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14 

Abstract. This study analyzed the sensitivity of rainfall patterns over the Indochina 15 

Peninsula (ICP) to sea surface temperature in the Indian Ocean based on statistical 16 

simulations of observational data. Quantitative changes in rainfall patterns over the ICP 17 

were examined for both wet and dry seasons to identify hotspots sensitive to ocean 18 

warming in the Indo-Pacific sector. Rainfall variability across the ICP was confirmed 19 

amplified by combined and/or independent effects of the El Niño–Southern Oscillation 20 

and the Indian Ocean Dipole (IOD). During the years of El Niño and a positive phase of 21 

the IOD, rainfall is less than usual in Thailand, Cambodia, southern Laos, and Vietnam. 22 

Conversely, during the years of La Niña and a negative phase of the IOD, rainfall 23 

throughout the ICP is above normal, except in parts of central Laos and northern 24 

Vietnam. This study also simulated the change of ICP rainfall in the wet and dry 25 

seasons according to intentional IOD changes, and IOD-sensitive hotspots were 26 
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verified through quantitative analysis. The results of this study provide clear 27 

understanding both of the sensitivity of regional precipitation to the IOD and of the 28 

potential future impact of statistical changes regarding the IOD in terms of 29 

understanding regional impacts associated with precipitation in a changing climate. 30 

Keywords: Rainfall variability, Indian Ocean Dipole, ENSO, IBB simulation 31 

 32 

1. Introduction 33 

Spatiotemporal variation in precipitation extremes can result from amplification of 34 

changes in atmosphere–ocean interactions and intensification of the hydrological cycle 35 

on both regional and global scales attributable to the effects of global climate change 36 

(Allan and Soden, 2008; Kim and Jain, 2011; Ge et al., 2017; Kang et al., 2017; Kim et 37 

al., 2017; Gao et al., 2019). Changes in the magnitude and frequency of regional rainfall 38 

are related closely to the occurrence of floods and droughts. They have important 39 

implications not only in terms of their socioeconomic impact, but also in relation to the 40 

management of local and/or regional hydropower, irrigation, and environmental water 41 

resources (Chi et al., 2016; Gu et al., 2017; Choi et al., 2018). The occurrence of 42 

extreme precipitation, which is highly likely to continue into the future, is increasingly 43 

regarded as an area of concern by the public because many countries have experienced 44 

such extreme events in recent years (Croitoru et al., 2013; IPCC, 2013; Hirsch and 45 

Archfield, 2015; Chi et al., 2016; Donat et al., 2016). In particular, there has been rapid 46 

increase in both the amount of damage and the number of fatalities associated with the 47 

occurrence of extreme rainfall in developing countries because of their vulnerable 48 

infrastructure, high density of human activities, and poor practices of land use and 49 

development (Mirza, 2003; Yin et al., 2011). 50 
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The El Niño–Southern Oscillation (ENSO) is known for its active and predictable 51 

short-term behavior within the global climate system (Chen and Cane, 2008), 52 

characterized by irregular but periodic change in the behavior of winds and sea level 53 

temperatures over the tropical eastern Pacific Ocean. Since the 2000s, new forms of El 54 

Niño have appeared more frequently in the central Pacific (Ashock and Yamagata, 55 

2009; Pradhan et al., 2011). However, little is yet known about the causes of these new 56 

types of El Niño, some of which have been reported to have noticeable effect on the 57 

supply of warm seasonal freshwater and hydrological extremes in Pacific Rim 58 

countries (Kim et al., 2012; Yoon et al., 2013; Son et al., 2014; Wang et al., 2014; Kim 59 

et al., 2017). Research over the past two decades has identified a distinct climate 60 

anomaly in the Indian Ocean, known as the Indian Ocean Dipole (IOD) (Piechota et al., 61 

1998; Saji et al., 1999; Mahala et al., 2015; Lqbal and Hassan, 2018). The IOD is an 62 

atmosphere–ocean coupling mode characterized by the opposition of anomalies of sea 63 

surface temperature (SST) in the west and east of the tropical Indian Ocean (Piechota et 64 

al., 1998; Saji et al., 1999; Webster et al., 1999). A positive (negative) IOD pattern is 65 

characterized by water warmer (cooler) than normal in the western tropical Indian 66 

Ocean (10° S–10° N, 50°–70° E) and water cooler (warmer) than normal in the 67 

southeastern tropical Indian Ocean (10° S to the equator, 90°–110° E). These events 68 

usually begin around May or June and they terminate rapidly in early winter after 69 

reaching a peak between August and October (Saji et al., 1999). Long-term climatic 70 

change has high correlation with large-scale atmospheric teleconnections and it has 71 

been reported predictable in relation to the behavior of nonlinear climate systems, 72 

particularly in terms of ocean-related climatic drivers such as ENSO and the IOD mode 73 

