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Abstract. The application of a technique from quantum dynamics to the governing equation for hydraulic head leads to a

trajectory-based solution that is valid for a general porous medium. The semi-analytic expressions for propagation path and

velocity of a change in hydraulic head form the basis of a traveltime tomographic imaging algorithm. An application of the

imaging algorithm to synthetic arrival times reveals that a crosswell inversion based upon the extended trajectories correctly

reproduces the magnitude of a reference model, improving upon an existing asymptotic approach. An inversion of hydraulic5

head arrival times from crosswell slug tests at the Widen field site in northern Switzerland captures a general decrease in

permeability with depth, in agreement with previous studies, but also indicates the presence of a high permeability feature in

the upper portion of the crosswell plane.

1 Introduction

Understanding the spatial variation in subsurface flow properties is important for many applications, such as groundwater ex-10

traction and storage, hydrocarbon production, geothermal energy generation, and waste water disposal. Advanced production

processes like hydraulic fracturing require the development of high-resolution reservoir models necessary to capture the in-

fluence of the fractures [Zhang et al., 2014; Fujita et al., 2015]. Often there are very few observations with which to infer

such properties, typically measurements from a few wells intersecting a formation of interest. However, developments such

as crosswell transient pressure testing [Hsieh et al., 1985; Paillet, 1993; Karasaki et al., 2000;] and hydraulic tomography15

[Tosaka et al., 1993; Gottlieb and Dietrich, 1995; Butler et al., 1999; Yeh and Liu, 2000; Vasco and Karasaki, 2001; Bohling et

al., 2002, 2007; Brauchler et al., 2003, 2010, 2011, 2013; Zhu and Yeh, 2006; Illman et al., 2007, 2008; Frienen et al., 2008;

Bohling, 2009; Cardiff et al., 2009, 2011, 2013a; 2013b; Huang et al., 2011; Sun et al., 2013; Paradis et al., 2015, 2016],

have improved the ability to resolve two- and three-dimensional variations in hydraulic properties. New techniques, including

fiber optic temperature and pressure observations, and geophysical observations sensitive to pressure changes [Yeh et al., 2008;20

Rucci et al., 2010; Marchesini et al., 2017], will further improve spatial and temporal coverage and generate large data sets.

Finally, the joint interpretation and inversion of geophysical and hydrological data leads to better constrained imaging of flow

properties [Rubin et al., 1992; Hyndman et al., 1994; Hyndman et al., 2000; Vasco et al., 2001; Vasco, 2004; Kowalsky et al.,
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2004; Day-Lewis et al., 2006; Brauchler et al., 2012; Lochb̈uhler et al., 2013; Soueid Ahmed et al., 2014: Ruggeri et al., 2014:

Jimenez et al., 2015; Binley et al., 2015; Linde and Doetsch, 2016 ].

The characterization of complicated aquifer and reservoir models using sizable data sets points to the need for robust and

efficient approaches for modeling pressure propagation. To this end, there are a number of approaches that aim to reduce the

computational burden and data handling requirements associated with hydraulic tomography. For example, there are methods5

that reduce the governing equation to a simpler form for the moments of the transient head or pressure variation [Li et al., 2005;

Yin and Illman, 2009; Zhu and Yeh, 2006]. There are also approaches for the analysis of sinusoidal and oscillatory pumping

tests that are based upon the phase shifts and amplitude differences between observed and calculated pressure variations, using

these phase shifts to infer properties between two wells [Bernabe et al., 2005; Black and Kipp, 1981; Cardiff et al., 2013b;

Kuo, 1972; Rasmussen et al., 2003; Renner and Messar, 2006]. Another technique relies upon a measure of the arrival time10

of a pressure pulse or disturbance as a basis for transient traveltime imaging or tomography [Vasco et al., 2000; Kulkarni et

al., 2001; Brauchler et al., 2003, 2007, 2010, 2011, 2013; He et al., 2006; Hu et al., 2011; Vasco and Datta-Gupta, 2016].

Finally, there are methods that attempt to find lower-dimensional representations of the model or of the matrices describing

the forward and inverse problems. These methods include principal component analysis [Lee and Kitanidis, 2014;], Karhunen-

Loeve expansions [Zha et al., 2018], and reduced-order models [Liu et al., 2013].15

There are at least three advantages associated with the use of travel times, an alternative to the direct treatment of the entire

transient head or pressure waveforms. First, the arrival of the early onset of the transient pressure pulse can be much sooner than

the time at which steady-state conditions are achieved. Thus, crosswell slug tests can be conducted rapidly, facilitating improved

spatial coverage. Second, the relationship between such travel times and hydraulic diffusivity is quasi-linear and convergence

to a solution is not as sensitive to the initial model as it is for the direct inversion of transient pressure waveforms [Cheng et20

al., 2005]. Third, the interpretation and reduction of transient head or pressure waveform data can be more complicated due to

the sensitivity of amplitudes to various factors such as the packer coupling, the calibration of the receiver transducers, and the

conditions surrounding the borehole.

Previous trajectory-based formulations of pressure arrival time tomography relied upon an asymptotic approach that assumes

smoothly-varying properties [Vasco et al., 2000; Brauchler et al., 2003, 2007; He et al., 2006; Vasco, 2008; Vasco and Datta-25

Gupta, 2016]. This assumption is certainly violated in many commonly encountered situations, such as a layered sedimentary

environment and in the presence of faults or fractures. Here we apply a newly developed trajectory-based technique for travel

time tomography that dispenses with the assumption of smoothly-varying properties, enlarging its range of validity to any

model that may be treated using a numerical simulator [Vasco, 2018; Vasco and Nihei, 2019]. The semi-analytic approach

provides insight into factors controlling the propagation of a pressure transient in a complex porous medium. As shown here,30

the expression for the trajectories may form the basis for efficient sensitivity computations. These sensitivities are particularly

useful in inverting transient pressure propagation times and in hydraulic travel time tomography. All of the the sensitivities

required for the interpretation of a pressure test can be obtained in a single numerical simulation of the test. We apply the

method to crosswell hydraulic tomographic imaging, considering both synthetic and field pressure arrival times.
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2 Methodology

In this section we describe our iterative algorithm for updating an aquifer model in order to improve the fit to a set of observed

arrival times. We shall only discussion the elements of the derivation of Vasco [2018], as well as a perturbation technique, that

are essential for understanding the inversion procedure. The approach involves a number of steps, beginning with the equation

governing the transient variation in hydraulic head, and ending with a linear system of equations to be solved for the aquifer5

parameters. As an overview, the major steps of the methodology are shown schematically in Figure 1. The approach is an

off-shoot of trajectory-based techniques developed in quantum dynamics for the study of large chemical systems [Wyatt, 2005;

Liu and Makri, 2005; Goldfarb et al., 2006; Garashchuk, 2010; Garashchuk and Vazhappilly, 2010; Garashchuk et al., 2011;

Gu and Garashchuk, 2016]. As shown in Vasco [2018], the trajectory mechanics treatment leads to a set of coupled ordinary

differential equations that may be solved numerically, as is done in quantum mechanics. However, one can take advantage of10

existing numerical simulators to compute one of the unknown vector fields, reducing the system to a single set of equations

for the trajectory [Vasco, 2018]. The result of this analysis is a semi-analytic expression for the path of a transient pulse.

