the reviewers on the merit and novelty of the presented analysis. 

I would however like to emphasize one point: All of the reviewers comment, in one way or the 

other, on the fact that the results hinge upon the correctness of the CDR dataset. In your 

response you emphasize how carefully the CDR dataset was developed and validated, and also 

your own efforts to validate e.g. the standard deviation of E. I appreciate this. However, some 

of the standard variations in the dataset are not yet validated. I agree with reviewer #2 (René 

Orth) that a cross-validation would be desirable to learn whether the observed variance patterns 

are a property of the CDR dataset or hold with other datasets. At the very least, and since the 

main message of the manuscript is a call for investigation into the causes of the observed 

hydroclimatic variability, the discussion should more than now acknowledge to that fact that 

any efforts towards validation of those patterns are equally warranted. 

Please submit the revised manuscript, with changes highlighted, together with a point by point 

response to all of the reviewers comments. 

I thank both the authors and reviewers for the constructive discussion and look forward to the 

revised manuscript, 

Anke Hildebrandt. 

Response: We thank the editor for the evaluation and comment on the manuscript. As 

suggested by the editor and reviewers, we have carefully read and revised the manuscript 

accordingly as well as conducted a point-by-point response to all the comments.  

The main comment here is a further cross-validation of the CDR data results based on 

atmospheric reanalysis (e.g., the state-of-the-art ERA5 dataset). As suggested by both editor 

and R2, in this response we report a comparison of the CDR (P, E, Q and ∆S) with the same 

from the recently released ERA5. We found P to be similar in both CDR and ERA5, but we 

found E and Q to be generally much higher in ERA5 compared to CDR (please see details in 

response to R2C3). As a consequence, in ERA5 we found that the sum of E and Q regularly 

exceeded P by large amounts. For example, in the Amazon, E and Q exceeded P by up to 1000 

mm each and every year. So over a 27 year period, the predicted decline in storage in the 

Amazon region embedded in ERA5 approached 27000 mm (27 m)! This represents a major 

problem in the mass balance (or a lack of mass balance) in the ERA5 reanalysis and is 

physically not plausible. In contrast, over ice covered regions (e.g., Greenland), the hydrologic 

balance implied a continuing gain in storage of roughly similar magnitudes (i.e., 27 m in 27 

years). Again, this is also physically not plausible.  



Though the ERA5 is the state-of-the-art atmospheric reanalysis, we concluded that there was a 

major problem with the hydrologic (mass) balance and that the “atmospheric-centric” ERA5 

database was not yet suitable for use in hydrologic studies. 

As suggested by the editor, we also added the statement about the importance towards further 

improvement and validation of the patterns obtained in this manuscript in the revised 

manuscript. 

Another important point raised by the reviewers (R2, R3) were (divergent) criticisms of the 

summary sections of the original manuscript. After carefully looking at comments from R2 and 

R3 and the structure and content of the original manuscript, we concluded that the underlying 

problem was that the original Discussion and Conclusions were repetitive and generally not 

well formulated. In response, we decided to combine the original sections (sections 5 and 6) 

into a new single section 5 (Discussion and Conclusions), and have streamlined the text 

accordingly by integrating the comments by reviewers. We believe that this has made the 

summary section more concise and that this change has substantially improved the manuscript. 

We sincerely appreciate both the editor and reviewers for constructive suggestions and 

comments on the manuscript.  

 

Response to Referee #1 (Anonymous) 

In the following we use R1C1 (etc) to refer to comment 1 (C1) by referee 1 (R1). 

 

R1C1: This is an excellent paper with major implications to our understanding of long term 

water balance and their climatic and landscape controls. 

Response: We thank the anonymous reviewer for the evaluation and positive comment on the 

manuscript.  

 

R1C2: This kind of work could not have been even just a few years ago, but as more and more 

reanalysis data become available the ability to do this kind of work and learn from it improves 

(given the caveat that this is ultimately model generated data, but the best we have). 

I have no problems with the analyses that have been done, and the presentation. The authors 

use monthly data but the analysis is about inter-annual variability, although they do use the 

monthly data to estimate the storage capacity. I would like to see a categorical statement about 

this, I found it confusing. This means they only have 28 years of data (28 numbers) - they need 

to make an assessment/statement about the implications of this for their estimates of the various 

statistics, given potential non-stationarities etc. 

Response: In this initial investigation, we use the CDR (monthly database) and as the reviewer 

has noted this is an entirely new field of research since global hydrologic reanalysis data has 

not previously been available. We chose to focus on the inter-annual variability to establish 

links directly with important earlier work on this topic (e.g., Koster & Suarez, 1999). We plan 

to extend this work to a seasonal time scale in future research. To eliminate the potential 

confusion, we made a statement as the reviewer suggested in the revised version of manuscript: 



(Lines 100-101): “In this study we focus on the inter-annual variability and the monthly water 

cycle variables (P, E, Q and ∆S) are aggregated to annual totals.”. Also, another statement 

about the limitations of 27-year study period has be added in the revision (Lines 457-460): 

“The CDR is one of the first dedicated hydrologic reanalysis databases and includes data for 

a 27-year period. Accordingly, we could only examine hydrologic variability over this 

relatively short period. Further, we expect future improvements and modifications as the 

hydrologic community seeks to further develop and refine these new reanalysis databases.”. 

Thanks. 

 

R1C3: The main issue that I have with the paper is that (as the authors themselves admit) is the 

preliminary nature of the discussion and conclusions. The results, to say the least, are quite 

interesting and intriguing. Without further analysis, one can only speculate. The dependence 

on storage capacity and temperature are potential clues. This is a concern for me - one solution 

is to delay the paper until further analysis is done to elucidate these results. It seems the main 

route to explanations is to use the monthly data that they already have, to see if there is an 

extension of the variances and especially cross-covariances into the seasonal regime. In other 

words, I am speculating if the causes of the inter-annual variability lie in the intra-annual 

variability of the fluxes and the storage, and in the role of vegetation (and soils) buffering the 

variability in the climate. 

Response: We agree with R1 about the likely importance of the seasonal (i.e. intra-annual) 

cycle to further explain these results. However, given the new approach developed in this 

manuscript we deliberately chose to publish the somewhat simpler inter-annual results first.  

 

Please also see R1C2.  

 

R1C4: For now there is a decision to be made - I am comfortable with going ahead with 

publication of the current paper (in spite of its preliminary nature) in view of the fact 

publication of the paper may trigger follow-on research by other research groups as well. 

Response: We appreciate the comments of the reviewer.  

  



Response to Referee #2 (Dr René Orth) 

R2C1: Review of Dongqin and Roderick “Inter-annual variability of the global terrestrial cycle” 

This study investigates the propagation of precipitation variability into the water cycle, i.e. into 

variations of runoff, evapotranspiration, and of storage changes. The authors show that this is 

mostly controlled by temperature (in wet regions), long-term aridity (in transitional regions), 

and by soil water storage capacity (in dry regions). Further, the results illustrate that the 

corresponding partitioning is different from the partitioning of mean precipitation into the 

means of these water cycle variables. 

——————- 

Recommendation: I think the paper requires major revisions. 

The analysis is very interesting and provides new and fundamental insights into large- scale 

land surface hydrology. Related variability analyses are still not commonly done due to a lack 

of reliable data and underlying theory. This study can foster theory development in this area, 

and it underlines the importance of continuous improvement of the just-emerging global 

hydrological re-analysis datasets. Therefore I would be happy to see it published in HESS, but 

after some general revisions. 

Response: We thank R2 for the evaluation and helpful comments on the manuscript. 

 

R2C2:  (1) Next to the consideration of the soil water storage capacity and the mean 

temperature to explain variations in the partitioning of precipitation variability, I am missing 

the inclusion of vegetation type as an explanatory variable. It might have strong implications 

on evapotranspiration variability, and therefore also on runoff and storage variabilities. 

Response: We agree with Dr René Orth that the inter-annual variability might be related to the 

other factors, e.g., vegetation type. However, given the fact that this is a new approach and the 

research is exploratory, we focused on relating the inter-annual variability with the most 

general hydrologic factors (i.e., the air temperature as a surrogate for snow/ice and water 

storage capacity). We expect to extend the current work to a more complete analysis (e.g., 

relation to vegetation) in future research and we hope others will follow by examining factors 

like vegetation since this will require the effort of many scientists.  

 

R2C3:  (2) I agree with the authors that comprehensive hydrological reanalysis datasets are 

lacking, and the CDR dataset is an important contribution in that respect. Further, I appreciate 

the effort they make to validate the applicability of the dataset in the context of this study. 

However, also the CDR dataset is (necessarily) based on a model and hence it is not clear that 

the reported relationships are operating in nature, and not only in this model. To address this 

issue, I would like to see the key analyses from this study repeated with the state-of-the-art 

ERA5 reanalysis, which should be superior to ERA-Interim also in terms of land surface 

representation. 



Response: As suggested by both R2 and the editor, we have compared the CDR (P, E, Q and 

∆S) with the same from the recently released ERA5. For this comparison, we use the same 

1984-2010 period. We downloaded monthly P, E and Q (denoted as total runoff and calculated 

by ERA5 as surface plus sub-surface runoff) from the ERA5 website. The water storage change 

(∆S) is not included in the ERA5 database, and we calculated it using mass balance for each 

individual month during 1984-2010. We then conducted further analysis and found P to be 

similar in both CDR and ERA5 (Fig. R1). However, we found E and (especially) Q to be 

generally much higher in ERA5 compared to CDR (Figs. R2-R3). This has important 

consequences for the change in storage as described below. 

 

Figure R1. Comparison of monthly precipitation P between ERA5 and CDR databases. Top 

panels (a) (b) show comparison of the mean monthly (�̅�) while bottom panels (c) (d) show 

comparison of the standard deviation (𝜎𝑃) of monthly P. 



 

Figure R2. The same as Fig. R1 but using monthly evapotranspiration E from ERA5 and CDR 

databases. 

 

Figure R3. The same as Fig. R1 but using monthly runoff Q from ERA5 and CDR databases. 

 



While the comparison with P (CDR vs ERA5 is reasonable, i.e., slope of the regression in Fig. 

R1a = 1.0), we find that E from ERA5 is on average 25% larger (i.e. slope is 0.8, see Fig. R2a) 

than E in CDR. Further, Q from ERA5 is on average 75% larger (i.e., slope is 0.57, see Fig. 

R3a) than Q in CDR. Now we know that in CDR, the mass balance was enforced. The obvious 

implication from these regressions is that in ERA5 the sum of E and Q must substantially 

exceed P. 

To further evaluate ERA5, we then integrated the monthly data to annual totals. Visually, the 

results visually show similar global spatial patterns of long-term mean P, E and Q in the ERA5 

database (see the Fig. R4a-c) to those in the CDR database (see Fig. 1 in the revised manuscript). 

However, as noted above, the long-term mean annual water storage change (∆S, Fig. R4d) 

implied by ERA5 showed evidence of a major problem with the local hydrology. In particular, 

most regions of the earth surface show very large negative values for ∆S, e.g., in the Amazon 

long term mean annual ∆S is around -1000 mm. The implication is that over the 27-year period 

(1984-2010), the annual storage change in ERA5 over the Amazon region is -1000 mm every 

year and this equal 27 meters of storage change over the full period. This occurs in ERA5 

because the sum of long-term mean annual E and Q is substantially greater than P in the 

Amazon. This is physically not plausible. The same problem holds for many other warm 

regions. In contrast, over the ice covered regions (e.g., Greenland), the hydrologic balance 

implied a continuing gain in storage. Again, this is physically not plausible.  

 

Figure R4. Mean annual (1984-2010) (a) P, (b) E, (c) Q and (d) ∆S in the ERA5 database. 
 

Though the ERA5 is the state-of-the-art atmospheric reanalysis, we concluded that there was a 

major problem with the hydrologic (mass) balance and that the “atmospheric-centric” ERA5 

database was not yet suitable for use in hydrologic studies. 

Returning to the suitability of the CDR database and its relation to the real world, there is ample 

evidence that it is suitable for the analysis conducted here including: 



(i) The enforcement of basic hydrologic concepts (mass balance). 

(ii) The numerous tests of CDR reported in the original Zhang et al 2018 HESS 

publication (that are summarized on lines 134-139 of the HESSD manuscript). 

Those tests include a (successful) comparison of CDR runoff to observations of 

monthly runoff at 165 medium size basins and 862 small basins. In fact, the 

assessment of CDR in the original paper was quite comprehensive as you would 

expect.  

(iii) We have augmented those extensive original tests by independently comparing 

monthly E with FLUXNET tower data at 32 sites which confirmed that the CDR 

captured the general seasonal cycle in both P and E at those 32 sites (Fig. S3, S4, 

S5, Table S1 in the revised manuscript). We also used the same FLUXNET data to 

compare the variability in P with variability in E (Fig. S6 in the revised manuscript). 

(iv) We further compared CDR E with two gridded E databases that are not included in 

the source databases of CDR (LandFluxEval, MPI, see lines 159-166 in the revised 

manuscript and Fig. S7, S8) and the comparison was satisfactory. 