(Piechota et al., 1998; Saji et al., 1999). ENSO and IOD patterns are known as leading 74 

causes of large atmospheric change and they are related closely to seasonal variations in 75 
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precipitation in the Indian Ocean region and around the world (Ashok et al., 2001; 76 

Ashok et al., 2003; McFadden et al., 2006; Pradhan et al., 2011). 77 

Recent studies have suggested that the observed slowdown in the rise of global 78 

mean surface atmospheric temperature is related closely to the considerable transport of 79 

heat from the Pacific Ocean into the Indian Ocean via the Indonesian Throughflow 80 

(Kosaka and Xie, 2013; Lee et al., 2015; Liu et al., 2016; Zhang et al., 2018). 81 

Investigation of Indo-Pacific thermocouples can help both to improve understanding of 82 

regional-scale climatic variability that is globally relevant and to diagnose 83 

quantitatively such variability in a changing climate (Zhang et al., 2018). However, 84 

there has been little previous quantitative research on rainfall variation across the 85 

Indochina Peninsula (ICP) in relation to IOD phenomena and ENSO evolution. 86 

Therefore, based on historical observations, this study undertook quantitative analysis 87 

of the changes in SST in the Indo-Pacific sector and the associated interseasonal 88 

variation of precipitation over the ICP. The study had three primary areas of interest: (1) 89 

the spatiotemporal changes in magnitude and frequency of precipitation during the dry 90 

and wet seasons, (2) the relationship between the changes in weather extremes and 91 

large-scale climatic patterns over the ICP, and (3) identification of IOD-sensitive 92 

hotspots using the intentionally biased bootstrapping (IBB) technique based on limited 93 

historical observations.  94 

 95 

2. Data and Methods 96 

2.1. Precipitation Dataset and Climate Change Indices 97 

This study used the high-resolution (0.5° × 0.5°) daily Climate Prediction Center 98 

Global Unified Precipitation dataset for 1979–2018, which was obtained from the 99 

website of NOAA’s Earth System Research Laboratory’s Physical Research Division 100 
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(https://www.esrl.noaa.gov/psd/). The Global Precipitation Climatology Center 101 

monthly precipitation dataset with 1.0° × 1.0° spatial resolution for the period 1948–102 

2018, which is based on quality-controlled data from 67,200 stations worldwide 103 

(Schneider et al., 2016), was also used to identify seasonal precipitation variability 104 

over the ICP region (5°–25° N, 90°–115° E) (Fig. 1). To identify changes in the 105 

frequency and intensity of rainfall, six major climate change indices (Karl et al., 1999) 106 

based on the daily Climate Prediction Center data from 1979–2018 were analyzed for 107 

both the wet season (May–October) and the dry season (November–April). These 108 

indices included the seasonal total precipitation (PRCPTOT) on wet days, seasonal 109 

total of the 95th percentile of precipitation (R95pTOT) on wet days (≥1.0 mm), 110 

seasonal maximum 1-day precipitation (RX1day), simple precipitation intensity index 111 

(SDII) with a daily precipitation amount on wet days of ≥1.0 mm, maximum number of 112 

consecutive dry days (CDD) with a daily precipitation amount of <1.0 mm, and 113 

maximum number of consecutive wet days (CWD) with a daily precipitation amount of 114 

≥1.0 mm. 115 

 116 

2.2. Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO) 117 

The monthly SST anomaly (SSTA) from NOAA’s Extended Reconstructed Sea 118 

Surface Temperature (ERSST) dataset v5 in the Tropical Indian Ocean (TIO) was 119 

used to calculate the IOD mode index. This is defined as the SSTA difference 120 

between the western (10° S–10° N, 50°–70° E) and southeastern (10° S to the equator, 121 

90°–110° E) regions of the TIO (Saji et al., 1999). From 1948–2017, a 3-month running 122 

average was applied to the IOD mode index data (August–September–October), which 123 

is the peak phase period, with ±1σ to determine the years with positive and negative 124 

modes of the IOD (Fig. 2). To characterize different types of ENSO event, monthly 125 
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Niño3 (5° S–5° N, 150° E–90° W) and Niño4 (5° S–5° N, 160° E–150° W) data for the 126 

period 1948–2018 were used for El Niño development phases (December–January–127 

February). In this study, the pattern of El Niño was divided into two groups depending 128 

on where the peak and persistent anomalies in SST occurred in the tropical Pacific: (1) 129 

Eastern Pacific (EP); El Niño occurring in the EP and (2) Central Pacific (CP); El Niño 130 

emerging in the CP. This study employed two new indices (Eq. 1) to identify the two 131 

types of El Niño event through a simple transformation of the Niño3 and Niño4 indices, 132 

as proposed by Ren and Jin (2011):  133 

𝑁𝐶𝑇 = 𝑁3 − 𝛼𝑁4 

𝑁𝑊𝑃 = 𝑁4 − 𝛼𝑁3, 

𝛼 = {
0.4, 𝑁3𝑁4 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   (1) 

