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Dear Editor, 

 

We appreciate the reviewers’ comments that have provided a thorough review and 5 

constructive suggestions. In response to the reviewers’ comments, we have implemented 

numerous changes to strengthen the manuscript. The major changes include: 

1. An updated title that does not include a time-dependent stamp 

2. Inclusion of an equation describing the relationship between discharge and recharge 

volume  10 

3. Updated figures to reflect the modified recession decay constant from 0.7 to 1.2 to 

better align with physical realism  

4. Additional details added to describe the synthetic hydrographs in the methods and 

the discussion, including a plot added to the supplemental materials  

5. Reorganization of the methods section to increase clarity between methods applied 15 

to observed hydrographs and synthetic hydrographs 

6. Discussion on the physical representation generated variability in hydrograph 

responses  

Please find below our responses to the comments from the two reviewers, as well as the 

revised marked-up manuscript. We look forward to your evaluation and feedback on the 20 

revised manuscript. 

 

Sincerely, 

Elizabeth R. Jachens  
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Author Response to Reviewer 1 

 

### Major comments ###  

1. I have some concerns about the title of the paper. It is not really specific and the “42 years” will be only valid for this year 

2019, that is not a good choice, I think. It would be better to include the difference between analyzing dQ/dt-Q-point clouds 5 

and individual recession. By the way, the paper is not about “recession analysis” (as there are many other recession analysis 

techniques out there, e.g. master recession curve), so the focus on the dQ/dt-Q-cloud could be emphasized in the title.  

Authors Reply: Thank you for this important point. We agree that the current title is limited by including the time stamp. We 

have greatly modified the title to reflect the motivation and conclusions presented in this paper. The updated title is: Recession 

Analysis Revisited: impacts of climate on parameter estimation 10 

2. Is the difference between slope b from the point cloud and slope b from median individual b a function of the recession 

extraction criteria (e.g. longer than 5 days, cut the first day, etc., P02L26). By the way, have the recession a minimum of 5 

days with or without the removed first day? Brutsaert and Nieber 1977 also used rainfall data to extract recession segments. . 

. The recession extraction should be clearly stated in the methods (not only in the Introduction).  

Authors Reply: In the revised paper we have included a new methods section (section 2.2) about parameter extraction methods 15 

where we have given more details. First, we have included citations of previous studies that have looked at the sensitivity of 

recession extraction on parameter estimation [B. Chen & Krajewski, 2016; D. N. Dralle et al., 2017]. As this is not the primary 

focus of this paper, we have used criteria for event length and definition of the start and end of the recession similar to be 

consistent with previous studies. However, the sensitivity of extraction criteria on parameter estimation is valid consideration 

and we have added to the paper. We have expressed a and b given the Equation of the falling limb of the hydrograph: “a=-20 

w/(τQo
1/w)” and “b = (1+w)/w”. Because b is only dependent on w, the individual recession b will be sensitive to the recession 

extraction for w. For a, recession extraction will affect Qo and w. However, the offset will still occur which creates the 

difference between the individual recessions and the point cloud unless w goes to infinity. For Case 1, we changed the overland 

flow variable between 0, 1, and 2 days. This changed where the recession start was defined and thus Q0. Given a=-w/(τQo
1/w), 

using overland flow of 0 days the range of a values for individual recessions is from 0.5 to 4.8 with a mean of 0.48. When 25 

overland flow is defined as 1 day (i.e. the first day of the recession is excluded in parameter estimation) the range of a values 

for individual recessions are from 0.5 to 5.4 with a mean of 0.50, When overland flow is defined as 2 days (i.e. the first two 

days of the recession is excluded in parameter estimation) the range of a values for individual recessions are from 0.5 to 5.6 

with a mean of 0.50, For all three overland flow values evaluated, the point cloud a was 0.17. This discussion has been added 

to the synthetic hydrograph results. Regarding the sensitivity of parameter estimation sensitivity, we evaluated how choosing 30 

the overland flow duration changed the value of a and found that the start of the recession to be relatively insensitive to a. 

Additionally, we have reworded the information about the minimum recession length to clearly define the minimum recession 

length before the overland flow cutoff is applied. Regarding the comment about rainfall, we have included a sentence 
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explaining that we did not use rainfall data for extraction criteria because a complete rainfall dataset is not always available 

for a watershed (while it is available for the watershed presented as an example in this study) and no rainfall record was created 

for the synthetic hydrograph. This allowed our methods for recession extraction to be consistent between the real-watershed 

example and the synthetic hydrographs. 

3. median parameters from individual recession analysis (P03L04): I missed a discussion about seasonal catchment or 5 

streamflow behavior in the paper. There are many studies with recession analysis considering seasonal components in a, b, 

and dQ/dt Q-plots. The authors should at least refer to those studies or give a comment on the issue.  

Authors Reply: We agree that a discussion on the literature looking at seasonality of a and b is important to this discussion. In 

the introduction, we have added a discussion of point cloud analysis that is sub-setting to months or season [Szilagyi et al., 

2007; Thomas et al., 2015] and seasonal trends of a and b for individual recessions [Bart & Hope, 2014; D. Dralle et al., 2015; 10 

Karlsen et al., 2018; McMillan et al., 2011; Shaw & Riha, 2012; Tashie et al., 2019].  

4. Why synthetic hydrographs (P03L08)? Advantages of this approach should be (shortly) mentioned (earlier than in Sect. 

2.2).  

Authors Reply: Synthetic hydrographs were chosen for this study because each individual recession can be definitively 

identified as the characteristics are known which is unrealistic when considering real watersheds. Furthermore, the synthetic 15 

hydrographs can be specified to directly compare different hydrological controls without the confounding variables 

traditionally associated with real watersheds.  For these purposes, the specifications of the synthetic hydrographs were chosen 

to explore the effects of the magnitudes and frequency of recharge events on the recession analysis parameters from collective 

vs. individual recessions. The justification for using synthetic hydrographs has been added to the methods section 2.1 under 

the synthetic hydrograph methods.  20 

5. Section 3 is Results, not Methods  

Authors Reply: Corrected. Thank you. 

6. "The pre-defined theoretical b values for the LE appear to provide poor fits for the point cloud” (P05L17) very important 

results for all further studies that using LE and pre-defined b’s. You should emphasize this (even more)!  

Authors Reply: We agree with this comment. While the poor fit of the LE is an important result, it is not new to our study. To 25 

give appropriate credit to previous studies that suggested the problems with the lower envelope method and to corroborate our 

claim, the sentence references have been expanded “… consistent with previous studies that have shown errors associated with 

the LE method (Rupp and Selker, 2006a)”. We have added a sentence in the conclusions that discusses the 4 fitting methods 

considered and the apparent poor fit of the LE: “The four fitting methods considered were the lower envelope method, central 

tendency, binning, and individual recessions. Because of the poor apparent fit and problems pointed out from previous studies, 30 

the lower envelope and central tendency were not considered in favor of improved methods for binning of collective recessions 

and the median individual recession.” 

Additionally, we have added a discussion about the limitations of using a pre-defined value for b to find the LE fit: “A limitation 

of using a pre-defined value for b for the lower envelope assumes that the watershed responds like a single homogenous 
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Boussinesq hillslope, which isn’t known priori for the LE of a watershed composed of multiple heterogeneous hillslopes of 

unknown b.” 

7. more explanation on the hydrological functioning of a and b (or give references), like e.g. P07L11, this would make it easier 

for a broader readership.  

Authors Reply: We appreciate this comment and agree that a practical interpretation of recession parameters was missing and 5 

should be included. To the introduction, we have included a description of the interpretation of b where a larger value of b 

indicates a decreasing streamflow decline and a smaller value of b indicated a faster rate of streamflow decline with decreasing 

streamflow. For a given value of b, a larger value of a implies a more conductive/permeable basin. 

For a large b value, at low discharges, the streamflow decline rate is less rapid than at larger discharges. As an extreme an 

infinitely large b value will appear at a horizontal line on the recession analysis plot, indicating that the streamflow decline 10 

rate is zero and the stable streamflow magnitude would be the value where the individual recession crosses the x-axis. In 

contrast a b value of 0 would appear as a horizontal line on the recession analysis plot, indicating a constant rate of streamflow 

decline for all streamflows defined by the value at which the individual recession crosses the y-axis.  

In the results of the updated manuscript, we have included the explanation of different parameter estimations result in different 

water management decisions. For the case studies when comparing parameter estimation for the point cloud vs individual 15 

recessions, if the point cloud b is smaller than the median individual b, using the point cloud would indicate a faster discharge 

decline rate than using the individual recessions and thus a more sensitive watershed to climate change.  

8. explain in more detail how the synthetic hydrographs are derived (or give references). Why is this way better than using 

multiple (real world) catchments?  

Authors Reply: Synthetic hydrographs are constructed using successive falling limb of the hydrograph following a power law. 20 

The three different cases are different in three ways: 1) the distribution of event magnitudes, 2) the distribution of event 

distribution, 3) the effect of antecedent conditions. Cases 1&3 have log-normally distributed inter-arrival times (μ = 2.5, σ = 

1) and event magnitudes (μ = 1, σ = 1), compared to Case 2 with uniform event inter-arrival time (μ = 450/τ), and magnitudes 

(μ = 1). The time series is based on concatenating successive individual events based on the guidelines for each case (see Table 

1). We have also included a description of the superposition of events for Case 2 and 3 following the nomenclature from Figure 25 

2. We have included an expanded version of this explanation of how the synthetic hydrographs were created in methods section 

2.1. We have also included a more detailed description on Hydroshare where the time series for the synthetic curves is 

available. 

We chose to use synthetic hydrographs instead of multiple real-world catchments because we were able to isolate specific 

climatic controls (event magnitudes, frequency, and superposition of events) between cases. As a result, we were able to 30 

specifically examine event magnitude, frequency, and the type of superposition of events in order to assess their influences on 

individual recessions. We can also determine the influence of parameter estimation for individual recessions and the point 

cloud. With real watersheds, there are many confounding variables that prevent the deconvolution of the climatic controls. We 



5 

 

have also commented on the advantage of using synthetic hydrographs compared to real watersheds in the response to Major 

Comment 4.  

9. How representative is the median b from individual recessions across all Cases 1-3 for the individual recession hydrographs? 

It might be beneficial to show the distributions of b around the median (e.g. violin plot?)  

