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Abstract. In urban hydrology rainfall time series of high resolution in time are crucial. Such time series with sufficient 

length can be generated through the disaggregation of daily data with a micro-canonical cascade model. A well-known 

problem of time series generated so is the inadequate representation of the autocorrelation. In this paper two cascade model 10 

modifications are analysed regarding their ability to improve the autocorrelation in disaggregated time series with 5 minute 

resolution. Both modifications are based on a state-of-the-art reference cascade model (method A). In the first modification, 

a position-dependency is introduced in the first disaggregation step (method B). In the second modification the position of a 

wet time step is redefined in addition (method C). Both modifications led to an improvement of the autocorrelation, 

especially the position redefinition. To ensure the conservation of a minimum rainfall amount in the wet time steps, the 15 

mimicry of a measurement device is simulated after the disaggregation process.  Simulated Annealing as a post-processing 

strategy was tested as both, as an alternative as well as an addition to the modifications in method B and C to improve the 

autocorrelation. For the resampling, a special focus was given to the conservation of the extreme rainfall values. Therefore, a 

universal extreme event definition was introduced to define extreme events a priori without knowing their occurrence in time 

or magnitude. The resampling algorithm is capable of improving the autocorrelation, independent of the previously applied 20 

cascade model variant. Also, the improvement of the autocorrelation by the resampling was higher than by the choice of the 

cascade model modification. The best overall representation of the autocorrelation was achieved by method C in 

combination with the resampling algorithm. The study was carried out for 24 rain gauges in Lower Saxony, Germany. 

 

1. Introduction 25 

For many applications in hydrology high resolution rainfall time series are crucial (see the review of Cristiano et al. (2017)) 

to match the scale of the underlying processes (Blöschl and Sivapalan, 1995). Schilling (1991) concludes that for urban 

hydrology, in particular for overland flow, a temporal resolution of 5 minutes is acceptable. Berne et al. (2004) points out 
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that the required temporal resolution depends on the catchment size, and recommend for urban catchments with area sizes of 

about 1000 ha a temporal resolution of 6 minutes and for 10 ha or smaller a temporal resolution of 1 min. Unfortunately, 

lengths of time series with such a high temporal resolution are insufficient for most applications. However, for the non-

recording stations (registration of daily values) the time series lengths are usually sufficient, but the temporal resolution is 

not fine enough to cope with the dynamics in urban hydrology (Ochoa-Rodriguez et al., 2015) or for erosion processes 5 

(Jebari et al, 2012). 

A possible solution for this data scarcity is rainfall disaggregation. Information of short, high-resolution time series are used 

to disaggregate coarser time series. The disaggregation results in high-resolution time series with sufficient lengths as well as 

a higher network density in most cases. Several methods exist for the temporal disaggregation, e.g. method of fragments 

(Wójcik and Buishand, 2003, Westra et al., 2012, Breinl et al., 2015, Breinl and Di Baldassarre, 2019), rectangular pulse 10 

models (Koutsoyiannis and Onof, 2001) and cascade models. Cascade models are well-known disaggregation models for the 

generation of high-resolution rainfall time series and were developed originally in the field of turbulence theory 

(Mandelbrot, 1974). Based on Koutsoyiannis and Langousis (2011), the canonical version of the cascade model 

(conservation of rainfall amount on average during the disaggregation, e.g. Molnar and Burlando, 2005, Paschalis et al., 

2012) represents a downscaling technique, while the micro-canonical version (exact rainfall amount conservation for each 15 

time step, e.g. Olsson, 1998, Güntner et al., 2001, Licznar et al., 2011, 2015, Müller-Thomy et al., 2018, Müller-Thomy-

Sikorska-Senoner, 2019) represents a disaggregation technique. However, for urban hydrology the majority of investigations 

with cascade models focus on the disaggregation of quasi-daily time series (with time step durations of 1280 minutes instead 

of 1440 minutes, e.g. Licznar et al., 2011, 2015, Molnar and Burlando, 2005, Paschalis et al., 2014) to achieve a final 

temporal resolution of 10 minutes or 5 minutes. This enables using the same branching number (that determines the number 20 

of finer time steps with equal duration resulting from one coarser time step) of b=2 throughout the disaggregation process 

with intermediate resolutions of {640, 320, 160, 80, 40, 20, 10, 5 min}. Since time series with 1280 minutes do not exist as 

observations, these studies are rather theoretical than practical from an engineering point of view. Of course, by the 

application of an additional transformation process a desired temporal resolution can be achieved, whereby the 

transformation process affects the characteristics of the disaggregated time series. To overcome this issue, Müller and 25 

Haberlandt (2018) developed a micro-canonical cascade model, which enables the rainfall disaggregation from daily values 

to 5 minutes. Müller and Haberlandt evaluated the disaggregated rainfall time series in terms of rainfall characteristics and 

showed good performances regarding continuous (average intensity, fraction of dry intervals) and event-based rainfall 

characteristics (wet and dry spell duration, wet spell amount) as well as extreme values. An additional validation with an 

urban hydrological model led to comparable results for event-based combined sewer overflow volume as well as manhole 30 

flooding volume when forced with observed and disaggregated rainfall time series, respectively. 

However, Müller and Haberlandt (2018) also show that the autocorrelation of the disaggregated time series is 

underestimated. This is critical, because the autocorrelation describes the memory of a process. So for continuous 

Peleg
Cross-Out
Not relevant, you discuss applications to urban hydrology up to this point.

Peleg
Comment on Text
(2018)

Peleg
Cross-Out



 3 

applications especially deviations can be expected whether e.g. an urban hydrological model is forced with observed or 

disaggregated rainfall time series. The underestimation of the autocorrelation in the generated time series has been identified 

before when micro-canonical cascade models were used for the disaggregation by e.g. Olsson (1998), Güntner et al. (2001) 

and Paschalis et al. (2012, 2014). Lisniak et al. (2013) divided the study period into a calibration and validation period. 

While for the calibration period the autocorrelation was underestimated, a good representation was achieved for the 5 

validation period. Rupp et al. (2009) and Pohle et al. (2018) analysed four and three different kinds of cascade models, 

respectively. Depending on the choice of the model, under- and overestimations of the autocorrelation function were 

identified. A good representation of the lag-1 autocorrelation was achieved by Hingray and Ben Haha (2005) with two 

micro-canonical cascade models. However, since only four disaggregation steps were applied (from hourly to 7.5 min time 

steps) it remains unclear, if the good representation would have been achieved for more disaggregation steps. 10 

Summarizing the previous findings, an adequate reproduction of the autocorrelation function by the multiplicative micro-

canonical cascade model can be difficult. The reasons for over- and underestimation differ depending on the choice of the 

cascade model. For example, in Olsson (1998) and Müller and Haberlandt (2018) the underestimation is caused by the 

generation of dry time steps inside rainfall events, causing shorter wet spells in the disaggregated time series in comparison 

with the observed time series. In Pohle et al. (2018) an overestimation of the autocorrelation is identified for a cascade based 15 

on Menabde and Sivaplan (2000), which disables the generation of dry finer time steps from one wet coarser time step.  

In this study, I investigate modifications of the cascade model itself, but also a post-processing strategy after the 

disaggregation procedure to improve the representation of the autocorrelation in the disaggregated time series. The basis for 

all investigations in this study is the multiplicative random cascade model as proposed by Müller and Haberlandt (2018). 

According to Marshak et al. (1994) it is a bounded cascade model with a single parameter set for each disaggregation level. 20 

The parameters are estimated by the aggregation of observed, high-resolution time series (Carsteanu and Foufoula-Georgiou, 

1996). The modifications are based on the introduction of position-dependencies with two different degrees of complexity. 

The first, less complex modification includes taking into account the position of the wet day in the time series. The second, 

more complex modification follows an idea of Lombardo et al. (2012, 2017). Lombardo et al. analysed which time steps are 

most worth to consider to generate highly correlated time series under the burden of computational efforts. Their conclusion 25 

is adapted in this investigation. Both modifications are expected to improve the autocorrelation function and lead with the 

basis model to three different cascade model variants in this study. It should be pointed out that Lombardo et al. (2012) 

showed that the disaggregation process of discrete multiplicative random cascade models is non-stationary, “because the 

autocorrelation structure depends on the position in time in an undesirable manner”. Since the aim of this study is to improve 

the overall representation of the autocorrelation function (as average over time), it is not analysed to which extent the non-30 

stationarity issue is solved by the introduced methods. 
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Simultaneously, a second general issue of the cascade model is solved: the generation of time steps with very small rainfall 

intensities. Molnar and Burlando (2005) identified a fraction of rainfall intensities lower than the measurement resolution of 

the investigated time series of 48 % for 10 min time series, starting with the disaggregation from quasi-daily values. Müller 

and Haberlandt (2015) found for a disaggregation from daily to hourly values a fraction of underestimated rainfall intensities 

of 35 %. Koutsoyiannis et al. (2003) argue that it is unclear, if the values generated by the cascade model are too small in 5 

comparison to the observed minimum intensities or if the resolution of the measurement device is not fine enough to observe 

the very small rainfall intensities generated by the cascade model. From a practical point of view, these low-intensity time 

steps are not important, but they have an impact on the autocorrelation function. To enable comparisons between the 

autocorrelation of observed and disaggregated rainfall time series a novel method is applied in this study to ensure a 

minimum rainfall intensity in the disaggregated time series.  10 

In addition to the modifications of the cascade model itself, a resampling algorithm as post-processing strategy is analysed to 

improve the autocorrelation. A similar approach has been investigated by Bárdossy (1998), who used a simulated annealing 

algorithm to resample time series generated with a Markov chain Monte Carlo method. Bárdossy investigated temporal 

resolutions of 1 hour and 5 minutes, the autocorrelation function could be reproduced well for both. For this investigation, 

the proposed resampling algorithm of Müller and Haberlandt (2015) will be modified to include the autocorrelation function 15 

in the optimization process. 

As a summary from the introduction, the main research question of this study is: How can the autocorrelation in the 

disaggregated time series be improved? 

2. Rainfall data 

For the investigation 24 stations in and around Lower Saxony, Northern Germany, are used (see Fig. 1). The same data set 20 

has been used before by e.g. Callau and Haberlandt (2017) for rainfall generation. 

There are three dominating topographical regions with a coastal area around the North Sea, followed by the flatland around 

the Lüneburger Heide and the Harz middle mountains with altitudes up to 1141 m a.s.l. (from North to South).  