This expression, along with a perturbation technique, provides a basis for an efficient method for imaging spatial variations in

hydraulic diffusivity in the subsurface, a form of travel time tomography. We illustrate the procedure with applications to both

synthetic and observed arrival times in the section that follows this description.15

2.1 Governing equation and trajectory calculations

We begin with the equation governing the evolution of a transient variation in hydraulic head h(x, t) [L] as a function of space

x and time t, adopting the form of the governing equation presented in de Marsily [1986, p. 109]

∇ · (K · ∇h) = ζ
∂h

∂t
(1)

where K is the hydraulic conductivity [L/T], a symmetric tensor, and ζ is the specific storage coefficient with dimensions of20

length−1 [1/L]. The specific storage coefficient depends upon the total porosity of the medium, the isothermal compressibility

of the liquid, the compressibility of the solid constituents, and the compressibility of the porous matrix, as discussed in de

Marsily [1986, p. 109].

From this point on we shall assume that the hydraulic head has been normalized by dividing both sides of equation (1) by a

constant reference head value h0 [L]. We will still use the variable h(x, t) for the normalized head, which is now unitless. An25

expression for the trajectory associated with the propagation of a transient fluid front follows from substituting the exponential

representation

h(x, t) = e−S(x,t) (2)

into the governing equation (1) for hydraulic head. Because we can choose the reference location such that the hydraulic head

is always positive, equation (2) is well defined and can always be solved for S. Upon substituting for h(x, t) in equation (1),30
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the resulting equation for S(x, t), known as the phase, may be written as

∂S

∂t
+v · ∇S =

1

ζ
∇ · (K ·p) . (3)

The vector p [1/L] is the spatial gradient of the phase

p=∇S, (4)

and v [L/T] is a velocity vector given by5

v = p · K
ζ
. (5)

Note that equation (3) has the form of a traveling front with a velocity that depends upon the vector p and the medium

properties ζ and K. As shown in Vasco [2018], the partial differential equation (3) is equivalent to the system of ordinary

differential equations

dx

dt
=

1

ζ
p ·K (6)10

dp

dt
= ∇

[

1

ζ
∇ · (K ·p)

]

. (7)

One can solve the two ordinary differential equations for the trajectory x and the vector p [Cash and Carp, 1990; Press et al.,

1992; Wyatt, 2005]. An alternative approach is to use a reservoir simulator to calculate h(x, t) and then use equation (2) and

(4) to determine p from the hydraulic head

p=−∇ lnh=−∇h

h
. (8)15

Substituting for p in equation (6) gives an expression for the trajectory in terms of h(x, t)

dx

dt
= v =−K

ζ
· ∇h

h
. (9)

We use the numerical simulator TOUGH2 [Pruess et al., 1999] to calculate the pressure and head changes and then use equation

(9) to find the trajectories.

2.2 Semi-analytic sensitivities20

A primary application of the trajectories described above will be to estimate flow properties between boreholes via hydraulic

tomographic imaging. In this procedure a series of pumping tests are conducted in isolated segments of one borehole. During

each test a rapid injection is used to generate a transient fluid pressure pulse that propagates to pressure sensors in an adjacent

well. For an impulsive source, the time at which the peak pressure is observed in the adjacent borehole is defined as the arrival

time. For the inverse problem we determine the flow properties from the arrival times observed in isolated sections of the25

monitoring well. In order to solve the inverse problem we must relate the travel time of the pressure pulse to the hydraulic

properties of the medium.
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Our approach to the solution of the non-linear inverse problem will be iterative in nature. That is, in order to estimate flow

properties we begin with an initial model and progressively update it, solving the forward problem of reservoir simulation at

each step. We shall need model parameter sensitivities, the partial derivatives of each observation with respect to changes in

each of the model parameters [Jacquard and Jain, 1965], for every iterative update. We will be interested in transient pressure

arrival times that are defined as the time at which the peak of a pressure pulse is observed at a measurement point. Expression5

(9) forms the basis for our sensitivity estimates. The only non-zero component of the velocity vector v is along the trajectory

x(t), and it is given by the magnitude of the vector, denoted by v. Integrating equation (9) along the path x(t) we have

T =

∫

x

dx

v
, (10)

where x= |x| is the distance along the path x. One could relate perturbations in the arrival time of a pressure pulse with respect

to changes in the velocity but this will lead to a sensitivity that varies as v−2. This will magnify the influence of any variations10

in velocity along the trajectory, potentially leading to instabilities in the inversion. Formulating the inverse problem in terms of

the slowness, s [T/L], given by

s=
1

v
, (11)

eliminates this problem and leads to

T =

∫

x

s(x)dx, (12)15

an integral relationship where the non-linearity is contained entirely within the definition of the path of integration. That is,

according to equation (9), the path of integration x depends upon v and hence s(x).