Authors Reply: Thank you for the comment. We agree that the distributions of b around the median provide valuable 5 

information about the variability of watershed responses. We have chosen to represent the distribution of b in the colorbar for 

each RA plot using percentiles instead of using another graphic such as a violin plot. To increase clarify, we have added more 

definitive language describing the variability of b in reference to the colorbar of the Figures. For example, for case 2 “the 

median b represented is 3.25, with the range of individual b between 2.56 and 3.41 (quantiles represented in the colorbar of 

Figure 5)” 10 

10. I asked myself what is the most sensitive part of the recession analysis presented here? The recession extraction method? 

The fitting procedure? Are there specific references discussing the different sensitivities? That means the value of the paper 

could further be improved if the authors give some guidance on how specifically the individual recession segments should be 

extracted then.  

Authors Reply: The reviewer brings up a good point. We acknowledge other authors have looked at the sensitivities of multiple 15 

parts of recession analysis including recession extraction [B. Chen & Krajewski, 2016; D. N. Dralle et al., 2017], derivative 

calculation [Roques et al., 2017; Rupp & Selker, 2006], and fitting method [X. Chen et al., 2018].  To our knowledge, a 

comparison between these components to find the relative sensitivity is not published. However, we believe this would be a 

worthwhile venture to determine which part of recession analysis is the most sensitive for parameter estimation.  

We have looked these sensitivities separately. For synthetic recessions, recession parameters are not sensitive to recession 20 

extraction methods because w is a constant (see authors reply to major comment 2). Following previous studies, we used 

common practices for recession extraction criteria. We explored the derivative calculation method’s effects on parameter 

estimation comparing the constant time step method [Brutsaert & Nieber, 1977] and the exponential time step method. [Roques 

et al., 2017]. While we do see artifacts when using the constant time step, parameter estimation between methods are similar 

(see Figure and Table below). In contrast, parameter estimation varies greatly between fitting methods. Because parameter 25 

estimation appears to be most sensitive to the fitting method, we have used the citation for previous studies looking at recession 

extraction and the derivative method and focused our analysis on the sensitivity of the fitting method for parameter estimation.   
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  CTS - a CTS - b ETS - a ETS- b 

  early late early late early late early late 

LE -12.7 -6.1 2.7 0.8 -11.2 -5.8 2.4 0.9 

CT -7.0 -4.1 1.9 1.0 -6.9 -4.2 1.9 1.0 

BA -6.1 -3.7 1.8 1.1 -6.1 -3.9 1.8 1.2 

MI -12.7 -20.3 3.2 7.6 -10 -17.5 2.7 6.4 

 

### Minor comments ###  

P01L21 Here the Brutsaert and Nieber and the Kirchner paper are missing.  

Authors Reply: Corrected as suggested 5 

P01L24 Add Brutsaert and Nieber, 1977 as a first fundamental paper using dQ/dt-Q.  

Authors Reply: Corrected as suggested 

P02L03-07 Better change the two sentences: first collective recession analysis remains common, then the recent criticism.   

Authors Reply: Corrected as suggested 

P02L10 Lower envelope has not been introduced yet.  10 

Authors Reply: Wording clarified- LE introduced P02L08 and wording changed on P02L10 

P02L20/21 Explain shorty what a greater b means in terms of recession behavior.  

Authors Reply: Done- P02L21-23  

P03L11 Last sentence of section 1 is rather a result or a conclusion, but can be rewritten to a hypothesis or research question.  

Authors Reply: We have rewritten this sentence as a research objective.  15 

P03L14 I would change the order; first the definition of hydrographs then the parameter estimation methods (which needs the 

hydrographs to be applied).  



7 

 

Authors Reply: Corrected as suggested 

P03L24 Would be helpful to give key references here for the four fitting methods and to state if the original procedures from 

the references are used or modified.  

Authors Reply: Corrected as suggested. For consistency, references have been added in the methods that were first mentioned 

in the introduction. 5 

P03L27 Why 5% (and not 10%), is 5% common?  

Authors Reply: We have added a citation to this sentence with other authors who have used 5%. While Mendoza et. al. (2003) 

uses 10% and Vannier et. al. (2014) uses 2%, using a quantile threshold of 5% appears to be the most prevalent in the literature.  

P06L18 Last paragraph of section 3.2 belongs rather to the methods than to the results section. At least, a reference in the 

methods section referring to this result should be given.  10 

Authors Reply: Corrected as suggested 

P08L21: "sum of the squares”, I don’t get this.  

Authors Reply: Unclear wording removed 

### Technical comments ###  

P01L13 “based on dQ/dt-Q-recession analysis”  15 

Authors Reply: Corrected as suggested 

P02L01 why “primary”?   

Authors Reply: We have removed this wording.  

P02L14: two times Kirchner reference, remove one.  

Authors Reply: Corrected as suggested 20 

P02L24 “significantly”? sound like it was statistically proven?  

Authors Reply: Thank you for this comment. This qualifier has been removed to avoid a misleading statement.  

P03L05 “Being able to. . . vulnerability studies” - the sentence is not well connected here, move up?  

Authors Reply: We have reworded this sentence and relocated to increase flow.  

P03L22 "theatrical"?  25 

Authors Reply: Corrected as suggested. 

P08L22 to understand the underlying hydrology  

Authors Reply: Corrected as suggested. 

P08L23 Sentence is a repetition of the last sentence of the paragraph before sentence removed 

Authors Reply: We have removed this sentence to reduce repetition.  30 
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Author Response to Reviewer 2 

 

——General Comments———————— 

While I agree with the authors that there is “work yet to be done” in the field of streamflow recession analysis, and really 

appreciate some of the authors’ discussion points on the practical implications of using point cloud analysis vs. individual 5 

event analysis (Page 8), there are a number of parts in this manuscript that I find difficult to understand, or that I believe impose 

“baked in” sources of variability that may not reflect the forms of variability imposed by actual physical processes. 

1) In some respects, it seems that Case 1 really encapsulates the main point of this paper (which numerous authors have already 

argued; though I think the point is worthy of reiteration); that individual recession events typically have steeper slopes than 

the best fit slope of a line through a point cloud generated by a collection of individual events. Case 1 demonstrates how this 10 

might happen; if the recession scale parameter (a) scales with the initial flow condition of the recession (Q0), the intercept of 

the recession curve in log-log space will shift up or down with Q0, and so a collection of steep recession curves will “stack” 

in a such a way as to create a point cloud that is less steep than the individual curves of which it is composed (see specific 

comment #5 for additional comment on imposing this form of variability in ‘a’). Cases 2 and 3 are primarily used in the 

Discussion and Conclusion to demonstrate this same point. For this reason, I do not see how these cases are useful. These 15 

cases might be advantageous if the authors were able to systematically explore the effects of the magnitude-frequency 

distribution of recharge events on individual recession curves (for example, convincingly attributing the spread in “b” to the 

magnitude-frequency statistics of recharge). However, I would argue, there is no clear way to perform such a systematic 

exploration given our present understanding of the physical origins of power law recession dynamics. 

Authors Reply: Thank you for raising this important point. We agree that Case 1 illustrates a key point that individual 20 

recessions can have a steeper slope than the best fit line through the point cloud that many authors have already presented. 

However, individual recessions in Case 1 do not have variability in b values. The example given in the introduction of Lookout 

Creek (Figure 1) shows a wide distribution of b values, consistent with other studies showing a range of individual b values. 

Case 2 and 3 are presented with the hypothesis that superposition of flow events changes the value of w which can produce a 

distribution of b values. We agree that a systematic exploration of the physical origins of recession analysis can be valuable 25 

and should be explored in the future. While we have not provided a relationship between the variability of b and recharge 

magnitude and frequency, we believe that the cases presented by controlling for event hydrology are valuable for determining 

the effects on individual events. We suggest that the event magnitudes distribution produces an offset of individual events 

while event spacing changes the event length and antecedent flow contribution while antecedent events change the effective 

decay constant and thus the b value for individual recessions. 30 

We have developed a paragraph in the conclusions to explain why each of the three Cases contribute of the findings of this 

paper and give more equal weight to the contribution of each of the three cases: “For Case 1, the recession analysis parameter 

a is equal to w/(τQo
1/w) and thus the intercept of the individual recession curve will scale with Qo. The result is a collection of 
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individual recession curves that are horizontally offset based on the initial discharge producing a smaller b value for the point 

cloud compared to the individual recessions. Case 1 illustrates that the slope of individual recession events can greater than 

the best fit line through the point cloud, consistent with previous studies (Biswal and Marani, 2010; Mutzner et al., 2013; Shaw 

and Riha, 2012). However, the point cloud in Case 1 is generated by a collection of multiple individual recessions all with the 

same slope and does not have the variability in b values presented in these same studies and shown for Lookout Creek in Figure 5 

1. Case 2 and 3 are presented using superposition of antecedent flow events that consequentially changes the individual 

recession b values, providing a possible explanation for the variability in b values for individual recessions. For Case 2, the 

superposition of events takes into account antecedent conditions which results in a distribution of individual recession b values 

where b values are associated with the baseflow contribution. For Case 3, the horizontal offset of individual recession from 

Case 1 and the effects of antecedent conditions from Case 2 result in the variability of individual recession b values that are 10 

horizontally offset.” 

2) The methods need to (a) more thoroughly explain exactly how to generate the various forms of synthetic recession, and (b) 

how these different forms might reflect the impacts of real, physical processes in a watershed. On the first point: 

(a) 

i. How do the authors translate a recharge magnitude (presumably with units of [L]?) into a flow increment (with units of 15 

[L/T])? In the case of nonlinear recessions, the flow increment is a nonlinear, flow dependent function of the recharge depth. 

Authors Reply: Thank you for this interesting comment. We now have included the relationship between recharge and flow in 

the synthetic hydrograph methods section. A pulse recharge can be calculated by integrating the equation for the falling limb 

of the hydrograph such that the recharge volume is:  𝑉 = 𝐷𝐴 = 𝜏𝑄𝑜/(𝑤 − 1) for w > 1, where D is depth of recharge over 

area A.  Interestingly for w<=1, the recharge is an infinite volume. In the previous version of the manuscript w was 0.7 which 20 

would result in infinite recharge.  As a result, we have modified the value of w in all examples to be 1.2 representing non-

linear reservoir behavior and updated the associated figures.  

ii. What are the parameterizations used for the various distributions from which flow increments and inter-arrival times are 

sampled? 