Due to the climate classification after Köppen-Geiger (Peel et al., 2007) the study area can be divided into a temperate 

climate in the north and a cold climate in the mountainous region. Both climates exhibit no dry seasons, but hot summers. 25 

For the Harz mountains, average annual precipitation amounts greater than 1400 mm can be identified. 

In Fig. 1, the 24 recording stations operated by the German Weather Service (DWD) with long term time series ranging from 

9 to 20 years and a temporal resolution of 5 minutes are shown. The validation of the cascade model modifications is based 

on these 24 stations with a focus on the autocorrelation, but also on overall characteristics (average intensity, fraction of dry 

hours), event characteristics (dry spell duration, wet spell duration, wet spell amount) as well as extreme values. The 30 

definition for a single event is according to Dunkerley (2008); having a minimum of one dry time step before and after the 
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rainfall occurrence. For the definition of a dry time step the accuracy of the measuring instrument is not applied here, instead 

a threshold of 0 mm/5 min rainfall intensity is used. This enables comparisons between observed and disaggregated time 

series, which are not limited to the measuring accuracy and hence also includes smaller values (Molnar and Burlando, 2005). 

The rainfall time series characteristics along with further information of the rain gauges are provided in Table 1.  

 5 

 

Fig. 1: Study area of Lower Saxony (and its location in Germany) with 24 recording stations.  

3. Methods 

The overall aim of this investigation is the improvement of the autocorrelation rt1,t2 of the generated time series with a 

temporal resolution of 5 minutes. The autocorrelation function (Eq. 1) describes the memory of a process (here: rainfall) by 10 

the comparison of time series with itself in the future (shifted time series), whereby the future is represented by a certain 

number of λ future time steps in the time series (lags). For rainfall time series Pearson’s autocorrelation and Spearman’s rank 

autocorrelation are applied in literature (e.g. Pohle et al., 2018). Actually, the Pearson’s autocorrelation can only be applied 

if the data population is normally distributed, while Spearman’s rank autocorrelation demands no assumption about the 

distribution of the data. However, using Pearson’s autocorrelation has two advantages: i) it enables comparisons with results 15 
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from the literature, since it is applied more often than Spearman’s rank autocorrelation, and ii) in terms of the later 

introduced resampling as optimization algorithm (see Sect. 3.2) for Pearson’s autocorrelation no rank analysis of the whole 

time series has to be performed, since it can be calculated straight forwardly from the absolute values of the time series, 

which essentially fastens the optimization. Hence, the Pearson’s autocorrelation is applied throughout this study.  

The autocorrelation function is based on two elements: the covariance st1,t2 of the original and the shifted time series (t1 and 5 

t2, shifted by the lag λ with λ=t2-t1), that describes the relation of both time series, and the standard deviations of both time 

series, st1 and st2, for the standardization of the covariance. While t1 consists of n time steps, the rainfall amount at a single 

time step i is represented by x. 

 𝑟𝑟𝑡𝑡1,𝑡𝑡2 = 𝑠𝑠𝑡𝑡1,𝑡𝑡2
𝑠𝑠𝑡𝑡1𝑠𝑠𝑡𝑡2

= ∑ (𝑥𝑥𝑖𝑖−𝑥𝑥)���(𝑥𝑥𝑖𝑖+𝜆𝜆−𝑥𝑥)���𝑛𝑛−𝜆𝜆
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)² ∑ (𝑥𝑥𝑖𝑖+𝜆𝜆−𝑥̅𝑥)²𝑛𝑛−𝜆𝜆
𝑖𝑖=1

𝑛𝑛−𝜆𝜆
𝑖𝑖=1

       (1) 

To improve the autocorrelation of the disaggregated time series, several methods are introduced. A flowchart of the applied 10 

methods is presented in Fig. 2. The method chapter is divided into three subsections, which will be briefly described. Section 

3.1 includes the model description of the cascade model and two modifications to improve the representation of the 

autocorrelation in the disaggregated time series. These three cascade model variants are compared at the end of Section 3.1. 

In Sect. 3.2 a resampling algorithm to increase autocorrelation as a post-processing strategy after the disaggregation process 

is explained. The evaluation strategy for the disaggregated time series based on rainfall characteristics is explained in Sect. 15 

3.3. 

 

Disaggregation - Method A 
(3.1.1)

Rainfall time series [d]

A-Std
[5 min]

MMD
(3.1.1)

Resampling
(3.2)

A-MMD
[5 min]

A-res
[5 min]

Disaggregation - Method B 
(3.1.2)

B-Std
[5 min]

MMD
(3.1.1)

Resampling
(3.2)

B-MMD
[5 min]

B-res
[5 min]

Disaggregation - Method C 
(3.1.3)

C-Std
[5 min]

MMD
(3.1.1)

Resampling
(3.2)

C-MMD
[5 min]

C-res
[5 min]

 
Fig. 2: Overview of applied methods (dashed rectangles) and the resulting data sets (bottom line). In the brackets 

behind the applied methods the subsection with the method description is referenced. 20 
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3.1 Disaggregation model 

3.1.1 General scheme (Method A) 

The principle of the micro-canonical, bounded cascade model applied in this investigation is illustrated for the first two 

disaggregation steps in Fig. 3 (top) and was introduced by Müller and Haberlandt (2018). A coarse time step is disaggregated 

into b finer time steps, with b named the branching number. 5 

Starting with daily values, b=3 is applied and three time steps with 8 h duration are generated (similar to Lisniak et al., 

2013). The choice of b=3 has no physical reason and is only applied to achieve a final temporal resolution of 5 min (see 

Section 1). The daily rainfall amount can occur in only one (0/0/1-splitting), in two (0/1
2
/1
2
) or in all three of the finer time 

steps, whereby the rainfall amount is distributed uniformly on the wet time steps (as it can be seen from the numbers in 

brackets that identify the fractions of the daily rainfall amount). The required parameters for this splitting are the 10 

probabilities P for one (P(0/0/1)), two (P(0/1
2

/ 1
2
)) and three (P(1

3
/1
3
/1
3
)) wet 8 h-intervals in a day. The parameters P(0/0/1) 

and P(0/1
2
/1
2
) have no influence on the position of the wet boxes, only on the number. The position is assigned randomly. The 

probability for P(1
3
/1
3
/1
3
) can be determined by P(1

3
/1
3
/1
3
) = 1-P(0/0/1)-P(0/1

2
/1
2
). The possible splittings and the distribution of the 

daily rainfall amount on the finer time steps are summarized in the cascade generator for b=3 (see Eq. 2). By multiplying the 

rainfall volume V of the coarser time step with the so-called multiplicative weights W1, W2 and W3 the rainfall amounts of the 15 

finer time steps are derived. The sum of the weights is equal to 1 in each split, so the rainfall amount is conserved exactly 

throughout the disaggregation process. 

 

𝑊𝑊1,𝑊𝑊2,𝑊𝑊3 =

⎩
⎨

⎧
{1, 0, 0;  0, 1, 0 𝑜𝑜𝑜𝑜 0, 0, 1}        𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑃𝑃(0/0/1)
�1
2

, 1
2

, 0;  1
2

, 0, 1
2

 𝑜𝑜𝑜𝑜 0, 1
2

, 1
2
�     𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑃𝑃(0/ 1

2
/ 1
2
)

1
3

, 1
3

, 1
3

                                         𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑃𝑃(1
3

/ 1
3

/ 1
3
)

          (2) 

 20 

Also, a volume-dependency of the parameter was identified for b=3. Müller and Haberlandt (2015) have shown that for days 

with high rainfall amounts (above a quantile q0.998) the probability for two and especially three wet 8 h time steps is much 

higher than for lower daily rainfall amounts. Without a consideration of this volume-dependency of the parameters, the 

probability is too high that high daily rainfall amounts are put into one 8 h time step, which will lead to an overestimation of 

extreme rainfall values. Hence, parameters are estimated for a lower and an upper volume class, with the quantile q0.998 of all 25 

daily total rainfall amounts as threshold (see Müller and Haberlandt (2015) for more details).  

After the first disaggregation step, only b=2 is applied. The generated intermediate time series have temporal resolutions of 

Δt={4 h, 2 h, 1 h, 30 min, 15 min, 7.5 min}. The rainfall amount of the coarser time step can be assigned either to the first 

(1/0-splitting) or to the second (0/1) finer time step only or to both finer time steps (x/(1-x)). Again, all probabilities (P(0/1), 
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P(1/0) and P(x/(1-x))) sum up to 1. For the x/(1-x)-splitting, the relative fraction of the rainfall volume that is assigned to the 

first of the two finer time steps is considered as a random variable x with 0 < x < 1. An empirical distribution function is 

used to represent f(x), with a maximum of 14 equidistant bins (based on the number of available splittings, see Storm (1988, 

p. 86)). The cascade generator for b=2 is given in Eq. 3: 

1 2

0 and 1         with P(0/1)
W , W 1 and 0         with P(1/0)

x and 1 x   with P(x/(1-x)); 0<x<1


= 
 −

      (3) 5 

The parameters for the splitting with b=2 depend on both, the position and the volume class of the current time step to 

disaggregate in the time series (see e.g. Olsson, 1998, Güntner et al., 2001). The position of a time step is defined by the 

wetness state of the surrounding time steps, so starting (time step before is dry, time step afterwards is wet, dry-wet-wet), 

enclosed, ending and isolated positions can be distinguished (see Fig. 4 for an illustration). For each position two volume 

classes are defined, whereby the lower and upper volume class are separated by the mean rainfall volume of each position. 10 

All parameters for b=2- and b=3-splittings can be estimated by aggregating observed time series with the same temporal 

resolution (Carsteanu and Foufoula-Georgiou, 1996). As mentioned before, a bounded cascade model is applied (Marshak et 

al., 1994). In bounded cascade models the weights W depend on the temporal resolution to allow the disaggregation process 

to become smoother with finer resolutions (e.g. Menabde et al., 1997, Lombardo et al., 2012). The need for particular 

parameter sets for each temporal resolution arises from the wide temporal range (from daily to 5 min time steps) and hence 15 

the underlying processes, which differ between the temporal scales.  