Model parameter sensitivities, in this case relating small changes in the slowness along the trajectory, δs(x), to changes in

the travel time of a transient pressure pulse, follow from a perturbation argument. Specifically, we consider a perturbation of

the slowness with respect to a background model so(x)20

s(x) = so(x)+ δs(x) (13)

where δs is assumed to be small. There is a corresponding small change, δT (x), in the travel time from a source location to an

observation point

T (x) = To(x)+ δT (x). (14)

Substituting the perturbed forms of s(x) and T (x), given by equations (13) and (14), into the expression (12) produces25

To(x)+ δT (x) =

∫

x

so(x)dx+

∫

x

δs(x)dx, (15)

where the integration is along a perturbed path x= xo+ δx. It has been shown that perturbations in the path lead to terms that

are second order in δs. Thus, in computing the sensitivities, which are first order in δs, we can neglect perturbations in the
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trajectory due to perturbations in s. Therefore, we can integrate along the path calculated for the current or background model,

denoted by xo. Because the traveltime in the background model, To, is the integral of the background slowness function so(x)

along the trajectory, the initial terms on each side of equation (15) cancel and we are left with

δT =

∫

xo

δs(x)dx, (16)

relating perturbations in the slowness, δs, along the trajectory to perturbations in the arrival time, δT .5

In order to update the model and the head or pressure field using a numerical simulator, we shall need to map the updated

slowness estimates into the reservoir model parameters ζ andK. This cannot be done in a unique fashion and requires additional

information or assumptions. Here, we will assume that the permeability tensor is isotropic, so that it is of the form K=KI,

where K is the scalar permeability and I is the identity matrix with 1’s on the diagonal and 0’s elsewhere. If the inversion is part

of a joint inversion of several data types it might be possible to solve for ζ or K using other information, such as geophysical10

observations. In some formations, such as a clean sand, it might be possible to relate the permeability to the porosity, and to

solve for the porosity uniquely in terms of the slowness. Alternatively, since the porosity typically has a much smaller range

of variation than permeability does, one might assume that the permeability dominates variations in s, and hence solve for an

effective permeability, lumping both changes in ζ and permeability into changes in K . It is evident from equation (9) that one

has to correct the estimates for variations in hydraulic head. As shown below, we use the output of the numerical simulator,15

based upon the current reservoir model, for this correction.

2.3 Comparison with existing asymptotic methods

Several trajectory-based methods for pressure arrival time tomography [Vasco et al., 2000; Brauchler et al., 2003; He et al.,

2006; Hu et al., 2011; Vasco and Datta-Gupta, p. 131, 2016] utilize a high-frequency asymptotic solution to the diffusion

equation. A major assumption of such solutions is that the pressure variation is rapid in time [Virieux et al., 1994] or that20

the dominant frequencies in a Fourier transform of the trace are high. Equivalent results can be obtained if we assume that the

medium properties are smoothly-varying in comparison with the length scale associated with the propagating pressure transient

or that parameters take on values in a particular range [Cohen and Lewis, 1967]. In that case we can neglect the divergence

term on the right-hand-side of equation (3) and it reduces to an eikonal equation

∂S

∂t
+

K

ζ
∇S · ∇S = 0, (17)25

where we have made use of equations (4) and (5). There are efficient fast-marching methods for solving the eikonal equation

[Podvin and Lecomte, 1991; Sethian, 1999; Osher and Fedkiw, 2003], that are applicable to modeling transient pressure prop-

agation in high resolution reservoir models [Zhang et al. 2014, Fujita et al., 2015]. The eikonal equation is equivalent to a

system of ordinary differential equations, the ray equations, defining the path of the transient pulse and the spatial variation of

the phase [Courant and Hilbert, 1962].30

From the high frequency asymptotic solution and the ray equations Vasco et al. [2000] derived a semi-analytic expression, in

which the square root of the peak arrival time is given by the line integral along the trajectory xeikonal defined by the eikonal
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equation,

√

Tpeak =

∫

xeikonal

ϕdr (18)

where

ϕ=
1

6

√

ζ

K
(19)

has units of
√
T/L, xeikonal signifies the trajectory resulting from the solution of the eikonal equation (17), and r is the5

distance along the trajectory. Equation (18) is a nonlinear relationship between the travel time Tpeak and ϕ because the path

xeikonal depends upon the spatial variation of ζ and K . As in the previous sub-section, we can linearize the relationship by

assuming a background model and considering perturbations, or small changes, with respect to the background model. Because

the perturbations in the path xeikonal are second order in perturbation of ϕ, we can write the perturbed expression as

δ
√

Tpeak =

∫

x0

δϕdr (20)10

where δ
√

Tpeak is the perturbation in the square root of the travel time and x0 is the trajectory in the background medium.

In Vasco [2018] the limitations of the high frequency asymptotic approach are discussed and illustrated. In particular, it is

shown that for abrupt boundaries and sharp layers, the trajectories calculated using the eikonal equation bend too strongly into

high permeability regions of a half-space or layer. This leads to deviations in the trajectories from regions with high model

parameter sensitivity, and the potential for errors when updating a simulation model. In the next section we will explore these15

limitations in the context of hydraulic tomography, using both synthetic and experimental data.

2.4 A Linearized and Iterative Approach for Tomographic Imaging

A reservoir model is typically defined over a two- or three-dimensional grid that is used by a numerical reservoir simulator.

For such a discrete model with properties defined on a grid of cells, and where one assumes constant values within each cell of

the model, we can break up the path integrals (16) and (20) into sums over all of the grid blocks intersected by the trajectories.20

For the integral (16) the discrete sum is given by

δT =
N
∑

i=1

liδsi, (21)

where δsi is the perturbation of s in the i-th grid block, and li is the length of the trajectory xo in that grid block. Equation

(21) constitutes a linear constraint on the perturbations of s in the sampled grid blocks of the model, those intersected by the

path x0. By considering a number of sources and receiver pairs, for example from a sequence of cross well slug tests, we arrive25

at a system of linear equations relating the perturbations in s to perturbations in the observed arrival times. We may write the

system as a matrix equation

δT=Mδs, (22)
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where δT is a vector of travel time residuals, M is a matrix containing the path lengths in each grid block intersected by one

or more trajectories, and δs is a vector whose elements consist of the perturbations in each grid block, δsi or δϕi for the i-th

block.