Authors Reply:  Cases 1&3 have log-normally distributed inter-arrival times (μ = 2.5, σ = 1) and event magnitudes (μ = 1, σ = 25 

1), compared to Case 2 with uniform event inter-arrival time (μ = 450/τ), and magnitudes (μ = 1). The time series is based on 

concatenating successive individual events based on the guidelines for each case (see Table 1). We have developed a paragraph 

in the methods section where we discuss the distributions of how the synthetic curves were generated. 

iii. How am I to interpret the .mat file uploaded to Hydroshare? I loaded this file, and I see there are columns “mag”, 

“start_locs”, and “value”. How do I use this information to reconstruct the recession curves the authors analyzed? It’s 30 

undocumented, and not described in the text. 

Authors Reply: Thank you for bringing this to our attention. We now have provided a description to the Hydroshare file that 

includes the file structure information and a subset of Matlab code that identified how the columns were constructed including 
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the parameters used for the distributions. To increase accessibility, we have also included the information in a CSV in addition 

to the Matlab files on the Hydroshare site. 

iv. For Cases 2 and 3, can the authors more clearly define their superposition procedure? Going off of Figure 2, how is the 

“underlying second event” (QC) constructed? Is the recharge increment added to the value of flow at the end of the previous 

recession? Or is this how QA is generated? One possibility for QC (once the authors clarify how it is constructed) is that we 5 

have effectively created a second “reservoir” with an initial storage equal to the magnitude of the recharge event. Then, QD 

would equal the sum of the discharge from the continued first event and the discharge from the second reservoir. 

Authors Reply: Thank you for this comment, we agree that the superposition procedure needed to be better defined. We have 

now better described the superposition procedure used to create Case 2 & 3 following the nomenclature in Figure 2. “For Cases 

2 and 3, individual recessions were linearly superimposed on antecedent flows. The baseflow from the first event, QB, is an 10 

extrapolation from the first event using a constant power law decay constant. The underlying second event, QC, is defined by 

the event magnitude given by the random number generator and a defined power law decay constant. The peak flow for QA is 

based on adding QB(t0) to QC(t0) while the decay constant is based on the underlying second even, QC. Case 1 is based on the 

hydrograph represented in QA. The resulting flow from superposition, QD, defines the peak flow the same as QA but the decay 

constant changes based on the linear superposition of QB and QC. For Cases 2 and 3, QD represents the hydrograph structure.” 15 

(b) 

Referring to comment (iv.) above, it’s not clear how this appearance of a second reservoir represents any physical process, or 

why it’s a meaningful way to generate variability. The idea that the previous event recession somehow continues unabated and 

superposed with the current event effectively splits the watershed into two parallel components that, owing simply to the 

occurrence of a recharge event, now operate independently of one another. The procedure amounts to taking the sum of two 20 

nonlinear reservoirs with identical values of ‘b’ (page 5, Line 23), and varying value of ‘a’ imposed by Page 4, Line 17. I don’t 

disagree that this will generate a new recession curve with entirely different power law parameters which depend on previous 

flow conditions, but the authors do not provide a rationale for imposing this form of memory. A more defensible approach (in 

my opinion) taken by previous authors is to explicitly acknowledge physical mechanisms that might give rise to parallel 

reservoirs throughout a landscape (for example, conceptualizing a watershed as a collection of contributing hillslopes with 25 

varying hydraulic response times). In such cases, parallel reservoirs may generate increased nonlinearity, as demonstrated by 

Harman et al (2009) and Gao et al (2017). While it is true that these previous authors use superposition of linear reservoirs, 

the actual dynamics that give rise to increased nonlinearity are similar to those operating in the present work. On a related 

note, I think the authors should be citing these previous manuscripts, which I believe are very closely related to the present 

work. 30 

Authors Reply: The reviewer brings up an important question about the physical representation of the independent reservoirs 

which gives us the opportunity to clarify the motivation for how we combined individual events to create the hydrograph. 

Appealing to the simplest model presented by the instantaneous unit hydrograph method by Dooge (1973), we utilize the 

simplest model of linear superposition. We acknowledge that there are other ways to create watershed memory that would also 
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generate variability, and the effects of parameter estimation from different reservoir models for combing events into a 

hydrograph would be worthwhile research to peruse. However, for the purposes of this paper providing a linear superposition 

for the hydrograph shows generated variability between recessions as a simple possible representation. We have included a 

discussion in the synthetic hydrograph methods section that describes the choice for a simple model based on the instantaneous 

unit hydrograph and the kinematic wave model. In the discussion and conclusions section, we have included text that introduces 5 

the concerns about the linear superposition the reviewer raised and expressed the need for future work on parameter estimation 

sensitivity on the different reservoir models for synthetic hydrographs.  

We agree that citations for reservoir theory relating to recession analysis should be included as it is intimately related to how 

the synthetic hydrograph is created and interpreted. We have included the citations on reservoir theory to values for w and b 

with regards to the relationship between recharge and flow (see author reply for general comment 2ai for the relationship 10 

between recharge and flow). For w>1 based on the recharge equation, a value for b>2 can be achieved by combining discharge 

from multiple linear reservoirs in parallel, (e.g., Clark et al., 2009; Gao et al., 2017; Harman et al., 2009; Rupp et al., 2009), 

multiple linear reservoirs in series (e.g., Rupp et al., 2009; Wang, 2011), or multiple nonlinear reservoirs (e.g., McMillan et 

al., 2011). We have taken this comment into consideration and included reference to b values by using reservoir theory.  

3) I do not understand the purpose of the “early” vs. “late” fitting method in the context of this work. The early/late time 15 

methodology derives from the analysis of Brutsaert and Nieber [1977], who show that a shift from a recession slope of 3 to 

1.5 is a direct consequence of the dynamics of a Boussinesq-style hillslope groundwater table. The physical implications of 

the authors choices in construction of synthetic hydrographs (e.g. existence of parallel reservoirs in the previous comment) are 

not necessarily consistent with the dynamics of a single hillslope groundwater table, so why use a form of analysis that is 

specific to the Boussinesq framework? 20 

Authors Reply: Thank you for this comment. The introduction of early vs time-time was intended to be used for comparison 

of parameter fitting methods and not to be applied towards the synthetic hydrographs. For clarification, we have elaborated on 

the choice of using early and late-time for the parameter estimation fitting methods section and not for the synthetic 

hydrographs. In the parameter estimation fitting methods section, a description has been added to clarify that because a change 

of hydraulic regime was suggestive in Figure 1 between high flow ranges and low flow ranges, recession analysis parameters 25 

were estimated for two flow ranges, early-time and late-time. The differentiation of recession analysis parameters into early 

and late-time was chosen to capture the change in hydraulic regime in Figure 1 and to provide b values for the lower envelope 

fitting methods. In the text when the LE fit is discussed, we have noted that a limitation of using a pre-defined value for b 

assumes that the watershed responds like a homogenous Boussinesq hillslope with behavior similar to a single hillslope, which 

isn’t known priori for the LE of a watershed composed of multiple heterogeneous hillslopes of unknown b. For the synthetic 30 

hydrographs, they do not exhibit a change in hydraulic regime and thus a single fit is used for each fitting method because w 

is a constant value.  

——–Specific comments———————— 
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1) Page 2, Lines 16 – 18: Do the authors intend to say that sources of variability in a,b between events may derive from these 

sources? Also, it is not clear what the authors mean by “flow superposition from previous events”. 

Authors Reply: We have changed the wording to avoid confusion. 

2) Page 2, Line 29: This statement is vague; of course the hydrology of a recession event affects the recession event. 

Authors Reply: We refocused this statement and made it more aligned with our hypothesis. 5 

3) Page 3, Line 9: Use of superposition without defining the term. 

Authors Reply: We have replaced the term in this instance to avoid confusing before the term is defined.  

4) Page 3, Line 22: “theoretical”  

Corrected as suggested. 

5) Page 4, Line 15 – 17: While I agree that this is certainly one way to introduce variability in the recession scale parameter, 10 

it is nevertheless arbitrary to impose this particular relationship pinned to a 45 day timescale. Subsequent interpretation should 

be qualfied with “where a = -w/(t0*Q0ˆ(1/w)) holds. . .”. While it is a convenient expression for imposing variability in ‘a’, I 

am unaware of any process-oriented result that shows the recession scale parameter should be determined in this way. Related 

to this, on Page 6, Lines 3 – 12, this discussion is difficult to follow. I think the authors are making the point that within their 

imposed timescale framework, the recession scale parameter ‘a’ must collapse to a single value that no longer depends on the 15 

flow initial condition in the limit as b=1. I agree that, mathematically, this is what happens, but the authors don’t provide a 

compelling case that this is physically what should happen with real recessions; so the conclusion, “yet this result suggests that 

a condition where b=1. . .” should be qualified with the requirement that this would be true in circumstances where the authors’ 

imposed form of variability for ‘a’ holds. 

Authors Reply: Corrected as suggested. 20 

6) I assume the authors meant to put “3 Results” not “3 Methods” on page 5.  

Authors Reply: Corrected as suggested. 

7) Page 7 Line 23: “We hypothesize. . .” is an almost tautological statement. 

Authors Reply: We have elaborated on this sentence to include our hypothesis about the variability of individual recession 

analysis parameters. 25 

——-Figures—————————- 

- Figure 2: Why is there a "t0" at the top of the plot? Isn’t t0 the 45 day timescale imposed to generate the recession scale 

parameter? 

Authors Reply: Thank you for this comment. We have corrected this unclear notation. Now he characteristic timescale has 

been changed to the symbol τ to avoid confusion. The t0 in Figure 2 signifies the start of the recession, and the equation 30 

evaluates the discharge as a time since the recession start.  
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Abstract. Recession analysis is a classical method employed in hydrology to assess watersheds’ hydrological properties by 10 

means of the receding limb of a hydrograph, frequently expressed as the rate of change in discharge (-dQ/dt) against discharge 

(Q). This relationship is often assumed to take the form of a power law -dQ/dt=aQb where a and b are recession parameters. 

Recent studies have highlighted major differences in the estimation of the recession parameters depending on the method, 

casting doubt on our ability to properly evaluate and compare hydrological properties across watersheds based on -dQ/dt vs. 