To summarize the previous explanation regarding parameter estimation: for each temporal scale two fine time steps are 

aggregated (or three finer time steps for b=3, respectively) to one coarser time step, whereby the position and the volume 

class of the coarser time step determines to which position-volume class-combination the current splitting belongs. The 

cascade model parameters are then estimated over all splittings of a position-volume class combination, so all parameters 20 

and distribution functions included in the disaggregation process are estimated empirically. 

A final temporal resolution of 5 min is achieved via uniform transformation (Müller and Haberlandt, 2018). The rainfall 

amounts of time steps with Δt=7.5 min are distributed uniformly on 2.5 min time steps and afterwards aggregated non-

overlapping to Δt=5 min. 

As mentioned in Sect. 1, the cascade model tends to generate too many time steps with too low intensities. To overcome the 25 

issue, the behaviour of a measurement device is imitated after the disaggregation. Rainfall amounts smaller than the 

minimum resolution of the measurement device are summated in the chronological order of the time steps until the sum Sthr 

exceeds this threshold. The former wet time steps with smaller intensities are set to 0 mm, while Sthr is moved to the last time 

step of the summation. Afterwards, Sthr is set back to 0 mm. This process is carried out over the whole disaggregated time 

series and is referred to as ‘mimicry of a measurement device’ (MMD). If applied, Sthr is set to 0.01 mm in this study, which 30 

is identical to the minimum resolution of the measuring devices of the observed time series. 

Peleg
Cross-Out

Peleg
Cross-Out



 9 

 

3.1.2 Introduction of position-dependency in the uniform splitting (Method B) 

For method B, only the first disaggregation step is (uniform splitting) modified from Method A in terms of the introduction 

of a position dependency. All further disaggregation steps remain identical to Method A and are not changed.  

For the disaggregation of daily values into 8 hours the cascade model is applied with a branching number of b=3. Although 5 

the number of wet 8 hour-intervals depends on estimated probabilities, their position is chosen randomly in Method A. This 

is assumed to cause deviations of the autocorrelation. 

Therefore, in addition to the volume classes, the position of the daily time step in the time series is also taken into account 

for the parameter estimation in Method B. The same positions are applied for the further disaggregation steps with b=2 

(starting, enclosed, ending and isolated position, see also Fig. 4). For each position, the probability of possible placements of 10 

wet and dry 8 hour-intervals is estimated. The daily rainfall amount is split uniformly between the as-wet-defined 8 hour-

intervals. Based on the possible placements, the resulting cascade generator for the first disaggregation step is shown in Eq. 4 

and substitutes Eq. 2.  

 

1 2 3

1, 0 and 0      with P(1/0/0)
0,1and 0      with P(0/1/0)
0, 0 and 1     with P(0/0/1)
1 1 1 1W , W , W ,  and 0 with P( / /0)
2 2 2 2
1 1 1 1, 0 and  with P( /0/ )
2 2 2 2

1 1 1 10,  and  with P(0/ / )
2 2 2 2

1 1 1 1 1,  and  with P( /
3 3 3 3 3

=

1/ )
3





















       (4) 

3.1.3 Introduction of a preceding cascade model (Method C) 15 

In the modification called preceding cascade model, the position-dependency for the whole disaggregation process is 

extended. Hence, the modifications for Method C affect all disaggregation steps. Since only method C is referred to as 

preceding cascade model, method A and B can be considered as non-preceding cascade models. Besides the modified 

position classes definition, the disaggregation process remains identical to Method A. 
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An example of the position-dependency extension is illustrated in Fig. 3 (bottom) and will be used for explanation. The 

indices f and g of each time step Zf, g represent an index for each time step (f=1, 2, .., n with n=length of the time series) and 

each disaggregation level (g=1, 2, …, 7), respectively.  

For a time step Z (Z2,1) the wetness state of the time steps before (Z1,1) and afterwards (Z3,1) of the same disaggregation level 

are taken into account for the identification of the position so far (so-called “non-preceding” in Fig. 3). Hence, the type of 5 

splitting (1/0, 0/1 or x/(1-x)) is chosen independently from the wetness state of two already disaggregated time steps (Z1,2 and 

Z2,2) in the next disaggregation level. For the position definition in the preceding cascade model, the information about the 

wetness state of the two finer, already disaggregated time steps (Z1,2 and Z2,2) and the following, coarse time step (Z3,1) is 

taken into account (according to Lombardo et al. (2012, 2017)). 

 10 
 

Fig. 3: Scheme for position definition in a non-preceding (upper part) and preceding (lower part) cascade model. The dashed boxes 
indicate the time steps taken into account for position definition of the time step Z2,1. 

Due to the new definition, the number of positions is extended from four in the non-preceding cascade model positions 

(starting, ending, enclosed, isolated) to eight in the preceding cascade model (see also Fig. 4): one starting ({0,0},1,1 with 15 

0=dry and 1=wet and {} indicating the wetness state of the preceding, already disaggregated time steps), three enclosed 

({0,1},1,1; {1,0},1,1 and {1,1},1,1), three ending {0,1},1,0; {1,0},1,0 and {1,0},1,0) and one isolated position ({0,0},1,0) 

for b=2. 

 

3.1.4 Comparison of cascade model variants 20 

Due to the new introduced position definitions a comparative overview of the different position classes (Fig. 4) and the 

resulting number of cascade model parameters (Table 2) is provided. For the sake of comparability, the empirical 

distribution function used for the x/(1-x)-splitting for b=2 is considered simplified as an additional parameter, since the 

complexity of the disaggregation method is higher with f(x) than without. Nevertheless, it remains an empirical distribution 

function and is not a single parameter value. 25 
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From Table 2 it is visible, that the introduction of a position-dependency for b =3 for cascade model B and the refinement of 

the position definition for cascade model C leads to an increase in cascade model parameters. Especially for method C the 

number of possible distributions of rainfall amounts in the already disaggregated time step before the current time step to 

disaggregate (see Fig. 4) leads to a strong increase of model parameters. Since all model parameters are estimated directly 

from observations (Carsteanu and Foufoula-Georgiou, 1996) as mentioned before, no parameter calibration is required and 5 

there is no problem with equifinality.  

However, especially for the b =3-splitting for the upper volume class in method C, the number of parameters is critical. 

Since only days with rainfall amounts higher than the q0.998 quantile are taken into account, only a few days exist for the 

parameter estimation if the observed time series for parameter estimation is not long enough. This will lead to probabilities 

with P=0 for several splittings. While for some splittings P=0 seems reasonable from a physical interpretation (e.g. 10 

P(½/0/½)=0 is reasonable, since the highest daily rainfall amounts have no dry spell in between with a minimum of 8 h in the 

observed data set), for other probabilities this can result from the too small population for parameter estimation. To ensure 

the applicability of method C in practice, a cross-validation is carried out (see Appendix 1). 
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Fig. 4: Comparison of position classes definition for methods A, B and C. For method A, no position classes differentiation is 
applied for b=3. The dashed boxes indicate the time steps, which are analysed regarding their wetness state for the definition of the 
position class. Blue boxes indicate a wet time step, white boxes a dry time step.  

 

3.2 Resampling algorithm 5 

A different way to increase the autocorrelation is a resampling of the disaggregated time series. In a resampling process, two 

elements (here: relative diurnal cycles of the disaggregated time series) are swapped to improve an objective function (here: 

minimizing the deviation of the autocorrelation function of the disaggregated time series from the observed time series). In a 

relative diurnal cycle the diurnal cycle with absolute rainfall amounts per time step is transformed by dividing the single 

rainfall amounts by the total rainfall amount of that day. With the simulated annealing algorithm as a resampling method it is 10 

possible to find the global optimum of an objective function. Simulated annealing has been used before for the optimization 

of the autocorrelation of rainfall time series by Bárdossy (1998). However, these time series were simulated by a different 

rainfall generator. The resampling algorithm in this study is applied with the aim to improve the autocorrelation function of 

the disaggregated time series under the following restrictions: 

a) The structure of position and volume classes in the disaggregated time series generated by the cascade model 15 

should be conserved. 

 b) The daily rainfall amount should be conserved exactly. 

For a) the restriction is fulfilled by allowing only swaps of time series elements among subsets of the same position and 

volume class. Restriction b) is fulfilled by swapping only relative diurnal cycles as time series elements, which does not 

affect the daily rainfall amount. 20 

The objective function of the simulated annealing algorithm applied in this study is: 

 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ (𝑟𝑟(𝑖𝑖) − 𝑟𝑟(𝑖𝑖)∗)²𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑖𝑖=1         (5) 

The quantities indicated by * are the prescribed values for each lag from observed time series for each station, the other 

quantities are the current values. NoLags represents the number of lags analysed for the representation of the autocorrelation 

function. The number and selection of lags was carried out in a sensitivity analysis before by Föt (2015), resulting in 72 lags, 25 

whereby every second lag from lag 1 (5 min) to lag 144 (12 h) is taken into account (lag 1, lag 3,…, lag 143). After 12 hours, 

the values of the autocorrelation of the observed time series show an asymptotic behaviour indicating a very low process 

memory. As proven by Müller and Haberlandt (2018), the resampling does not affect the scaling behaviour of the 

disaggregated time series (see Sect. 3.4), because the total rainfall amount as well as the number of wet time steps are kept. 

In a prior study (Legler, 2017) the effect of the resampling algorithm on the extreme rainfall values was analysed. Without 30 

taking the extreme values into account explicitly in the objective function, the resampling leads to a decrease of the extreme 

rainfall values. Since the extreme rainfall values are represented well after the disaggregation (Fig. 10), they would be 
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underestimated after the resampling. Since the occurrence date and the magnitude of the extreme rainfall values differs 

among the investigated durations, for their identification an event-independent, general scheme has to be applied in order to 

take them into account in the objective function. The applied scheme in this investigation is illustrated in Fig. 5. A threshold 

intensity Itr is chosen for the whole time series, whereby the first and the last time step of each day exceeding Itr determine 

the event and its duration Devent. During the resampling, swaps are only allowed if the following restrictions R are fulfilled: 5 

 RI) The total rainfall amount of the extreme event must not decrease. 

 RII) The number of dry time steps inside the extreme event must not decrease. 