Here, N3 and N4 indicate the Niño3 and Niño4 indices, respectively.  134 

Assessment of the relative impacts of the IOD and ENSO on rainfall across the ICP 135 

was based mainly on composite analyses. During 1979–2018, the effects of ENSO and 136 

the IOD were evaluated in terms of rainfall across the ICP during both the wet season 137 

(May–October) and the dry season (November–April). 138 

 139 

2.3. Trend Detection 140 

A nonparametric Mann–Kendall test is commonly used to detect a monotonic pattern in 141 

a time series of climate data based on the null hypothesis that the data are independent 142 

and sorted randomly (Mann, 1945; Kendall, 1990). The null hypothesis H0 is random in 143 

the order of the sample data (Xi, i = 1, 2..., n) and it has no trend, whereas the alternative 144 

hypothesis H1 represents the monotonous tendency of X. The S statistic for Kendall’s 145 

tau is calculated as follows: 146 
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       (2) 147 

and  148 

sgn(_) = {
    1      if _ > 0 
    0      if _ = 0 
 −1      if _ < 0 

 .      (3) 149 

The S statistic is calculated using the following mean and variance: 150 

E(S) = 0,         (4) 151 

,   (5) 152 

where tm measures the ties of extent m. The standardized test statistic Z is estimated as 153 

follows: 154 

Z =

{
 

 
S−1

√V(S)
        S > 0

     0             S = 0
S+1

√V(S)
       S < 0

.       (6) 155 

The existence of autocorrelation in a dataset affects the probability of detecting a trend 156 

when it does not exist and vice versa, but this is often ignored. Thus, the modified 157 

nonparametric trend test developed by Hamed and Rao (1998) was applied in this 158 

study. The corrected Z value is derived as follows: 159 

Z =

{
 

 
S−1

√𝑉∗(S)
        S > 0

     0             S = 0
S+1

√𝑉∗(S)
       S < 0

,       (7) 160 

where  161 

𝑉∗(𝑆) = 𝑉(𝑆) ∗
𝑛

𝑛𝑆
∗ ,       (8) 162 
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,   (9) 163 

where  is an autocorrelation function of the rank with respect to the observations. 164 

The sign of Z represents the trend direction and the magnitude of Z is associated with 165 

the significance level, where |Z| > 1.64 for the 10 % significance level and |Z| > 1.96 for 166 

the 5 % significance level. 167 

 168 

2.4. Intentionally Biased Bootstrapping Method 169 

Bootstrapping analysis is a statistical method that can generate replicated datasets from 170 

source data, and it can evaluate the variability of their quantiles without performing 171 

separate analytical calculations (Davision et al., 2003). However, the intentionally 172 

biased bootstrapping (IBB) technique applied in this study is a method that allows 173 

assessment of the relative effects of a response variable by deliberately increasing or 174 

decreasing the mean of the explanatory variable to a certain level while resampling it 175 

with the response variable (Lee, 2017). A brief description of the IBB analysis process 176 

is given below. 177 

 Among n observations 𝑥𝑖  ( 𝑖 = 1, 2, 3, … , 𝑛 ), suppose that the mean of the 178 

generated data is deliberately increased or decreased by ∆𝜇 for resampling of the 179 

observations with bootstrapping. As a result, high (low) values are likely to be 180 

resampled and low (high) values could be less likely to be selected. Thus, IBB can be 181 

obtained by allocating different weights 𝑆𝑖,𝑛 depending on the following observation 182 

values (Eq. 10): 183 

𝑆𝑖,𝑛 = 𝑖 / 𝑛.        (10) 184 
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The weight 𝑆𝑖,𝑛  assigned after scaling and adjustment contributes to the 185 

probability of selection for the data observed in the IBB procedure. The average of the 186 

resampled data can be expressed as in Eq. 11: 187 

𝜇 =
1

𝜓
∑ 𝑆𝑖,𝑛
𝑛
𝑖=1 𝑥𝑖  ,       (11) 188 

where 𝑥𝑖  represents the 𝑖 -th incremental value and 𝜓 = ∑ 𝑆𝑖,𝑛
𝑛
𝑖=1 . The average 189 

amount of increase or decrease ∆𝜇 is shown in Eq. 12: 190 

∆𝜇 =
1

𝜓
∑ 𝑆𝑖,𝑛
𝑛
𝑖=1 𝑥𝑖 − 

1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 .     (12) 191 

To obtain another value of ∆𝜇, the weights can be regeneralized in order of weight 192 

sequence (𝑟); thus, ∆𝜇(𝑟) is derived as follows: 193 

∆𝜇(𝑟) = 𝜇(𝑟) − �̂� =
1

𝜓𝑟
∑ 𝑠𝑖,𝑛

𝑟𝑛
𝑖=1 𝑥𝑖 − 

1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 .   (13) 194 

If the average value of increase or decrease is given as ∆𝜇, the weight “𝑟” can be 195 