Q recession analysis. This study shows that estimation based on collective recessions as an average watershed response is 15 

strongly affected by the distributions of event inter-arrival time, magnitudes, and antecedent conditions, implying that the 

resulting recession parameters do not represent watershed properties as much as they represent the climate. The clear main 

conclusion outcome from this work highlights is that proper evaluation of watershed properties is only ensured by considering 

independently using recession analysis requires considering individual recession events. While average properties can be 

assessed by considering the average (or median) values of a and b, their variabilities provide critical insight into the 20 

senstivibility of a watershed to the initial conditions involved prior to each recharge event. 

1 Introduction 

Accurate representationsestimations of watershed-scale hydrological processes involved in the critical zone is are urgent in a 

global and anthropogenic change perspective. Streamflow recession analysis has been routinely used for about half a century 

to assess a watershed properties (e.g., Brutsaert and Nieber, 1977; Kirchner, 2009; Mcmillan et al., 2014) and more recently 25 

their vulnerability to climatic and anthropogenic factors (Berghuijs et al., 2016; Brooks et al., 2015; Buttle, 2018; Fan et al., 

2019). Recession analysis is commonly presented done by plotting the time rate of change in discharge -dQ/dt as vs.a function 
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of discharge Q within a bilogarithmic axesplot.  Theory for an idealized single aquifer predicts a power law relationship with 

parameters a and b (Brutsaert and Nieber, 1977; Rupp and Selker, 2005). 

−𝑑𝑄/𝑑𝑡 = 𝑎𝑄𝑏 ,     (1) 

that can be expressed by the slope b and intercept log(a) in log-transformed space: i.e. log(-dQ/dt) = b.log(Q) + log(a) 

(Brutsaert and Nieber, 1977; Rupp and Selker, 2005)(Brutsaert and Nieber, 1977).  5 

However, it has been long been recognized for more than 15 years that the accuracy in the estimation of those parameters is 

highly sensitive to the methods used (Chen et al., 2018; Dralle et al., 2017; Roques et al., 2017; Rupp and Selker, 2006a; 

Santos et al., 2019; Stoelzle et al., 2013).   

The two primary categories of parameter estimation methods are based on: 1) the collection aggregation of all observations in 

-dQ/dt vs. Q  points, space, hereafter referred to as the “point cloud”, to describee as the average watershed behavior over time; 10 

and 2) the identification ofusing  individual recession events ins -dQ/dt vs. Q space to look at the variability of a watershed’s 

response (Roques et al., 2017). There is a long history of recession analysis parameter estimation using the point cloud 

beginning with Brutsaert and Nieber (1977) and it remains common (e.g., Buttle, 2018; Liu et al., 2016; Meriö et al., 2019; 

Ploum et al., 2019; Sánchez-Murillo et al., 2015; Stewart, 2015; Vannier et al., 2014; Yeh and Huang, 2019). In recent literature 

there has been a shift toward usingaway from using collective recessions to evaluate recession parameters in favor of using 15 

individual recessions to estimate recession parameters (Basso et al., 2015; Karlsen et al., 2018; Roques et al., 2017) and Santos 

et al. (2019) go as far as to question the validity of point cloud estimation methods.. These latter studies have not discredited 

the use of the point cloud, but rather suggest the individual recessions as a more accurate  an alternative. However, the use of 

collective recessions remains common (Brutsaert, 2008; Ploum et al., 2019; Sánchez-Murillo et al., 2015; Stewart, 2015; 

Stoelzle et al., 2013). 20 

When Brutseart and Nieber (1977) recession analysis was first proposed their recession analysis method in 1977, aquifer 

recession behavior was identified by fitting athe lower envelope toof the point cloud, thus by assuming small values of -dQ/dt 

for a given Q represent adrought quifer discharge flow and anything larger hass quick flow contributions from faster pathways 

such as overland flow. (Brutsaert & Lopez, 1998; Brutsaert & Nieber, 1977). The Thisis lower-envelope method of estimating 

fitting recession analysis parameters using the lower envelope method was shown to be highly subject to artifacts arising from 25 

instrumentmeasurement noise and recording precision (Rupp and Selker, 2006a; Troch et al., 1993), and improvements to 

fitting a lower envelope methods have been proposed (Stoelzle et al., 2013; Thomas et al., 2015). An alternative fitting method 

wherein b was estimated as the best linear fit to the point cloud was introduced by Vogel and Kroll (1992) as the central 

tendency (Vogel and Kroll, 1992)(e.g. Rupp et al., 2009). The central tendency method was adapted by Kirchner (2009) to 

address the undue weight of highly uncertain extreme points.  Kirchner (2009) instead also suggested fitting a polynomial 30 
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function to averages within bins of the cloud data (Kirchner, 2009). All of these point cloud fitting approaches fundamentally 

treat each computation of dQ/dt and Q as reflecting a single average underlying curve, with the variabilitydeviations from a 

single curveof individual events effectively treated as noise.  In other studies, dData have been subsetted by season or month 

(e.g., Szilagyi et al., 2007; Thomas et al., 2015) to examine seasonal variations in the recession characteristics parameters with 

the subsets still treated to point cloud analyses. 5 

effectively ignoring the variability of individual events. The variability between events may derive from various factors 

includinginclude but not limited to, initial conditions, event recharge magnitude, duration of the recession event, spatial 

distribution of the recharge event within the watershed, and the flow superposition from previous eventsthe flow decay rate. 

In contrast, tThe variability in watershed response to individual recharge events can be depicted by fitting recession parameters 

to looking specifically at individual recession events. Several aAuthors have observed that individual recessions had greater b 10 

than did the point cloud (Biswal and Marani, 2010; Mcmillan et al., 2011; 2014; McMillan et al., 2011; Mutzner et al., 2013; 

Shaw and Riha, 2012); .a larger value of b indicates a time rate of decline  that decreases more quickly with decreasing 

streamflowslower rate of decline in streamflow decline b value describes the rate of discharge decline, with a greater value 

indicating more stable streamflow while a smaller value indicates streamflow with a greater streamflow decline rate. Consistent 

with previous literaturethese studies, we have also observed individual recessions that have a larger b than the point cloud fit 15 

across watersheds in the Oregon Cascades. To serveA as an example,  we present in Fig. 1a recessions analysis plot in Figure 

1 for the Lookout Creek, Oregon, USA, using  daily discharge data from 1949 to 2016 (station USGS# 14161500) (Johnson 

and Rothacher, 2019; obtaineed from USGS, 2019). In the 66 years of data presented, a total of 1309 recession events are 

identified with, an average of 19 events per year. It is clearly evidentstriking to see that values of b for individual recession 

events tend to be significantly larger than b for the point cloud particularly for those at lower discharges. In this example, , 20 

individual event selection criteria include recessions lasting longer than 5 days, starting 1 day after the peak to exclude the 

influence of overland flow, and ending at the next following precipitation event, following other studies. The minimum event 

duration of 5 days is consistent with other studies that use daily averaged data (Biswal and Marani, 2010; Shaw and Riha, 

2012).  The b parameter estimated using point cloud analysis (binning average method) is smaller ( b = 1.5) compared to 

median of b from the individual recessions (individual b = 2.8, with 50% of individual recessions taking values from 2.0 to 25 

4.7;  (standard deviation = 4.2) (See colorbar of Fig.ure 1). The statisticalfrequency distribution of the b parameter from thethe 

variability of individual recessions seems to is skewed right and roughly lognormal which  suggests that b from the point cloud 

does not represent an average or ‘master’ recession behavior. hydrology of the individual events influence the individual 

recession curves.  

 For a given discharge range, there appear to be multiple individual recessions that are horizontally offset but appear to conserve 30 

the parameter b, whereas a is not conserved. The offset of individual recession events suggests that antecedent conditions may 

influence recession analysis coefficients and thus the point cloud may only represent the variability of individual recessions 
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and not represent an average behavior (e.g. Rupp et al., 2009). If the point cloud is a result of individual recessions being offset 

by conditions, the point cloud should be considered an artifact instead of the average behavior representations. If true, recession 

parameters should be evaluated using the median parameters from individual recession analysis along with their variability to 

describe watershed. Being able to accurately describe watershed hydrologic properties is crucial for climate vulnerability 

studies (Berghuijs et al., 2016; Yeh and Huang, 2019). 5 

[Insert Fig. 1] 

For a given discharge range in Fig.ure 1, there appear to be multiple individual recessions with similar values of b that are 

horizontally offset , implying a common b but a variable abut appear to conserve the parameter b, whereas a is not conserved. 

The offset of individual recession events suggests that antecedent conditions may be influencing the location of the recession 

curves (e.g., Rupp et al., 2009), consistent e recession withgiven various theoretical definitions of a that include the aquifer 10 

initial saturated thickness at the onset of the recession as a parameter (Rupp and Selker, 2006b)analysis coefficients and thus 

the point cloud may only represent the variability of individual recessions and not represent an average behavior. Many authors 

Authors have associated the patternstrends of shiftedfor individual recessions with seasonality (Bart and Hope, 2014; Dralle 

et al., 2015; Karlsen et al., 2018; McMillan et al., 2011; Shaw and Riha, 2012; Tashie et al., 2019). Generally, authors describe 

a generally sinusoidal relationship with larger a values associated with summer months (Dralle et al., 2015; Shaw and Riha, 15 

2012) and a weaker seasonal relationship for values of b (Karlsen et al., 2018; Tashie et al., 2019). Seasonality associated with 

meteorological conditions may well be used as a predictor of a or b, but seasonality alone fails to address the underlying 

climatic conditions that control streamflow recession. Instead of describing the variability between events based on seasonality 

as a proxy, parameter estimation should focus on antecedent and meteorological conditions that control streamflow recession 

in order to form a more comprehensive physically-based understanding of recession parameters (e.g., Bart and Hope, 2014; 20 

Karlsen et al., 2018). Describing recession analysis parameters and variability should be a priority as accurate watershed 

hydrologic properties are crucial for climate vulnerability studies (Berghuijs et al., 2016; Yeh and Huang, 2019). Event The 

variability between events may derive arise from various -factors including initial conditions, event recharge magnitude, 

duration of the recession event, spatial distribution of the recharge event within the watershed, and the flow decay rate. 