If Itr is chosen too high, extreme rainfall events of higher durations and most often lower intensities are not considered. If Itr 

is chosen too low, too many rainfall events are considered as extreme events, which leads to a rejection of too many swaps 

during the resampling and hence only minor improvements of the autocorrelation function. 10 

 
Fig. 5: Scheme for extreme rainfall event definition 

Hence, the choice of an appropriate Itr is essential for a successful resampling. Since it shall be possible to estimate Itr a 

priori without a calibration of this parameter, a transferable method was required. Müller and Haberlandt (2018) identified 

the existence of dry time steps inside extreme events of the disaggregated rainfall time series, while the observed extreme 15 

events consisted only of wet time steps. Since an event-based simulation of extreme rainfall events with D=30 min in an 

urban hydrological model led to satisfying results regarding flooding volume and combined sewer overflow volume in 

Müller and Haberlandt (2018), for the identification rainfall extreme events with D=60 min are considered in this study. For 

the observed time series of all stations, the average intensity of the extreme rainfall event with D=60 min and the empirical 

return period closest to Tn=1.5 years was calculated. It is assumed that the results regarding under- or overestimation for the 20 

return period Tn=1.5 years  are representative for typical return periods for dimensioning purposes in urban hydrology 

(Tn={1, 2, 5, 10 years}, DWA-A 531 (2012)). The resulting average intensity Itr=1.0 mm of the aforementioned extreme 

rainfall events is applied throughout the resampling and represents the 0.99 quantile for 25 % of all stations (ranging from 

~0.987 to ~0.994 between all stations). Similar thresholds have been applied before in literature for tracking of convective 

cells in radar images (Itr>0.7 mm, Handwerker (2002)).  25 

Since the number of diurnal cycles is limited in the disaggregated time series, the degree of improvement is limited as well, 

which can be a serious problem, if only short daily rainfall time series are available. A possible solution is to enable the 
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swapping of relative diurnal cycles between different realisations of disaggregated time series to increase the number of 

possible swap elements by additional realisations. Here the time series length was found to be sufficient and the resampling 

was carried out for each realisation separately. 

The simulated annealing is carried out singular for each station as follows: 

1. For each wet day the relative diurnal cycles are constructed. Subsets y for each applied position-volume-5 

class combination are created with y=1,…, S. 

2. A subset y is identified randomly. The probability for being identified is based on the number of elements 

m in the subset:  𝑃𝑃𝑦𝑦,𝑖𝑖=
𝑚𝑚𝑖𝑖

∑ 𝑚𝑚𝑖𝑖
𝑆𝑆
𝑖𝑖=1

       (6) 

3. Two days are drawn randomly from the identified subset, their diurnal cycles are swapped. If R I and R II 

are not fulfilled, the swap is retracted and the algorithm proceeds with step 2. 10 

4. Oauto (Eq. (5)) is updated.  

5. The updated value Oauto,new is compared with the former value Oauto,old. If Oauto,new < Oauto,old the objective 

function value has improved and the swap is accepted. 

6. If Oauto, new ≥ Oauto, old the swap is accepted with the probability π: 

    𝜋𝜋 = exp (𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑜𝑜𝑜𝑜𝑜𝑜−𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛𝑛𝑛𝑛𝑛
𝑇𝑇𝑎𝑎

),     (7) 15 

where Ta is the annealing temperature that controls the acceptance of bad swaps. Local optima can be left 

by the acceptance of bad swaps and the global optimum can be found. The decrease of the annealing 

temperature during the resampling (see step 8) leads to a lower probability for accepting non-improving 

swaps, enabling the identification of the global optimum. 

7. Steps 2-6 are repeated K times. 20 

8. Reduction of the annealing temperature: 

     𝑇𝑇𝑎𝑎 = 𝑇𝑇𝑎𝑎 × 𝑑𝑑𝑑𝑑   with 0 < 𝑑𝑑𝑑𝑑 < 1    (8) 

  After reducing the temperature, the algorithm proceeds to step 2. 

9. Steps 7 and 8 are repeated until the algorithm converges, expressed by M swaps which do not lead to an 

improvement of Oauto higher than a certain threshold thrO,auto. 25 

The following setup was chosen for the resampling: Ta,start=1*10-4, dt=0.99, K=500, M=200 and thrO,auto=1*10-9. 

The different variants of the cascade model can be combined with the resampling approach for the improvement of the 

autocorrelation. A summary of the combinations and their abbreviations used throughout the manuscript are presented in Fig. 

2. 



 15 

3.4 Validation of the results 

For the evaluation of the disaggregation process, the disaggregated rainfall time series are analysed regarding their scaling 

moments, different event-based and continuous rainfall characteristics and their extreme values. Since the cascade model is 

based on the scaling theory, it is proven if the disaggregated time series show the same scaling behaviour as the observations. 

Scaling behaviour is analysed with the relation: 5 

 𝑀𝑀𝑞𝑞 = 𝜆𝜆𝐾𝐾(𝑞𝑞)           (9) 

with moments M, moments order q, the moments scaling exponent K(q) and the scale ratio λ. The scale ratio represents a 

dimensionless ratio of two temporal resolutions of one time series. Dry time steps are neglected as well as time steps with 

rainfall intensities <0.1 mm to reduce the impact of too small rainfall intensities and the transformation applied after the 

disaggregation to reach a final temporal resolution of 5 min. It is common to analyse the scaling behaviour with log-log-plots 10 

of Mq and λ (Over and Gupta, 1994, Svensson et al., 1996, Burlando and Rosso, 1996, Serinaldi, 2010, Müller and 

Haberlandt, 2018). Moments are estimated as probability-weighted moments (Yu et al., 2014, Ding et al., 2015) due to their 

robustness against large rainfall intensities (Kumar et al., 1994, Hosking and Wallis, 1997). According to Kumar et al. 

(2014) and Lombardo et al. (2014) only the first three moments 1≤q≤3 are analysed. 

For an event-based evaluation, first the rainfall events are identified and then the characteristics of these events are 15 

determined. Event-based rainfall characteristics include wet and dry spell duration as well as wet spell amount. An event is 

hereby defined as a wet period enclosed by at least one 5 min time step without rainfall before and after the wet period.  

For a continuous-based evaluation, the whole time series is considered, without differentiation into single events. As 

continuous time series characteristics, the average intensity, the fraction of dry intervals and the autocorrelation are analysed. 

For the extreme rainfall event analyses, the event definition differs to ensure the independence of the extreme events. The 20 

definition depends on the extreme event duration under investigation. For extreme event durations shorter than 4 hours, a 

minimum of four dry hours before and after the event ensure the independence of the event (Schilling, 1984). For longer 

extreme event durations, the same duration as under investigation has to be dry before and after the event. To increase the 

population of extreme events, partial duration series are extracted from the time series instead of annual maxima. Partial 

duration series are similar to the peak-over-threshold approach, whereby the threshold is defined in order to select 3 extreme 25 

rainfall events on average per year. Since the lengths of the time series of the analysed stations differ, theoretical distribution 

functions are fitted to enable comparisons for the same return periods among the stations. Following the DWA-A 531 

(2012), which is a technical standard in Germany, an exponential distribution is fitted to the median of the realisations for 

each station. 

To enable comparisons of rainfall characteristics at the same location, observed 5 minute time series (Obs) are aggregated to 30 

daily values and then disaggregated back to 5 minute time series (Dis). A split-sampling into calibration and validation 
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period was not carried out to keep the time series as long as possible for the parameter estimation (see also the discussion in 

Section 3.1.4). 

The disaggregation is a random process. Depending on the choice of the random number generator initialization different 

realisations are generated. This uncertainty is taken into account by performing 30 realisations for each station. By 30 

realisations the random behaviour of the disaggregation process is fairly well covered. The mean and the range of the event-5 

based and continuous rainfall characteristics were plotted against the number of realisations used for their estimation, and an 

asymptotic behaviour was identified with increasing numbers of realisations after 30 realisations. 

For the validation the relative error rE and relative absolute error rAE are calculated to quantify the direction and the amount 

of the deviation of the rainfall characteristic RC with i as control variable of all realisations n: 

 𝑟𝑟𝑟𝑟 = 1
𝑛𝑛

× ∑ 𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖−𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖
𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖

𝑛𝑛
𝑖𝑖=1 ,         (10) 10 

 𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑛𝑛

× ∑ |𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖−𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖|
𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖

𝑛𝑛
𝑖𝑖=1 ,         (11) 

4. Results 

4.1 Modifications to cascade model 

For an improved representation of the autocorrelation function two modifications of the multiplicative cascade models after 

Müller and Haberlandt (2018) have been analysed, namely method B and method C. For method B, the order of wet and dry 15 

8 hour intervals is not assigned randomly as in Müller and Haberlandt (2015). Probabilities for each combination of wet and 

dry 8 hour-intervals are estimated, with a differentiation according to the position of the daily time step in the time series 

(starting, enclosed, ending or isolated). 

The resulting probabilities are shown in Table 3, 4 and 5 (columns with position-dependent entries) in comparison to the 

position-independent probabilities estimated for method A (first column in each table). For starting positions, splittings with 20 

wet 8 hour-intervals at the end of a day have the highest probabilities (for both one and two wet intervals). For ending 

positions, a vice versa relationship can be identified with highest probabilities for wet 8 hour-intervals at the beginning of a 

day. For enclosed positions, probabilities for a wet 8 hour-interval at the beginning or ending of the day, so with a temporal 

connection to another wet day, are higher, if one interval is wet. All of these findings are similar to the findings from Olsson 

(1998) and Güntner et al (2001) for a splitting with b=2. Also, independent from the position, it can be identified that 25 

probabilities for two connected wet intervals (1-1-0 and 0-1-1) are higher than the combination with an enclosed dry time 

step (1-0-1). The probability, that three intervals are wet, is the highest for enclosed position and the lowest for isolated 

position.  

The scaling behaviour of observed and disaggregated time series is shown in Fig. 6 for station Cuxhaven. The results are 

similar among the stations and the analysed moments. The disaggregated time series show an identical scaling behaviour 30 
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down to a temporal resolution of 120 min. For finer resolutions slight overestimations occur for method A and B and even 

slighter for method C. These deviations are presumably caused by fragments of the linear transformation applied after the 

disaggregation to achieve a final temporal resolution of 5 min. Overall, with a mean deviation of all three methods A-C from 

the observations of 0.08 for q=1 and a temporal resolution of 5 min the scaling behaviour is represented well. T 

 5 

 
Fig. 6: Scaling behaviour of observed and disaggregated time series for station Cuxhaven for q=1. Each value represents the mean 
of 30 realisations. 