In the iterative, linearized inversion scheme that we shall adopt here, we start with an initial model, perhaps derived from

well logs, denoted by ζ0 and K0, and calculate the background values of v or ϕ. Depending upon the method, we either conduct5

a reservoir simulation and use equation (9) to derive the trajectories, or solve the eikonal equation (17) and calculate xeikonal

as in Vasco et al. [2000]. This allows us to compute the trajectories and the lengths in each grid block and to construct the

elements of the matrix M. In order to update the reservoir model we need to relate the updated field s to the model parameters

ζ and K . Recall that we can only resolve the ratio ζ/K and we cannot distinguish increases in ζ from decreases in K and

vice-versa. In this example only the permeability varies, so we fix ζ and only solve for changes in permeability. If ζ also varies10

then we can only find an effective permeability variation that will contain the effects of any variation in ζ. The relationship

follows from equation (9) and is given by

K =
ζ

s|∇ lnh| . (23)

Because the head field h(x, t) is present in the integral expression, we need to recalculate this field at each iteration. But that

calculation is already required in order to update the trajectory x(t).15

Due to errors in the data and modeling approximations, we do not expect that the system of equations (22) will have an exact

solution. Thus, we seek a least squares solution in which the sum of the squares of the residuals is minimized. Furthermore, due

to resolution and uniqueness issues, a direct least squares solution of (22) will probably be unstable and small errors will lead

to large changes in the estimates of δs [Menke, 2012; Parker, 1994]. Therefore we introduce regularization or penalty terms in

order to stabilize the inverse problem. The penalty terms seek to minimize the norm of the model update, and to minimize the20

roughness of the updates, as measured by the difference operators that mimic the second spatial derivatives of the model, the

model Laplacian [Menke, 2012]. The function that we are minimizing, Π(δs), is the sum of the squares of the residuals, the

weighted model norm and the weighted model roughness:

Π(δs) = (δT−Mδs)t · (δT−Mδs)+wnδs
t · δs+wr (Lδs)

t · (Lδs) , (24)

where L is a matrix operator that mimics the second spatial derivative of the model, wn is the model norm weight, and wr25

is the model roughness weight. Note that in equation (24) we are weighting all the data uniformly. It is possible to include a

covariance matrix in order to account for correlations between observations and variations in data quality [Tarantola; 2005].

Minimizing the quadratic function (24) with respect to the model parameters leads to a linear system of equations for δs

[

MtM+wnI+wrL
tL

]

δs=MtδT. (25)

The penalized least squares problem is solved for the perturbations, δs, using the Least Squares QR algorithm (LSQR) proposed30

by Paige and Saunders [1982]. With the solution in hand we then update the reservoir model. Because the high frequency

asymptotic method only requires ϕ, we do not need to convert back to the flow parameters ζ and K . Therefore, we can update
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the model, solve the updated eikonal equation, recompute the residuals, retrace the trajectories, calculate the sensitivities, and

continue the process until the misfit to the travel times is reduced sufficiently. For the extended trajectory method we can use

equation (23) to transform from s to K before updating the reservoir model and conducting another numerical simulation.

The linearized expression (25) also provides a basis for the assessment of a solution to the inverse problem, that is, the

calculation of model parameter resolution and uncertainty [Parker, 1994; Aster et al., 2005; Menke, 2012]. Model parameter5

resolution estimates can be particularly useful in understanding spatial averaging and non-uniqueness in hydrological inverse

problems [Vasco et al., 1997; Bohling, 2009; Paradis et al., 2016]. We can define model parameter resolution very simply in

terms of the generalized inverse G†, obtained from equation (25) by formally inverting the matrix on the left-hand-side

G† =
[

MtM+wnI+wrL
tL

]−1
Mt. (26)

Hence, the parameters estimates for a given iteration, denoted by δŝ, are a linear function of the observations10

δŝ=G†δT. (27)

Using equation (22) to replace δT by Mδs gives a relationship between the estimated parameters and the ’true’ parameters,

δŝ=G†Mδs=Rδs, (28)

where R is the resolution matrix [Menke, 2012], with rows that are coefficients describing the averaging that occurs in esti-

mating a parameter. We can also make use of the linear relationship between the residuals and the model parameter updates,15

given by equations (22) and (27), to estimate an a posteriori model parameter covariance matrix Css in terms of the covariance

matrix of the errors associated with the observed traveltimes. In particular, if the data errors are Gaussian, characterized by the

data covariance matrix CTT then the model parameter covariance matrix, may be written in terms of the generalized inverse

and the data covariance matrix

Css =G†CTT

(

G†
)t
, (29)20

a consequence of the linear nature of the problem and the properties of the Gaussian distribution [Menke, 2012].

3 Applications

Crosshole hydraulic traveltime tomography and crosswell slug tests are valuable approaches for imaging spatial variations

in flow properties [Paillet, 1993; Yeh and Liu, 2000; Vasco and Karasaki, 2001; Bohling et al., 2002; Butler et al., 2003;

Brauchler et al., 2007; Brauchler et al., 2010; Brauchler et al., 2011]. Such tests can resolve features between boreholes,25

similar to crosswell geophysical imaging, and are directly sensitive to flow properties. In this section we set up a synthetic

hydraulic tomographic test, roughly based upon a field experiment at the Widen site in Switzerland. Following that, we analyze

data from the actual field experiment, using them to image the spatial variations of permeability between two shallow boreholes.
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3.1 Synthetic hydraulic tomography test case

The overall setup of the test example is shown in Figure 2, along with the reference model. A set of sources in each well, denoted

by filled squares and open circles, transmit transient pressure signals to various receivers located in the adjacent borehole. The

reference distribution, a three-dimensional permeability model with a dominantly vertical variation in properties, was generated

stochastically. That is, a uniform number generator was used to derive permeability multipliers between 1 and 12 for each layer5

in the model. A uniform random variation of 50% was introduced within each layer and this variation was smoothed using a

three point moving window. The model extends an additional 5 meters in the x, y, and z directions, beyond the boundaries of

the plane defined by the crosswell survey.

The reservoir simulator TOUGH2 [Pruess et al., 1999] was used to model the complete set of crosswell slug tests that

comprised the full synthetic experiment. The computations were conducted using a three-dimensional mesh with constant10

pressure boundary conditions, simulating a 300 s transient pressure test for each source. This interval provided enough time

for any head variation to propagate from a source to the receivers due to the high background permeability of 5.0 × 10−10 m2.

The large background permeability allowed us to match the rapid pulse propagation between the boreholes that was observed

during the actual Widen field experiment described below. The initial conditions where a constant pressure of 0.616 MPa and

a uniform temperature of 20o C. The source-time function was defined by a jump in flow rate followed by an exponentially15

decreasing rate. The transient arrivals were defined as the time at which the rate of change in the pressure or head reached a

maximum value. A set of synthetic arrival times were calculated using TOUGH2 simulations and then used as a test data set for

the imaging algorithm described above. Uniform random deviates, with maximum variations of 5% of the arrival time, were

generated using a pseudo-random number generator and added to the TOUGH2 calculated travel times.