This paper explores the source of the offset (ln(a)) and slope (b) on individual recessions. Using a time-series of synthetic 25 

hydrographs with superimposed recessions of with a known parametersshape, we compare different methods for estimating 

the recession analysis parameters and the sensitivity to the method on the frequency and magnitude of events that make up the 

hydrograph. By using a synthetic hydrograph, each event has a known quantity for each recession extraction parameter (i.e. 

event start, end, duration, and magnitude) which minimizes error associated with identifying each parameter from the 

hydrograph so that the variability of b can be explained by the parameters directly instead of an estimated parameter. We are 30 

particularly concerned with how individual recessions collectively create the emergent point cloud and d. We seek to describe 
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how recession parameter estimation of the point cloud is affected by the distribution of individual recessions.. We illustrate 

why the point cloud in recession analysis plots is an artifact and thus any parameter estimated from it is misleading.  

2 Methods 

Thise section presents methods for: 1) the definition of three synthetic hydrographs, 2) description of recession extraction from 

the hydrograph, and 32) the comparisons between four fitting methods for parameter estimation applied to a discharge time 5 

series for Lookout Creek. 

2.12 Synthetic Hydrograph Methods 

This paper makes use of synthetic hydrographs to explore factors that change b for individual recession events as well as the 

inter-arrival times of individual events that create the point cloud. Our synthetic hydrographs are created by defining individual 

recession events and stitching them together to create a long time series.  Synthetic hydrographs were chosen for this study 10 

because each individual recession can be definitively identified as the characteristics are known which is unrealistic when 

considering real watersheds. Furthermore, the synthetic hydrographs can be specified to directly compare different climatic 

controls without the confounding variables traditionally associated with real watersheds. For these purposes, the The 

specifications of the synthetic hydrographs were chosen to explore the effects of the magnitudes and frequency of recharge 

events on the recession analysis parameters from collective vs. individual recessions.  15 

The falling limb of the hydrograph is assumed to follow a power law following Eq. (21)  (Dewandel et al., 2003; Drogue, 

1972; Rupp and Woods, 2008): 

𝑄(𝑡) = 𝑄𝑜 ∙ (
𝑡

𝜏
+ 1)

−𝑤

 ,           (21) 

where Q is the discharge, Qo the initial discharge prior recession at t=0, t is the time in days since the recession started, τ to is 

athe characteristic timescale, and w is the dimensionless power- law decay exponent.  Eq. (21) can be expressed as as Eq. (1)   20 

−
𝑑𝑄

𝑑𝑡
𝑑𝑄/𝑑𝑡 = 𝑎𝑄𝑏 ,     (2) 

with a=w/(τQo
1/w) and b = (1+w)/w.   

Holding  constant and varying the initial condition Qo results in a hysteretic dQ/dt vs. Q relationship, in contrast to a constant 

a value which produces a single non-hysteric relationship. Defining a as a function of initial conditions has both theoretical 

(e.g., Rupp and Selker, 2006b) and empirical (e.g., Bart and Hope, 2014) support. The constancy of  is not well established, 25 

but we assume it is constant for the scenarios examined here. Though the particular timescale is not important to our objectives, 
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we chose it to be 45 days. Consequentially, a constant  results in variable value for a that is inversely proportional to the 

initial discharge. An inverse relationship is consistent with theoretical expectations for non-linear aquifers (b > 1) where Qo 

increases with increasing initial saturated thickness (see Figs. 2 and 3 in Rupp et al., 2006b). Though the particular timescale 

is not important to our objectives, we chose it to be 45 days. Brutsaert (2008) noted a tendency for  to be near 45 days across 

a large number of basin when fitting Eq. (12) to with b =1 to point cloud dataThe characteristic timescale is assumed to be 45 5 

days and constant between individual recessions (Brutsaert, 2008). Consequentially, a is variable and equal to -w/(τtoQo
1/w). 

Where a=w/(τQo
1/w) holds, By maintaining a constant characteristic timescale the result results inis a hysteretic dQ/dt vs. Q 

relationship, in contrast to the constant a value which produces a single non-hysteric relationship.  It remains to be seen whether 

sucha similarly a narrow distribution of  occurs for when b not equal tois not set equal to 1.Consequentially, a is variable and 

equal to -w/(toQo
1/w). 10 

A pulse recharge amount corresponding to a given Qo can be calculated by integrating Eq. (21) from t = 0 to t = ∞.  For w > 1 

(b < 2), the recharge volume is  

𝑉 = 𝐷𝐴 = 𝜏𝑄𝑜/(𝑤 − 1) ,     (3) 

where D is the depth of recharge and A is the aquifer area.  ForFor w <=1 (b >= 2), integrating Eq. (21) results in an infinite 

volume, so b > 2 can only be sustained over a finite part of any recession..  VHowever, values of b > 2 have been derived from 15 

physical theory for the early portion of a recession (Brutsaert and Nieber, 1977; Rupp and Selker, 2005) or can still be obtained 

from recession curves over a finite time period while retainingwith physical realism,  albeit over a finite period to avoid non-

physical results, by combining discharge from multiple linear (b = 1) or non-linear (1 < b < 2) reservoirs (e.g., McMillan et 

al., 2011). The effect on b of combining linear reservoirs in parallel (e.g., Clark et al., 2009; Gao et al., 2017; Harman et al., 

2009; Rupp et al., 2009) and series (e.g., Rupp et al., 2009; Wang, 2011) has received much more attention. 20 

We compared three hypothetical cases time series generated with different assumptions about the distribution of the 

magnitudes and inter-arrival times of recessionecharge events, and the superposition of recession eventswith different  

hydrologic controls (Table 1). This design allowed us to specifically examine hydrologic controls in order to assess their 

influences on individual recessions. We can also determine the influence of parameter estimation for individual recessions and 

the point cloud. The hydrologic controls we looked at were the inter-arrival time and magnitude of recharge events and 25 

antecedent conditions controlled by the falling limb w control the distribution of individual recession analysis events and thus 

the point cloud. The inter-arrival times of events are distributed log-normally (Cases 1 and& 3) or uniformly (Case 2). Event 

magnitudes (as defined given by Qo) are either distributed log-normally (Cases 1 and& 3) or haveall of the constantsame 

magnitude (Case 2). Events are either independent of antecedent conditions (Case 1), or events are superimposed on antecedent 

conditions (Cases 2 and& 3) (Table 1 and Fig. 2).  30 
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To creategenerate the time series for the three casesCase 1 and 3, independent recessions were created using a random number 

generator for a lognormal distribution for event peak magnitude and duration for a total of 10 years of time-series data. The 

lognormal distributions for event magnitude and duration are chosen for the synthetic hydrographs because the distributions 

for Lookout Creek are skewed right and roughly lognormal which is also consistent with other skewed right precipitation 

distributions in previous studies (Begueria et al., 2009; Selker and Haith, 1990).  For each of the 3 cases, a time series was 5 

created by taking the independent recessions and combining based on the antecedent condition. For Case 1, Recharge eEevents 

were created with log-normally distributed inter-arrival times (μ = 2.5, σ = 1) and event magnitudes (μ = 1 day, σ = 1) where 

both values are normalized by timescale and the unit hydrograph respectively. The normal mean of 2.5 for the inter-arrival 

timeThese values of μ and σ results in event lengths with a mean of 20 days, and awith an average of 18 events per year. This 

value was chosen to be comparable to the 19 events per year identified in the Lookout Creek eExample. The normal standard 10 

deviation of 1 foThe distributions ofr both the inter-arrival times and event magnitudes result in distributions that are skewed 

right, representing the high frequency of smaller events and less frequent large events.  Changing μ and σthe normal mean and 

standard deviation will modify the amount of variability in individual recessions, and could be further explored with different 

distributions in future research regarding the resulting variability in b. For Case 1, the individual recessions were combined to 

make a time series such that each event was concatenated onto the last event disregarding the antecedent flows. For Case 2, 15 

one for Case 2 assumes constantwith uniform event inter-arrival time (μ = 450/τ) and magnitudes (μ = 1). The mean inter-

arrival time of 10 days is intended to be comparable with the 19 events per year identified in the Lookout Creek eExample.  

For Case 1, the individual recessions were combined to make a time series such that each event was concatenated onto the last 

event disregarding the antecedent flows. For Case 2 and 3, individual recessions were linearly superimposed on antecedent 

flows, . Appealingappealing to the simplest model presented by the instantaneous unit hydrograph method (Dooge, 1973) (,), 20 

we utilize the simplest model of linear superposition;. we discuss the implicit assumptions of this model in the Discussions 

and Conclusions section. From Fig. 2, the baseflow from the first event, QB, is a simplen continuation of extrapolation the first 

recessionfrom the first event using a constant power law decay constant. The underlying second event, QC, is defined by the 

second event’s initial magnitude (constant in Case 2 and given brandomly generated y the random number generator in Case 

3)and a defined power law decay constant. The peak flow for QA is based on adding QB(t0) to QC(t0) while the decay constant 25 

is based on the underlying second even, QC. Case 1 is based on the hydrograph represented in QA. The resulting flow from 

superposition, QD, is the sum of QB and QC. defines the peak flow the same as QA but the decay constant changes based on the 

linear superposition of QB and QC. For Cases 2 and 3, QD represents the hydrograph structure. For Case 3, the inter-arrival time 

and event magnitudes are equal to Case 1 while the procedure for combining recessions is equal to Case 2.  

As a result, Case 1 looks specifically at a time series events where the falling limb of each event maintains the same decay 30 

constant, and the effects of having no antecedent baseflow influence on streamflow. By including baseflow to Case 2 but 

maintaining equal inter-arrival times and event magnitudes, we look specifically at the effect of antecedent conditions on 
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individual recessions and the point cloud. Case 3 combines the distribution of event inter-arrival times and magnitudes of Case 

1 with the baseflow conditions of Case 2, best representing the variability and inter-arrival times of individual recession events 

seen in Fig.. 1 for data from Lookout Creek. Each case will address how the controls on the hydrograph affect the recession 

analysis plot and the , estimatesd ofby a and b.  

[Insert Fig. 2] 5 

[Insert Table 1] 

After defining the hydrograph, recession extraction and parameter estimation were performed.  Because events are based on a 

synthetic hydrograph, recession extraction was based on the individually defined events that make up the hydrograph. The 

beginning of the recession was defined as the peak in discharge because no potential influence of overland flows exist. Events 

of any length were included with the end of the recession defined as the time step before the next chronological peak. The 10 

exponential time step method was used for derivative calculation. 