calculated accordingly. In this study, the selection of the weight sequence was 196 

performed using a Self-Organizing Migrating Algorithm (Zelinka, 2004) with the 197 

objective function to minimize [∆𝜇 − ∆�̃�(𝑟)]2. In addition, the IBB technique was 198 

employed to generate resampled datasets for the IOD and the response to the intensity 199 

and frequency of rainfall to identify IOD-sensitive hotspots over the ICP. The statistical 200 

significance of the analysis results was assessed using the significance level of the 95th 201 

percentiles. 202 

 203 

3. Results 204 

3.1. Seasonal Precipitation Patterns across the ICP 205 

The ICP is a region in which monsoon rains occur in different seasons in association 206 

with seasonal winds and mountain areas. Geographically, the ICP has the Arakan 207 
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Mountains in the west, the Bilauktung Mountains and the Dawna Mountains in the 208 

center, and the Annamese Mountains in the east. Meteorologically, the ICP is divided 209 

into three monsoon periods: the southwest monsoon during June–November, 210 

southeast monsoon during September–November, and northeast monsoon during 211 

November–February. This study considered the wet season (May–October) and the 212 

dry season (November–April) to identify the potential impact on regional rainfall 213 

associated with atmosphere–ocean feedback in the Indian and Pacific oceans. 214 

Figure 3 shows the seasonal average precipitation during the wet and dry seasons 215 

across the ICP region during 1979–2018. The total precipitation during the wet season 216 

across the ICP is about 1000–1500 mm. In addition, it has been confirmed that 217 

precipitation variability is dependent on specific regions (Fig. 3a). The precipitation 218 

variability was found to differ significantly between inland (<1000 mm) and coastal 219 

areas (>2000 mm). Precipitation on the western coast of Cambodia, coast of western 220 

Thailand, and Myanmar during June–November is attributable to the influence of the 221 

southwest and southeast monsoons. Moreover, clear difference in precipitation is 222 

evident between eastern and western parts of the Arakan Mountains in Myanmar. As 223 

water vapor from Bangorman decreases over the mountains, the Arakan Mountains 224 

show an arid climate to the east and a pattern of strong precipitation to the west. 225 

During the dry season, total precipitation across the ICP is about 150–200 mm, 226 

indicating that rainfall variability is not significantly dependent on specific regions 227 

(Fig. 3b). In particular, in the dry season, because of the influence of the northeast 228 

monsoon during November–February, high rainfall is received in central coastal areas 229 

of Vietnam, e.g., near the city of Danang. Similarly, in the case of Myanmar, eastern 230 

parts are dry because of the influence of the Arakan Mountains. The climatic 231 

characteristics of the ICP are distinctive not only because of the effects of monsoons 232 

10

https://doi.org/10.5194/hess-2019-217
Preprint. Discussion started: 4 June 2019
c© Author(s) 2019. CC BY 4.0 License.



and mountain areas, but also because of the characteristics of local areas and because of 233 

specific temporal effects. The precipitation patterns of the ICP are likely to change 234 

according to the characteristics of the wet and dry seasons, as well as because of the 235 

influence of ocean-related climate factors (e.g., the IOD and ENSO). 236 

 237 

3.2. Spatiotemporal Variation in Precipitation over the ICP 238 

Figures 4 and 5 illustrate the long-term trend of precipitation over the ICP during 1979–239 

2018 for the wet and dry seasons, respectively. They show the results of the six major 240 

climate change indices that represent the magnitude and frequency of precipitation. For 241 

each figure, the direction of the trend is displayed in blue (increase) and red (decrease). 242 

Figures 4a, 4b, 5a, and 5b show the long-term trends of PRCPTOT and R95pTOT. 243 

These seasonal indices can be used to assess total precipitation. It can be seen that the 244 

characteristics of their spatial distribution are similar. During the wet season, there is a 245 

noticeable decrease in precipitation at the 5–10 % significance level in northern 246 

Cambodia, some parts of Laos, and southern Thailand. In addition, it can be seen that 247 

there is a marked trend of increase at the 5–10 % significance level in northwestern 248 

Myanmar, parts of western Thailand, central Vietnam, and southern parts of China 249 

(Fig. 4a and 4b).  250 

During the dry season, there is a noticeable increase in precipitation at the 5–10 % 251 

significance level along eastern and southern coastal areas of the ICP (i.e., Vietnam and 252 

Cambodia) and some southern coastal regions of Thailand (Fig. 5a and 5b). The 253 

R95pTOT climate index also shows a trend of increase in precipitation to the west of 254 

the Arakan Mountains in Myanmar (Fig. 5b). Therefore, long-term changes in the 255 

pattern of precipitation across the ICP during the wet season show a trend of decrease 256 

