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Abstract. Fluvial systems in southern Ontario are regularly affected by widespread early-spring flood events primarily caused 10 

by rain-on-snow events. Recent studies have shown an increase in winter floods in this region due to increasing winter 

temperature and precipitation. Streamflow simulations are associated with uncertainties tied to the internal variability of 

climate. These uncertainties can be assessed using hydrological models fed by downscaled Global Climate Model Large 

Ensemble (GCM-LE) data. The Canadian Regional Climate Model Large Ensemble (CRCM5-LE), a dynamically downscaled 

version of a GCM-LE, was developed to simulate climate variability over northeastern North America under different future 15 

climate scenarios. In this study, CRCM5-LE temperature and precipitation projections under RCP 8.5 scenario were used as 

input in the Precipitation Runoff Modelling System (PRMS) to simulate near future (2040s) streamflow for four watersheds 

in southern Ontario. Model simulations show that 14% of the ensemble project a high (low) increase of streamflow volume in 

January-February. Streamflow increases may be driven by rain and snowmelt modulation caused by the development of high 

(low) pressure anomalies in North America’s East Coast. Additionally, the streamflow may be enhanced by high pressure 20 

circulation patterns directly over the Great Lakes creating warm conditions and increasing snowmelt and rainfall/snowfall ratio 

(16%). These results are important to assess the internal variability of the hydrological projections and to inform society of 

increased winter streamflow. 

1 Introduction 

Increasing atmospheric greenhouse gases (GHG) concentration is projected to increase air temperatures globally and modify 25 

the regional precipitation regimes (Hoegh-Guldberg et al., 2018). GHG-driven climate change is projected to impact watershed 

fluvial hydrological regimes especially in glaciated or nival catchments (Barnett et al., 2005; Bliss et al., 2014) with serious 

implications for flood management and water resources (Hamlet and Lettenmaier, 2007; Wu et al., 2015)  

The quantification of streamflow and other hydrological processes using hydrological models is becoming an active area of 

research in various regions of the world. However, the use of hydrological models is subject to a number of choices such as 30 
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the Global Climate Model (GCM) and GHG emission scenario (Kour et al., 2016; Stephens et al., 2010), climate data 

downscaling method (Fowler et al., 2007; Schoof, 2013) hydrological model (Boorman et al., 2007; Devia et al., 2015) and 

model calibration technique (Khakbaz et al., 2012; Moriasi et al., 2007). In addition, the future temporal evolution of 

temperature and precipitation patterns will be modulated by the internal variability of climate due to the inherently chaotic 

characteristic of the atmosphere (Deser et al., 2014; Lorenz, 1963) and will also impact hydrological processes and streamflow 5 

(Lafaysse et al., 2014). Therefore, the uncertainties associated with future projections of streamflow and hydrological processes 

are very high (Clark et al., 2016) and have recently been the subject of intense research (Leng et al., 2016).  

The uncertainties due to the internal climate variability is one of the biggest source of uncertainty for the early 21st century 

hydrological projections (Harding et al., 2012; Hawkins and Sutton, 2009; Lafaysse et al., 2014). The internal variability of 

climate is a cause of the hiatus observed in global warming in the 2000s (Dai et al., 2015) and is expected to mask the impact 10 

of human-induced climate change on precipitation (Rowell, 2012) and streamflow (Zhuan et al., 2018). Single-GCM Large 

Ensembles (GCM-LE) are based on small initial conditions variations between members of the ensemble and have been used 

recently to assess the contribution of internal variability on the overall uncertainty of climate-change projections (Deser et al., 

2014; Kay et al., 2015; Kumar et al., 2015) and hydrological processes in large watersheds (Gelfan et al., 2015).  

Due to GCMs coarse spatial resolution, future climate data should not be used directly for small watersheds hydrological 15 

modelling and downscaling techniques must be applied to climate data (Fowler et al., 2007). Statistical downscaling methods 

are generally preferred as Regional Climate Model Large Ensembles (RCM-LEs) are computationally costly (Lafaysse et al., 

2014; Thompson et al., 2015). However, RCM-LEs offer the possibility to relate each member of a Regional Climate Model 

(RCM) to large scale variability from GCM-LEs. Furthermore, RCM-LEs avoid additional and ambiguous sources of 

uncertainty from the statistical methods (Gelfan et al., 2015).  20 

The Canadian Regional Climate Model Large Ensemble (CRCM5-LE) is a 50-member regional model ensemble at a 12km 

resolution produced over northeastern North America in the scope of the Québec-Bavaria international collaboration on climate 

change (ClimEx project; (Leduc et al., 2019). For the purposes of this study, precipitation and temperature data from CRCM5-

LE were used as input in the Precipitation Runoff Modelling System (PRMS), which was applied to four watersheds in southern 