In order to image the permeability variations between the boreholes we conducted a series of linearized inversion steps,20

where we solve the system of equations (25) at each step. The starting model is a uniform half-space with a permeability of

5.0 × 10−10 m2. The model extends from 0.0 to 15.0 m laterally and from 0.0 to 15.0 m in the vertical direction. We represent

the crosswell area using a 33 by 33 grid of cells with a block size of 0.45 m and embed this into a 15 m (in the z direction)

thick three-dimensional model. Each of the injection events was simulated for 300 s, even though the pressure transient arrived

at the observation points just a few seconds after the beginning of the test. The pressure field from the simulation was used25

to compute the trajectories, using the expression (9) for the tangent vector, and integrating it to construct the entire path. The

arrival times were calculated using both the eikonal equation (17) and by post-processing the simulation results to estimate the

arrival time of the propagating transient as it reached each observation point. The linearized iterative algorithm, where equation

(25) is solved at each step, was applied using both the eikonal equation and the extended trajectory approach to compute the

sensitivities in M.30

The regularization weightings for each approach,wn and wr in equation (25), were estimated by trial and error. In particular,

a series of inversions were conducted for various values of wn and wr and a balance was struck between satisfying the data and

minimizing the model norm and roughness. For the eikonal-based inversion the misfit was calculated using travel times from

the eikonal equation. For the new approach based upon the extended trajectories the travel time misfit was calculated using the
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pressures from the numerical simulator TOUGH2. The norm and roughness weights for the iterative eikonal inversion were

wr =0.15 andwn=0.15. For the inversion utilizing the extended trajectories we set wr andwn equal to 0.1 and 0.5, respectively.

At each iteration we solve for a permeability multiplier, a factor that is multiplied by the background permeability of the

uniform starting model to get the estimated permeability. A total of 10 iterations for the eikonal-based algorithm took 6 s

while ten iterations for the extended trajectory approach took 129 minutes, illustrating the computational advantage provided5

by an inversion approach based upon the eikonal equation. In Figure 3 we plot the misfit reduction as a function of the number

of iterations for both the high frequency inversion algorithm (Eikonal) and an inversion based upon the extended trajectories

computed using equation (9). There is a large initial error reduction for both the inversion based upon the eikonal paths and the

inversion utilizing the extended trajectories. However, as we continue updating the model and the size of the anomalies increase

and the model becomes rougher, the error reduction for the two approaches diverge, and the eikonal-based updates no longer10

improve the fit when the reservoir simulator is used to calculate the arrival times. Note that the iterations do reduce the error

calculated using the eikonal equation and the updated model, pointing to the differences between traveltime predictions made

using a high frequency asymptotic approach and using the pressure equations. This highlights the fact that the eikonal equation

becomes less accurate as the model starts to violate the assumptions of a smoothly-varying medium, an aspect supported by the

results of Vasco [2018]. The misfit reduction associated with an iterative inversion algorithm utilizing the extended trajectories15

is also shown in Figure 3. In this case the reduction is essentially monotonic and the final error is much less than that of the

eikonal-based approach. The number of iterations required to attain convergence depends upon a several factors. Two important

elements are how close the initial model is to the final solution in model space and the level of errors in the observations that are

being fit, including modeling errors. For the synthetic case considered here the level of random noise in the simulated arrival

times is only 5 %. However the modeling error becomes an issue when the asymptotic approach is no longer valid or because20

we assume that the permeability outside of the crosswell plane is uniform.

The final updated high frequency solution, plotted in Figure 4, contains higher permeabilities between about 5.5 and 7.0

m. However, the amplitude of the permeability multiplier is less than that of the reference model (Figure 2). Furthermore, the

amplitude of the high permeability feature at around 9.0 m is underestimated, perhaps due to its narrow width of less than a

meter. The iterative inversion based upon the extended trajectories does image the two higher permeability zones seen in the25

reference model (Figure 2). The estimated amplitudes of the features appears to be closer to those of the reference model but it

does overestimate the permeability of the lower feature and underestimates the permeability of the upper zone.

A better idea of the differences in the magnitude of the two solutions is conveyed in Figure 5, where we plot the depth

variation of the reference, eikonal-based, and extended trajectory-based models. That is, we display the depth variation of the

average of the two models, along with the upper and lower permeability multiplier values obtained in each depth interval. It30

is evident that the solution provided by a conventional imaging algorithm that uses the eikonal equation displays permeability

changes with depth that are much smoother than the reference model. The extended approach does contain K multipliers that

are similar in size to the those of the reference model. Note that the exact locations of the high permeability features do vary in

depth, deviating somewhat from the reference model shown in the left-most panel. This may be due to the wide, roughly 0.5

m, spacing of the source and receivers, and the low spatial resolution of pressure data in general [Vasco et al., 1997].35
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Figure 6 provides more information regarding the misfit reductions for the inversions based upon the eikonal equation

paths and the extended paths. It displays the calculated travel times plotted against travel times calculated using the reference

model shown in Figure 2. Both the initial travel times, calculated using the homogeneous background model used to start the

inversions, and the final travel times based upon the models obtained at the conclusion of the algorithms, are shown in the plots.

The initial travel time estimates are all larger than the actual values calculated using the reference model. This is to be expected5

because the largest anomalies are the approximately order-of-magnitude increases associated with the upper and lower high

permeability layers in the model. The high permeability channels promote rapid pressure propagation between the boreholes.

The eikonal equation-based algorithm does reduce the average of the calculated travel times but does not lead to good fits. The

inversion based upon the extended trajectories produces relatively good fits to the reference travel times.

An important aspect of the inverse problem is an assessment of the resulting model parameters and estimates of their10

reliability. As noted in the Methodology section, the calculation of two key components of the model assessment: model

parameter resolution and model parameter covariance or uncertainty, follow from the generalized inverse G† given by equation

(26). As noted in the discussion surrounding equation (21), the coefficients required for construction of the sensitivity matrix

are provided by trajectory-based, semi-analytic quantities, in particular by the ray lengths of the trajectories through each grid

block of the model. The formulas (28) and (29) provide the model parameter resolution and model parameter covariance,15

respectively. In Figure 7 we plot the diagonal elements of the resolution matrix and the standard errors associated with the

estimates in Figure 4. The diagonal elements of the resolution matrix are plotted in the grid blocks to which they correspond.