2.2 RecessionParameter Extraction Methods 

From the observed hydrograph, identification of the recession period is necessary for recession analysis. Recession extraction 

from observed the hydrographs and the associated sensitivities to different criteria has been summarizedexplored by Dralle et 

al. (2017), including minimum recession length, and thethe definition of the beginning and the end of the event. For Lookout 15 

Creek, wWe used extraction criteria similar to those of other studies (e.g., Chen and Krajewski, 2016; Dralle et al., 2017; 

Stoelzle et al., 2013) and applied We apply In order to address the acknowledged that recession estimation is sensitive to 

parameter extraction, the same recession extraction guidelines are appliedcriteria prior to all fitting methods presented in 

Section 2.3. to By using consistent recession extraction criteria, all fitting methods are utilizing the same recessions thus 

isolateing differences in calculated b values due to fitting method to differences in fitting method only..  20 

We used criteria similar to those of other studies (e.g., Chen and Krajewski, 2016; Dralle et al., 2017; Stoelzle et al., 2013) 

(e.g., Chen and Krajewski, 2016; Dralle et al., 2017; Stoelzle et al., 2013).  AAIn this study, When considering real data of 

Lookout Creek for parameter estimation fitting results (Section 3.1), an individual recession event selection duration must be 

longer than 5 days. Rainfall data can be used to identify non-interrupted recessions, but rainfall data we will not available in 

all cases, Without rainfall data available for all watersheds that can be used as a guide for defining periods absent of rainfall, 25 

we suggestso we rely on the hydrograph only. The that the start of the recession is defined as one day after the discharge peak 

to account for the presence of overland flow. (Roques et al., 2017). The end of the recession occurs at the minimum discharge 

prior to an increase in discharge greater than the errors associated with instrument precision for stage height of ~0.01 ft, which 

translates into errors in discharge from ~0.01-0.1 m3/s depending on the rating curve and the discharge level (Thomas et al., 

2015). 30 
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To additionally minimize errors associated with recession extraction criteriaFor the , synthetic hydrographs are used in Section 

3.2 because individual events are inherently known, thus reducing subjectivity associated with defining each of the three 

recession extraction cri, teria. eEvents of any length were included , the recession start was selected at peak discharge because 

overland flow was not a factor, and with the end of the recession was chosendefined as the time immediately step before the 

next generated discharge chronological peak Without the presence of overland flow, no lag after the peak discharge is defined 5 

as the recession start (Roques et al., 2017).  

2.31 Parameter Estimation Fitting Methods  

To compare parameter estimation methods and the dependency on the fitting method, first the definition of the transition from 

early to late-time was defined. In an attempt to reduce the subjectivity of distinguishing late-time from early-time, the 

breakpoint in discharge separating early from late-time behavior was optimized to best represent the analytical solutions. By 10 

separating the data into two subgroups, either smaller or larger than a defined breakpoint discharge, the best fit line was 

determined for each subgroup. The location of the breakpoint is defined so the error between the observed ratio of b for the 

two subgroups and the theatrical ratio (b=3 for early and 1.5 for late give a ratio of 2) is minimized, theoretically defining the 

subgroup above the breakpoint as early-time and the subgroup below the breakpoint at late-time.   

Four methods of estimating representative recession In order to compare recession analysis parameters between methods, four 15 

fitting methods were evaluated: lower envelope (LE), central tendency method (CT), binning average  (BA) (BA; Kirchner, 

2009), and the median of individual recessions (MI) (Roques et al., 2017).  Recession parameters for all methods were 

determined by Llinear regression in  fitting in bi-logarithmic space was used with each method for consistency across methods.  

Because a change of hydraulic regime was suggestive in Fig.ure 1 between high flow ranges and low flow ranges, recession 

analysis parameters were estimated for two flow ranges, early-time and late-time. Early-time and late-time describe a 20 

theoretical transition of flow regimes between high-flow and low-flow ranges (Brutsaert and Nieber, 1977). In an attempt toTo 

reduce the subjectivity of distinguishing between high and low flows, athe breakpoint in discharge separating high from low 

flow behavior was optimized to best represent the analytical solutions. By separating the data into two subgroups, either smaller 

or larger than a defined breakpoint discharge, the best fit line was determined for each subgroup. The location of the breakpoint 

is defined so the error between the observed ratio of b for the two subgroups and the theoretical ratio (b=3 for early and 1.5 25 

for late give a ratio of 2) is minimized, theoretically defining the subgroup above the breakpoint as early-time and the subgroup 

below the breakpoint at late-time.  

 For each of the four estimated methods evaluated, parameters  estimation was were estimatedestimated for the early-time and 

behavior at high flow ranges and for late-time behavior separately at lower flow ranges. For the LE method, a defined b was 

fixed to of 3 and 1.5 for early and late-time, respectively, following methodology from Brutsaert and Nieber (1977) and a was 30 



22 

 

chosen such where a is fit using quantile regression such optimizing a so that 5% of points wereare left below the lower 

envelope (Brutsaert, 2008; Troch et al., 1993; Wang, 2011).  It should be noted that a limitation of using these a pre-defined 

values for b assumes that the groundwater discharge behaves watershed responds like discharge from a single, initially-

saturated,  and homogenous Boussinesq aquiferhillslope with behavior similar to a single hillslope, which isn’t known priori 

for the LE of a watershed composed of multiple heterogeneous hillslopes of unknown b.  An alternative method to fitting the 5 

lower envelope without a pre-defined value of b was introduced by Thomas et al. (2015) using quantile regression for vto 

estimate alues for both a and b, but was not usedconsidered in this study. For the CT method, the fit included all -dQ/dt vs Q 

points unweighted (Vogel and Kroll, 1992). For the BA method, bins spanned at least 1% of the logarithmic range, and a 

lineear fit, instead of the polynomial suggested by Kirchner (2009),  was fit toapplied to the binneds based on the inverse-

variance weightingmodified from Kirchner (2009 data.). We dispensed with the inverse-variance bin weighting used by 10 

Kirchner (2009) to account for data noise when we applied the method to the synthetic recessions because some bins contained 

few points with very low variance and therefore were weighted excessivelyDue to the nature of the synthetic hydrograph. , 

Fthe omission of noise in the data results in discrete individual recessions. Bins from BA often contained just a few points 

with very low variance and thus an infinite weight. This would rarely be the case using real data. Consequentially, we do not 

use inverse-variance weighting for the synthetic cases to avoid outlier bins with low variance. Instead, a direct linear fit on the 15 

log bins without weights was performed, which is not suggested to be applied to real datasets.  

For the MI method, parameters were estimatedion for individual recessions was performed using methodology fromfollowing 

Roques et al. (2017) and the medians of  for a and b value were determined calculatedindependently from all individual 

recessions using methodology from Roques et al. (2017). In all cases, the time derivative -dQ/dt was computed using the 

Exponential Time Step method (ETS) proposed by Roques et al. (2017).  20 

3 MethodsResults 

3.1 Parameter Estimation for Observed Recessions (Lookout Creek)Fitting Results 

In Fig. 3 we display the recession plot stacking all individual recession resulting in the formation of the point cloud. The 

different fitting strategies revealed that Tthe LE, CT, and BA methods all fit to the point cloud and all result in different 

estimations of values a and b evident when applied to the observed daily averaged streamflow for Lookout Creek:.  Notably, 25 

with  Eearly-time values of for a and b resulting in estimates that are over 50% larger for LE (fixed at 1.5) than CT and BA, 

and late-time values of b are 50% and 25% larger for LE than CT and BA, respectively (Fig. 3 and Table 2).  Furthermore, 

parameter estimation is sensitive to the fitting method using the point cloud or individual recessions, notably for the late-time 

b value which is used for climate sensitivity analysis where b for MI is 6x greater for the estimation compared to CT (Table 

2). The CT and BA methods are fairly consistent with each other for both early and late-time, with BA resulting in smaller a 30 
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values tha whereasn CT. tThe pre-defined theoretical b values for the LE appear to provide poorer fits tofor the point cloud, 

consistent with previous studies that have shown errors associated with the LE method (Rupp and Selker, 2006a). . 

More importantly, parameter estimation differs greatly whether the point cloud or individual recessions are used. The late-time 

b value which defines the low-flow baseflow regime is 6 times greater for MI than CT (Table 2). Using the MI method, the b 

value is larger than any other method for both early and late -time. Hereafter and for the synthetic hydrographs, we use the 5 

binning average method (BA) and the median individual recessions (MI) to compare between the point cloud and individual 

recessions, respectively, for parameter estimation for the synthetic hydrographs presented.   

[Insert Fig. 3] 

[Insert Table 2] 

3.2 Synthetic Hydrograph Results 10 

Based on the similar results from BA and CTL methods discussed above, and the questionable practice of setting an early- and 

late-time b a priori as we did in the LE method, hereafter we use the BA method to represent to point cloud recession parameter 

estimation when comparing to the MI method using individual recessions.  

The recession decay exponent w in Eq. (2) was set to 1.2; distinct values of w were not used for early and late time. This value 

for w results in The falling limb recession for all three cases is defined using w = 0.71.2 as the dimensionless decay constant 15 

related to b by w=1/(b-1).  The expected value of b =is 2.41.8 for an individual synthetic recession, which  given this decay 

constant,is which falls within near the range ofreported the median of individual b values of 2.0 by in Biswal and Marani 

(2010), and 2.1 by bothin Shaw and Riha (2012) and Roques et al. (2017), though less thanand the median individual b of 2.8 

for Lookout Creek in Figure 1. By using a constant w value, the synthetic hydrographs do not exhibit a change in hydraulic 

regime and thus a single fit is used for each fitting method.  20 

The b values and the offset of individual recessions resulting from Eq. (1) are both functions ofhighly sensitive to the magnitude 

of the decay constant chosen, w. A larger b value indicates a more stable baseflow water discharge (a slower decline rate for 

given discharge), compared to a smaller b value which corresponds to a greater discharge decline rate with decreasing 

discharge. For a given value of b, and , a larger value of a implievaries inversely with Qo
1/(b-1). s a more conductive/permeable 

basin and a smaller terminal streamflow if the recession continued infinitely. Decreasing w  would results in larger values of 25 

b while also increasing the offset between individual recessions, resulting in a larger range of a values and a more scattered 

point cloud. In contrast, as w approaches infinity, the offset is minimized asnd b goes to 1, representing in an exponential 

falling limb recession in time (Rupp and Woods, 2008). In this special case, the recession analysis plotall of the individual 

recessions overlap all plot on the same b=1 with constant a (i.e., there is no offset among individual recessions lines). While 
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b=1 is interpreted as a linear reservoir according to traditional theory and is a convenience often assumed, yet this result 

suggests that a condition where b=1 and a is a constant given a constant characteristic timescale wouldis not not be consistent 

with the existence of aa point cloud, except to the degree at which observation error introduces noise into the recession 

hydrograph, or other pathways (e.g., overland flow) contribute to the flow in the stream. In summary, the more linear the 

response is (the closer b is to 1), the smaller the offset, whereas the more non-linear the response (the larger the b), the greater 5 

the offset will be and thus the more different the parameter estimations will be between the point cloud and individual recession 

methodsthe worse the parameter estimation from the point cloud will be. The 3 subsequent following cases using synthetic 

hydrographs are intended to highlight the offset of the individual recession curves., using an underlying decay constant of 

w=0.71.2 that is sensitive enough to showcase the offset of individual recessions but still providing a reasonable recession 

analysis plot. Case 1 uses events with a constant w across the hydrograph, while Case 2 & 3 to include superposition of an 10 

underlying event with a constant w and the antecedent flows which results in a less negative effective decay constant resulting 

in an increased b.   