(v) We compared how the standard deviation for E and the mean for E are related in 

the CDR (Fig. 4 in the revised manuscript) and compared that with the same 

relations in LandFluxEval and MPI (Fig. S10 in the revised manuscript). Those two 

comparisons were satisfactory. 

(vi) The mean water cycle (P, E, Q) in CDR was shown to be consistent with the long-

standing Budyko framework (Fig. 2 in the revised manuscript). 

(vii) The CDR data were consistent with the Koster & Suarez (1999) theory in the limit 

of sites that have limited water storage (Fig. 5 in the revised manuscript).  

That is a very comprehensive assessment.  

Further, we readily acknowledge that the CDR database is the first hydrologic reanalysis and 

we expect more ‘hydrologic-centered’ databases to compare it to in the near future. For that 

reason we chose to only investigate the most general factors that we believe will stand the test 

of time and we have also described the study as an initial exploratory survey at several places 

in the manuscript. 

 

R2C4:  (3) I appreciate the idea of investigating the influence of the soil water storage 

capacity and the mean temperature on the variability partitioning. However, I think parts of the 

conclusions drawn by the authors from Figures 8-10 are not supported by the data. For example, 

I cannot see in Figure 10 that the temperature influence is particularly strong in very wet 

regions. Rather, to me it seems to be strong in moderately wet and dry regions (Fig 

10b,d,f,h,j,l,n,p). Further, also the aridity limit of 6 which the authors suggest in their 

interpretation of the results in Figure 9, is arbitrary and not supported by the actual results.  

Storage capacity is obviously having an influence already for aridity values above 2-3 (Fig. 

9b,c,f,j,k). Overall, in these Figures there are many interesting patterns but the authors focus 

only on few sub-plots and limit their interpretation to these. Therefore, I suggest to either show 

less information/sub-plots there, or to develop explanations also for patterns emerging within 

other sub-plots. 



Response: We accept that Fig. 10 (Fig. 8 in the revised manuscript) is hard to interpret. On 

reading the reviewers comments and going over the manuscript we realize the problem was 

that we did not explicitly indicate the relevant panels (i.e., a, b, c, ….) and the text was not 

well-formulated. This was an oversight correctly identified by the reviewer. In general, the data 

in Fig. 10 was not particularly revealing (i.e., a negative result) but we actually focused the 

discussion to the first and third columns but we did not identify them properly. In response, we 

replaced the original text with the following (lines 307-314): 

“To understand the potential role of snow/ice in modifying the variance partitioning, we repeat 

the previous analysis (Fig. 7) but here we use the mean annual air temperature (𝑇𝑎̅̅ ̅) to colour 

the grid-cells to (crudely) indicate the presence of snow/ice (Fig. 8). The results are complex 

and not easy to simply understand. The most important difference revealed by this analysis is 

in the hydrologic partitioning between cold (first column) and hot (third column) conditions in 

wet environments (𝐸𝑜̅̅ ̅/�̅� ≤  0.5). In particular, when 𝑇𝑎̅̅ ̅  is high, 𝜎𝑃
2  is almost completely 

partitioned into 𝜎𝑄
2 in wet environments (e.g., 𝐸𝑜̅̅ ̅/�̅� ≤ 0.5, Fig. 8g). In contrast, when 𝑇𝑎̅̅ ̅ is low 

in a wet environment (𝐸𝑜̅̅ ̅/�̅� ≤ 0.5 in first column of Fig. 8), there are substantial variations in 

the hydrologic partitioning. That result reinforces the complexity of variance partitioning in 

the presence of snow/ice.” 

 

R2C5:  (4) The paper contains (too) many figures, which is diluting the main message(s), I 

feel. For example, Figures 1 and 2 could be merged, Figure 5 could be moved to the 

supplementary material, Figure 13 could be merged into Figure 8. The authors might have 

further ideas to reduce the amount of figures. Moreover, I do not really understand the 

difference between Figures 7 and 8, and why both are needed. 

I do not wish to remain anonymous - René Orth. 

Response: We respect the reviewer’s opinion that we have too many figures – this is always a 

hard balance to get right to everyone’s satisfaction. We have moved the original Fig. 1 and Fig. 

5 to the supporting material as suggested. There are now 12 figures in the revised manuscript 

with another 12 in the supporting material. However, we do not think the original Fig. 13 (Fig. 

11 in the revision) should be merged into original Fig. 8 (Fig. 6 in the revision) since the two 

figures belong to different sections (original Fig. 8 for the relation between variance 

partitioning and aridity section, original Fig. 13 for the case study section). Original Fig. 7 

(Fig.5 in the revision) is a direct link to previous work while original Fig. 8 is the variance 

partitioning in the CDR database. Hence while these two figures are similar, they make separate 

independent contributions to the manuscript.  

 

—————— 

Specific comments: 

R2C6:  line 8: Equation 2 not introduced yet line 13: It should be ‘variabilities’. 

Response: We have deleted the text ‘Eq. 2’ and changed ‘the variability…’ to ‘that 

variability…’ to make the text clear to understand in the revised version of manuscript. Thanks. 



R2C7:  line 15: Some word is missing towards the end of the line 

Response: We have checked line 15 in the original manuscript and did not find missing words? 

R2C8:  lines 35-39:  Orth & Destouni (2018) might be relevant in this context and could be 

cited. 

Response: The reference has now been cited in the revised manuscript. 

R2C9:  line 37: Not sure I get the point here. 

Response: We mean that droughts and floods are typical extremes but that hydrologic 

variability encompasses more than just droughts and floods, i.e., hydrologic variability occurs 

across all time-space scales. 

R2C10:  lines 106-118: Please clarify that what you are determining here is actually not the 

soil water storage capacity, but rather the active range within which the soil moisture varies. 

Response: Yes, exactly. We have modified the text and state the calculation to make this 

explicit in Lines 108-110 in the revised manuscript: “For the storage, the active range of the 

monthly water storage variation was used to approximate the water storage capacity (Smax).”. 

R2C11:  lines 157-163: I would recommend to replace the LandFluxEVAL and the Jung et al. 

datasets with more recent gridded ET datasets such as the Jung et al.  2019 dataset and the 

GLEAM dataset (Martens et al. 2017). 

Response: The reason we chose the LandFluxEVAL and MPI databases is that they are among 

the most widely used and validated E data that were also not used to develop the CDR database. 

We do not think adding a comparison to the latest GLEAM database would be as useful since 

an earlier version of GLEAM (v2a) was actually an input to the data assimilation scheme used 

to construct the CDR (see Table 1 in Zhang et al., 2018, HESS). Instead, the more appropriate 

approach would be to revise the CDR data assimilation but incorporating the latest GLEAM 

database but that is well beyond the scope of this work. (Also see R2C3 for similar comments 

about ERA.) We could replace the MPI we used with the updated database (Jung et al., 2019) 

but we do not see how that would alter the results.  

R2C12:  line 180: Gudmundsson et al.  (2016) might be relevant in this context and could be 

cited. 

Response: The reference has been cited in the revised manuscript. Thanks. 

R2C13:  line 181: What is meant by seasonality here?  I thought you are considering annual 

data?  In general, I think the considered temporal and spatial scales and resolution need to be 

more clearly stated and motivated at the beginning of the manuscript. Also, the role of these 

decisions on the results could be discussed. 

Response: Yes, we are using annual data. But we know that differences of the intra-year 

seasonal timing (phase) of precipitation and Eo do have an effect on the annual water balance 

(as per the seminal work by Chris Milly in the early 1990s.). To make this more clear, we have 

added a statement in in the revised manuscript (Lines 100-101): “In this study we focus on the 

inter-annual variability and the monthly water cycle variables (P, E, Q and ∆S) to annual 

totals.” 



Given the initial stage for this type of research and our plan to include the seasonal variations 

in future work (also see R1C2 and R1C3), a statement has been added in the revised manuscript 

(Lines 505-508): “That result demonstrates that deeper understanding of the process-level 

interactions that are embedded within each of the three covariance terms (e.g., the role of 

seasonal vegetation variation) will be needed to develop process-based understanding of 

variability in the water cycle in these biologically productive regions (0.5<𝐸𝑜̅̅ ̅/�̅� <1.5).”.  

R2C14:  line 252/253:  I could not find this discussion in section 5!?  Would be important to 

explain these discrepancies, though. 

Response: Thanks for pointing this oversight out. The underlying scientific issue here is that 

the original Koster and Suarez (1999) work assumed negligible water storage change. In that 

sense the original results of Koster and Suarez (1999) can be seen as an upper limit and any 

variance in storage can only reduce the partitioning of variability in P to variability in E under 

dry conditions (Fig. 7). We have added a short discussion on this in the revised manuscript 

(Lines 488-492): “This result explains the overestimation of 𝜎𝐸/𝜎𝑃 by the empirical theory of 

Koster and Suarez (1999) which implicitly assumed no inter-annual change in storage. The 

Koster and Suarez empirical theory is perhaps better described as an upper limit that is based 

on minimal storage capacity, and that any increase in storage capacity would promote the 

partitioning of 𝜎𝑃
2 to 𝜎∆𝑆

2  particularly under dry conditions (Figs. 10-12).”. 

R2C15:  line 327 & 333: ‘leaving very limited variance’ - not really true given your statement 

in lines 385-387 

Response: 

 

The text here refers to the site-based case studies (line 327 – Fig. 12a (Fig. 10 in the revised 

manuscript) – Site 1; line 333 – Fig. 12 f – Site 3) while the later text (lines 385-387) refers to 

the general pattern across all grid-boxes, i.e., Fig. 4 (Fig. 3 in the revised manuscript). We have 

corrected this misunderstanding by rewriting lines 385-387 (lines 470-478 in revised 

manuscript) to indicate the relevant figures as follows: 



“With that in mind, we were surprised that the inter-annual variability of water storage change 

(𝜎∆𝑆
2 ) is typically larger than the inter-annual variability of evapotranspiration (𝜎𝐸

2) (cf. Fig. 

3b and 3d). The consequence is that 𝜎∆𝑆
2  is more important than 𝜎𝐸

2 for understanding inter-

annual variability of global water cycle. A second important generalisation is that unlike the 

variance components which are all positive, the three covariance components in the theory 

(Eq. 2) can be both positive and negative. We report results here showing both large positive 

and negative values for the three covariance terms (Fig. 3efg). This was especially prevalent 

in biologically productive regions (0.5<𝐸𝑜̅̅ ̅/�̅�<1.5, Fig. 3eg).” 

R2C16:  lines 403-405: I cannot see this from Figure 8. 

Response: Agreed. That was our mistake. The reference to Fig. 8 (Fig. 6 in the revised 

manuscript) should be to Fig. 4 (Fig. 3 in the revised manuscript, global pattern of water cycle 

variability) and we have revised that in the revision. 

R2C17:  Section 5: Overall a bit lengthy with too much summarizing, I think. Could be shorter,  

and more concise. 

Response: Both R2 & R3 (see R3C4) had divergent views about the summary sections of our 

original manuscript.  

After looking at both comments (R2, R3) and the structure of the original manuscript, we 

concluded that the original Discussion and Conclusions sections were repetitive and not well 

formulated.  

In response, we have combined the original sections into a single section 5 (Discussion and 

Conclusions) and have streamlined the text accordingly. We believe that this has substantially 

improved the manuscript. 

R2C18:  Figure 3: Why are there data points outside the physically plausible range? 

Response: We assume you mean points with E exceeding P?  This is possible in for example, 

regions with run-on, or irrigation. We have further investigated those points and also find that 

some of them come from the parts of Greenland that had not been masked out (Fig. 1).  

R2C19:  Figure 4:  Many values seem to be cut at 10 as this is the end of the color bar.  You    

could use log scale here for the color bar. 

Response: Yes, the scale for P in Fig. 4a (new Fig. 3a in the revised manuscript) is saturated 

with the maximum value of the color bar 10,000. The reason we chose 10,000 as the limit was 

to show the patterns for both the relatively high (e.g., 𝜎𝑃
2, 𝜎𝑄

2 and 𝜎Δ𝑆
2 ) and low variabilities 

(e.g., 𝜎𝐸
2, 2cov(E, ΔS)) while keeping the same scale for all panels. We have tried to modify 

this figure by using a log scale (see Fig. R5) to mitigate saturation, but it made the spatial 

patterns very difficult to distinguish compared with Fig. 3 in the revised manuscript (original 

Fig. 4) especially for the covariance panels (Fig. R5e-g). Therefore, we thought it better to keep 

the original legend in Fig. 3. 



 

Figure R5. Water cycle variances (𝜎𝑃
2, 𝜎𝐸

2, 𝜎𝑄
2, 𝜎∆𝑆

2 ) and covariances (𝑐𝑜𝑣(𝐸, 𝑄), 𝑐𝑜𝑣(𝐸, ∆𝑆), 

𝑐𝑜𝑣(𝑄, ∆𝑆)). Note that we have multiplied the covariances by two (see Eq. 2).  