(increase) in central inland areas (some coastal areas). During the dry season, there is a 257 
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general trend of increase in precipitation across the ICP. Notably, the trend of increase 258 

in precipitation in southeastern coastal areas appears significant. 259 

Figures 4c, 4d, 5c, and 5d illustrate the long-term trends in RX1day and SDII. The 260 

RX1day and SDII climate indices can be used to assess rainfall intensity. It can be seen 261 

that the characteristics of the spatial distribution of the two indices are similar. 262 

Moreover, the characteristics of their spatial distribution are also similar to PRCPTOT 263 

and R95pTOT. It can be seen that during the rainy season the intensity of rainfall in 264 

central and northern Myanmar, central and southern Vietnam, and southern China 265 

increases, whereas the rainfall intensity decreases in Laos, Cambodia, northeastern 266 

Myanmar, and South Vietnam. During the dry season, rainfall intensity generally 267 

increases across the ICP, although it shows a clear pattern of decrease in Laos, as in the 268 

wet season.  269 

Figures 4e, 4f, 5e, and 5f show the long-term trends in CDD and CWD. The CDD 270 

and CWD indices can be used in assessment of droughts and floods, respectively. 271 

Therefore, it is unsurprising that the CDD and CWD indices exhibit opposite spatial 272 

distribution characteristics. During the rainy season, the CDD value across the ICP 273 

largely tends to increase, although it decreases in some coastal areas, e.g., Vietnam. The 274 

CWD index shows the reverse tendency. 275 

During the dry season, an increase (decrease) of the CDD (CWD) index can be 276 

clearly observed at the 5–10 % significance level (Fig. 5e and 5f). The CDD index 277 

increases along the southeast coast of the ICP, e.g., in areas of Vietnam, Cambodia, and 278 

southern Thailand, whereas the CWD index exhibits the opposite trend. An increase 279 

(decrease) in the CDD index suggests that drought is more (less) likely to occur, while a 280 

decrease (increase) in the CWD index means that the occurrence of drought is less 281 

(more) likely. Therefore, during the rainy season, floods are expected to increase along 282 
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the southeastern coast of the ICP (e.g., in Vietnam, Cambodia, and Thailand), while 283 

drought is more likely to occur during the dry season. 284 

 285 

3.3. Precipitation Variability Associated with the IOD and ENSO 286 

The IOD, Asian monsoon, and other regional climatological patterns can lead to local 287 

or global climate change, particularly in Indian Ocean Rim countries, which can cause 288 

severe flooding or droughts depending on IOD variability (Lqbal and Hassan, 2018). 289 

Composite analysis can clarify the role of the Southeast Asian Summer Monsoon in 290 

precipitation variability across the ICP region associated with years of strong IOD and 291 

ENSO, after identifying that tropical climate phenomena are the main factors that 292 

influence precipitation variability over the ICP during the wet and dry seasons. 293 

However, this role differs depending on the combination of the two climate 294 

phenomena and on the season. 295 

Figure 6 shows the results of composite rainfall anomalies (shown as a 296 

percentage relative to normal) over the ICP during the wet and dry seasons in relation 297 

to the IOD and ENSO. The patterns of rainfall anomalies indicate significant 298 

difference between positive and negative IOD years. For positive IOD years, the wet 299 

season rainfall (Fig. 6a) shows a decrease of <20 % in southern parts of the ICP, 300 

whereas there is a marked increase in rainfall centered over the Arakan Mountains in 301 

western Myanmar. It can be seen that the amount of rainfall received during the dry 302 

season (Fig. 6c) is similar to that in the wet season, but there is 40–50 % less rainfall 303 

than usual in certain mainland regions of Southeast Asia, especially Yangon and 304 

Mawlamyine in Myanmar and in eastern Cambodia. 305 

In negative IOD years, intense positive anomalies of rainfall can be seen in 306 

central Cambodia and southern parts of Vietnam. A slight strong-pitched anomaly 307 
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pattern is evident during the wet season (Fig. 6b) around the coastline of both 308 

Bangladesh and Myanmar, whereas weak-pitched positive anomalies (about 10–15 % 309 

relative to the long-term average) are found throughout the ICP. However, changes in 310 

rainfall pattern are not evident during the dry season (Fig. 6d), and although the 311 

amount varies depending on region, rainfall is generally >30–50 % above the 312 

long-term average. As in the wet season, the dry season also shows relatively strong 313 

positive rainfall patterns with positive anomalies of >80–100 % in Cambodia and both 314 

central and southern Vietnam.  315 

Sometimes droughts and flooding are likely to converge because of remote 316 

connections during IOD–ENSO periods, and they can have significant impact on the 317 

modulation of the large-scale oceanic and atmospheric environment, especially in the 318 