The rainfall characteristics of the disaggregated time series are shown in Fig. 7 in comparison to observations. A quantitative 

analysis of the deviations is provided in Table 6 with relative rE and absolute errors rAE (see Eq. 10 and 11) for the mean 10 

values of rainfall characteristics. Method A represents the original model proposed by Müller and Haberlandt (2018) and will 

be referred to as reference for the evaluation. Since the MMD approach is investigated for the first time, its influence on the 

rainfall characteristics of the disaggregated time series is analysed. If the too small rainfall intensities lower than the 

instrumental resolution of the measurement device are kept after the disaggregation (hence, MMD is not applied), the results 

are referred to as ‘A/B/C-standard’. If the too small rainfall intensities are eliminated by the MMD approach, the results are 15 

referred to as ‘A/B/C-MMD’. 

While for method A-standard a slight overestimation for the average intensity is identified (rE=11 %), for wet spell duration 

(-3 %) and amount (8 %), dry spell duration (8 %), fraction of dry intervals (1 %) and lag-1 autocorrelation (-4 %) a good 

representation is achieved.  

With the introduction of a position-dependence in the disaggregation step from daily values to 8 h-values in method B-20 

standard an improvement of all rainfall characteristics can be achieved. The improvements of the wet and dry spell durations 

are direct consequences of the better representation of the wetness state of 8 h-intervals as is indicated by the parameter 

values in Table 3, 4 and 5. For the average intensity with rE=3 % a major improvement from an overestimation of rE=11 % 

(A-standard) is identified. 
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For method C-standard, a worsening of the majority of rainfall characteristics is identified. Wet spell duration is 

overestimated with rE=399 %. This is caused by the high probability for a x/(1-x)-splitting for enclosed boxes in the 

preceding cascade model, which decreases the probability for splitting one event into two events by the generation of dry 

time steps. This leads to a high number of wet time steps (underestimation of fraction of dry time steps rE=-15 %) and 

consequently to an underestimation of average rainfall intensities (rE=-71 %) due to the exact mass conservation of the 5 

cascade model. 

Too small intensities can be avoided by the MMD approach. For method A and B, the exclusion of small rainfall intensities 

leads to a worsening of rainfall characteristics (Fig. 8, Table 6). This indicates, that the before mentioned good representation 

of rainfall characteristics by method A-standard and B-standard is biased by wet time steps with rainfall amounts lower than 

the observed minimums (depending on the instrumental resolution of the measurement device). Since time steps with these 10 

rainfall intensities are negligible from a hydrological point of view, the line of MMD in Fig. 7 provide a more useful insight 

into the disaggregated data.  

The overestimation of the average rainfall intensity by methods A and B increased to rEMMD=40 % and 32 %, respectively, 

while the underestimation by method C is reduced to rEMMD=-35 %. An improvement for wet spell duration is also identified 

(rEMMD=-16 %). Although the fraction of dry intervals improved with MMD (rE=-3 %), a worsening of the dry spell duration 15 

is identified (rEMMD=-47 %), indicating higher fraction of short dry spells inside former events on a coarser time scale. 

Method A and B result in similar values for wet spell duration as for method C for MMD. For wet spell amount and 

duration, average intensity, dry spell duration and fraction of dry intervals a decrease in performance is identified by MMD 

in comparison to the standard approach. 
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Fig. 7: Rainfall characteristics of observed and disaggregated time series as x-y plots for all 24 stations (WSD=wet spell duration, 
ACF=autocorrelation function; note the different scales for wet spell duration) 

Since the focus of this study is the improvement of the autocorrelation, the impact of MMD on method A, B and C is 5 

investigated as well. From a visual inspection of the lag-1 autocorrelation in Fig. 7, a systematic underestimation as 

mentioned in the Sect. 1 is not visible, since for some stations even overestimations occur. However, a comparison between 

observations and disaggregated time series resulting from different methods until lag 144 (representing a time shift of 

720 min=12 h) shows differences and a clear underestimation by the disaggregation for station Braunlage (Fig. 8). For other 

stations the relationship is similar, although for some the differences between method A and B are smaller. In Fig. 9 the 10 

relative error between the median of the autocorrelation function of all 30 realisations for each method and the observed time 

series is shown for all stations regarding lag 1 (5 min), 6 (30 min) and 36 (180 min). Independently of the applied methods, 

the deviation is increasing from lag 1 to lag 6, while for lag 36 the deviation has decreased. Also, the range of deviations is 

decreasing for an increasing number of lags. This is visually confirmed by the results for station Braunlage (Fig. 8), where 
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the autocorrelation of the disaggregated time series decreases strongly with the first lags, while it decreases much smoother 

for the observed time series. The choice of the disaggregation method (method A, B or C) has a higher impact on the 

resulting autocorrelation than the choice of treatment of the too small rainfall intensities (Standard or MMD). In fact, the 

MMD approach has only a slight effect on the autocorrelation function values. The smallest deviations of the autocorrelation 

function are achieved with method C, independent from the treatment of the too small rainfall intensities. 5 

 
Fig. 8: Autocorrelation of observed and disaggregated time series using the standard approach for each method with no 
modification regarding too small rainfall intensities. The range for each method results from 30 realisations, the solid line 
represents the median.  
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Fig. 9: Deviations of autocorrelation from disaggregated to observed time series as relative error for lags 1, 6 and 36. The red 
dashed line indicates a rE=0 (Std is used as abbreviation for Standard) 

The results of the extreme rainfall value analysis are illustrated in Fig. 10 for two durations D (5 minutes and 1 hour) and 
two return periods T (1 year and 5 years). For the extreme events, only between methods A, B and C is differentiated. The 5 
modifications regarding the minimum rainfall intensity are not taken into account since they do not affect the rainfall 
extreme events. 

For a return period of T=1 year extreme rainfall values are slightly overestimated by less than rE=10 % for the half of all 
stations and less than approximately rE=20 % for 75 % of all stations for both analysed durations, independent of the applied 
modification of the cascade model. For T=5 years, the range of results is increasing, leading to a worse representation in 10 
comparison to T=1 year. While for D=5 min a slight overestimation of approx. rE=10 % for half of all stations can still be 
identified, for D=1 hour an underestimation of rE=50 % is identified for half of all stations. However, increasing deviations 
with increasing return periods can be expected, since for a few of the time series with lengths of only 9 years the return 
period is limited to T=3 years (1/3 of time series length) to ensure plausibility from a hydrological point of view. 

Nevertheless, it should be noted that over all return periods and durations, method C lead to the smallest range of relative 15 
errors over all stations in combination with the best fit to the distribution of the observed extreme rainfall values. The 
cascade model parameter transferability in space was confirmed by a cross-validation for method C (see Appendix A). 
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Fig. 10: Mean relative errors of extreme values of the disaggregated time series for all stations (the dashed line represents an error 
of 0). Results are shown for durations of 5 min (left) and 1 h (right) and for return periods of 1 year (top) and 5 years (bottom). 

4.2 Resampling results 5 

For the resampling, only disaggregated time series modified by the MMD approach are used due to their slight better 

representation of the autocorrelation. The autocorrelation of the disaggregated time series before and after the resampling are 

shown in Fig. 11 for lag 1, lag 6 and lag 36. A general increase of the autocorrelation along with smaller deviations for the 

median of all stations compared to before the resampling can be identified for all three methods A, B and C. Only for the lag 

1-autocorrelation of the rainfall time series disaggregated with method C does the resampling lead to a worsening regarding 10 

the median value. However, the range of the lag 1-autocorrelation results is reduced, indicating that the under- and 

overestimations were reduced by the resampling approach. 
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Fig. 11: Deviations of autocorrelation from disaggregated to observed time series before and after the resampling as relative error 
for lags 1, 6 and 36. All results are based on the MMD approach. The red dashed line indicates a rE=0, results for the resampled 
time series are labelled with ‘res’.  

As mentioned before, the improvement of the autocorrelation depends on the chosen threshold for extreme rainfall value 5 

definition, Itr. An increase of Itr leads to a decrease of the number of rejected swaps during the resampling, since less time 

steps are involved in the extreme value analysis. An unrealistically high value of Itr (identical with leaving out both 

restrictions RI and RII regarding extreme rainfall values) leads to almost perfect fits for lag 1 and lag 36 (|rE|<1 % for the 

majority of the stations), and for lag 6 deviations up to |rE|<3.5 % occur (not shown here). However, the extreme rainfall 

values are underestimated strongly if Itr is chosen too high. 10 

Hence, both restrictions RI and RII are applied during the resampling by the choice of Itr=1 mm. In Fig. 12, the extreme 

rainfall event series for station Osnabrück is shown for D=5min. Although the extreme event series changed slightly after the 

resampling, the overall extreme series characteristics regarding range, under- and overestimation in comparison to the 

observations remain the same for all return periods.  
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Fig. 12 Extreme rainfall values for D=5 min for station Osnabrück based on 30 disaggregation realisations with method B before 
(upper part) and after (lower part) the resampling 

For extreme rainfall events with longer durations (D={15 min, 1 h, 2 h}) the impact of the resampling is quantified in Table 

7. The impact of the resampling depends on the analysed duration of the extreme rainfall events. While for D=15 min the 5 

median of rE has decreased after the resampling with smaller |rE| for the smaller return periods (Tn={1, 2 years}) and higher 

|rE| for Tn=10 years, for D=2 h the median of rE has increased after the resampling with higher |rE| for the smaller return 

periods and smaller |rE| for Tn=10 years. 

Since these findings are independent from the disaggregation method, the differences are caused only by the resampling. 

Extreme rainfall events with D=15 min represent convective events with only a few wet time steps preceding and succeeded 10 

by dry time steps. Due to the short event duration, the possibility of dry time steps in between is small and RI is the active 

restriction, which requires the total rainfall amount not to decrease, resulting in an increase. Extreme rainfall events with 

D=2 h originate from long-lasting, stratiform events with a high fraction of wet time steps in the current day. Since this 

fraction of wet time steps can also be found in the disaggregated time series, the rainfall amount will be distributed on more 

wet time steps to fulfil the active restriction RII to increase the autocorrelation.  15 

However, the majority of rE values presented in Table 7 is smaller than 10 %, which indicates a good representation of the 

extreme rainfall events in the disaggregated time series in general, independent of the application of the resampling 

algorithm. 
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5. Discussion 

5.1 Impact of the cascade model modifications 

The two new introduced micro-canonical cascade model variants methods B and C differ regarding their way of how the 

disaggregation process depends on a position of a wet time step in a rainfall time series and how it is defined. Both, the 

position dependency in the first disaggregation step with b=3 for method B and the position definition after Lombardo et al. 5 

(2012, 2017) for method C, are based on additional parameters of the disaggregation model (see Table 2). However, all new 

parameters are process-based and physically interpretable, since they describe the rainfall dependency of past time steps. 