 

Figure 3 (original Figure 4). Water cycle variances (𝜎𝑃
2 , 𝜎𝐸

2 , 𝜎𝑄
2 , 𝜎∆𝑆

2 ) and covariances 

(𝑐𝑜𝑣(𝐸, 𝑄), 𝑐𝑜𝑣(𝐸, ∆𝑆), 𝑐𝑜𝑣(𝑄, ∆𝑆)). Note that we have multiplied the covariances by two 

(see Eq. 2).  

 

R2C20:  References: 
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G. Tramontana,  and  M.  Reichstein,  2019:  The  FLUXCOM  ensemble  of global land-
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Response: We appreciate Dr René Orth for listing all the reference mentioned above in the 

comments, and we have read and cite these reference accordingly in the revised manuscript. 

Thanks. 

 

  



Response to Referee #3 (Anonymous) 

R3C1: This study tries to partition the inter-annual variability  in  precipitation  (P),  i.e.,  the 

source term in terrestrial water cycle, into variabilities in three sink terms in terrestrial water 

cycle (ET, Q, ∆S), and then to relate the partitioning of variabilities to various  factors like 

temperature, aridity, and storage capacity. I think this type of study at global scale is rather 

new, if not first of its kind at global scale, and thus very interesting to the hydrology community. 

This is the case mostly because there has been a lack of “hydrologic reanalysis” (CDR) for 

such kind of analysis in the first place. At the same time, this effort couldn’t fully answer many 

of the questions set forth at the beginning, leaving perhaps “more questions than answers” (as 

phrased by another referee). The authors have done a solid amount of thorough analysis and 

experiments toward the questions of interest and these analyses are also well designed too. 

Overall I consider this manuscript of good quality, both scientifically and technically, and thus 

publishable in HESS with several concerns addressed. 

Response: We agree that this is a first-of-its-kind study and thank the referee for the 

encouraging positive comments on the manuscript. 

 

R3C2: My primary concern is there is a lack of general “signal-to-noise” discussions to better 

inform readers to what extent the findings are significant signals from the underlying data 

(CDR, Zhang et al., 2018) and how much of it could be due to data uncertainties (or possible 

artifacts due to how the data is produced). For example, the ET products that went into the 

CDR (satellite products, reanalysis, etc.) share some similarity in their production methods 

(e.g., Penman-Monteith or Priestley-Taylor type of schemes). Such similarity may limit the 

variability of ET in CDR. Of course, the plants do apply a strong filter on the inter-annual 

variability based on their survival need.  Such uncertainty analysis may be difficult but I think 

some qualitative and general assessment would be very beneficial. 

Response: The CDR uses a formal data assimilation scheme based on mass balance that 

weights the various inputs, and thereby produces uncertainty estimates for each variable (P, E, 

Q, ∆S). The original paper (Zhang et al., 2018 HESS) includes a formal assessment of the 

sensitivity of P, E, Q over large regions (continents, basins) using the coefficient of variation 

(see original Figures 2, 3, 4, 5, 6, 7 in Zheng et al., 2018 HESS). We actually followed from 

that work and used those uncertainty estimates (lines 124-132 in the revised manuscript) to 

identify and mask out regions where the uncertainty was large relative to the magnitude of the 

fluxes. This screening procedure removed most grid-boxes from the Himalayas, Sahara Desert 

and Greenland (see Fig. S2 in the revised manuscript).  

Secondly, while it is true that some of the products might share similarity in producing, for 

example, E (Penman-Monteith, Priestley-Taylor as the examples noted by the reviewer) the 

data assimilation is a comprehensive approach that includes all available estimates of P, E, Q 

and ∆S at each grid box. With mass balance enforced, the CDR estimates represent a composite 

product that is designed to avoid bias of the type described by the reviewer as much as possible 

by using all available estimates of the hydrologic fluxes. As we have described in a response 

to Reviewer 2 (see R2C3), the CDR has been extensively validated in the original publication. 



In that context, our goal was not to assess the CDR, but rather to use it for this “first-of-a-kind” 

study on the sources and sinks of inter-annual hydrologic variability.  We have added words at 

the end of the manuscript that we expect further improvement and validation of obtained 

patterns (Lines 459-460): “Further, we expect future improvements and modifications as the 

hydrologic community seeks to further develop and refine these new reanalysis databases.”. 

 

R3C3: Also, at the scale of the CDR (0.5 degree), I would say the partitioning is more 

complicated than just a result of several factors. The horizontal transport of water, seasonality, 

local water use, etc., can add a lot of noise. I wouldn’t say it is not possible to do it at 0.5 degree, 

but it would probably be less noisy at a slightly coarser scale. Also, there could be much more 

controlling factors for the partitioning than being investigated, e.g., land cover/land use, LAI, 

topography. 

Response: We agree with the reviewer that the partitioning is complex and could be related to 

the other factors, e.g., land cover/land use, LAI and horizontal transport of water due to 

topography, etc. In this first-of-a-kind analysis we chose to focus on the zero’th order physical 

factors (storage capacity, snow/ice) at the CDR data resolution (0.5 degree), but we fully expect 

more detailed analysis to follow, e.g., vegetation plant-based variables as discussed by the 

reviewer. We have added new text in the last paragraph of section 4.5 that speculates on the 

important role of vegetation processes that addresses this comment by R3. We have also 

emphasized that again in the final concluding paragraph of the manuscript. 

 

R3C4: Finally, given that this study does tend to raise more questions than answers, I feel the 

authors should provide some more insights on what we can do from the analysis and findings 

in this study. What can we do with the numbers concluded here? Validating models? Improving 

single models like Budyko? Hydrologic/water risk analysis?  Climate system 

behavior/sensitivity and hydrologic impacts of climate changes? And how can we improve our 

understanding in the future? What kind of new data at what scales would be critical to 

answering such questions? I feel this paper is incomplete without offering some of such insights. 

Response: Please also see R2C17. 

In further response, we have modified the final paragraph to set out a rough guideline for future 

research (lines 511-515): “The hydrologic data needed to understand hydrologic variability 

are only now becoming available. With those data we can begin to develop a process-based 

understanding of hydrologic variability that can be used for a variety of purposes, e.g., deeper 

understanding of hydro-climatic behaviour, hydrologic risk analysis, climate change 

assessments and hydrologic sensitivity studies are just a few applications that spring to mind.”.  
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Abstract: 

Variability of the terrestrial water cycle, i.e., precipitation (P), evapotranspiration (E), runoff (Q) and water storage 1 

change (∆S) is the key to understanding hydro-climate extremes. However, a comprehensive global assessment 2 

for the partitioning of variability in P between E, Q and ∆S is still not available. In this study, we use the recently 3 

released global monthly hydrologic reanalysis product known as the Climate Data Record (CDR) to conduct an 4 

initial investigation of the inter-annual variability of the global terrestrial water cycle. We first examine global 5 

patterns in partitioning the long-term mean �̅� between the various sinks �̅�, �̅� and ∆𝑆̅̅̅̅  and confirm the well-known 6 

patterns with �̅� partitioned between �̅� and �̅� according to the aridity index. In a new analysis based on the concept 7 

of variability source and sinks (Eq. 2) we then examine how variability in the precipitation 𝜎𝑃
2  (the source) is 8 

partitioned between the three variability sinks 𝜎𝐸
2, 𝜎𝑄

2 and 𝜎∆𝑆
2  along with the three relevant covariance terms, and 9 

how that partitioning varies with the aridity index. We find that the partitioning of inter-annual variability does 10 

not simply follow the mean state partitioning. Instead we find that , with 𝜎𝑃
2 is mostly partitioned between 𝜎𝑄

2, 𝜎∆𝑆
2  11 

and the associated covariances. We also find that the magnitude of the covariance components can be large and 12 

often negative, indicating that e variability in the sinks (e.g., 𝜎𝑄
2, 𝜎∆𝑆

2 ) can, and regularly does, exceed variability 13 

in the source (𝜎𝑃
2). Further investigations under extreme conditions revealed that in extremely dry environments 14 

the variance partitioning is closely related to the water storage capacity. With limited storage capacity the 15 

partitioning of  𝜎𝑃
2 is mostly to 𝜎𝐸

2, but as the storage capacity increases the partitioning of 𝜎𝑃
2 is increasingly 16 

shared between 𝜎𝐸
2, 𝜎∆𝑆

2  and the covariance between those variables. In other environments (i.e., extremely wet 17 

and semi-arid/semi-humid) the variance partitioning proved to be extremely complex and a synthesis was has  not 18 

been developed. We anticipate that a major scientific effort will be needed to develop a synthesis of hydrologic 19 

variability. 20 

  21 
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1. Introduction 22 

 23 

In describing the terrestrial branch of the water cycle, the precipitation (P) is partitioned into evapotranspiration 24 

(E), runoff (Q) and change in water storage (∆S). With averages taken over many years, ∆𝑆̅̅̅̅  is usually assumed to 25 

be zero and it has long been recognized that the partitioning of the long-term mean annual precipitation (�̅�) 26 

between �̅� and �̅� was jointly determined by the availability of both water (�̅�) and energy (represented by the net 27 

radiation expressed as an equivalent depth of water and denoted 𝐸𝑜
̅̅ ̅) fluxes. Using data from a large number of 28 

watersheds, Budyko (1974) developed an empirical relation relating the evapotranspiration ratio (�̅�/�̅�) to the 29 

aridity index (𝐸𝑜
̅̅ ̅/�̅�). The resultant empirical relation and other Budyko-type forms (e.g., Fu, 1981; Choudhury, 30 

1999; Yang et al., 2008, Roderick and Farquhar, 2011; Sposito, 2017) that partition P between E and Q have 31 

proven to be extremely useful in both understanding and characterising the long-term mean annual hydrological 32 

conditions in a given region. 33 

 34 

However, the long-term mean annual hydrologic fluxes rarely occur in any given year. Instead, society must 35 

(routinely) deal with variability around the long-term mean. The classic hydro-climate extremes are droughts and 36 

floods but the key point here is that hydrologic variability is expressed on a full spectrum of time and space scales. 37 

To accommodate that perspective, we need to extend our thinking beyond the long-term mean to ask how the 38 

variability of P is partitioned into the variability of E, Q and ∆S (e.g., Orth and Destouni, 2018).?  39 

 40 

Early research on hydrologic variability focussed on extending the Budyko curve. In particular, Koster and Suarez 41 

(1999) used the Budyko curve to investigate analyse inter-annual variability in the water cycle. In their framework, 42 

the evapotranspiration standard deviation ratio (defined as the ratio of standard deviation for E to P, 𝜎𝐸/𝜎𝑃) was 43 

(also) estimated using the aridity index (𝐸𝑜
̅̅ ̅/�̅�). The classic Koster and Suarez framework has been widely applied 44 

and extended in subsequent investigations of the variability in both E and Q, using catchment observations, 45 

reanalysis data and model outputs (e.g., McMahon et al., 2011; Wang and Alimohammadi 2012; 46 

Sankarasubramanian and Vogel, 2002; Zeng and Cai, 2015). However, typical applications of the Koster and 47 

Suarez framework have previously been at regional scales and there is still no comprehensive global assessment 48 

for the partitioning the of variability of P into the variability of E, Q and ∆S. One reason for the lack of a global 49 

comprehensive assessment is the absence of gridded global hydrologic data. Interestingly, the atmospheric science 50 
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community have long used a combination of observations and model outputs to construct gridded global –scale 51 

atmospheric re-analyses and such products have become central to atmospheric research. Those atmospheric 52 

products also contain estimates of some of the key water cycle variables (e.g., P, E), such as in the widely used 53 

interim ECMWF Re-Analysis (ERA-Interim; Dee et al. 2011). However, the central aim of atmospheric re-54 

analysis is to estimate atmospheric variables, which, understandably, ignores many of the nuances of soil water 55 

infiltration, vegetation water uptake, runoff generation and many other processes of central importance in 56 

hydrology. 57 

  58 

Hydrologists have only recently accepted the challenge of developing their own re-analysis type products with 59 

perhaps the first serious hydrologic re-analysis being published as recently as a few years ago (Rodell et al., 2015). 60 

More recently, the Princeton University group has extended this early work by making available a gridded global 61 

terrestrial hydrologic re-analysis product known as the Climate Data Record (CDR) (Zhang et al., 2018). Briefly, 62 

the CDR was constructed by synthesizing multiple in-situ observations, satellite remote sensing products, and 63 

land surface model outputs to provide gridded estimates of global land precipitation P, evapotranspiration E, 64 

runoff Q and total water storage change ∆S (0.5° × 0.5°, monthly, 1984-2010). In developing the CDR, the authors 65 

adopted local water budget closure as the fundamental hydrologic principle. That approach presented one 66 

important difficulty. Global observations of ∆S start with the GRACE satellite mission from 2002. Hence before 67 

2002 there is no direct observational constraint on ∆S and the authors made the further assumption that the mean 68 

annual ∆S over the full 1984-2010 period was zero at every grid-box. That is incorrect in some regions (e.g. 69 

Scanlon et al., 2018) and represents an observational problem that cannot be overcome. However, our interest is 70 

in the year-to-year variability and for that application, the assumption of no change in the mean annual ∆S over 71 

the full 1984-2010 period is unlikely to lead to major problems since we are not looking for subtle changes over 72 

timethe full time series. With that caveat in mind, the aim of this study is to use this new 27-year gridded 73 

hydrologic re-analysis product to conduct an initial investigation of the inter-annual variability of the terrestrial 74 

branch of the global water cycle.  75 

 76 

The paper is structured as follows. We begin in Section 2 by describing the various climate and hydrologic 77 

databases including a further assessment of the suitability of the CDR database for this initial variability study. In 78 