Because the rows of the resolution matrix are averaging coefficients that are normalized to have unit magnitude, if the diagonal

element approaches 1 then the other elements approach 0. Therefore, diagonal values near 1 signify well resolved parameters

for those cells and little lateral averaging between nearby grid blocks. In general, the resolution for the test inversion is quite20

good and most parameters are well determined. Near the upper right corner the resolution does approach 0 due to the lack of

sampling in that region. The resolution is highest in the central region, away from the edges of the model, due to the crosssing

of trajectories in those areas. The estimated model parameter standard errors, also plotted in Figure 7, have a very different

distribution, with larger values at the edges of the crosswell region where there are fewer crossing rays. We have scaled

the uncertainties by the magnitude of the estimated model parameters in order to plot them as percentages of the parameter25

estimates. The data errors were of the order of 10% of the magnitude of the travel time residuals that constitute the elements

of the vector δT in equation (27). The lowest errors are in areas of high resolution, with the exception of the upper right-

hand-corner where there is little ray coverage. In general, the errors are less than 5% of the magnitude of the estimated model

parameters.

We end our treatment of the synthetic test with a discussion of some validation calculations, in which additional sources30

were introduced to mimic independent pumping tests. Two tests were simulated, with one source at the left edge of the model

shown in Figure 2, at a height Y of 9.9 m, and the other with a source in the right borehole at a height of 10.3 m. The travel

times of transient pulses that propagate through the model, computed using the TOUGH2 simulator, are shown in Figure 2.

Following that, TOUGH2 was used to calculate propagation times through the models shown in Figure 4. The respective arrival

times through the two models are plotted against the travel times for the reference model (Figure 8). The general trends of the35
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residuals do agree, with increasing calculated travel times following larger observed arrival times. For the eikonal-based model

there are notable deviations from the 45o line indicating perfect fit. The calculated travel times are systematically larger than

the reference times. The estimates based upon the extended trajectory-based algorithm are much closer to the reference times

than are the times from the eikonal approach.

3.2 The Widen field experiment5

The Widen field site, adjacent to the Thur River in northern Switzerland (Figure 9), has been the subject of numerous geophys-

ical and hydrological studies [Lochb̈uhler et al., 2013]. The primary goal of the work at the Widen site is to understand the

hydrologic, ecologic, and biochemical effects of river restoration. The geophysical and hydrological experiments focused upon

a sandy gravel aquifer that is in contact with an unrestored section of the river [Doetsch et al., 2010]. The area was penetrated

by a number of boreholes and is relatively well characterized. Borehole cores revealed that the roughly seven-meter-thick10

sandy gravel aquifer is overlain by a silty sand layer and that it sits atop a thick impermeable clay aquitard. Early work at

the site included individual and joint inversions of crosswell seismic, radar, and electrical resistance tomography for a zoned

model [Doetsch et al., 2010]. The model was consistent with the three-layer structure defined by the existing boreholes. This

study was followed by several others, including a cross-hole ground-penetrating radar investigation [Klotzsche et al., 2010],

and three-dimensional electrical resistance tomographic (ERT) imaging of river infiltration into the site [Coscia et al., 2011;15

2012]. The three-dimensional ERT imaging indicates that the highest flow velocities occur in the middle of the aquifer while

the lowest speeds are at the base of the sequence in clay and silt-rich gravels. A joint inversion of geophysical and hydrolog-

ical data [Lochbühler et al., 2013] between several well pairs was used to constrain spatial variations in reservoir storage and

hydraulic conductivity. That study imaged the large-scale decrease in hydraulic conductivity with depth.

Crosswell slug interference tests, as described in Brauchler et al. [2010; 2011], were conducted at the site and are discussed20

in Lochbühler et al. [2013]. In such tests, a near instantaneous change in hydraulic head in a packed-off section of one well

generates a fluid pressure transient in the surrounding region. Pressure transducers in isolated sections of a nearby well are

used to measure the pulse that propagates between the wells. Both the travel time of the pulse and its amplitude can be used to

infer hydraulic properties between the wells [Vasco et al., 2000; Brauchler et al., 2007; Vasco, 2008; Brauchler et al., 2011].

Crosswell interference slug test were conducted at two well pairs at the Widen site, as described by Lochbühler et al. [2013].25

The wells P2, P3, and P4 are roughly in a line that parallels the Thur river at a distance of 15 meters from the river bank

[Lochbühler et al.; 2013] as shown in Figure 9. For our work we will focus on the well pair P2-P3, where P3 is the source well

and P2 is the observation well, some 3.5 m to the west. The tomographic system consists of two double-packers in each well,

where the extent of the isolated regions was 0.25 m and the spacing of the intervals was 0.5 m. A suite of observed pressure

variations for receivers in the observation well are shown in Figure 10. We will be interested in the propagation time of the30

pulse, as measured by the arrival time of the peak pressure at each observation point, which is referenced to the time at which

the peak pressure is obtained in the source interval.

The overall inversion methodology was discussed and illustrated above and the details will not be repeated here. During one

step of the iterative linearized algorithm we minimize the weighted sum of the squared misfit, the model norm, and the model
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roughness, as given in equation (24). The requisite equations are given by the conditions that the total misfit is minimized, that

is by the equations that result from setting ∇Π equal to zero, where the gradient is taken with respect to the components of

δs. Thus, at each iteration we solve the set of linear equations (25) for the perturbations in s. The misfits Π(δs), plotted as a

function of the number of updating steps in the iterative inversion algorithms, are shown in Figure 11. The eikonal equation

residuals, calculated by the reservoir simulator, tend to level off after about 3 iterations and decrease gradually as the inversion5

algorithm progresses. This may reflect the fact that as the heterogeneity increases, the eikonal paths begin to deviate from the

actual trajectories, as illustrated in Vasco [2018]. The match to the observations is shown in Figure 12 for both the eikonal-

based inversion and the inversion based upon the extended trajectories. The error reduction of 76% for the extended inversion,

shown in Figure 11, is generally monotonic. The error reduction for the extended solution is significantly larger than that for

the eikonal-based inversion. Both algorithms improve the fit to the observed arrival times though considerable scatter remains10

in the residuals (Figure 12).

The final models produced by the two inversion algorithms are plotted in Figure 13. Both models display generally higher

permeabilities at shallower depths with values decreasing as the lower edge of the model is approached. The anomalies

are largely horizontal, suggesting a generally layered structure, in agreement with previous studies [Klotzsche et al., 2010;

Lochbühler et al., 2013; Jimenez et al., 2016; Somogyvari et al., 2017; Kong et al., 2018]. The magnitude of the permeability15

variations is larger in the trajectory mechanics-based inversion and a high permeability layer is evident in Figure 13. These

general features are observable in the upper and lower permeability bounds plotted as a function of elevation in Figure 14. Both

models display a decrease in permeability with depth, but the variations in the eikonal-based inversion are somewhat smaller

than those of the extended trajectory approach.