Hence, an improvement of the autocorrelation, which describes the process memory, was expected. While method B differs 

from method A only in the first disaggregation step, a smaller improvement of the autocorrelation can be identified, while 

method C differs in every disaggregation step and thus a higher improvement is identified. 10 

As all parameters of the micro-canonical cascade model, including the newly introduced parameters can be estimated from 

the aggregation of observed high-resolution rainfall time series (Carsteanu and Foufoula-Georgiou, 1996), no additional 

calibration has to be carried out. To reduce the increase of number of parameters by method B and C, several possibilities 

exist. Olsson (1998), Güntner et al. (2001) and Müller and Haberlandt (2018) identified similarities between cascade model 

parameters of different position classes which can be used for simplification. These similarities are e.g. P(0/1) for starting 15 

and P(1/0) for ending positions (and vice versa) as well as P(0/1) and P(1/0) for both, enclosed positions and isolated 

positions. Another possibility is to apply a semi-bounded cascade model instead of a bounded cascade model. While in a 

bounded cascade model for each step of the disaggregation process the corresponding parameter set is used (as it is done in 

this study), in a semi-bounded cascade model the same parameter set could be applied over a range of disaggregation levels 

as long as a mono-fractal scaling behaviour can be assumed. Based on Veneziano et al. (2006) typical ranges for mono-20 

fractal behaviour are from daily to hourly resolution and from hourly to 5 minute resolution. 

It should also be noted that the analyses of only the lag-1 autocorrelation is not sufficient, since it provides a limited insight 

into the process memory. Here, for some stations an overestimation of the lag-1 autocorrelation was identified, but 

underestimations for lag-6 and lag-36. Hence, a multi-lag analyses is recommended for further studies. 

Especially for method C, the general problem of the micro-canonical cascade model of generating time steps with too small 25 

rainfall intensities (Molnar & Burlando, 2005, Müller and Haberlandt, 2018) worsened. The MMD approach is introduced to 

solve this issue. MMD simulates the behaviour of a measurement device (minimum rainfall amount required to cause a 

registration) after the disaggregation process, eliminating too small rainfall intensities by summing them up to future time 

steps until the minimum rainfall amount is achieved or exceeded. The MMD approach has a smaller impact on the resulting 

rainfall characteristics than the choice of method A, B or C. However, the application of MMD leads to disaggregated time 30 

series with a slight better representation of the autocorrelation function. Hence, for the subsequent analyses only the MMD 
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approach is considered. This selection has also the additional advantagesthat the process of the rainfall measurement itself is 

simulated. 

5.2 Impact of the resampling  

After the disaggregation process a subsequent resampling approach as post-processing strategy was investigated to improve 

the autocorrelation as well. While the generated time series structure (defined by the position-volume-class combinations) is 5 

conserved during the resampling process, a special focus has to be given to the conservation of the extreme rainfall values. 

Without this focus, the resampling algorithm aims to swap diurnal cycles in a way to distribute high daily rainfall amounts 

on many wet time steps to generate less intense events, which leads to an underestimation of the extreme rainfall values. The 

universal definition of extreme rainfall values introduced here is required to conserve these extreme values a priori without 

any information about their date of occurrence or their magnitude. This definition and the connected restrictions for the 10 

resampling can be modified in multiple ways to improve the conservation. For example, the applied threshold intensity Itr 

can be based on a different or an additional (required) return period or duration. Also, a definition of Itr as a quantile of all 

wet time steps of a disaggregated time series instead of an absolute value would be helpful if there is a high variation of 

mean rainfall intensities among the investigated stations for an extreme event with a certain duration and return period 

(which was not the case in this study). However, the extreme values were conserved during the resampling process. The 15 

autocorrelation was improved for almost all lags, independent of whether method A, B or C was applied before for the 

disaggregation. Also, a higher improvement was achieved by the resampling than by the modifications of method B or C. 

5.3 Study limitations 

This study is focused on the methodological development of the micro-canonical cascade model and on the improvement of 

the disaggregated time series by a resampling approach as post-processing strategy. Hence, the study is limited in several 20 

aspects, which will be stated below. 

First of all, the rainfall data set, with 24 rain gauges, is rather small. Although the study area covers different topographical 

region and climate classes, the resulting time series characteristics are similar and do not cover a wide range. A 

generalization of the results has to be proven for regions which are very different from this study area. To draw general 

conclusions from the point of comparative hydrology future research should include rain gauges from different climate 25 

regions and topologies.  

Second, based on the similar rainfall characteristics and extreme values, the introduction of the universal extreme value 

definition was possible and representative for all stations in the study. If stations from different climate regions and 

topologies are studied as recommended before, it has to be proven i) if the introduced universal extreme value definition still 

has the potential to conserve the extreme rainfall values throughout the resampling process and ii) if Itr has to be redefined 30 

(see also the discussion in Sect. 5.2). 
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Third, as mentioned in the Sect. 1, Pearson’s autocorrelation is a measure of linear dependency. It only captures the complete 

dependence structure between random variables if they are jointly Gaussian. An alternative criterion would be Spearman’s 

rank correlation (capturing monotonic but not necessarily linear relationships). In both cases, autocorrelation as a function of 

lags is only meaningful in the context of second-order stationary stochastic processes (or weakly stationary processes). 

Rainfall intensities are most likely not normally distributed. Also rainfall time series present a mixture of processes due to 5 

the high intermittency of rainfall amplified by the disaggregation process, changing between the two states of rainfall 

occurrence and non-occurrence. Still, every kind of autocorrelation measurement can provide a measure for the similarity of 

e.g. two time series. The Pearson’s autocorrelation coefficient is widely used for autocorrelation analyses in hydrology. It is 

applied in this study to achieve a comparable similarity in the disaggregated time series as it is estimated from the 

observations. Besides the mixture of processes and the limitations of Pearson’s autocorrelation as a measure of dependence, 10 

the Hurst-phenomenon might also offer an additional perspective for the analysis at hand (see Koutsoyiannis (2009) for an 

introduction).  

Fourth, although method C is based on a finding in Lombardo et al. (2012, 2017), the disaggregation method differs from the 

additive cascade model in Lombardo et al. (2012, 2017). Hence, the by Lombardo et al. identified problem of non-

stationarity of the disaggregation is not solved by the introduced cascade model variants and remains an open challenge for 15 

further studies.  

Finally, a comment on the applied resampling algorithm. Simulated annealing was implemented in a computationally 

efficiently way suggested by Bárdossy (1998). After each swap the objective function is not completely newly calculated, 

rather updated only for the modified elements of the time series affected by the swap. Nevertheless, the resampling process 

remains very time-demanding, depending on the chosen parameter setup. More recently published optimization algorithms 20 

are very promising regarding less computational times e.g. the quantum annealing approach (Heim et al., 2015, Crosson and 

Harrow, 2016), enabling the optimization of longer disaggregated rainfall time series or more realisations in the same time.  

6. Conclusions 

Three variants of the micro-canonical cascade model (method A-reference from Müller and Haberlandt (2018), B and C) 

were assessed regarding their ability to represent the autocorrelation in the disaggregated, 5 minute rainfall time series, 25 

starting from daily totals. The methods differ regarding the position dependency in the first disaggregation step and the 

definition of a wet time step during the disaggregation process. The study was carried out for 24 stations in Lower Saxony, 

Germany, and results were analysed additionally for continuous and event-based characteristics as well as extreme rainfall 

values. The following conclusions are drawn based on the results: 
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1. The introduction of a position dependency in the first disaggregation step (method B) and especially the 

introduction of the position-dependency (method C) after Lombardo et al. (2012, 2017) lead to an improvement of 

the autocorrelation. 

2. While method A and B lead to quite similar event-based and continuous rainfall characteristics, the results from 

method C differ significantly. 5 

3. Method C leads to a high fraction of time steps with too small rainfall intensities in the disaggregated time series. 

To avoid time steps with too small rainfall intensities, a process to mimicry the behaviour of a measurement device (MMD) 

was applied after the disaggregation process in combination with method A, B and C. For the following investigations, only 

method combinations with MMD were analysed, since the results indicated a slight better representation of the 

autocorrelation function. 10 

After the disaggregation process the resampling algorithm Simulated Annealing was applied to improve the autocorrelation. 

The following conclusions are drawn: 

4. The resampling leads to an improvement of the autocorrelation, independent of the applied disaggregation method 

or the investigated lag. 

5. The improvement of the autocorrelation by the resampling was higher than by the choice of the cascade model 15 

modification. 

6. The extreme rainfall values have to be considered during the resampling, otherwise they will be underestimated 

after the resampling process.  

7. With the newly introduced universal definition the extreme rainfall events can be considered without the a priori 

knowledge of their occurrence and magnitude. Hence, the extreme rainfall values are represented after the 20 

resampling process as well as before. 

The overall best representation of the autocorrelation was achieved by method C in combination with a resampling approach 

as post-processing strategy. Urban hydrological simulations would provide additional information about the impact of the 

different disaggregation methods and the resampling process on simulated hydrographs and flood events, but this is beyond 

the scope of this study. 25 

Acknowledgements 

The author thanks Annika Föt and Jonas Legler for their efforts in their student theses related to this manuscript. The author 

is also thankful for fruitful discussions with Thomas Müller about the conservation of extreme rainfall values during the 

resampling and with David Lun about the mathematic background of different aspects. Also Anne Fangmann and Patrick 

Hogan are acknowledged for their support with R-scripts and useful comments on an early draft of the manuscript, 30 

respectively. I am also thankful for the permission to use the data of the German National Weather Service (Deutscher 

Peleg
Comment on Text
Should indicate here which of the method is better.

Peleg
Inserted Text
which can be corrected using the MMD method.

Peleg
Cross-Out



 29 

Wetterdienst DWD). Funding was provided for Hannes Müller-Thomy as a Research Fellowship (MU 4257/1-1) by DFG 

e.V., Bonn, Germany. The author acknowledges the TU Wien Library for financial support through its Open Access Funding 

Program. Finally, Elena Volpi and two anonymous reviewers as well as Nadav Peleg as associated editor are gratefully 

acknowledged for their contributions to improve this manuscript significantly. 