Section 3, we examine relationships between the mean and variability in the four water cycle variables (P, E, Q 79 
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and ∆S). In Section 4, we first relate the variability to the classical aridity index and then use those results to 80 

evaluate the theory of Koster and Suarez (1999). Subsequently we examine how the variance of P is partitioned 81 

into the variances (and relevant covariances) of E, Q and ∆S and undertake an initial survey that investigates some 82 

of the factors controlling the variance partitioning. We conclude finalise the paper with a discussion summarising 83 

what we have learnt about water cycle variability over land by using the CDR database. 84 

 85 

2. Methods and Data 86 

2.1 Methods 87 

The water balance is defined by, 88 

𝑃(𝑡) = 𝐸(𝑡) + 𝑄(𝑡) + ∆𝑆(𝑡)                                                           (1) 89 

with P the precipitation, E the evapotranspiration, Q the runoff and ∆S the total water storage change in time 90 

step t. By the usual variance law, we have, 91 

𝜎𝑃
2 = 𝜎𝐸

2 + 𝜎𝑄
2 + 𝜎Δ𝑆

2 + 2𝑐𝑜𝑣(𝐸, 𝑄) + 2𝑐𝑜𝑣(𝐸, ∆𝑆) + 2𝑐𝑜𝑣(𝑄, ∆𝑆)                            (2) 92 

that includes all relevant variances (denoted 𝜎2) and covariances (denoted cov). Eq. (1) is the familiar hydrologic 93 

mass balance equation. In that context, Eq. (2) can be thought of as the hydrologic variance balance equation. 94 

 95 

2.2 Hydrologic and Climatic Data 96 

 97 

We use the recently released global land hydrologic re-analysis known here as the Climate Data Record (CDR) 98 

(Zhang et al., 2018). This product includes global precipitation P, evapotranspiration E, runoff Q and water storage 99 

change ∆S (0.5° × 0.5°, monthly, 1984-2010). In this study we focus on the inter-annual variability and the 100 

monthly water cycle variables (P, E, Q and ∆S) are aggregated to annual totals. The CDR does not report additional 101 

radiation ve variables and we use the NASA/GEWEX Surface Radiation Budget (SRB) Release-3.0 (monthly, 102 

1984-2007, 1  1) database (Stackhouse et al., 2011) to calculate Eo (defined as the net radiation expressed as 103 

an equivalent depth of liquid water, Budyko, 1974). We then calculate the aridity index (𝐸𝑜
̅̅ ̅/�̅�) using P from the 104 

CDR and Eo from the SRB databases (see Fig. S1a in the Supplementary Material).  105 

 106 

On general grounds, we anticipate that two important factors likely to influence control the partitioning of 107 

hydrologic variability were the water storage capacity and the presence of ice/snow at the surface. For the storage, 108 
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the active range of the monthly water storage variation was used to approximately we estimaterepresent the water 109 

storage capacity (Smax) in this studyusing the monthly ∆S data in CDR database. In more detail, tThe water storage 110 

S(t) at each time step t (monthly here) was first calculated from the accumulation of ∆S(t), i.e., S(t) = S(t-1) + ∆S(t) 111 

where we assumed zero storage at the beginning of the study period (i.e., S(0) = 0). With the resulting time series 112 

available, Smax was estimated as the difference between the maximum and minimum S(t) during the study period 113 

at each grid-box (see Fig. S1b in the Supplementary Material). The estimated Smax shows a large range from 0 to 114 

1000 mm with the majority of values from 50 to 600 mm (Fig. S1b), which generally agrees with global rooting 115 

depth estimates assuming that water occupies from 10 to 30% of the soil volume at field capacity (Jackson et al., 116 

1996; Wang-Erlandsson et al., 2016; Yang et al., 2016). To characterise snow/ice cover, and to distinguish 117 

extremely hot and cold regions, we also make use of a gridded global land air temperature dataset from the 118 

Climatic Research Unit (CRU TS4.01 database, monthly, 1901-2016, 0.5  0.5) (Harris et al., 2014). (see Fig. 119 

S1c in the Supplementary Material). 120 

 121 

2.3 Spatial Mask to Define Study Extent 122 

 123 

The CDR database provides an estimate of the uncertainty (± 1) for each of the hydrologic variables (P, E, Q, 124 

∆S) in each month. We use those uncertainty estimates to identify and remove regions with high relative 125 

uncertainty in the CDR data. The relative uncertainty is calculated as the ratio of root mean square of the 126 

uncertainty (± 1𝜎) to the mean annual P, E and Q at each grid-box following the procedure used by Milly and 127 

Dunne (2002a). Note that the long term mean ∆S is zero by construction in the CDR database, and for that reason 128 

we did not use ∆S to calculate the relative uncertainty. Grid-boxes with a relative uncertainty (in P, E and Q) of 129 

more than 0.1 10% are deemed to have high relative uncertainty (Milly and Dunne, 2002a) and were excluded 130 

from the study extent. The excluded grid-boxes were mostly in the Himalayan region, the Sahara Desert and in 131 

Greenland. The final spatial mask is shown in Fig. 1Fig. S2 and this has been applied throughout this study. 132 

 133 
2.4 Further Evaluation of CDR Data for Variability Analysis 134 

 135 

In the original work, the CDR database was validated by comparison with independent observations including (i) 136 

mean seasonal cycle of Q from 26 large basins (see Fig. 8 in Zhang et al., 2018), (ii) mean seasonal cycle of ∆S 137 

from 12 large basins (Fig. 10 in Zhang et al., 2018), (iii) monthly runoff from 165 medium size basins and a 138 
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further 862 small basins (Fig. 14 in Zhang et al., 2018), (iv) summer E from 47 flux towers (Fig. 16 in Zhang et 139 

al., 2018). Those evaluations did not directly address variability in various water cycle elements. With our focus 140 

on the variability we decided to conduct further validations of the CDR database beyond those described in the 141 

original work. In particular, we focussed on further independent assessments of E and we use monthly (as opposed 142 

to summer) observations of E from FLUXNET to evaluate the variability in E. We also compare the CDR with 143 

two other gridded global E products that were not used to develop the CDR including the LandFluxEval database 144 

(1° × 1°, monthly, 1989-2005) (Mueller et al., 2013) and the Max Planck Institute database (MPI, 0.5° × 0.5°, 145 

monthly, 1982-2011) (Jung et al., 2010) product.  146 

 147 

For the comparison to FLUXNET observations (Baldocchi et al., 2001; Agarwal et al., 2010) we identified 32 148 

flux tower sites (site locations are shown in Fig. S2Fig. S3 and details are shown in Table S1) having at least three 149 

years of continuous (monthly) measurements using the FluxnetLSM R package (v1.0) (Ukkola et al. 2017). The 150 

monthly totals and annual climatology of P and E from CDR generally follow FLUXNET observations, with high 151 

correlations and reasonable Root Mean Square Error (Figs.  S4-S5S3-S4, Table S1). Comparison of the point-152 

based FLUXNET (~ 100 m – 1 km scale) with the grid-based CDR (~ 50 km scale) is problematic since the CDR 153 

represents an area that is at least 2500 times larger than the area represented by the individual FLUXNET towers 154 

and we anticipate that the CDR record would be “smoothed” relative to the FLUXNET record. With that in mind, 155 

we chose to compare the ratio of the standard deviation of E to P between the CDR and FLUXNET databases and 156 

this normalised comparison of the hydrologic variability proved encouraging (Fig. S5Fig. S6).  157 

 158 

The comparison of E between the CDR and the LandFluxEval and MPI databases also proved encouraging. As a 159 

further evaluation, we compare gridded E data in the CDR database against two other global E databases 160 

(including i.e., LandFluxEVAL (1° × 1°, monthly, 1989-2005) (Mueller et al., 2013) and Max Planck Institute 161 

(MPI), 0.5° × 0.5°, monthly, 1982-2011) (Jung et al., 2010) that were not used to construct the CDR database. We 162 

found that the monthly mean E from the CDR database is slightly underestimated compared with LandFluxEVAL 163 

database (Fig. S6Fig. S7a), but agrees closely with the MPI database (Fig. S7Fig. S8a). In terms of variability, the 164 

standard deviations of monthly E from the CDR are in very close agreement with the LandFluxEVAL database 165 

(Fig. S7c) but there was a bias and scaling offset for the comparison with the MPI database (Fig. S8c).  166 

 167 
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slightly different than those in the MPI database (Fig. S7Fig. S8c) but were in very close agreement with the 168 

LandFluxEVAL database (Fig. S6Fig. S7c). WIn summary, we concluded that while the the CDR database was 169 

unlikely to be perfect, it was nevertheless suitable suitable for an initial exploratory survey investigation of the 170 

inter-annual variability in the terrestrial branch of the global water cycle. 171 

 172 

3. Mean and Variability of Water Cycle Components 173 

3.1 Mean Annual P, E, Q and the Budyko Curve 174 

 175 

The global pattern of mean annual P, E, Q using the CDR data (1984-2007) is shown in Fig. 2Fig. 1. The mean 176 

annual P (�̅�) is prominent in tropical regions, southern China, eastern and western North America (Fig. 2Fig. 1a). 177 

The magnitude of mean annual E (�̅�) more or less follows the pattern of �̅� in the tropics (Fig. 2Fig. 1b) while the 178 

mean annual Q (�̅�) is particularly prominent in the Amazon, South and Southeast Asia, tropical parts of west 179 

Africa and in some other coastal regions at higher latitudes (Fig. 2Fig. 1c).  180 

 181 

We relate the grid-box level ratio of �̅� to �̅� in the CDR database to the classical Budyko (1974) curve using the 182 

aridity index (𝐸𝑜
̅̅ ̅/�̅�) (Fig. 3Fig. 2a). As noted previously, in the CDR database, ∆𝑆̅̅̅̅  is forced to be zero and this 183 

enforced steady state (i.e., �̅� =  �̅� + �̅� ) allowed us to also predict the ratio of  �̅� to �̅� using the same Budyko 184 

curve (Fig. 3Fig. 2b). The Budyko curves follow the overall trend in the CDR data, which agrees with previous 185 

studies showing that the dominant effect of aridity index can be used to predict on water availability (e.g., 186 

Gudmundsson et al., 2016). However, there is substantial scatter due to, for example, regional variations related 187 

to seasonality, water storage change and the physics of runoff generation (Milly, 1994a, b). With that caveat in 188 

mind, tThe overall patterns are as expected with �̅� following �̅� in dry environments (𝐸𝑜
̅̅ ̅/�̅� > 1.0) while �̅� follows 189 

𝐸𝑜
̅̅ ̅  in wet environments (𝐸𝑜

̅̅ ̅/𝑃 ̅ ≤ 1.0) (Fig. 3Fig. 2). 190 

 191 

3.2 Inter-annual Variability in P, E, Q and ∆S 192 

 193 

We use the variance balance equation (Eq. 2) to partition the inter-annual 𝜎𝑃
2 into separate components due to 𝜎𝐸

2, 194 

𝜎𝑄
2, 𝜎∆𝑆

2  along with the three covariance components (2𝑐𝑜𝑣(𝐸, 𝑄), 2𝑐𝑜𝑣(𝐸, ∆𝑆), 2𝑐𝑜𝑣(𝑄, ∆𝑆)) (Fig. 4Fig. 3). The 195 

spatial pattern of 𝜎𝑃
2 (Fig. 4Fig. 3a) is very similar to that of �̅� (Fig. 2Fig. 1a), which implies that the 𝜎𝑃

2 is 196 

positively correlated with �̅�. In contrast the partitioning of 𝜎𝑃
2 to the various components is very different from 197 
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the partitioning of �̅� (cf. Fig. 2Fig. 1 and 43). First we note that while the overall spatial pattern of 𝜎𝐸
2 more or 198 

less follows  𝜎𝑃
2, the overall magnitude of 𝜎𝐸

2 is much smaller than 𝜎𝑃
2 and 𝜎𝑄

2 in most regions, and in fact 𝜎𝐸
2 is 199 

also generally smaller than 𝜎∆𝑆
2 . The prominence of 𝜎∆𝑆

2  (compared to 𝜎𝐸
2) surprised us. The three covariance 200 

components (𝑐𝑜𝑣(𝐸, 𝑄) , 𝑐𝑜𝑣(𝐸, ∆𝑆) , 𝑐𝑜𝑣(𝑄, ∆𝑆) ) are also important in some regions. In more detail, the 201 