Due to the nature of the synthetic hydrograph, the omission of noise in the data results in discrete individual recessions. Bins 

from BA often contained just a few points with very low variance and thus an infinite weight. This would rarely be the case 

using real data. Consequentially, we do not use inverse-variance weighting for the synthetic cases to avoid outlier bins with 15 

low variance. Instead, a direct linear fit on the log bins without weights was performed, which is not suggested to be applied 

to real datasets.  

3.2.1 Case 1 

Recession analysis of a hydrograph with log-normally distributed event inter-arrival times and peak discharge with a constant 

falling limb decay constant (no baseflow represented) results in individual recession events with the same b, horizontally 20 

shifted based on the initial discharge (Fig.ure 4). For this case, the peak flow of the event is the only sourcecause of variability 

in the recession parameter a. The variable event magnitudes result in individual events located over a range of ln(Q) values 

whereas . Of interest, if the same flow magnitude was preserved for each event, each individual recession would plot on top 

of one another creating a single line without a point cloud. The variable event inter-arrival times change the duration of an 

event, with longer events occurring over a greater range on the y-axis. Even Iin this simple hydrograph representation, parallel 25 

individual recessions are present all with b = 1.8, as expected.  The value ofand b of the point cloud (is estimated at 1.3) 

considering the point cloud, which appears to be significantly  is significantly much less than imposed the median individual 

b value of  .(1.8). Furthermore, the median individual b is equal to the expected b (2.41.8) because each recession t has the 

same shape. This underestimation results from the offset between individual recessions based on the range of initial discharges 

[…].By only considering an event without antecedent conditions, individual recessions maintain a value of b while a is 30 

variable. Each individual recession has a b value of 1.8 while the point cloud results in a b value of 1.3 (See colorbar of Figure 

4).  
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RegardingTo examine the sensitivity of parameter estimation to recession extraction criteria sensitivity, we evaluated how 

choosing the start of the recession (i.e., the time elapsed since peak discharge) affectsoverland flow duration changed the value 

of a when using the point cloud method.  Whether we chose 0, 1, or 2 days following peak discharge, and a from , the point 

cloud a wasis 0.17 [-UNITS?] and b was 1.3 [-].   5 

[Insert Fig. 4] 

3.2.1 Case 2 

The addition of superposition of recession events accounts for the effects of antecedent baseflow. The superposition of the 

events changes the effective w of the falling limb of the hydrograph as the event recession is added to the antecedent events, 

resulting in variable b across the individual recessionsin the recession analysis plot (Fig.ure 5). The median b represented is 10 

3.25 , with a the range of individual b between 2.56 toand 3.41 (quantile range represented in the colorbar of Fig.ure 5). The 

point cloud b of 2.35 falls outside of the range of b values for individual recessions.  Superposition results in a larger b than 

what would arise from non-superposition. Steeper recessions (higher b) are associated with events with higher baseflow 

contribution given the same addition of flow. By including antecedent flow conditions, neither a nor b is preserved between 

individual recessions.  15 

[Insert Fig. 5] 

3.2.1 Case 3 

A hydrograph more representative of real-world case conditions includes variable inter-arrival times and event magnitudes 

from Case 1 and baseflow antecedent conditions from Case 2 (Fig. 6a). These complexities result in a recession plot where the 

individual recessions represent the variability in watershed response represented by the hydrograph (Fig.ure 6b), where a and 20 

b are different between individual recessions. As with Case 1 and 2, the median individual b (3.3) is greater than the point 

cloud b .(2.0) The minimum individual b is 1.9 with a maximum of 8.5 while the point cloud b isof 2.0 near the low end of 

thefalls at the lowest range of individual b values (See colorbar of Fig.ure 6).  The similarity of features of Fig. 6b and Fig. 1 

are noteworthy.  Though many of the observed recessions in Fig. 1 are slightly curvilinear (in the log-log space) whereas the 

synthetic recessions are power lawsare linear, in both cases there is a tendency for recessions with lower initial discharges to 25 

have higher values of b yet still many instances of recessions with similar initial discharges but different values of b. 

[Insert Fig. 6] 
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4 Discussion and Conclusions  

In the 42 years since Brutsaert and Nieber (1977) proposed their recession analysis, it has provided a seemingly simple 

analytical method for estimating basin-scale hydrologic properties. However, recent studies have highlighted the sensitivity 

toof parameter estimation to and the fitting methods on the recession parameter values and to the resultingused and with the 

influence on the interpretation for of average watershed behavior. This paper explores the effect of the distribution (in time 5 

and in magntitude) of individual recessions on parameter estimation and compares that to the parameter estimation fromfor 

collective recessions (i.e., the point cloud). The four fittingestimation methods considered were the lower envelope method, 

central tendency, binning, and individual recessions method. Because of the poorer apparent fit and problems pointed out from 

previous studies when using the , the lower envelope and central tendency methods, we chose to use the binning method to 

compare with results from the individual recessions method for a set of synthetic case studies.were not considered in favor of 10 

improved methods for binning of collective recessions and the median individual recession.   

We hypothesize that the underlying hydrology climate controls the distribution of individual recessions in bilogarithmic plots 

of -dQ/dt vs. Q. This distribution which can be related to the variability in recession analysis parameters. Using the three 

synthetic case studies of synthetic hydrographs, we compare examine the effects of event inter-arrival time, magnitude, and 

antecedent conditions on the distribution of individual recession events that together comprise the pattern of collective 15 

recessions (i.e., the point cloud).  

We conclude that recession analysis performed on collective recessions does not capture average watershed behavior, 

regardless of the fitting method used with the collective recessions. The frequency between events creates different event 

lengths that span different ranges of Q. The point cloud is an artifact of the variability of the individual recessions, including 

the event inter-arrival times and distribution of magnitudes. Individual recessions with the same b but different a can be 20 

produced by the same falling limb of the hydrograph at differentvarying the  ranges of iinitial discharges (Case 1), variability 

of b for individual recessions can be produced by superimposing events on antecedent flow conditions (Case 2), and different 

recession event lengths with different b’s can be produced by including variable event inter-arrival times and magnitudes (Case 

3).  

For Case 1, the recession analysis parameter a is equal to w/(τQo
1/w) and thus the intercept of the individual recession curves 25 

will scale with Qo. The result is a collection of individual recession curves that are horizontally offset based on the initial 

discharge producing a smaller b value for the point cloud compared to the individual recessions. Case 1 illustrates that the 

slope of individual recession events can be greater than the best fit line through the point cloud, consistent with previous studies 

(Biswal and Marani, 2010; Mutzner et al., 2013; Shaw and Riha, 2012). However, the point cloud in Case 1 is generated by a 

collection of multiple individual recessions all with the same slope and does not have the variability in b values presented in 30 

these sameprevious studies and shown for Lookout Creek in Fig.ure 1. Case 2 and 3 are presented useing superposition of 
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antecedent flow events that consequentially changes the individual recession b values, providing a possible explanation for the 

variability in b values for individual recessions. For Case 2, the superposition of events takes into account of antecedent 

conditions which results in a distribution of individual recession b values despite the decay exponent w being fixed.where b 

values are associated with the baseflow contribution. For Case 3, the horizontal offset of individual recessions from Case 1 

and the effects of antecedent conditions from Case 2 result in the recessions with variabileity of individual recession b values 5 

and that that are horizontally offset to create a pattern similar to that observed in a real watershed..  

 

While the mean b for individual recessions in Case 1 isare a direct consequence of the value of w used in Eq. (2), representative 

of the underlying events, thishat is not true when the underlyingdischarge from each application of Eq. (2), which we call an 

‘event’,  recession isare superimposed on the antecedent flowflows, as in Case 2 & 3. This superposition of events results in a 10 

range of individual recession b’s as often observed in the literature (Basso et al., 2015; Biswal and Marani, 2010; Mcmillan et 

al., 2014; Mutzner et al., 2013; Shaw and Riha, 2012), thus it appears that the simple superposition of events can recreate the 

watershed behavior.  However, there is a key underlying assumption to this superposition that is inconsistent with a real 

watershed. We can consider a spectrum of conceptual models of watershed. On one end of the spectrum is a single bucket with 

a hole near the bottom. The bucket contains porous medium whose properties may vary with depth to create a variety of non-15 

linear outflows. Each new recharge event adds to the pre-existing storage of water in the bucket. On the other end of the 

spectrum is what we have done here: Each new event adds water a new and independent bucket and the outflows from all 

buckets are aggregated. Both conceptual models are patently unrealistic but, remarkably, the latter model produces a 

distribution of recession events in -dQ/dt vs. Q space that is more like what is observed.  This finding should reveal something 

about the plumbing of the basin. 20 

A first approximation could be using linear superposition of individual events on the antecedent baseflow to back out an 

underlying recession curve. This underlying recession curve would be a master recession that describes the watershed’s 

underlying hydrology controlling the falling limb of the hydrograph in order to predict watershed recession behavior based on 

streamflow. The linear superposition of recessions over time effectively adds the outflow of multiple, independent, non-linear 

reservoirs. This adds an infinite number of reservoirs together, where the earlier recessions effectively become negligible after 25 

some time. We acknowledge that there are other ways to create memory for the watershed that would also generate variability, 

including the combination of different linear or non-linear reservoirs (Clark et al., 2009; Gao et al., 2017b; Harman et al., 2009; 