Ontario. The 50-members were then grouped into classes of similar weather and streamflow projections to assess the impact 25 

of internal climate variability on future hydrological processes in southern Ontario. A CRCM5 ensemble was already used as 

input in multiple hydrological models in a Québec catchment by (Seiller and Anctil, 2014), but this was analyzed for  5 

members only.  (Erler et al., 2018), used a four-members regional ensemble as input in an integrated surface and groundwater 

model for the Grand River watershed in southern Ontario. To our knowledge this study is the first time that a 50-members 

ensemble regional model was used as input in a hydrological model. This analysis, therefore, is very relevant to understand 30 

the contribution of anthropogenic and natural forcing on the temporal evolution of runoff in southern Ontario and better predict 

future streamflow for these watersheds. 
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This paper is organized as follows: Section 2 presents the PRMS hydrological model, the CRCM5-LE dataset and the 

classification procedure. Section 3 examines the impact of atmospheric circulation on streamflow projections. Section 4 is 

dedicated to the discussion of results and the concluding remarks are presented in Section 5. 

2 Data and methods 

2.1 Study area 5 

Four watersheds in southern Ontario were selected for their long hydrometric time series archives and represent well the 

diversity of scale, soil type, and land use in this region (Figure 1 and Table 1). Land use in all four watersheds are dominated 

by agricultural activity. Two major cities, Brantford in Grand River, and London in Thames River are present in the study area 

and additional urban areas are located in the Credit river watershed. The Big Creek watershed contains the lowest proportion 

of urbanization (2%). The watersheds also vary in soil type: sand predominates in Big Creek (79%) and Credit River (43%), 10 

but a large area of Credit is also covered by loamy soil (49%). Grand River has almost an equal proportion of sand (30%), 

loam (32%) and clay (38%) while Thames River contains more clay (39%). The elevation is also highly variable with the 

highest altitudes in the North parts of Grand River (531 m) and Credit River (521 m) watersheds while the lowest areas are 

located in the sandplains further south in Grand River (178 m) and Big Creek (179 m). 

2.2 PRMS hydrological model 15 

The Precipitation Runoff Modelling System (PRMS), a widely used semi-distributed conceptual hydrological model, was 

applied to all four watersheds. The hydrological calculations in PRMS are based on physical laws and empirical relations 

between measured and estimated quantities. A series of hydrologic reservoirs are used (plant canopy interception, snowpack, 

soil zone, subsurface) and the water flowing between the reservoirs are computed for each hydrological response units (HRU). 

For more information about the structure of this model, refer to (Markstrom et al., 2015). 20 

In this study, HRUs consisted of surface grid cells of 200m² for Big Creek and Credit River watersheds and 400m² for Grand 

River and Thames River. These latest two watersheds have coarser HRU’s to decrease the model time calculation. For each 

HRU, temperature and precipitation from the closest meteorological measure were used and adjusted according to the altitude 

and monthly lapse rates calculated for each watershed. The potential evapotranspiration was computed according to the Jensen 

Haise formulation with air temperature, solar radiation and two additional parameters as inputs: the jh_coef_HRU and the 25 

jh_coef. jh_coef_HRU, was estimated for each HRU according to air temperature and elevation and jh_coef, is a coefficient 

that had to be calibrated. The shortwave solar radiation was estimated by the module ddsolrad, which uses a degree day method. 

The srunoff_smidx module, a non-linear variable-source area method, was used to compute surface runoff from infiltration 

and saturation excesses. Routing of flow from upstream to downstream was computing using the Muskingum flow routing 

method that uses a coefficient (K_coef) to represent stream water travel time in each stream segment. K_coef was estimated 30 

for each segment with respect to stream length and stream slope and the coefficient was adjusted during calibration.  Parameter 
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values used by PRMS were found in the literature and were spatialized for each HRU’s (Table 2). Arcpy-GSFLOW, a series 

of ARCGIS scripts creating the HRU’s, was used to estimate parameters according to land use, elevation, aspect, slope and 

soil type. Arcpy-GSFLOW was also used to estimate the water cascade between the HRU’s and the river segments. Some of 

these parameters were modified during calibration to keep the relative spatial variability (Table2). 

Five years were used as the initialization period (Oct 1984-Sept 1989) to remove the error due to initial conditions. Different 5 

simulations with a varying initialization period length were tested in the Big Creek watershed and showed that five years were 

necessary for the hydrological model to forget the initial conditions of the reservoirs. The calibration period was between Oct 

1989 and Sept 2008 and the years 2009 to 2013 was used as the validation period. The input variables for PRMS are 

precipitation, minimum temperature and maximum temperature values. These variables were taken from the gridded historical 

weather station data (CanGRD) produced by (McKenney et al., 2011) using Natural Resources Canada and ECCC data archives 10 

at 10 km spatial resolution. 186 data points were needed to cover the area of the four watersheds (red markers on Figure 1). 

For model calculations, each HRU used climate data from the closest grid point. 