𝑐𝑜𝑣(𝐸, 𝑄) term is prominent in regions where 𝜎𝑄
2 is large and is mostly negative in those regions (Fig. 4Fig. 3e), 202 

indicating that years with lower E are associated with higher Q and vice-versa. There are also a few regions with 203 

prominent positive values for 𝑐𝑜𝑣(𝐸, 𝑄) (e.g., the seasonal hydroclimates of northern Australia) indicating that in 204 

those regions, years with a higher E are associated with higher Q. The 𝑐𝑜𝑣(𝐸, ∆𝑆) term (Fig. 4Fig. 3f) has a similar 205 

spatial pattern to the 𝑐𝑜𝑣(𝐸, 𝑄) term (Fig. 4Fig. 3e) but with a smaller overall magnitude. Finally, the 𝑐𝑜𝑣(𝑄, ∆𝑆) 206 

term shows a more complex spatial pattern, with both prominent positive and negative values (Fig. 4Fig. 3g) in 207 

regions where  𝜎𝑄
2 (Fig. 4Fig. 3c) and 𝜎∆𝑆

2  (Fig. 4Fig. 3d) are both large. 208 

 209 

These results show that the spatial patterns in variability are not simply a reflection of patterns in the long-term 210 

mean state. On the contrary, we find that of the three primary variance terms, the overall magnitude of (inter-211 

annual) 𝜎𝐸
2  is the smallest implying the least (inter-annual) variability in E. This is very different from the 212 

conclusions based on spatial patterns in the mean P, E and Q (see previous section 3.1). Further, while 𝜎𝑄
2 more 213 

or less follows 𝜎𝑃
2 as expected, we were surprised by the magnitude of 𝜎∆𝑆

2  which, in general, substantially exceeds 214 

the magnitude of 𝜎𝐸
2. Further, the magnitude of the covariance terms can be important, especially in regions with 215 

high 𝜎𝑄
2. However, unlike the variances, the covariance can be both positive and negative and this introduces 216 

additional complexity. For example, with a negative covariance it is possible for the variance in Q (𝜎𝑄
2) to exceed 217 

the variance in P (𝜎𝑃
2). To examine that in more detail we calculated the equivalent frequency distribution for each 218 

of the plots in Fig. 4Fig. 3. The results (Fig. 5Fig. S9) further emphasise that in general, 𝜎𝐸
2 is the smallest of the 219 

variances (Fig. 5Fig. S9b). We also note that the frequency distributions for the covariances (Fig. 5Fig. S9efg) are 220 

not symmetrical. In summary, it is clear that spatial patterns in the inter-annual variability of the water cycle (Fig. 221 

4Fig. 3) do not simply follow the spatial patterns for the inter-annual mean (Fig. 2Fig. 1). 222 

 223 

3.3 Relation Between Variability and the Mean State for P, E, Q 224 

 225 
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Differences in the spatial patterns of the mean (Fig. 2Fig. 1) and inter-annual variability (Fig. 4Fig. 3) in the global 226 

water cycle led us to further investigate the relation between the mean and the variability for each separate 227 

component. Here we relate the standard deviation (𝜎𝑃, 𝜎𝐸, 𝜎𝑄) instead of the variance to the mean of each water 228 

balance flux (Fig. 6Fig. 4) since the standard deviation has the same physical units as the mean making the results 229 

more comparable. As inferred previously, we find 𝜎𝑃 to be positively correlated with �̅� but with substantial scatter 230 

(Fig. 6Fig. 4a). The same result more or less holds for the relation between 𝜎𝑄 and �̅� (Fig. 6Fig. 4c). In contrast 231 

the relation between 𝜎𝐸 and �̅� is very different (Fig. 6Fig. 4b). In particular, 𝜎𝐸 is a small fraction of �̅� and this 232 

complements the earlier finding (Fig. 6Fig. 4b) that the inter-annual variability for E is generally smaller than for 233 

the other physical variables, (P, Q or and ∆S). (The same result was also found using both LandFluxEVAL and 234 

MPI databases, see Fig. S8Fig. S10 in the Supplementary Material.) Importantly, unlike P and Q, E is constrained 235 

by both water and energy availability (Budyko, 1974) and the limited inter-annual variability in E presumably 236 

reflects limited inter-annual variability in the available (radiant) energy (Eo). This is something that could be 237 

investigated in a future study. 238 

 239 

4. Relating the Variability of Water Cycle Components P E, Q and ∆S to Aridity 240 

 241 

In the previous section, we investigated spatial patterns of the mean and the variability in the global water cycle. 242 

In this section, we extend that by investigating the partitioning of 𝜎𝑃
2 to the three primary physical terms (𝜎𝐸

2, 𝜎𝑄
2, 243 

𝜎∆𝑆
2 ) along with the three relevant covariances. For that, we begin by comparing the Koster and Suarez (1999) 244 

theory against the CDR data and then investigate how the partitioning of the variance is related to the aridity index 245 

𝐸𝑜
̅̅ ̅/�̅� (see Fig. S1a in the Supplementary Material). Following that, we investigate variance partitioning in relation 246 

to both our estimate of the storage capacity Smax (see Fig. S1b in the Supplementary Material) as well as the mean 247 

annual air temperature 𝑇𝑎
̅̅̅ (see Fig. S1c in the Supplementary Material) that we use as a surrogate for snow/ice 248 

cover. We finalise this section by examining the partitioning of variance at three selected study sites that represent 249 

extremely dry/wet, high/low water storage capacity and the hot/cold spectrums. 250 

 251 

4.1 Comparison with the Koster and Suarez (1999) Theory 252 

 253 

We first evaluate the classical empirical curve of Koster and Suarez (1999) by relating ratios 𝜎𝐸/𝜎𝑃 and 𝜎𝐸/𝜎𝑃 to 254 

the aridity index (Fig. 7Fig. 5). The ratio 𝜎𝐸/𝜎𝑃 in the CDR database is generally overestimated by the empirical 255 
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Koster and Suarez curve, especially in dry environments (e.g., 𝐸𝑜
̅̅ ̅/�̅� > 3) (Fig. 5a). The inference here is that the 256 

Koster and Suarez theory predicts 𝜎𝐸/𝜎𝑃 to approach unity in dry environments while the equivalent value in the 257 

CDR data is occasionally unity but is generally smaller. With 𝜎𝐸/𝜎𝑃 generally overestimated by the Koster and 258 

Suarez theory we expect, and find, that 𝜎𝑄/𝜎𝑃 is generally underestimated by the same theory (Fig. 7Fig. 5b). The 259 

same overestimation was found based on the other two independent databases for E (LandFluxEVAL and MPI) 260 

(Fig. S9Fig. S11). This overestimation is discussed further in section 5.  261 

 262 

4.2 Relating Inter-annual Variability to Aridity 263 

 264 

Here we examine how the fraction of the total variance in precipitation accounted for by the three primary variance 265 

terms along with the three covariance terms varies with the aridity index (𝐸𝑜
̅̅ ̅/�̅�) (Fig. 8Fig. 6). (Also see Fig. 266 

S10Fig. S12 for the spatial maps.) The ratio 𝜎𝐸
2/𝜎𝑃

2 is close to zero in extremely wet regions and has an upper 267 

limit noted previously (Fig. 7Fig. 5a) that approaches unity in extremely dry regions (Fig. 8Fig. 6a). The ratio 268 

𝜎𝑄
2/𝜎𝑃

2 is close to zero in extremely dry regions but approaches unity in extremely wet regions but with substantial 269 

scatter (Fig. 8Fig. 6b). The ratio 𝜎∆𝑆
2 /𝜎𝑃

2 is close to zero in both extremely dry/wet regions (Fig. 8Fig. 6c) and but 270 

shows the largest range at an intermediate aridity index (𝐸𝑜
̅̅ ̅/�̅� ~ 1.0).  271 

 272 

The covariance ratios are all small in extremely dry (e.g., 𝐸𝑜
̅̅ ̅/�̅� ≥6.0) environments and generally show the largest 273 

range in semi-arid and semi-humid environments. The peak magnitudes for the three covariance components 274 

consistently occur when 𝐸𝑜
̅̅ ̅/�̅�  is close to 1.0 which is the threshold often used to separate wet and dry 275 

environments.  276 

 277 

4.3 Further Investigations on the Factors Controlling Partitioning of the Variance 278 

 279 

Results in tThe previous section results (Sections 4.1 and 4.2) have demonstrated that spatial variation in the 280 

partitioning of 𝜎𝑃
2 into 𝜎𝐸

2, 𝜎𝑄
2, 𝜎∆𝑆

2  and the three covariance components is complex (Fig. 6). To help further 281 

understand inter-annual variability of the terrestrial water cycle, we conduct further investigations in this section 282 

using two factors likely to have a major influence on the variance partitioning of 𝜎𝑃
2. The first is the storage 283 

capacity Smax (see Fig. S1b in the Supplementary Material). The second is the mean annual air temperature 𝑇𝑎
̅̅ ̅ (see 284 

Fig. S1c in the Supplementary Material) which is used here as a surrogate for snow/ice presence.  285 
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 286 

4.3.1 Relating Inter-annual Variability to Storage Capacity 287 

 288 

We first relate the partitioning of 𝜎𝑃
2 to water storage capacity (Smax) by repeating Fig. 8Fig. 6 but instead we use 289 

a logarithmic scale for the x-axis and we distinguish Smax via the background colour (Fig. 9Fig. 7). To eliminate 290 

the possible overlap of grid-cells in the colouring process, all the grid-cells over land are further separated using 291 

different latitude ranges (as shown in the four columns of Fig. 9Fig. 7), i.e., 90N-60N, 60N-30N, 30N-0 and 0-292 

90S. We find that Smax is relatively high in wet environments (𝐸𝑜
̅̅ ̅/�̅� ≤1.0, Fig. 7a) but shows no obvious relation 293 

to with the partitioning of 𝜎𝑃
2. However, in dry environments (𝐸𝑜

̅̅ ̅/�̅� >1.0) the ratio 𝜎𝐸
2/𝜎𝑃

2 apparently decreases 294 

with the increase of Smax (Fig. 9Fig. 7a-d). That relation is particularly obvious in extremely dry environments 295 

(𝐸𝑜
̅̅ ̅/�̅� ≥ 6.0) at equatorial latitudes where there is an upper limit of 𝜎𝐸

2/𝜎𝑃
2 close to 1.0 when Smax is small (blue 296 

grid-cells in Fig. 9Fig. 7c). The interpretation for those extremely dry environments is that when Smax is small, 𝜎𝑃
2 297 

is almost completely partitioned into 𝜎𝐸
2 (Fig. 9Fig. 7bc) with the other variance and covariance components close 298 

to zero. While for those same extremely dry environments, as Smax increases, the partitioning of 𝜎𝑃
2 is shared 299 

between 𝜎𝐸
2 and 𝜎∆𝑆

2  and their covariance (Fig. 9Fig. 7cks) while ith 𝜎𝑄
2 and its covariance components remain 300 

close to zero (Fig. 9Fig. 7gow). However, at polar latitudes in the northern hemisphere (panels in the first and 301 

second columns of Fig. 9Fig. 7) there are variations that could not be easily associated with variations in Smax 302 

which led us to further investigate the role of snow/ice on the variance partitioning in the following section.  303 

 304 

4.3.2 Relating Inter-annual Variability to Mean Air Temperature 305 

 306 

To understand the potential role of snow/ice in modifying the variance partitioning, we repeat the previous 307 

analysis (Fig. 9Fig. 7) but here we use the mean annual air temperature (𝑇𝑎
̅̅̅) to colour the grid-cells to (crudely) 308 

indicate  identify the presence of snow/ice (Fig. 10Fig. 8). The results are complex and not easy to simply 309 

understand. The most important difference revealed by this analysis is in the hydrologic partitioning between cold 310 

(first column) and hot (third column) conditions in wet environments (𝐸𝑜
̅̅ ̅/�̅� ≤ 0.5). In particular, when 𝑇𝑎

̅̅̅ is high, 311 

𝜎𝑃
2 is almost completely partitioned into 𝜎𝑄

2 in wet environments (e.g., 𝐸𝑜
̅̅ ̅/�̅� ≤ 0.5, Fig. 8g). In contrast, when 𝑇𝑎

̅̅̅ 312 

is low in a wet environment (𝐸𝑜
̅̅ ̅/�̅� ≤ 0.5 in first column of Fig. 8), there are substantial variations in the 313 

hydrologic partitioning. That result reinforces the complexity of variance partitioning in the presence of snow/ice.  314 
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Most of the variations at polar latitudes in the northern hemisphere (panels in the first and second columns of Fig. 315 

10Fig. 8) is associated with low air temperature (e.g., 𝑇𝑎
̅̅̅ < 0 ˚C in blue colour), making the results associated with 316 

high air temperature (e.g., 𝑇𝑎
̅̅̅ > 10 ˚C in the third and fourth columns of Fig. 8green-yellow-red colours) relatively 317 

more compactshow less scatters. That pattern is particularly obvious in extremely wet environment (𝐸𝑜
̅̅ ̅/�̅� ≤ 0.5), 318 

where the ratio 𝜎𝑄
2/𝜎𝑃

2 is close to 1.0 when 𝑇𝑎
̅̅̅ is high (e.g., 𝐸𝑜

̅̅ ̅/�̅� ≤ 0.5 and 𝑇𝑎
̅̅̅ > 10 ˚C, with green-yellow-red 319 

grid-cells on the panels in the second row of Fig. 10Fig. 8gh) but shows lots of scatters when  𝑇𝑎
̅̅̅ is low (e.g., 𝑇𝑎