 5 

Competing interests 

The author declares that he has no conflict of interest. 

Code/Data availability 

The rainfall data is accessible from the Climate Data Center web portal of the German Weather Service 

(https://cdc.dwd.de/portal/). The rainfall disaggregation program as well as the resampling program are both written in 10 

Fortran, so only executable files can be shared. However, the author is happy to share them on request. 

 

https://cdc.dwd.de/portal/


 30 

References 

Bardossy, A.: Generating precipitation time series using simulated annealing, Water Resour. Res., 34 (7), 1737-1744, 1998. 

Berne, A., Delrieu, G., Creutin, J.D., Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban 

hydrology, J. Hydrol., 299, 166–179, 2004. 

Blöschl, G., Sivapalan, M.: Scale issues in hydrological modeling: a review, Hydrol. Process., 9, 251-290, 1995. 5 

Breinl, K., Strasser, U., Bates, P., Kienberger, S.: A joint modelling framework for daily extremes of river discharge and 

precipitation in urban areas, J. Flood Risk Manag., 10 (1), 97-114, 2015. 

Breinl, K., Di Baldassarre, G.: Space-time disaggregation of precipitation and temperature across different climates and 

spatial scales, J. Hydrol.: Regional studies, (21), 126-146, 2019. 

Burlando, P., Rosso, R.: Scaling and multiscaling of depth-duration-frequency curves for storm precipitation, J. Hydrol., 10 

187, 45–64, 1996. 

Callau Poduje, A. C., Haberlandt, U.: Short time step continuous rainfall modeling and simulation of extreme events, J. 

Hydrol., 552, 182-197, 2017. 

Carsteanu, A., Foufoula-Georgiou, E.: Assessing dependence among weights in a multiplicative cascade model of temporal 

rainfall, J. Geophys. Res., 101 (D21), 26363-26370, 1996. 15 

Cristiano, E., ten Veldhuis, M.-c., van de Giesen, N.: Spatial and temporal variability of rainfall and their effects on 

hydrological response in urban areas – a review, Hydrol. Earth Syst. Sc., 21, 3859-3878, 2017. 

Crosson, E., Harrow, A. W.: Simulated Quantum Annealing Can Be Exponentially Faster Than Classical Simulated 

Annealing, Proceedings of the 57th Annual Symposium on Foundations of Computer Sciences, New Brunswick, NJ, USA, 

ISSN 0272-5428, 2016. 20 

Ding, J., Haberlandt, U., Dietrich, J.: Estimation of instantaneous peak flow from maximum daily flow: a comparison of 

three methods, Hydrol. Res., 46 (5), 671–688, 2015. 

DWA-A 531: Starkregen in Abhängigkeit von Wiederkehrzeit und Dauer, Technical guideline of the DWA, Hennef, 2012. 

Föt, A.: Optimization of a resampling-algorithm for the implementation of spatial and temporal consistency in disaggregated 

time series, Bachelor thesis, Institute of Hydrology and Water Resources Management, Faculty of Civil Engineering and 25 

Geodesy, Leibniz Universität Hannover (in German), 2015. 

Güntner, A., Olsson, J., Calver, A., Gannon, B.: Cascade-based disaggregation of continuous rainfall time series: the 

influence of climate, Hydrol. Earth Syst. Sc., 5 (2), 145-164, 2001. 

Handwerker, J.: Cell tracking with TRACE3D – a new algorithm, Atmos. Res., 61, 15-34, 2002. 

Heim, B., Rønnow, T. F., Isakov, S. V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses, Science, 348 30 

(6231), 215-217, 2015. 



 31 

Hingray, B., Ben Haha, M.: Statistical performance of various deterministic and stochastic models for rainfall series 

disaggregation, Atm. Res., 77, 152-175, 2005. 

Hosking, J.R.M., Wallis, J.R.: Regional frequency analysis. Cambridge University Press, Cambridge, 1997. 

Imhoff, K., Imhoff, K. R.: Taschenbuch der Stadtentwässerung, Oldenburg Industrieverlag, 30. edition, 508 p, 2007. 

Jebari, S., Berndtsson, R., Olsson, J., Bahri, A.: Soil erosion estimation based on rainfall disaggregation, J. Hydrol., 436-437 5 

(0), 102-110, 2012. 

Koutsoyiannis, D.: The Hurst phenomenon and fractional Gaussian noise made easy, Hydrolog. Sci. J., 47 (4), 573-595, 

2009. 

Koutsoyiannis, D., Onof, C.: Rainfall disaggregation and adjusting procedures on a Poisson cluster model, J. Hydrol., 246, 

09–122, 2001. 10 

Koutsoyiannis, D., Onof, C., Wheater, H. S.: Multivariate rainfall disaggregation at a fine time scale, Water Resour. Res., 

39(7), 1173, 2003. 

Kumar, P., Guttarp, P., Foufoula-Georgiou, E.: A probability-weighted moment test to assess simple scaling, Stoch. Hydrol. 

Hydraul., 8, 173–183, 1994. 

Legler, J.: Optimization of autocorrelation in disaggregated time series and validation with an urban hydrological model, 15 

Master thesis, Institute of Hydrology and Water Resources Management, Faculty of Civil Engineering and Geodesy, Leibniz 

Universität Hannover (in German), 2017. 

Licznar, P., Schmitt, T. G., Rupp, D. E.: Distributions of Microcanonical Cascade Weights of Rainfall at Small Timescales, 

Acta Geophys., 59 (5), 1013– 1043, 2011. 

Licznar, P., Michele, C. De und Adamowski, W.: Precipitation variability within an urban monitoring network via 20 

microcanonical cascade generators, Hydrol. Earth Syst. Sc., 19 (1), 485–506, 2015. 

Lisniak, D., Franke, J., Bernhofer, C.: Circulation pattern based parameterization of a multiplicative random cascade for 

disaggregation of observed and projected daily rainfall time series, Hydrol. Earth Syst. Sc., 17 (7), 2487-2500, 2013. 

Lombardo, F., Volpi, E., Koutsoyiannis, D.: Rainfall downscaling in time: theoretical and empirical comparison between 

multifractal and Hurst-Kolmogorv discrete random cascades, Hydrolog. Sci. J., 57 (6), 1052-1066, 2012. 25 

Lombardo, F., Volpi, E., Koutsoyiannis, D., Papalexiou, S.M.: Just two moments! A cautionary note against use of high-

order memonts in multifractal models in hydrology, Hydrol. Earth Syst. Sci., 18, 243–255, 2014. 

Lombardo, F., Volpi, E., Koutsoyiannis, D., Serinaldi, F.: A theoretical consistent stochastic cascade for temporal 

disaggregation of intermittent rainfall, Water Resour. Res., 53, 4586-4605, 2017. 

Mandelbrot, B.: Intermittent turbulence in self-similar cascades – divergence of high moments and dimension of carrier, J. 30 

Fluid Mech., 62 (2), 331-358, 1974. 

Marshak, A., Davis, A., Cahalan, R., Wiscombe, W.: Bounded cascade models as nonstationary multifractals, Phys. Rev. E, 

49 (1), 55-69, 1994. 



 32 

Mehrotra, R., Westra, S., Sharma, A., Srikanthan, R.:Continuous rainfall simulation: 2. A regionalized daily rainfall 

generation approach, Water Resour. Res., 48, 01536, 2012. 

Menabde, M., Harris, D., Seed, A., Austin, G., Stow, D.: Multiscaling properties of rainfall and bounded random cascades,  

Water Resour. Res., 33 (12), 2823-2830, 1997. 

Menabde, M., Sivapalan, M.: Modeling of rainfall time series and extremes using bounded random cascades and levy-stable 5 

distributions, Water Resour. Res., 36, 3293, 2000. 

Molnar, P., Burlando, P.: Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model, 

Atmos. Res., 77 (1-4), 137-151, 2005. 

Müller, H., Haberlandt, U.: Temporal rainfall disaggregation with a cascade model: from single-station disaggregation to 

spatial rainfall, J. Hydrol. Eng., 20 (11), 04015026, 2015. 10 

Müller, H., Haberlandt, U.: Temporal rainfall disaggregation using a multiplicative cascade model for spatial application in 

urban hydrology, J. Hydrol., 556, 847-864, 2018. 

Müller, T.: Generation of a Realistic Temporal Structure of Synthetic Precipitation Time Series for Sewer Applications, 

Proceedings of the Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, 252, Stuttgart, 127 

pp., page 82-83, 2017. 15 

Müller-Thomy, H. Wallner, M., Förster, K.: Rainfall disaggregation for hydrological modeling: Is there a need for spatial 

consistence?, Hydrology and Earth System Sciences, 22, 5259-5280, 2018. 

Müller-Thomy, H., Sikorska-Senoner, A.: Does the complexity in temporal precipitation disaggregation matter for a lumped 

hydrological model?, Hydrological Sciences Journal, 64 (12), 1453-1471, 2019. 

Niazi, M., Nietch, C., Maghrebi, M., Jackson, N., Bennett, B. R., Tryby, M., Massoudieh, A.: Storm Water Management 20 

Model: Performance Review and Gap Analysis. Journal of Sustainable Water in the Built Environment, 3 (2), 04017002, 

2017. 

Ochoa-Rodriguez, S., Wang, L.-P., Gires, A., Pina, R. D., Reinoso-Rondinel, R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, 

E., Assel, J. v., Kroll, S., Murlà-Tuyls, D., Tisserand, B., Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P., ten 

Veldhuis, M.-C.: Impact of Spatial and Temporal Resolution of Rainfall Inputs on Urban Hydrodynamic Modelling Outputs: 25 

A Multi-Catchment Investigation, J. Hydrol., 531 (2), 389-407, 2015. 

Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrol. Earth Syst. Sc., 2 (1), 19-30, 

1998. 

Over, T. M., Gupta, V. K.: Statistical Analysis of mesoscale rainfall: dependence of a random cascade generator on large-

scale forcing, J. Appl. Meteorol., 33, 1526-1542, 1994. 30 

Paschalis, A., Molnar, P., Burlando, P.: Temporal dependence structure in weights in a multiplicative cascade model for 

precipitation, Water Resour. Res, 48 (1), W01501, 2012. 



 33 

Paschalis, A., Molnar, P., Fatichi, S., Burlando, P.: On temporal stochastic modeling of precipitation, nesting models across 

scales, Adv. Wat. Resour., 63 (0), 152-166, 2014. 