Indian Ocean and in Pacific Rim countries (Meza, 2013; Mahala et al., 2015; Lqbal 319 

and Hassan, 2018). Thus, consideration of both combined and independent effects of 320 

ENSO and the IOD on seasonal precipitation variability can provide improved 321 

predictive expertise, and reveal new insight into tropical climate change and global 322 

warming impacts (Ashok et al., 2001).  323 

Figure 7 shows composite rainfall anomalies (November–April) during positive 324 

and negative IOD years that coincided with ENSO. During positive IOD and El Niño 325 

years (Fig. 7a), there is less rainfall than usual across Thailand, Cambodia, southern 326 

Laos, and Vietnam. In particular, southern regions of Myanmar (from Yangon to 327 

Mawlamyine) that border the Andaman Sea show a distinct decrease in rainfall by 328 

more than 50 % in comparison with the long-term mean (1981–2010). However, in 329 

contrast, there is 20–40 % more rainfall than usual in northern parts of the ICP, e.g., 330 

northern Myanmar, northeastern parts of Laos, and Vietnam. Furthermore, in 331 

Guangzhou in China, rainfall is up to 60 % higher in comparison with average years. 332 
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These rainfall signals are stronger in WP El Niño years than in CT El Niño years 333 

(figures not shown). During negative IOD and La Niña years (Fig. 7b), rainfall above 334 

the long-term average is observed throughout the ICP, except for parts of central Laos 335 

and northern Vietnam. The pattern of increased rainfall appears strongly throughout 336 

Myanmar and regions around Ho Chi Minh City in Vietnam. However, in the region 337 

adjacent to India and Bangladesh, as well as the Shenzhen area of China, strong 338 

negative anomalies are evident. 339 

 340 

3.4. Identification of IOD-Sensitive Hotspots through IBB Simulations 341 

Section 3.3 discussed the significant impact on rainfall anomalies in the ICP 342 

attributable to the combined or independent effects of ENSO and the IOD. In particular, 343 

both positive IOD events and El Niño and negative IOD events and La Niña interact in 344 

modulating rainfall anomalies over the ICP. The IOD and ENSO are strongly correlated 345 

and their variations are mutually forced or triggered (Yu and Lau, 2005; Yuan and Li, 346 

2008; Lestari and Koh, 2016). For the period 1979–2017, the correlation between the 347 

peak phase of the IOD and the two types of El Niño index proposed by Ren and Jin 348 

(2011) was analyzed. The results showed the IOD has strong positive correlation with 349 

the CT El Niño (NCT) (ρ = 0.4850, p-value = 0.0018). However, the IOD also has 350 

positive correlation with the WP El Niño (NWP), but not at a statistically significant 351 

level (ρ = 0.110, p-value = 0.5013). These results are also reflected in the results of 352 

the IBB simulation (Fig. 8). Figure 8 shows the results of 1000 simulations for the 353 

NCT and NWP indices performed by applying the IBB technique to the IOD index 354 

based on historical observations for the period 1979–2017. For applying a +1SD 355 

increase of the IOD, the mean difference between the observation of NCT and 356 

simulated NCT shows a statistically significant increase at the 95 % significance level 357 
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(diff. = 0.392, Interquartile range (IQR) = 0.228). However, the difference in the 358 

mean value of the NWP index, although increased slightly, is not statistically 359 

significant (diff. = 0.097, IQR = 0.094). For applying a −1SD decrease of the IOD, the 360 

simulation results show changes similar to the case with a +1SD increase of the IOD 361 

(NCT: diff. = 0.360, IQR = 0.108, NWP: diff. = 0.088, IQR = 0.098). Therefore, for 362 

changes in the IOD, the linear increase (or decrease) in the NCT index is more 363 

pronounced than the change in the NWP index. 364 

The spatiotemporal connection between SST and winds shows strong coupling 365 

through precipitation and ocean dynamics (Saji et al., 1999). This dipole mode, 366 

accounts for about 12 % of SST variability in the Indian Ocean, and its duration of 367 

activity can greatly affect both the intensity and the frequency of rainfall in the Indian 368 

Ocean Rim countries, including the ICP. Based on statistical simulations of historical 369 

observations (1979–2018), Figs. 9 and 10 show rainfall variation and the most 370 

sensitive hotspot areas in the wet and dry seasons of the ICP attributable to IOD 371 

changes. 372 

The spatial distribution of differences in PRCPTOT is shown in Fig. 9, given the 373 

condition of a ±1SD increase or decrease of the IOD in the wet season. For a +1SD 374 

increase of the IOD, PRCPTOT is >90 % higher than usual throughout Myanmar, and 375 

weak positive anomaly patterns are evident in southwestern China. In contrast, a 376 

pattern of decrease of PRCPTOT of 15–20 % less than the long-term average is evident 377 

in Cambodia and southern Vietnam, i.e., in areas of the downstream reaches of the 378 