̅̅̅ 320 

< 0 ˚C, Fig. 8ef)with the other variance-covariance components close to zero. This indicates that in extremely wet 321 

environment, when 𝑇𝑎
̅̅̅ is high, 𝜎𝑃

2 is almost completely partitioned into 𝜎𝑄
2 (e.g., 𝐸o

̅̅ ̅/�̅� ≤ 0.5 and 𝑇a̅ > 10 ̊ C in the 322 

third and fourth columns of Fig. 8). However, when 𝑇𝑎
̅̅̅ is low in extremely wet environment, there are substantial 323 

variations in all variance-covariance components (e.g., 𝐸𝑜
̅̅ ̅/�̅� ≤ 0.5 and 𝑇𝑎

̅̅̅ < 0 ˚C, see the blue grid-cells on the 324 

panels in the first and second columns column of Fig. 10Fig. 8). That result indicates the complexity of variance 325 

partitioning associated with the presence of snow/ice. 326 

 327 

4.4 Case Studies 328 

 329 

The previous results (Section 4.3) have demonstrated that the partitioning of 𝜎𝑃
2 is predominantly influenced by 330 

the water storage capacity (Smax) in extremely dry environments (𝐸𝑜
̅̅ ̅/�̅� ≥6.0) and that the presence of snow/ice is 331 

important (as indicated by mean air temperature (𝑇𝑎
̅̅̅))  in extremely wet environments (𝐸𝑜

̅̅ ̅/�̅� ≤0.5). In this section, 332 

we examine, in greater detail, several sites to gain deeper understanding of the partitioning of 𝜎𝑃
2. For that purpose, 333 

we selected three sites based on extreme values for the three explanatory parameters, i.e., 𝐸𝑜
̅̅ ̅/�̅� (Fig. S1a), Smax 334 

(Fig. S1b) and 𝑇𝑎
̅̅̅ (Fig. S1c). The criteria to select three climate sites are as follows, Site 1: dry (𝐸𝑜

̅̅ ̅/�̅� ≥ 6.0) and 335 

small Smax (Smax ≈ 0), Site 2: dry (𝐸𝑜
̅̅ ̅/�̅� ≥ 6.0) and relatively large Smax (Smax ≫ 0) and Site 3: wet (𝐸𝑜

̅̅ ̅/�̅� ≤ 0.5) 336 

and hot (𝑇𝑎
̅̅̅ > 25 ˚C). For each of the three classes, sites, we use a representative grid-cell (Fig. 11Fig. 9) to show 337 

the original time series (Fig. 12Fig. 10) and the partitioning of the variability (Fig. 13Fig. 11).  338 

 339 

We show the P, E, Q and ∆S time series along with the relevant variances and covariances in Fig. 12Fig. 10. 340 

Starting with the two dry sites, at the site with low storage capacity (Site 1), the time series shows that E closely 341 

follows P leaving annual Q and ∆S close to zero (Fig. 12Fig. 10a). The variance of P (𝜎𝑃
2 = 206.9 mm2) is small 342 

and almost completely partitioned into the variance of E (𝜎𝐸
2 = 196.9 mm2), leaving very limited variance for Q, 343 

∆S and all three covariance components (Fig. 12Fig. 10b). At the dry site with larger high storage capacity (Site 344 
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2), E, Q and ∆S do not simply follow P (Fig. 12Fig. 10c). As a consequence, the variance of P (𝜎𝑃
2 = 2798.0 mm2) 345 

is shared between E (𝜎𝐸
2 = 1150.2 mm2), ∆S (𝜎∆𝑆

2  = 800.5 mm2) and their covariance component (2𝑐𝑜𝑣(𝐸, ∆𝑆) = 346 

538.4 mm2, Fig. 12Fig. 10d). Switching now to the remaining wet and hot site (Site 3), we note that Q closely 347 

follows P, with ∆S close to zero and E showing little inter-annual variation (Fig. 12Fig. 10e). The variance of P 348 

(𝜎𝑃
2 = 57374.4 mm2) is relatively large and almost completely partitioned into the variance of Q (𝜎𝑄

2 = 57296.4 349 

mm2), leaving very limited variance for E and ∆S and the three covariance components (Fig. 12Fig. 10f). We also 350 

examined numerous other sites with similar extreme conditions as the three case study sites and found the same 351 

basic patterns as reported above. 352 

 353 

To put the data from the three case study sites into a broader variability context we position the site data onto a 354 

backdrop of original Fig. 8Fig. 6. As noted previously, at Site 1, the ratio 𝜎𝐸
2/𝜎𝑃

2 is very close to unity (Fig. 13Fig. 355 

11a), and under this extreme condition, we have the following approximation,  356 

𝜎𝑃
2 ≈ 𝜎𝐸

2   (Site 1, dry and Smax ≈ 0)                                           (3) 357 

In contrast, for Site 2 with the same aridity index but higher Smax, we have, 358 

𝜎𝑃
2 ≈ 𝜎𝐸

2 + 𝜎Δ𝑆
2 + 2𝑐𝑜𝑣(𝐸, ∆𝑆)    (Site 2, dry and Smax ≫ 0)                           (4) 359 

Finally, at Site 3, we have, 360 

𝜎𝑃
2 ≈ 𝜎𝑄

2    (Site 3, wet and hot)                                           (5) 361 

 362 

4.5 Synthesis 363 

 364 

The above simple examples demonstrate that aridity 𝐸𝑜
̅̅ ̅/�̅� , storage capacity Smax and to a lesser extent, air 365 

temperature 𝑇𝑎
̅̅̅ , all play some role roles in the partitioning of 𝜎𝑃

2 to the various components. Our synthesis of the 366 

results for the partitioning of 𝜎𝑃
2 is summarised in Fig. 14Fig. 12. In dry environments with andlow storage 367 

capacity ( Smax ≈ 0) environments we have minimal runoff and expect that 𝜎𝑃
2 is more or less completely partitioned 368 

into 𝜎𝐸
2 (Fig. 14Fig. 12a). In those environments, (inter-annual) variations in storage 𝜎∆𝑆

2  play a limited role in 369 

setting the overall variability. However, in dry environments with larger storage capacity (and Smax ≫  0) 370 

environments, 𝜎𝐸
2 is only a small fraction of 𝜎𝑃

2 (Fig. 12a) leaving most of the overall variance in  𝜎𝑃
2  to be 371 

partitioned attributed to 𝜎∆𝑆
2  and the covariance between E and ∆S (Fig. 14Fig. 12c and Fig. 14Fig. 12e). This 372 

emphasises implies the hydrological importance of water storage capacity in buffering variations of the water 373 

cycle under dry conditions.  374 



 

14 

 375 

Under extremely wet conditions, the largest huge difference in variance partitioning is not due to differences in 376 

storage capacity but is instead related to differences in mean air temperature.occurs between the hot and cold 377 

conditions instead of water storage capacity conditions in dry conditionsenvironments. In wet and hot 378 

environments, we have maximum runoff and find expect that 𝜎𝑃
2 is more or less completely partitioned into 𝜎𝑄

2 379 

(Fig. 14Fig. 12b) while the partitioning to , and the variations in evapotranspiration 𝜎𝐸
2 and storage 𝜎∆𝑆

2  is small. 380 

play a limited role in setting the overall variability. However, in wet and cold environments, the variance 381 

partitioning shows great complexity with  𝜎𝑃
2 being partitioned into all possible components. , with 𝜎𝑄

2/𝜎𝑃
2 and 382 

𝜎∆𝑆
2 /𝜎𝑃

2 vary a lot caused by snow/ice melting. We suggest that this emphasises This signifies the hydrological 383 

importance of thermal processes (melting/freezing) under extremely cold conditions. 384 

 385 

However, tThe most complex patterns to interpret are those for semi-arid to semi-humid environments (i.e., 386 

𝐸𝑜
̅̅ ̅/�̅� ~1.0). Despite a multitude of attempts over an extended period we were unable to develop a simple useful 387 

synthesis to summarise the partitioning of variability in those environments. We found In those environments, 388 

that the three covariance terms all play important roles and we also found that simple environmental gradients 389 

(e.g., dry/wet, high/low storage capacity, hot/cold) could not easily explain the observed patterns. We anticipate 390 

that vegetation related processes (e.g., phenology, rooting depth, gas exchange characteristics, disturbance, etc.) 391 

may prove to be important in explaining hydrologic variability in these biologically productive regions that 392 

support most of human population. This result implies that a A major scientific effort will be needed to develop a 393 

synthesis of iscover the controlling factors for variability of the water cycle in these environments.  394 

 395 

5. Discussion and Conclusions 396 

 397 

In this study, we have used a recently released global gridded hydrologic re-analysis product, i.e., the Climate 398 

Data Record (CDR) to conduct an initial investigation of inter-annual variability in the terrestrial branch of the 399 

global water cycle. To the best of our knowledge, the results in our manuscript present the first attempt to gain a 400 

global overview of the magnitude for various terms (Eq. 2) that document variability in the water cycle. Our 401 

results demonstrate that the global patterns of inter-annual variability in the water cycle do not simply follow 402 

those of the long-term mean. In particular, with the variance calculations, the annual anomalies are squared and 403 

hence do not cancel out (like they do when calculating the mean). Hence we were initially surprised that the inter-404 
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annual variability of water storage change ( 𝜎∆𝑆
2 ) is typically larger than the inter-annual variability of 405 

evapotranspiration (𝜎𝐸
2). Moreover, the covariance components are also prominent and can be negative, which 406 

means that it is possible for the variability in the sinks (e.g., 𝜎𝑄
2, 𝜎∆𝑆

2 ) can actually exceed the variability in the 407 

source (𝜎𝑃
2) (Eq. 2). 408 

 409 

Our further analysis based on six climate end members, dry/wet, high/low water storage capacity and hot/cold 410 

offered some further general insights about hydrologic variability. For example, under extremely dry (water-411 

limited) conditions, with limited storage capacity (Smax) we found that E follows P and 𝜎𝐸
2 follows 𝜎𝑃

2, with 𝜎𝑄
2 412 

and 𝜎∆𝑆
2  approaching zero. However, as Smax increases, the partitioning of 𝜎𝑃

2 progressively shifts to a balance 413 

between 𝜎𝐸
2 , 𝜎∆𝑆

2  and cov (E, ∆S) (Fig. 12Figs. 10-12-14). Under extremely wet (energy-limited) and hot 414 

environments (i.e., no snow/ice impact) we found the inter-annual variations in P mostly be partitioned to inter-415 

annual variations in Q (with both 𝜎𝐸
2 and 𝜎∆𝑆

2  approaching zero). However, in wet environments that were cold, 416 

we expected thermal processes (freeze/melt) to play a critical role in the hydrologic variability. Our results confirm 417 

that, with the finding that hydrologic partitioning of variability was highly (spatially) variable under extremely 418 

cold conditions (Figs. 10-1212-14) and we were unable to provide any useful simplifications to summarise the 419 

data. These results highlight a key point that while the long-term mean state is not especially sensitive to variations 420 

in hydrologic water storage or phase, the long-term variability is very sensitive to those same variations. 421 

 422 

The most complex results were found in semi-arid/semi-humid (0.5<𝐸𝑜
̅̅ ̅/�̅� <1.5) environments, where all three 423 

covariances (Eq. 2) were found to play critical roles in the overall partitioning of variability (Figs. 3 and Fig. S94-424 

5). In many regions, the (absolute) magnitudes of the covariances were actually larger than the variances of the 425 

water balance components E, Q and ΔS (e.g., Fig. 8Fig. 6). That result demonstrates that deeper understanding of 426 

the process-level interactions that are embedded within each of the three covariance terms is still needed to help 427 

understand variability in the water cycle in these biologically productive regions (0.5<𝐸𝑜
̅̅ ̅/�̅� <1.5).  428 

 429 

This study should be viewed as an initial investigation of the inter-annual variability in the global land water cycle. 430 

We managed to obtain some syntheses based on the availability of current data, and we expect that with the 431 

improvement of hydrologic databases over the coming years some of the detailed spatial patterns may change. 432 

However, even from this initial investigation, some general principles do already appear clear. One general finding 433 

is that the global pattern in the partitioning of inter-annual variability in the water cycle is not simply a reflection 434 
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of patterns in the partitioning of the long-term mean. For example, while the inter-annual water storage change is 435 

often (safely) assumed to be negligible in terms of the long-term mean state, it is clear that storage variations are 436 

central to understanding inter-annual variability of global water cycle. A second generalisation is that the 437 

covariance components (Eq. 2) can be relatively large and are negative in some regions. The consequence is that 438 

variability in the sinks (e.g., 𝜎𝑄
2 , 𝜎∆𝑆

2 ) can, and do, exceed the variability in the source (𝜎𝑃
2 ), especially in 439 

biologically productive regions (Fig. 4Fig. 3).  440 

 441 

The syntheses of the long-term mean water cycle originated in 1970s (Budyko, 1974), and it took several decades 442 

for those general principles to become widely adopted in the hydrologic community. It remains a challenge to 443 

develop a synthesis of hydro-climatic variability in the terrestrial branch of the water cycle, and major intellectual 444 

efforts will be needed to develop generally applicable principles.  445 

 446 

6. Conclusions 447 

 448 

Importantly, hydrologists have long been interested in hydrologic variabilityaware that the water storage effects 449 

were going to be important for understanding water cycle variability (e.g., Milly and Dunne, 2002b; Zhang et al., 450 