We can compare our results to previous work by Lochbühler et al. [2013], where a joint inversion of crosswell ground-20

penetrating radar traveltimes and hydraulic tomography (travel times and amplitudes) was discussed. In Figure 15 the spatial

variations of the logarithm of hydraulic conductivity corresponding to our inversion grid are plotted to the same color scale.

These results correspond to part of Figure 4h in Lochbühler et al. [2013]. In addition, we extracted the highest and lowest

permeability values as a function of depth in the inversion region and the average permeability at each elevation. All results

show the same general decrease of permeability with depth in the aquifer, as the clay aquitard is approached. The variations in25

permeability in the extended approach are of the same order as the joint inversion result. As in the synthetic case, the magnitude

of the variations in the eikonal equation inversion is smaller.

As a validation effort, we left out data from the fifth source from the bottom in Figure 13 when conducting the inversion

for the permeability multipliers. This allowed us to use the resulting models of K variation shown in Figure 13 to estimate the

travel times of pressure pulses from the source at position five to the corresponding observation points. The resulting observed30

and calculated travel times from this experiment can then be used to validate the model as indicated in Figure 16. There is

considerable scatter in the arrival times but the overall trend is a variation that increases in correspondence with the observed

arrival times. The largest disagreement is between an eikonal-based arrival time estimate and the observed value, but the overall

scatter seems comparable for the eikonal and extended methods. The largest deviations are the large predicted travel times for

the arrivals observed at around 1.35 s. Such long travel times might be due to the significant low permeability values near35
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source position five. The source-receiver distribution is rather sparse, and there may not be sufficient redundency to conduct an

accurate validation experiment.

Lastly, we have used equations (28) and (29) to calculate the diagonal elements of the matrices R and Css, respectively, in

order to assess our trajectory-based solution. The diagonal elements of the matrices are plotted in Figure 17, in the locations

of the grid blocks that they represent. The diagonal coefficients of the resolution matrix are close to 1 if the parameter can5

be determined without interference from other grid block estimates [Vasco et al., 1997]. That is the i-th row of the resolution

matrix are averaging coefficients associated with the i-th parameter. The row approaches a delta-function like distribution and

the diagonal element approaches the value 1 when there is little averaging with other parameters. The diagonal elements of

the resolution matrix in Figure 17, with peak values around 0.6, indicate moderate spatial averaging in these estimates. In

particular, there is greater averaging than in the synthetic test due to the fact that we are only using sources situated in a single10

well in the field case. The spatial averaging is greatest and the resolution poorest for the grid blocks at the edges of the model,

particular at the top of the crosswell region. Similarly, the model errors, also shown in Figure 17, are larger than in the synthetic

test, around 20% of the size of the model estimates. The resolution and covariance estimates indicate that the high permeability

layer, located in the upper portion of the model, is moderately well constrained by the observations. Due to sampling issues the

error estimates are not reliable at the edges of the model and tend to zero where there are few or no trajectories. As indicated15

in the synthetic test, putting sources in both wells would increase the resolution and reduce the uncertainty associated with our

estimates, suggesting how we might improve our imaging in the future.

4 Conclusions

The trajectory mechanics approach described in Vasco [2018] and applied here is very general and can be used to model other

hydrological processes such as tracer transport [Vasco et al., 2018] and multiphase fluid flow. One advantage associated with20

transient pressure is the rapid propagation of a disturbance in comparison with the velocities associated with fluid transport.

Thus, transient crosswell pressure testing can be conducted relatively rapidly in formations with moderate hydraulic conductiv-

ity. This is particularly true when transient pressure travel times, such as the arrival time of the peak of a pressure pulse or the

peak of the time derivative of the pressure [Vasco et al., 2000] are used. For the Widen field experiment the peaks are observed

in the first few seconds of the measured traces in the adjacent borehole. Another advantage of hydraulic travel time tomog-25

raphy is that the relationship between the arrival times and the hydraulic conductivity or diffusivity is quasi-linear [Cheng et

al., 2005]. Thus, the final model resulting from an inversion of travel times is less sensitive to the initial or starting aquifer

model and less likely to become trapped in a local minimum. Finally, travel time tomography provides an element of data

reduction, from an entire transient pressure waveform, to a single arrival time. This can be advantageous when dealing with

many intervals from multiple boreholes, time-lapse pressure changes, or large data sets derived from geophysical observations.30

We have presented two examples of hydraulic tomographic imaging, one using synthetic transient pressure arrival times

and the other using data from an experiment at the Widen field site on the Thur River in northern Switzerland. We do find

that an algorithm based upon the eikonal equation is significantly faster than one utilizing the extended trajectories calculated
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using a reservoir simulator, taking only about 10 seconds compared to 129 minutes. From the synthetic application we find

that an imaging technique based upon the eikonal equation, the current method used for trajectory-based modeling, has diffi-

culty accurately imaging large and abrupt changes in permeability. Such rapid spatial changes in flow properties are a common

occurence in geologic media, with the presence of layering and fractures, with correspondingly large variations in hydraulic

conductivity. For example, in well logs it is quite common to observe thin layers with permeabilities that are orders of mag-5

nitude larger than values in the surrounding formations. Indeed, in our field case at the Widen field site we image an order of

magnitude change in permeability in agreement with previous results at the site. While the eikonal equation is much faster and

can recover large-scale spatial variations, it is likely to produce smoothed images of sharp features and to underestimate rapid

changes in properties. Thus, the approach is useful as a rapid reconnaissance tool, as in real-time imaging, and for regions

where the properties are thought to be smoothly-varying. This usage is supported by that fact that both the eikonal-based and10

the extended trajectory-based methods share the quasi-linearity of travel time inversion approaches [Cheng et al., 2005], and

are less sensitive, in comparison to inversions based upon head magnitudes, to the initial or starting model.