Mekong River. However, no statistically significant changes occur in the central ICP 379 

region, except in some parts of central Laos and Thailand. This spatial distribution of 380 

rainfall anomaly is also found for the RX1day index, although occasional patterns of 381 

increase or decrease are evident and the spatial extent is reduced. In addition, 382 
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throughout Myanmar, the CDD index is decreased by >25 % in comparison with the 383 

long-term average year, while the CWD index is increased by 35–50 %. For the CDD 384 

index, a statistically significant pattern of decrease is found across Vietnam, Cambodia, 385 

and Laos. The most significant changes in the CWD index are across Myanmar 386 

(increase of 35–50 %), southern Cambodia, and the southeast coast of Vietnam 387 

(decrease of 15–20 %). The other ICP regions generally show a pattern of weak 388 

increase in terms of CWD. For a −1SD decrease of the IOD, PRCPTOT, RX1day, and 389 

CWD all show distinct patterns of increase in the Laos and Vietnam basins, while the 390 

CDD index shows a predominant pattern of decrease, except in certain areas. Analysis 391 

indicates that other regions have a reverse pattern compared with the case of the +1SD 392 

increase of the IOD. Consequently, it is determined that changes in rainfall during the 393 

wet season in the ICP region are sensitive to changes in the IOD.  394 

Given the condition of a ±1SD increase or decrease of the IOD for the dry season, 395 

the spatial distribution of the rainfall indices is shown in Fig. 10. For a decrease of 396 

−1SD of the IOD, there is more rainfall (PRCPTOT and RX1day) than usual 397 

throughout the ICP, especially in Laos and Vietnam. For a +1SD increase of the IOD, 398 

negative anomaly patterns of PRCPTOT are dominant in southern Vietnam, eastern 399 

Cambodia, and northeastern Thailand, while weak patterns of positive anomaly are 400 

evident in areas of Myanmar and South China. Compared with the changes in the 401 

rainfall indices during the wet season, changes in the rainfall indices are intensified 402 

and the spatial influence is more extensive. However, for the CDD and CWD indices, 403 

either the positive anomaly patterns are weakened or negative anomaly patterns 404 

appear for a +1SD increase of the IOD. Especially for the CWD index, a pattern of 405 

decrease by more than 10–20 % compared with the long-term average is found in 406 

Thailand, whereas the Myanmar region shows a pattern of increase of 15–25 %. In 407 
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this study, we simulated the changes in both wet and dry season rainfall across the 408 

ICP according to intentional IOD changes, and IOD-sensitive hotspots were verified 409 

through quantitative analysis. The findings of this study could help elucidate the 410 

long-term changes in rainfall expected in the ICP region in a changing climate.  411 

 412 

4. Summary and Conclusions 413 

This study analyzed changes in the magnitude and frequency of precipitation during the 414 

dry and wet seasons over the ICP, taking into account both the dipole mode in the 415 

tropical Indian Ocean and SST warming in the Pacific Ocean. The main results are 416 

summarized in the following. 417 

1. According to analyses of the long-term trend in seasonal rainfall across the ICP 418 

during 1979–2018, rainfall showed significant decreases in northern Cambodia, 419 

parts of Laos, and southern Thailand during the wet season (May–October). 420 

Moreover, significant increases were evident in northwestern Myanmar, some 421 

parts of western Thailand, central Vietnam, and southern China. During the dry 422 

season (November–April), PRCPTOT rose noticeably in eastern and southern 423 

coastal areas of the ICP (i.e., Vietnam and Cambodia) and some southern 424 

coastal regions of Thailand. 425 

2. During the wet season, the CDD index increased and decreased in some coastal 426 

areas such as Vietnam. However, during the dry season, increases in CDD and 427 

decreases in CWD were evident in the ICP. In particular, a pattern of decline in 428 

CWD dominated southeastern coastal areas of the ICP, including Vietnam, 429 

Cambodia, and southern Thailand. 430 

3. The IOD showed strong positive correlation with the CT El Niño. However, 431 

although the IOD exhibited positive correlation with the WP El Niño, the 432 
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relationship was not statistically significant. The variability of rainfall across 433 

the ICP was confirmed amplified by combined and independent effects of 434 

ENSO and the IOD. During years of positive IOD and El Niño, there was less 435 

rainfall than usual throughout Thailand and Cambodia, southern Laos, and 436 

Vietnam. In particular, the southern part of Myanmar, which borders the 437 

Andaman Sea, showed a decrease in regional rainfall of >50 % in comparison 438 

with the long-term average. In contrast, northern parts of India and China, 439 

including Myanmar, northeastern Laos, and Vietnam, received 20–40 % more 440 

rainfall than usual. Years with a negative IOD mode and La Niña showed 441 

rainfall above the long-term average across the ICP, except for certain parts, 442 

e.g., Central Laos and northern Vietnam. 443 

4. Through application of the IBB technique, this study simulated the change of 444 

rainfall across the ICP for the wet and dry seasons according to intentional IOD 445 

changes, and IOD-sensitive hotspots were verified through quantitative analysis. 446 