2008; Donohue et al., 2010; Wang and Alimohammadi, 2012), but without readily available databases it has been 451 

difficult to quantify water cycle variability. in a consistent way. For example, we are not aware of maps showing 452 

global spatial patterns in variance for any terms of the water balance (except for P). In this study, we describe an 453 

initial investigation of the inter-annual variability of the terrestrial branch in the global water cycle that uses the 454 

recently released global monthly Climate Data Record (CDR) database for P, E, Q and ∆S. We start by 455 

investigating the partitioning of P in the water cycle in terms of long-term mean and then extend that to the inter-456 

annual variability. The CDR is one of the first dedicated hydrologic reanalysis databases and includes data for a 457 

27-year period. Accordingly, we could only examine hydrologic variability over this relatively short period. 458 

Further, we expect future improvements and modifications as the hydrologic community seeks to further develop 459 

and refine these new reanalysis databases. With those caveats in mind, we started this analysis  by first 460 

investigating the partitioning of P in the water cycle in terms of long-term mean and then extended  that to the 461 

inter-annual variability using a theoretical variance balance equation (Eq. 2). Despite the From this initial nature 462 

of this investigation we have been able to establish some useful general principles.  463 

 464 
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The mean annual P is mostly partitioned into mean annual E and Q, as is well known, and the results using the 465 

CDR were generally consistent with the earlier previous Budyko framework work (Fig. 2). Having established 466 

that, the first general finding is that the spatial pattern in the partitioning of inter-annual variability in the water 467 

cycle is not simply a reflection of the spatial pattern in the partitioning of the long-term mean. In particular, with 468 

the variance calculations, the annual anomalies are squared and hence the storage anomalies do not cancel out like 469 

they do when calculating the mean. With that in mind, wWe were initially surprised that the inter-annual 470 

variability of water storage change (𝜎∆𝑆
2 ) is typically larger than the inter-annual variability of evapotranspiration 471 

(𝜎𝐸
2) (cf. Fig. 3b and 3d). The consequence is that 𝜎∆𝑆

2  is more important than 𝜎𝐸
2 for understanding inter-annual 472 

variability of global water cycle. A second important generalisation is that unlike the variance components which 473 

are all positive, the three covariance components in the theory (Eq. 2) can be both positive and negative. We report 474 

results here showing both large positive and negative values for the three covariance terms can be relatively large 475 

and are negative in some regions (Fig. 3efg). The consequence is that variability in the sinks (e.g., 𝜎𝑄
2, 𝜎∆𝑆

2 ) can, 476 

and do, exceed the variability in the source (𝜎𝑃
2 )This was especially , especially prevalent in biologically 477 

productive regions (0.5<𝐸𝑜
̅̅ ̅/�̅�<1.5, Fig. 3eg). When examining the mean state, we are accustomed to think that P 478 

sets a limit to E, Q and ∆S, as per the mass balance (Eq. 1). But the same thinking does not extend to the variance 479 

balance since the covariance terms on the right hand side of Eq. 2 can be both large and negative leading to 480 

circumstances where the variability in the sinks (𝜎𝐸
2, 𝜎𝑄

2, 𝜎∆𝑆
2 ) could actually exceed variability in the source (𝜎𝑃

2).  481 

 482 

Our initial attempt to develop deeper understanding of variance partitioning was based on a series of case studies 483 

located in extreme environments (wet/dry vs hot/cold vs high/low water storage capacity). The results offered 484 

some further insights about hydrologic variability. For example, under extremely dry (water-limited) 485 

environments, with limited storage capacity (Smax) we found that E follows P and 𝜎𝐸
2 follows 𝜎𝑃

2, with 𝜎𝑄
2 and 𝜎∆𝑆

2  486 

both approaching zero. However, as Smax increases, the partitioning of 𝜎𝑃
2 progressively shifts to a balance between 487 

𝜎𝐸
2, 𝜎∆𝑆

2  and cov(E, ∆S) (Figs. 10-12). This result explains the overestimation of 𝜎𝐸/𝜎𝑃 by the empirical theory of 488 

Koster and Suarez (1999) which implicitly assumed no inter-annual change in storage.negligible storage variation. 489 

The Koster and Suarez at empirical theory is perhaps better described as an upper limit that is based on minimal 490 

storage capacity, and that any increase in storage capacity would promote the partitioning of 𝜎𝑃
2 to 𝜎∆𝑆

2  particularly 491 

under dry conditions (Figs. 10-12).  492 

 493 
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In Under extremely wet/hot environments (i.e., no snow/ice presenceimpact) we found 𝜎𝑃
2 to be mostly partitioned 494 

to 𝜎𝑄
2 (with both 𝜎𝐸

2 and 𝜎∆𝑆
2  approaching zero, Fig. 10). In contrast, in under extremely wet/cold environments, 495 

conditions, the partitioning of 𝜎𝑃
2 was highly (spatially) variable presumably because of the spatial variability in 496 

the all-important thermal processes (freeze/melt). These results highlight a key point that while the long-term 497 

mean state is not especially sensitive to variations in either water storage or physical phase (liquid/solid), the 498 

overall hydrologic variability is expected to be sensitive to those same variations. 499 

 500 

The most complex results were found in mesic biologically productive environments (0.5<𝐸𝑜
̅̅ ̅/�̅� <1.5), where all 501 

three covariance terms (Eq. 2) were found to be relatively large and therefore they all played critical roles in the 502 

overall partitioning of variability (Fig. 6). As noted above, in In many of these regions, the (absolute) magnitudes 503 

of the covariances were actually larger than the variances of the water balance components E, Q and ΔS (e.g., Fig. 504 

3). That result demonstrates that deeper understanding of the process-level interactions that are embedded within 505 

each of the three covariance terms (e.g., for instance, the role of seasonal vegetation variation) will be needed to 506 

develop process-based understanding of variability in the water cycle in these biologically productive regions 507 

(0.5<𝐸𝑜
̅̅ ̅/�̅� <1.5). 508 

 509 

The syntheses of the long-term mean water cycle originated in 1970s (Budyko, 1974), and it took several decades 510 

for those general principles to become widely adopted in the hydrologic community. The hydrologic data needed 511 

to understand hydrologic variability are only now becoming available. With those data we can begin to develop a 512 

process-based understanding of hydrologic variability that can be used for a variety of purposes, e.g., deeper 513 

understanding of such as hydrologic water risk analysis, hydro-climatic behaviour, hydrologic risk analysis, 514 

climate change assessments and hydrologic sensitivity studies are just a few applications that spring to mind. The 515 

initial results presented here show that a major . Major intellectual efforts will be needed are still needed to develop 516 

a general understanding of hydrologic variability.  517 

. We start by investigating the partitioning of P in the water cycle in terms of long-term mean and then extend 518 

that to the inter-annual variability. While the mean annual P is mostly partitioned into mean annual E and Q, as 519 

is well known. However, we find that the variance of P (𝜎𝑃
2) is mostly partitioned into the variance of Q (𝜎𝑄

2) and 520 

variance of ∆S (𝜎∆𝑆
2 ). This result indicates that the global patterns of inter-annual variability in the water cycle do 521 

not simply follow the long-term mean. A second general finding is that the covariance components are important 522 
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and can be negative in some regions, indicating the variability in the sinks (e.g., 𝜎𝑄
2, 𝜎∆𝑆

2 ) can, and do, exceed the 523 

variability in the source (𝜎𝑃
2).  Our attempts to develop deeper understanding of variance partitioning led to some 524 

syntheses in extreme environments (wet/dry vs hot/cold). In particular, we find that in extremely dry environments 525 

(either hot/cold) the partitioning of 𝜎𝑃
2  is closely related to the water storage capacity. With limited storage 526 

capacity, the partitioning of  𝜎𝑃
2 is mostly to 𝜎𝐸

2 but as the storage capacity increases, the partitioning of 𝜎𝑃
2 is 527 

increasingly shared between  𝜎𝐸
2 and  𝜎∆𝑆

2  and the covariance between those variables (Fig. 14Fig. 12). In contrast, 528 

in extremely wet environments, there are large divergences in the variance partitioning between hot and cold 529 

conditions. In hot conditions, 𝜎𝑃
2 is mostly partitioned to 𝜎𝑄

2 but under cold conditions, 𝜎𝑃
2 is partitioned to all 530 

available variability sinks (Fig. 14Fig. 12). However, in biologically productive semi-arid/semi-humid 531 

(0.5<𝐸𝑜
̅̅ ̅/�̅�<1.5) environments, we found the variance partitioning to be very complex and that partitioning was 532 

not obviously associated with simple environmental factors. A general understanding of hydro-climatic variability 533 

remains a major intellectual challenge and we anticipate major efforts will be needed to synthesise general 534 

principles that cover the full spectrum of hydrologic variability. 535 
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database. 653 

Figure 57. Relationship of inter-annual standard deviation of (a) evapotranspiration (𝜎𝐸/𝜎𝑃) and (b) runoff (𝜎𝑄/𝜎𝑃) 654 

ratios to aridity (𝐸𝑜
̅̅ ̅/�̅�). 655 

Figure 68. Relation between water cycle variances-covariances (see Fig. 4Fig. 3b-g) as a fraction of the variance 656 

of P (𝜎𝑃
2) and the aridity index (𝐸𝑜

̅̅ ̅/�̅�) coloured by density. 657 

Figure 79. Relation between water cycle variances-covariances (see Fig. 4Fig. 3b-g) as a fraction of the variance 658 

for P (𝜎𝑃
2) and the aridity index (𝐸𝑜

̅̅ ̅/�̅�) for grid-cells over different latitude ranges (i.e., 90N-60N, 60N-30N, 30N-659 

0 and 0-90S). The colours relate to the water storage capacity Smax. 660 

Figure 810. Relation between water cycle variances-covariances (see Fig. 4Fig. 3b-g) as a fraction of the variance 661 

for P (𝜎𝑃
2) and the aridity index (𝐸𝑜

̅̅ ̅/�̅�) for grid-cells over different latitude ranges (i.e., 90N-60N, 60N-30N, 30N-662 

0 and 0-90S). The colours relate to the mean air temperature (𝑇𝑎
̅̅̅). 663 

Figure 911. Locations of three representative grid-cells used as case study sites.  664 

Figure 102. Inter-annual time series (P, E, Q and ∆S) and the associated variance-covariance matrix (E, Q and ∆S) 665 

for case study Sites 1-3. 666 

Figure 113. Location of three case study sites in the water cycle variability space. 667 

Figure 124. Synthesis of factors controlling variance partitioning. 668 
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 670 

 671 

Figure 1. Spatial mask used in this study. Grey areas (Himalayan region, Sahara Desert, Greenland) have been 672 

masked out of the CDR database. 673 

  674 

Formatted: Font: (Default) Times New Roman, (Asian) MS
Mincho, 10 pt, Font color: Text 1



 

26 

 675 

 676 

Figure 12. Mean annual (1984-2010) (a) P, (b) E and (c) Q. Note that the mean annual ∆S in the CDR database is zero 677 

by construction and is not shown. 678 
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 680 

 681 

Figure 23. Relationship of mean annual (a) evapotranspiration (�̅�/�̅�) and (b) runoff (�̅�/�̅�) ratios to the aridity index 682 

(𝑬𝒐
̅̅̅̅ /�̅�) from the CDR and SRB databases. For comparison, the Budyko (1974) curve is shown on the left panel (Fig. 683 

3Fig. 2a). The curve on the right panel (Fig. 3Fig. 2b) is calculated assuming a steady state (�̅�/�̅� = 𝟏 − �̅�/�̅�).   684 
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 686 

 687 

Figure 34. Water cycle variances (𝝈𝑷
𝟐 , 𝝈𝑬

𝟐 , 𝝈𝑸
𝟐 , 𝝈∆𝑺

𝟐 ) and covariances (𝒄𝒐𝒗(𝑬, 𝑸), 𝒄𝒐𝒗(𝑬, ∆𝑺), 𝒄𝒐𝒗(𝑸, ∆𝑺)). Note that we 688 

have multiplied the covariances by two (see Eq. 2).  689 
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 691 

 692 

Figure 5. Distribution of water cycle variances (𝝈𝑷
𝟐 , 𝝈𝑬

𝟐 , 𝝈𝑸
𝟐 , 𝝈∆𝑺

𝟐 ) and covariances (𝒄𝒐𝒗(𝑬, 𝑸), 𝒄𝒐𝒗(𝑬, ∆𝑺), 𝒄𝒐𝒗(𝑸, ∆𝑺)). 693 

Note that we have multiplied the covariances by two (see Eq. 2).  694 
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 696 

 697 

Figure 46. Relation between inter-annual mean and standard deviation for (a) P, (b) E and (c) Q from the CDR 698 

database. Note that the mean annual ∆S is zero by construction and is not shown. 699 
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 701 