For a full analysis and interpretation of field data however, we recommend the trajectory mechanics approach, as it does

not invoke assumptions about model smoothness and is therefore more robust and accurate, yet it retains the semi-analytic

sensitivities that are characteristic of trajectory-based approaches. The semi-analytic sensitivities are computed after a single15

simulation, using either numerical methods to solve the coupled system for x and p or using a numerical simulator to determine

p directly. Even if one resorts to a numerical simulation, the semi-analytical nature of the sensitivities provide some advantages

over conventional methods. The most efficient conventional method for computing numerical sensitivities is based upon adjoint

methods and requires the formulation and solution of the adjoint equation along with an additional simulation to calculate the

residuals. Thus, two simulations are required in order to estimate the sensitivities for a given test.20

The approach that we have described is useful for imaging permeability variations between boreholes but it does have some

limitations. The use of slug tests limits the allowable distance between wells that may be used for imaging variations in K .

However, as noted in Vasco et al. [2000], one can use a constant rate test and consider the arrival time of the steepest slope,

extending the range of the test to larger offsets between wells. We have chosen to fix the reservoir storage and determine

variations in an effective K . This assumption needs to be explored in future studies and tested under realistic conditions.25

The computation aspects of this approach are significant, requiring full reservoir simulations for the inversion. As noted in

Vasco [2018], there are more efficient methods that involve solving the equations for the trajectory directly, without a reservoir

simulation. This should reduce the computation burden of the approach at the cost of a more complicated implementation.
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Figure 1. Schematic illustration of the approach used to obtain the sensitivities that form the basis for the linearized, iterative, crosswell

imaging algorithm.
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Figure 2. Reference model for the crosswell test example. A cross-section through the permeability model representing the crosswell plane.

The crosswell configuration, for imaging flow properties between two boreholes, consists of pressure sources in the two wells (filled squares

and open circles) transmitting transient pulses to receivers (open circles) in an adjacent well. The source-receiver geometry mimics that of

the field experiment conducted in Widen, Switzerland. The color scale varies linearly between permeability multipliers from 1 to 12.
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Eikonal equation traveltimes

Reservoir simulator traveltimes

Figure 3. The sum of the squares of the residuals for the eikonal-based (Left panel) and extended inversion (Right panel) algorithms as a

function of the number of steps in the iterative updating algorithm. For the eikonal equation-based approach two sets of errors are displayed,

those produced by the eikonal equation and those produced by the reservoir simulator. The reservoir simulator errors result when the current

permeability model is used in conjunction with the TOUGH2 simulation code [Pruess et al., 1999] to calculate head variations and arrival

times at the receiver locations.
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Figure 4. The spatial variation in the permeability multiplier resulting from inversions based upon the eikonal (Left panel) equation and on

the extended trajectory-mechanics (Right panel) algorithms. The color scale varies linearly between permeability multipliers from 1 to 12.

27



Figure 5. (Left panel) Vertical variation of the K multiplier for the reference model, the eikonal-based inversion, and the extended trajectory-

based inversion algorithm (solid lines). The maximum and minimum values of K and each depth interval are also plotted in each panel. Only

the variations within the crosswell plane, from 5.0 to 10.0 m in elevation are shown.
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Initial
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Figure 6. Observed versus calculated arrival times for both the eikonal-based (Left panel) and extended trajectory-based (Right panel)

inversion algorithms. The initial travel times, calculated using the uniform starting model, are plotted as open circles. The travel times

calculated using the final model of each approach are plotted as filled squares.
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Figure 7. (Left panel) Diagonal elements of the resolution matrix indicating the ability to determine the value of a parameter independently

of surrounding parameters. Values near 1.0 indicate a well resolved propertie that does not trade-off with values in adjacent grid blocks.

(Right panel) Model parameter standard errors as a percentage of the average model update.
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Extended

Figure 8. Validation exercise in which arrival times for two tests that were not used in the inversion are calculated based upon the final models

estimated using the eikonal and extended approaches. These calculated times are plotted against traveltimes computed using the reference

model.
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Figure 9. Schematic map of the Widen field site located adjacent to the Thur River in Switzerland, as indicated in the insert. The labeled

wells P2, P3, and P4, were used for several hydraulic tomographic experiments.
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Figure 10. Hydraulic head, from a crosswell slug test, recorded at a set of packed-off intervals in observation well P-2 from the Widen field

site. Each trace has been normalized in order to have a unit peak amplitude.
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Figure 11. Mean squared error for an inversion of the hydraulic head arrival times. The inversion labeled eikonal is based upon the eikonal

equation and uses high frequency asymptotic trajectories. The open circles are the calculated mean squared error calculated using travel times

produced by the numerical simulator TOUGH2. The filled squares denote the mean squared error as a function of the number of iterations of

an inversion scheme that utilizes the extended trajectories that follow from equation (9).
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Final

Figure 12. Initial (open circles) and final (filled squares) misfits for both the eikonal-based and trajectory mechanics-based inversions.

(Left panel) Calculated arrivals, based upon the numerical simulator TOUGH2, run with the models from the eikonal-based inversion. The

calculated arrivals are plotted against the observed arrivals, for a perfect match the points would lie along the diagonal line. (Right panel)

Calculated travel times plotted against the observed arrival times for the inversion that uses the extended trajectories that result from solving

equation (8).

35



Figure 13. (Left panel) Permeability multiplier estimates produced by the iterative updating algorithm based upon high frequency asymptotic

trajectories. (Right panel) Estimates of permeability multipliers resulting from an iterative inversion method that is based on the extended

trajectories calculated using equation (8).
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Figure 14. Upper (crosses) and lower (open circles) permeability values as a function of elevation within the model. The laterally averaged

permeabilities are also plotted as filled squares in each panel.
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Figure 15. (Left panel) The portion of the inversion results of Lochbühler et al. [2013] that corresponds to our inversion domain. Their

joint inversion includes ground-penetrating radar travel times as well as travel times and amplitudes from crosswell slug tests. (Right panel)

The highest and lowest permeabilities at each depth in the inversion domain, plotted along with the average permeability as a function of

elevation.
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Figure 16. Validation test in which arrival times from source 5, which was not used in the inversion, are calculated based upon the final

models estimated using the eikonal and extended approaches. These calculated times are plotted against the observed traveltimes.
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Figure 17. (Left panel) Diagonal elements of the model parameter resolution matrix associated with the Widen field experiment. Diagonal

elements with values near 1.0 are well resolved, that their estimates do not trade-off with the values of other parameters. Values near zero are

not well determined. (Right panel) Square roots of the diagonal elements of the covariance matrix plotted in the location of the corresponding

grid block.
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