For the wet season, a +1SD increase of the IOD resulted in >90 % more 447 

PRCPTOT than usual across Myanmar in the northwestern ICP. Conversely, in 448 

Cambodia and southern Vietnam, rainfall patterns were 15–20 % less than the 449 

long-term average in the region of the lower Mekong River. In addition, the 450 

CDD index decreased throughout Myanmar by >25 % compared with the 451 

long-term average. The most significant change in the CWD index was in 452 

Myanmar, i.e., a 35–50 % increase. However, a pattern of decrease appeared 453 

across the southeastern coast of the ICP in southern Cambodia and Vietnam. 454 

For a +1SD increase of the IOD in the dry season, negative anomaly patterns of 455 

PRCPTOT were found dominant in South Vietnam, eastern Cambodia, and 456 

northeastern Thailand, and more rainfall than usual occurred throughout the 457 
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ICP, especially in Laos and Vietnam, when considering a −1SD decrease of the 458 

IOD. 459 

 460 

Although the results of this study are based on limited observations, they provide a 461 

clear perspective on the sensitivity of local precipitation to atmosphere–ocean 462 

interactions, and they reveal the potential future impact of statistical changes to the IOD, 463 

improving our understanding of the associated regional impact on precipitation under 464 

the effects of climate change. 465 
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 618 
Figure 1. Map of the Indochina Peninsula (5°–25° N, 90°–115° E). 619 

  620 
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 621 

Figure 2. Dipole mode in the tropical Indian Ocean (TIO) and Niño region in the Pacific 622 

Ocean. The Indian Ocean Dipole (IOD) index is defined based on the sea surface temperature 623 

anomaly difference between the western (10° S–10° N, 50°–70° E) and southeastern (10° S to 624 

the equator, 90°–110° E) regions of the TIO shown in the upper panel. In the lower panel, the 625 

IOD time series during 1948–2017 is shown by the solid line, and the ±1SD of the IOD is 626 

marked by dotted lines. 627 

628 
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 629 

Figure 3. Average precipitation (mm) during the (a) wet and (b) dry seasons (1979–2018). 630 

631 
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 632 

Figure 4. Long-term trend in seasonal precipitation for the wet season (May–October) over 633 

the ICP during 1979–2018. (a)–(f) show the analysis results of the six major climate change 634 

indices that reflect the magnitude and frequency of precipitation. In each panel, positive and 635 

negative trends are displayed in blue and red, respectively. The magnitude of Z is associated 636 

with the significance level, i.e., |Z| > 1.64 is for the 10 % significance level and |Z| > 1.96 is 637 

for the 5 % significance level. 638 

639 
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 640 
Figure 5. Same as Fig. 4 but for seasonal precipitation during the dry season (November–641 

April). 642 

643 
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 644 

Figure 6. Composite of seasonal rainfall anomaly (%) during positive and negative IOD 645 

years: (a) rainfall anomaly in wet season during positive IOD years, (b) rainfall anomaly in 646 

wet season during negative IOD years, (c) rainfall anomaly in dry season during positive IOD 647 

years, and (d) rainfall anomaly in dry season during negative IOD years. Positive (negative) 648 

values show increasing (decreasing) rainfall departure from the long-term average (1981–649 

2010).  650 

651 
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 652 

Figure 7. Composite rainfall anomaly in dry season (November–April) associated with the 653 

IOD and ENSO: (a) rainfall anomaly during years with positive IOD and El Niño, and (b) 654 

rainfall anomaly during years with negative IOD and La Niña. Positive (negative) values 655 

show increasing (decreasing) rainfall departure from the long-term average (1981–2010).   656 
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 657 

Figure 8. Mean differences of the two types of El Niño with ±1SD of the IOD. In the main 658 

panel, contours (5th, lower quadrant, median, upper volatile, and 95th level) summarize the 659 

IOD index and Nct or Nwp index using the intentionally biased bootstrapping model. Both 660 

left and right panels deliberately apply ±1SD of the IOD to show results of 1000 simulations 661 

for the Nct and Nwp indices. Red dots in each panel represent the average value of the 662 

observations. 663 

 664 

665 
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 666 

Figure 9. Spatial distributions of the percentage changes in major precipitation indices for the 667 

wet season (May–October) over the ICP region for intentional increases (+1SD) or decreases 668 

(−1SD) of the IOD index using the intentionally biased bootstrapping simulation. In each 669 

panel, the statistically significant area of change at the 95 % significance level is shown by an 670 

“x” symbol.  671 
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 672 

Figure 10. Same as Fig. 9 but for the dry season (November–April) over the ICP region.  673 

 674 
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