 702 

Figure 57. Relationship of inter-annual standard deviation of (a) evapotranspiration (𝝈𝑬/𝝈𝑷) and (b) runoff (𝝈𝑸/𝝈𝑷) 703 

ratios to aridity (𝑬𝒐
̅̅̅̅ /�̅�). The curves represent the semi-empirical relations from Koster and Suarez (1999).   704 
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 706 

 707 

Figure 68. Relation between water cycle variances-covariances (see Fig. 4Fig. 3b-g) as a fraction of the variance of P 708 

(𝝈𝑷
𝟐 ) and the aridity index (𝑬𝒐

̅̅̅̅ /�̅�) coloured by density. Note that we have multiplied the covariance components by two 709 

(see Eq. 2). 710 
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 712 

 713 

Figure 79. Relation between water cycle variances-covariances (see Fig. 4Fig. 3b-g) as a fraction of the variance for P 714 

(𝝈𝑷
𝟐 ) and the aridity index (𝑬𝒐

̅̅̅̅ /�̅�) for grid-cells over different latitude ranges (i.e., 90N-60N, 60N-30N, 30N-0 and 0-715 

90S). The colours relate to the water storage capacity Smax. Note that we have multiplied the covariances by two (see 716 

Eq. 2). The vertical grey dashed lines represent thresholds used to separate extremely dry (𝑬𝒐
̅̅̅̅ /�̅� ≥ 6.0) and wet 717 

(𝑬𝒐
̅̅̅̅ /�̅� ≤ 0.5) environments. Note the use of a logarithmic x-axis and scale bar for Smax. 718 
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 720 

 721 

Figure 810. Relation between water cycle variances-covariances (see Fig. 4Fig. 3b-g) as a fraction of the variance for 722 

P (𝝈𝑷
𝟐 ) and the aridity index (𝑬𝒐

̅̅̅̅ /�̅�) for grid-cells over different latitude ranges (i.e., 90N-60N, 60N-30N, 30N-0 and 0-723 

90S). The colours relate to the mean air temperature (𝑻𝒂
̅̅̅̅ ). Note that we have multiplied the covariances by two (see 724 

Eq. 2). The vertical grey dashed lines represent thresholds used to separate extremely dry (𝑬𝒐
̅̅̅̅ /�̅� ≥ 6.0) and wet 725 

(𝑬𝒐
̅̅̅̅ /�̅� ≤ 0.5) environments. 726 
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 728 

 729 

Figure 911. Locations of three representative grid-cells used as case study sites.  730 
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 732 

 733 

Figure 102. Inter-annual time series (P, E, Q and ∆S) and the associated variance-covariance matrix (E, Q and ∆S) for 734 

case study Sites 1-3. Left column shows time series for (a) Site 1, (c) Site 2 and (e) Site 3, with right column i.e., (b), (d) 735 

and (f), the associated variance-covariance matrix for three sites. Note that the covariance values in the tables should 736 

be multiplied by two to agree with the variance-covariance balance in Eq. (2). 737 
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 739 

 740 

Figure 113. Location of three case study sites in the water cycle variability space. The grey background dots are from 741 

Fig. 8Fig. 6.  742 
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 744 

 745 

Figure 124. Synthesis of factors controlling variance partitioning. The arrows denote trends with increasing Smax. The 746 

grey background dots are from Fig. 8Fig. 6.  747 

 748 
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Figure S1. (a) Aridity index (𝑬𝐨
̅̅̅̅ /�̅�), (b) water storage capacity (Smax) and (c) mean annual air temperature (𝑻𝒂̅̅̅̅ ) used 

in the analysis. 
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Figure S2. Spatial mask used in this study. Grey areas (e.g., Himalayan region, Sahara Desert, Greenland) have been 

masked out of the CDR database. 

  



4 
 

 

 
Figure S32. Location of the 32 FLUXNET sites used to evaluate the compared with the Climate Data Record (CDR).  
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Figure S43. Comparison of monthly precipitation P time series (left panels) and mean monthly P (right panels) 

between FLUXNET site observations at 32 sites (Table S1) and the Climate Data Record (CDR).  
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Figure S43 continued.  
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Figure S54. Comparison of monthly evapotranspiration E time series (left panels) and mean monthly E (right panels) 

between FLUXNET site observations and the Climate Data Record (CDR).  
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Figure S54 continued.  
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Figure S65. Comparison of ratio of standard deviation of monthly evapotranspiration E to precipitation P (𝛔𝐄/𝛔𝐏) 

between FLUXNET site observations and the Climate Data Record (CDR).  
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Figure S76. Comparison of monthly evapotranspiration E between LandFluxEVAL and Climate Data Record (CDR) 

databases. Top panels (a) (b) show comparison of the mean monthly (�̅�) while bottom panels (c) (d) show comparison 

of the standard deviation (𝝈𝑬) of monthly E.  
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Figure S87. Comparison of monthly evapotranspiration E between Max Planck Institute (MPI) and Climate Data 

Record (CDR) databases. Top panels (a) (b) show comparison of the mean monthly (�̅�) while bottom panels (c) (d) 

show comparison of the standard deviation (𝝈𝑬) of monthly E. 
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Figure S9. Distribution for each of the of water cycle variances (𝝈𝑷
𝟐 , 𝝈𝑬

𝟐 , 𝝈𝑸
𝟐 , 𝝈∆𝑺

𝟐 ) and covariances (𝒄𝒐𝒗(𝑬,𝑸) , 

𝒄𝒐𝒗(𝑬, ∆𝑺), 𝒄𝒐𝒗(𝑸, ∆𝑺)) shown in Fig. 3. Note that we have multiplied the covariances by two (see Eq. 2).  
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Figure S108. The same as Fig. 46b in main text but using evapotranspiration E data from the (a) LandFluxEVAL and 

(b) MPI databases. 
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Figure S119. The same as Fig. 57a in main text but using evapotranspiration E data from the (a) LandFluxEVAL and 

(b) MPI databases. 
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Figure S120. Inter-annual water cycle variances (𝝈𝑬
𝟐 , 𝝈𝑸

𝟐 , 𝝈∆𝑺
𝟐 ) and covariances (𝒄𝒐𝒗(𝑬, 𝑸), 𝒄𝒐𝒗(𝑬, ∆𝑺), 𝒄𝒐𝒗(𝑸, ∆𝑺)) 

expressed as a fraction of the variance of P (𝝈𝑷
𝟐 ). Note that we have multiplied the covariances by two (see Eq. 2).  
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Table S1. Summary of comparisons of monthly precipitation P and evapotranspiration E between observations at 32 FLUXNET sites and the CDR database. 

Site ID Site Name Lat Lon Ref Data period 
r2 

(P) 

bias 

(P, mm) 

RMSE 

(P, mm) 

r2 

(E) 

bias 

(E, mm) 

RMSE 

(E, mm) 

AT_Neu Neustift 47.1167 11.3175 Wohlfahrt et al., 2008 2004 - 2005, 2007 - 2010 0.64 53.54 61.53 0.59 -25.91 38.94 

AU_Tum Tumbarumba -35.6566 148.1517 Leuning et al., 2005 2002 - 2010 0.56 1.08 39.34 0.41 -30.80 46.27 

BE_Bra Brasschaat 51.3076 4.5198 Carrara et al., 2004 
1997 - 1998, 2000 -2002, 

2007 - 2009 
0.64 -3.05 26.66 0.76 14.70 20.55 

CA_Qfo 

Quebec - Eastern 

Boreal, Mature 

Black Spruce 

49.6925 -74.3421 Bergeron et al., 2006 2005 - 2010 0.57 4.43 31.77 0.85 0.20 12.16 

CH_Dav Davos 46.8153 9.8559 Zielis et al., 2014 
1997 - 2004, 

2006 - 2010 
0.64 82.53 91.39 0.59 -39.95 48.91 

CH_Fru Früebüel 47.1158 8.5378 Imer et al., 2013 2007 - 2010 0.65 -15.42 55.86 0.63 -15.97 33.05 

DE_Geb Gebesee 51.1001 10.9143 Anthoni et al., 2004 2001 - 2010 0.69 3.78 17.69 0.78 2.40 17.13 

DE_Gri Grillenburg 50.9500 13.5126 Prescher et al., 2010 2004 - 2010 0.70 -26.32 37.67 0.90 -8.10 15.99 

DE_Hai Hainich 51.0792 10.4530 Knohl et al., 2003 2000 - 2012 0.70 -10.35 23.17 0.73 6.31 20.26 

DE_Kli Klingenberg 50.8931 13.5224 Prescher et al., 2010 2006 - 2010 0.68 -13.61 28.05 0.69 -0.33 19.36 

DE_Tha Tharandt 50.9624 13.5652 
Grünwald and  Bernhofer, 

2007 
2000 - 2010 0.66 -18.71 32.35 0.90 -3.89 10.74 

DK_Sor Soroe 55.4859 11.6446 Pilegaard et al., 2011 2003 - 2010 0.45 -11.07 39.31 0.69 -8.45 25.35 

FI_Hyy Hyytiala 61.8474 24.2948 Suni et al., 2003 2006 - 2009 0.78 -7.07 20.43 0.87 -2.43 12.17 

FR_Gri Grignon 48.8442 1.9519 Loubet et al., 2011 2006 - 2010 0.69 -0.81 12.35 0.72 -19.15 27.07 

FR_LBr Le Bray 44.7171 -0.7693 Berbigier et al., 2001 
1997 -1998, 

2003 - 2008 
0.56 -9.19 39.93 0.49 -7.65 28.08 

IT_Cpz Castelporziano 41.7053 12.3761 Garbulsky et al., 2008 2005 - 2007 0.76 -15.90 40.42 0.03 -9.23 31.69 
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IT_MBo Monte Bondone 46.0147 11.0458 Marcolla et al., 2011 2003 - 2008 0.36 12.43 48.14 0.88 -14.78 21.92 

NL_Loo Loobos 52.1666 5.7436 Moors 2012 1999 - 2010 0.56 -2.16 24.78 0.84 -5.80 15.33 

US_ARM 

ARM Southern 

Great Plains site- 

Lamont 

36.6058 -97.4888 
Baldocchi and Sturtevant 

2015 
2003 - 2007 0.71 13.53 31.78 0.61 13.67 27.71 

US_Los Lost Creek 46.0827 -89.9792 Baker et al., 2003 
2001 - 2003, 

2005 - 2006 
0.52 7.76 32.82 0.87 9.53 18.12 

US_Me2 
Metolius mature 

ponderosa pine 
44.4523 -121.5574 Law (2002-2014) 

2002 - 2005, 

2007 - 2010 
0.54 45.31 56.84 0.82 -12.91 19.36 

US_MMS 
Morgan Monroe 

State Forest 
39.3232 -86.4131 

Novick and Phillips 

(1999-2014) 
2001 - 2010 0.72 6.60 31.44 0.87 -6.54 28.56 

US_Ne1 

Mead - irrigated 

continuous maize 

site 

41.1651 -96.4766 Suyker (2001-2013a) 2002 - 2010 0.45 -6.64 51.86 0.82 -13.95 30.17 

US_Ne2 

Mead - irrigated 

maize-soybean 

rotation site 

41.1649 -96.4701 Suyker (2001-2013b) 2002 - 2010 0.56 -8.77 46.45 0.77 -9.51 29.88 

US_Ne3 

Mead - rainfed 

maize-soybean 

rotation site 

41.1797 -96.4397 Suyker (2001-2013c) 2004 - 2010 0.88 2.28 21.43 0.78 -2.92 24.61 

US_NR1 

Niwot Ridge 

Forest (LTER 

NWT1) 

40.0329 -105.5464 Blanken (1998-2014) 2000 - 2010 0.51 -16.06 29.57 0.84 -28.44 30.58 

US_SRM 
Santa Rita 

Mesquite 
31.8214 

 
-110.8661 

Barron‐Gafford et al., 

2011 
2004 - 2010 0.81 1.34 15.40 0.77 -8.54 16.64 

US_Syv 
Sylvania 

Wilderness Area 
46.2420 -89.3477 Desai et al., 2008 2002 - 2006 0.33 13.17 40.68 0.90 14.95 19.53 

US_Ton Tonzi Ranch 38.4316 -120.9660 Baldocchi et al., 2010 
2002 - 2003, 

2005 - 2009 
0.89 14.68 27.44 0.77 -5.98 20.81 
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* Significant r2 values (linear regression p < 0.05) are shown in bold. 

US_Var Vaira Ranch- Ione 38.4133 -120.9507 Baldocchi et al., 2004 
2001 - 2003, 

2005 - 2010 
0.86 16.91 30.92 0.43 3.77 25.84 

US_Whs 
Walnut Gulch 

Lucky Hills Shrub 
31.7438 -110.0522 Biederman et al., 2016 2008 - 2010 0.65 1.89 21.26 0.87 -2.95 8.99 

US_Wkg 
Walnut Gulch 

Kendall Grasslands 

31.7365 

 

-109.9419 

 
Biederman et al., 2016 2005 - 2010 0.78 1.59 15.66 0.69 -5.10 14.34 
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