Peel, M. C., Finlayson, B.L., McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. 

Earth Syst. Sc., 11 (5), 1633-1644, 2007. 

Pohle, I., Niebisch, M., Müller, H., Schümberg, S., Zha, T., Maurer, T., Hinz, C.: Coupling Poisson rectangular pulse and 5 

multiplicative micro-canonical random cascade models to generate sub-daily precipitation time series, Journal of Hydrology, 

562, 50-70 

Rupp, D. E., Keim, R. F., Ossiander, M., Brugnach, M., Selker, J.: Time scale and intensity dependency in multiplicative 

cascades for temporal rainfall disaggregation, Water Resour. Res., 45 (7), W07409, 2009. 

Rossman, L.A.: Storm water management model – User’s manual version 5.0, Environmental Protection Agency, 10 

EPA/600/R-05/040, 2010.  

Schilling, W.: Univariate versus Multivariate Rainfall Statistics – Problems and Potentials (A Discussion), Wat. Sci. Tech., 

16, Copenhagen, Denmark, p. 139–146, 1984. 

Schilling, W.: Rainfall data for urban hydrology: what do we need?, Atmos. Res, 27, 5-21, 1991. 

Veneziano, D., Langousis, A., Furcolo, P.: Multifractality and rainfall extremes: A review, Water Resour. Res., 42 (6), 15 

W06D15. 2006. 

Serinaldi, F.: Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous 

universal multifractal and discrete random cascade models, Nonlin. Processes Geophys., 17 (6), 697–714, 2010. 

Storm, R.: Wahrscheinlichkeitsrechnung, mathematische Statistik und statistische Qualitätskontrolle, VEB Fachbuchverlag, 

Leipzig, 9th edition, 360 pages, 1988. 20 

Svensson, C., Olsson, J., Berndtsson, R.: Multifractal properties of daily rainfall in two different climates, Water Resour. 

Res., 32 (8), 2463–2472, 1996. 

Westra, S., Mehrotra, R., Sharma, A., Srikanthan, R.: Continious rainfall simulation: 1. A regionalized subdaily 

disaggregation approach, Water Resour. Res., 48, W01535, 2012. 

Wójcik, R., Buishand, T.A.: Simulation of 6-hourly rainfall and temperature by two resampling schemes, J. Hydrol. 273 (1–25 

4), 69–80, 2003. 

Yu, P.-S., Yang, T.-C., Lin, C.-S.: Regional rainfall intensity formulas based on scaling property of rainfall, J. Hydrol., 295, 

108–123, 2014. 



34 
 
 

Appendix 1 

As pointed out in Section 3.1.4 method C and its position-definition increases model parameters. To ensure the model 

parameter transferability in space a leave-one-out cross-validation was applied. A daily time series was aggregated from an 

observed 5 min time series and is referred to as target station. The parameters for the disaggregation were estimated two 

times, i) from the high-resolution time series of the target station (T) used for the aggregation as well as ii) from the 5 min 5 

time series of the closest recording station referred to as neighbouring station (N). The average distance was 𝑁𝑁𝑁𝑁����=38.9 km. 

The results for the disaggregation are presented in Table A1 and Fig. A1, whereby the results for parameter estimation at the 

target station are identical with the results presented in Table 6 and Fig. 9. The rainfall characteristics of the disaggregated 

time series are very similar between both locations (T and N) for parameter estimation with deviations of less than 5 % for rE 

and rAE. Also the results for the comparison of lag 1, lag 6 and lag 36 autocorrelation are very similar. While for lag 1 the 10 

median tends to slightly overestimate the observations for parameters estimated at T, parameters estimated at N lead to a 

slight underestimation. However, for lag 1 rE=0.01 and rAE=0.05 are identical. Also, the overall representation of the 

autocorrelation regarding range of the results and tendencies for over- and underestimation is similar between both locations 

for parameter estimation. 

So although method C is based on a high number of model parameters, their transferability in space is confirmed by this 15 

leave-one-out cross validation for the study area. 

 

Table A1: Relative and absolute error of rainfall characteristics between disaggregated and observed time series in dependence of 
the location used for parameter estimation (mean for 24 stations) 
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Fig. A1: Deviations of autocorrelation from disaggregated to observed time series for method C as relative error for lags 1, 6 and 
36 in dependence of the location used for parameter estimation. The red dashed line indicates a rE=0 (Std is used as abbreviation 
for Standard) 
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Tab. 1: Attributes of all 24 rainfall stations, based on a temporal resolution of 5 minutes. 

ID Name Altitude 
[m.a.s.l.] 

Mean annual 
precipitation 

[mm] 

Fraction 
of wet 5 
minute-
intervals 

[%] 

Average 
wet spell 
duration 

[min] 

Average 
wet 
spell 

amount 
[mm] 

Average 
dry spell 
duration 

[min] 

Autocorrelation 
lag-1 [-] 

1 Braunlage 607 1397 8.1 15.5 0.51 175.3 0.66 
2 Braunschweig-Voel. 81 638 4.4 15.7 0.43 336.8 0.62 
3 Cuxhaven 5 869 6.2 19.1 0.51 291.9 0.61 
4 Diepholz 39 690 4.6 15.2 0.43 314.8 0.56 
5 Emden 0 825 5.2 15.5 0.47 281.2 0.55 
6 Freiburg/Elbe 2 888 6.4 18.5 0.49 272.9 0.57 
7 Gardelegen 47 581 6.2 22.7 0.40 340.2 0.63 
8 Göttingen 167 631 4.3 14.1 0.40 315.3 0.62 
9 Hannover 55 641 3.9 13.2 0.41 323.0 0.63 

10 Harzgerode 404 612 7.3 23.9 0.38 304.3 0.65 
11 Jork-Moorende 1 727 5.7 18.4 0.44 302.0 0.58 
12 Leinefelde 356 942 8.0 25.5 0.57 291.1 0.60 
13 Lingen 22 789 5.5 16.6 0.46 286.6 0.60 
14 Lüchow 17 569 3.9 14.3 0.39 349.3 0.61 
15 Magdeburg 76 496 5.5 22.1 0.38 373.3 0.62 
16 Norderney 11 744 4.5 14.6 0.46 309.5 0.56 
17 Oldenburg 11 809 6.4 18.1 0.43 263.1 0.63 
18 Osnabrück 95 874 5.4 14.8 0.45 258.3 0.56 
19 Bad Salzuflen 135 825 5.0 13.5 0.42 253.0 0.63 
20 Soltau 76 804 5.3 15.4 0.44 274.1 0.61 
21 Uelzen 50 643 5.5 17.5 0.39 300.1 0.58 
22 Ummendorf 162 549 5.9 23.6 0.41 367.2 0.60 
23 Wendisch Evern 62 686 5.8 18.0 0.40 290.2 0.55 
24 Wernigerode 234 625 7.1 23.6 0.39 305.1 0.68 
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Tab. 2: Comparison of model parameters for methods A. B, and C in dependence of the applied branching number. 

 
 

 
Method 

 
 

 
A B C 

b=3 

 Basic parameters 3 7 7 
 Position classes - 4 16 
 Volume classes 2 2 2 
 Parameters per disaggregation step 6 56 224 

b=2 

 Basic parameters 4 4 4 
 Position classes 4 4 8 
 Volume classes 2 2 2 
 Parameters per disaggregation step 32 32 64 
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Tab. 3: Position-dependent and –independent probabilities for one wet 8 hour interval in the uniform splitting (mean of all 24 

stations for lower volume class, all values in percent [%]). The combination of ‘1’ (wet) and ‘0’ (dry) illustrates the order of 

wet and dry 8 hour intervals in a day. 

One wet 
interval, 
position-

independent 

One wet interval, position dependent 
starting position enclosed position ending position isolated 

001 010 100 Σ 001 010 100 Σ 001 010 100 Σ 001 010 100 Σ 

40 33 9 8 50 13 6 12 31 9 10 28 47 21 19 20 60 
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Tab. 4: Position-dependent and –independent probabilities for two wet 8 hour interval in the uniform splitting (mean of all 

24 stations for lower volume class, all values in percent [%]). The combination of ‘1’ (wet) and ‘0’ (dry) illustrates the order 

of wet and dry 8 hour intervals in a day. 

Two wet 
intervals, 
position-

independent 

Two wet intervals, position dependent 
starting position enclosed position ending position isolated 

011 101 110 Σ 011 101 110 Σ 011 101 110 Σ 011 101 110 Σ 

35 20 5 9 34 14 9 13 36 9 5 22 36 14 3 14 31 
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Tab. 5: Position-dependent and –independent probabilities for three wet 8 hour interval in the uniform splitting (mean of all 

24 stations for lower volume class, all values in percent [%]). The combination of ‘1’ (wet) and ‘0’ (dry) illustrates the order 

of wet and dry 8 hour intervals in a day. 

Three wet 
intervals, 
position-

independent 

Three wet intervals, position dependent 
starting 
position 

enclosed 
position 

ending 
position 

isolated 

111 111 111 111 

25 17 33 16 9 
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Tab. 6: Relative and absolute error of rainfall characteristics between disaggregated and observed time series (mean for 24 
stations) 
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Method A -18 40 14 16 2 -4 18 40 14 16 2 6 
Method B -17 32 9 11 1 -3 17 32 9 11 1 6 
Method C -16 -35 -45 -47 -3 1 16 35 45 47 3 5 
  5 
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Tab. 7 The median of rE of extreme rainfall events (over all stations and realisations ) for different return periods and 
disaggregation methods before and after the resampling 

  
rE [%] 

 
D 15 min 1 h 2 h 

 

Tn 
Before 

res. 
After 
res. 

Before 
res. 

After 
res. 

Before 
res. 

After 
res. 

Method A 

1 17 4 6 19 2 24 
2 13 -3 -2 7 -4 12 
5 10 -9 -8 -2 -7 4 

10 8 -11 -10 -6 -9 0 

Method B 

1 13 2 4 17 0 21 
2 10 -4 -3 6 -5 11 
5 8 -9 -7 -2 -8 3 

10 7 -11 -9 -6 -9 0 

Method C 

1 10 3 3 15 -1 18 
2 8 -2 -4 4 -5 8 
5 6 -5 -8 -3 -9 2 

10 5 -7 -10 -7 -10 -1 
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