McMillan et al., 2011; Rupp et al., 2009; Wang, 2011), and the effects of parameter estimation from different reservoir models 

for combing events into a synthetic hydrograph would be worthwhile research to peruse. For the purposes of this paper 

providing a linear superposition for the hydrograph shows generated variability between recessions as a result of the inter-30 

arrival time and event intensity instead of geologic controls. We do not mean to imply that linear superposition of individual 

events fully represents natural watersheds, but instead to present a method that produces variability in b similar to what we see 
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in real watersheds. While using linear superposition of individual events is presented as a simple possible representation that 

does produce similar results to real watersheds, different representations that describe physical processes of combining 

individual events appears to be fruitful for more investigation. An additional important simplifyinglimitation assumption of 

this study is the use of a constant timescale defined by keeping  constant for each individual event, assuming that the 

underlying events are governed by a single timescale independent of the superposition of events. Previous studies that 5 

includehave examined analysis of timescales across basins by settinghave used  b = 1a linear fit and estimatingof   from the 

point cloud (Brutsaert, 2008; Lyon et al., 2015). However, given the findinthe gsquestionable of  of this study regarding the 

validity of the point- cloud estimation methods, additional studies on timescale using individual recessions of would be 

worthwhile to better understand the variability of timescale amongbetween individual recessions events and across basin 

should be done..  10 

 

We show how theThe point cloud pattern  doeses not representarise from  the average watershed properties alone. The 

consequence is that parameters estimated from the point cloud do not represent watershed properties. behavior that it has been 

claimed to represent. In all three synthetic hydrograph representations, the median individual recession b is significantly greater 

than b from the point cloud. Additionally, it is possible for the point cloud b to be smaller than the minimum individual 15 

recession b indicating the point cloud fit represents a behavior outside the range of watershed responses represented by 

individual recession events. The point cloud does not represent the average watershed behavior that it has been claimed to 

represent. In contrast to the point cloud, individual recession analysis provides insights into the average and variability of 

watershed responses which is highly dependent on the memory effect of the watershed. The variability in individual responses 

gives insight into watershed complexities including heterogeneity in topography, geology, and climate. Watersheds may 20 

present large variability in geology and so hydrogeological conditions such as unconfined/confined aquifers, inter-basin 

groundwater flows, high spatial hydraulic conductivity variability, depth dependent hydraulic conductivity, or large-scale 

discontinuities. As a result, there are still opportunities to further characterize the variability in watershed responses and the 

associated variability in individual b values to improve streamflow prediction using recession analysis. However, the 

hydrologic climatic controls need to be further investigated as accurate predictions baseflow predictions require both the 25 

average and variability in watershed behavior.  The methods employed for recession analysis certainly require more attention: 

Correct methods are critical to understand the underlying hydrology and thus the interpretation of a watershed’s vulnerability 

to climate change. 

While the mean individual recessions in Case 1 are representative of the underlying events, that is not true when the underlying 

recession are superimposed on the antecedent flows in Case 2 & 3. This superposition of events results in a range of individual 30 

recession b’s often observed in the literature , thus it appears that the superposition of events represents the watershed behavior.  

A first approximation could be using linear superposition of individual events on the antecedent baseflow to back out an 



29 

 

underlying recession curve. This underlying recession curve would be a master recession that describes the watershed’s 

underlying hydrology controlling the falling limb of the hydrograph in order to predict watershed recession behavior based on 

streamflow. However, as many watersheds have unconfined aquifers, the superposition may be nonlinear and instead follow 

the sum of the squares. The methods employed for recession analysis certainly require more attention: Correct methods are 

critical to understanding the underlying hydrology and thus the interpretation of a watershed’s vulnerability to climate change. 5 

While the underlying hydrology that controls individual recessions remains widely uncertain, being able to deconvolve these 

controls is important to assess the vulnerability of a river system to climate change. The parameter estimation for recession 

analysis may be vastly different based on the method employed, and thus having indirect impacts of misinterpretation of 

hydrological properties and predictions within the critical zone. When using the point cloud, the smaller recession analysis b 

at late-time is interpreted as a more vulnerable watershed to drought and the accompanying larger a indicates a flow that will 10 

continue to decline. However, the median of the individual recessions at late-time better represents the watershed’s response 

with a larger b and smaller a indicating less drought vulnerability compared to the point cloud.  Previously, the interpretation 

of groundwater systems to conductivity and flow length based on the point cloud may be a product of event organization, 

which could explain why these trends have been difficult to synthesize into larger predictive behaviors.  With the point cloud 

b being smaller than the median individual b and a is larger, which for climate assessment and watershed vulnerability 15 

evaluation the point cloud will produce more dire conclusions while the individual recessions suggest a more stable flow 

regime for the watershed. Consequently, the parameter estimation method has a huge impact in on the estimation of baseflow 

and has consequences for the prediction of critical zone processes.  

A strength of the critical zone community is the ability to create a global analysis by comparing across studies (Brooks et al., 

2015; Fan et al., 2019). However, a lack of consensus for a standard method for recession analysis procedures exists and thus 20 

inhibits recession analysis studies from being widely compared. If streamflow analysis is to be included in a global analysis, 

results need to be comparable across scales and observatories. There is a need for a common method employed to compare the 

average and variability in watershed responses. Because estimated parameters may differ greatly by estimation method, 

misinterpretation of hydrological properties and incorrect predictions within the critical zone are possible. When using the 

point cloud in particular, a smaller recession parameter b at late time could be, and has been, interpreted to imply greater basin 25 

vulnerability to drought (e.g., Berghuijs et al., 2016; 2014; Yeh and Huang, 2019). However, a more stable baseflow is implied 

by distribution of b from the individual recessions and its median b which can be much larger than what is estimated from the 

point cloud. We suggest that the use of collective recession analysis should be avoided in favor of individual recession analysis 

as the standard to describe the average and variability in watershed response. The methods employed for recession analysis 

certainly require more attention: Correct methods are critical to understand the underlying hydrology and thus the interpretation 30 

of a watershed’s vulnerability to climate change. 



30 

 

Code and Data Availability 

Streamflow record for Lookout Creek is freely available from the USGS website. Source code for the exponential time-step 

method is available by request (Roques et al., 2017). Randomly generated log-normal event magnitudes and inter-arrival times 

presented in this paper for Cases 1 & 3 are available at: 

http://www.hydroshare.org/resource/e3c159631acd470cbeef5fa1abe0142e. Respective codes can be obtained from the 5 

corresponding author.  
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Figure 1. Recession analysis plot in log-log space for Lookout Creek (USGS# 14161500). Individual recession fits are 

displayed with color scale differencing by values following a discretization according to decile groups. This discretization 

allows the description of the organization of individual recessions where recessions with similar b‘s that appear to be 5 

horizontally offset. The point cloud has b = 1.4 (binning average shown as a black dotted line) compared to b = 2.8 for the 

median individual recession.  
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Figure 2. Conceptual model of identical recession events only dependent on the initial flow (QA representing Case 1) and 

superposition of events to include antecedent conditions (summation of the blue dotted (QC) and dashed line (QB) resulting in 

the superposition of the flow in the purple dash-dot line (QD representing Case 2&3)).  By superimposing the antecedent flows 

(QB) on the underlying event (QC), the effective falling limb (QD) is less steep than the non-superimposed falling limb (QA). 5 
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Figure 3. Recession analysis for Lookout Creek to aid in the comparison of four different fitting methods and the dependency 

on parameter estimation shown visually (lower envelope (LE), central tendency (CT), binning average (BA)) and individual 

recessions parameters (median individual recession (MI)). Depending on the fitting method, the parameter estimation for a 

and b will be different.  5 
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Figure 4. a) Hydrograph with log-normally distributed event inter-arrival times and peak magnitudes with each event 

maintaining a constant falling limb decay constant, and b) recession analysis with resulting parallel individual recessions 

having a constant b value (MI b = 2.41.8) compared to the point cloud fit (black dotted line) which results in b = 1.41.3). Gaps 5 

in the hydrograph are a result of individual event magnitudes that are smaller than the streamflow that precedes the event start. 

The individual recessions are offset which when viewed collectively, results in the point cloud. 
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Figure 5. a) Hydrograph of equally spaced recharge events with each underlying equal magnitude recession event 

superimposed on previous ones resulting in varying falling limb decay constant (x-axis zoomed in to show detail), and b) 

recession analysis plot showing a range of b‘s of individual recessions (MI b = 6.13.25), with steeper recessions associated 5 

with events with higher baseflow contribution, compared to the point cloud fit (black dotted line- BA b = 32.35.7). The color 

bar is divided into 10 ranges based on the individual b value, each range contains 10% of individual recessions, and the lowest 

range in white for comparison to the point cloud range.  
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Figure 6. a) Hydrograph with lognormal distribution in recharge event inter-arrival times and magnitudes, and b) recession 

analysis plot showing a large range of b values (with the median of b = 9.73.3), compared to the point cloud fit (black dotted 

line- BA b = 2.90). The color bar is divided into deciles in the distribution of b values compared to the point cloud range. 5 

Table 1. SControls for synthetic hydrograph creationscenarios 

 

 Event Magnitudes Event Inter-Arrival Time Superposition of antecedent flow? 

Case 1 Log-normal Log-normal No 

Case 2 Constant Constant Yes 

Case 3 Log-normal Log-normal Yes 
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Table 2. Comparison of recession analysis parameters a and b for Lookout Creek between different methods: lower envelope 

(LE), central tendency (CT), binning average (BA), and the median individual recession (MI). Each value is represented as a 

ratio of parameter estimation for early to late time.  Depending on the derivative methodn and the fitting method, the parameter 

estimation for a and b will be different.  

  log(a) [m1-b.db-2] b [-] 

  early late early late 

LE -5.6 -3.0 3.0 1.5 

CT -3.0 -1.8 1.9 1.0 

BA -2.6 -1.6 1.8 1.2 

MI -3.9 -8.1 2.7 6.4 

 5 

 

 

 

Supplemental Figure 1. The peak discharge for 1309 individual recession events for Lookout Creek is approximately 

lognormal. 10 

 