The best set of parameters retained after calibration is shown in Table 3. The Nash Sutcliff Efficiency (NSE) values are always 

higher than 0.65 for both calibration and validation periods (Table 3). The percent bias (PBIAS) is between -15% and +15% 

except for Credit River during the validation period. A NSE higher than 0.65 and a PBIAS lower than 15% is generally 15 

considered a good quantitative fit (Moriasi et al., 2007). Figure 2 shows the simulation and the observation of the daily 

streamflow in all four watersheds and confirms visually the goodness of simulation fit. 

2.3 Climate data projections 

The future climate data used as input in PRMS were from the Canadian Regional Climate Model Large Ensemble (CRCM5-

LE), a 50-member ensemble of climate change projections at 0.11° (~12-km) resolution. This regional ensemble, computed 20 

with the Canadian Regional Climate Model (CRCM5), consists of downscaled data from the 2.8° (~310 km) resolution 

CanESM2 50-member Large Ensemble (CanESM2-LE). The ensemble extends from the historical (1954-2005) to the 

forecasted (2006-2099) period forced with the RCP8.5 scenario. The CRCM5-LE Data grid-points the closest to CanGRD data 

points were used in this study. For each coupled CRCM5-LE/CanGRD grid point, the climate data from CRCM5-LE were 

bias-corrected over the historical period (1954-2005) using the method developed by (Ines and Hansen, 2006). A gamma 25 

distribution was used for both observed and modelled precipitation intensities while a normal distribution was used for the 

temperature bias correction. These bias-correction calculated from the historical period were then applied to the CRCM5-LE 

grid points for the entire period 1954-2099.  

2.4 Ascending hierarchical classification 

An ascending hierarchical classification (AHC) was used to classify all 50 members into classes of similar change of 30 

streamflow and meteorological conditions. The AHC was applied to the 4-watersheds January-February normalized change of 

streamflow and regional change of temperatures/precipitation between the historical (1961-1990) and 2040’s periods (2026-
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2055). The AHC was performed using January-February data because these months correspond to a large change of streamflow 

during the period. For precipitation and temperature, the period from 25 December to 22 February was used to account for the 

delay between weather conditions and stream flow at the outlet. A delay of 6 days showed the best correlation between the 

increase in temperature and precipitation and the increase of streamflow for all 4 watersheds. 

The future projection of atmospheric circulation for each class was analysed using climate variables from CanESM2-LE with 5 

a geographical domain from 30°N to 60°N latitude and 100°W to 50°W longitude. Climate variables used for analysis included 

air temperature at 850hPa level (850T), precipitation (PP), sea level pressure (SLP), geopotential height at 500hPa (Z500) and 

surface winds. These climate variables were separated into internal and forcing contributors. The forcing contribution of the 

climate variables corresponded to the average change of all ensemble members between the historical period and 2040s. The 

internal contribution associated to each member was calculated by subtracting the original member data from the forcing 10 

contribution. This method was previously used by (Deser et al., 2014) to assess the internal contribution of future change in 

temperature and precipitations in North America. 

3 Results 

3.1 Streamflow projections 

Figure 3 shows the average daily streamflow volume and the number of high flows for all members for the historical (Hist) 15 

and future (2040s and 2080s) periods. Observational streamflow (OBS) and the controlled streamflow simulated with CanGRD 

data (CTL) are also shown for the historical period. 

In the historical period, average streamflow from the OBS, CTL and the 50-member data sets followed similar annual cycles 

with the first peak of the hydrological year occurring in November-December and the highest peak in March-April. By 2040 

a clear peak in streamflow and the number of high-flow events is still modelled in March but by 2080 the monthly maximum 20 

streamflow is more evenly distributed among winter months. This result suggests a progressive shift from two maximal peaks 

to one winter peak through the 21st Century The simulated range of streamflow volume and number of high flows is high 

among the 50 different members in winter. 

Daily rainfall, snowmelt, and actual ET are also expected to change for the future periods (Figure 4). The amount of rain is 

simulated to consistently increase among the 50-member average in winter and early spring in all four watersheds. In summer, 25 

PRMS simulates future average rainfall to decline, but the direction of change is inconsistent between individual members. 

The amount of snowmelt is expected to shift from high melt volume in March to a volume consistent throughout the winter. 

In November and in March-April, snowmelt declines are excepted through the entire 21st century. In January-February, future 

snowmelt is expected to increase before 2040 followed by snowmelt decreases in all watersheds except Credit River, which 

shows increases in snowmelt through the later part of the 21st century. Future ET will slightly increase in winter following by 30 

dramatic increases in spring period (March and April). In summer ET is simulated to slightly decrease on average but the 
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difference between the member with the highest and the member with the lowest ET amount is larger as compared to winter 

ET values. 

Figure 5 shows the 50-member future temporal evolution of temperature and precipitation for all four watersheds. Air 

temperature is shown to consistently increase for all months while the range of precipitation amounts projected by the 50 

members is higher. On average, simulated precipitation increases in November-April and decreases in June and September for 5 

most of the 21st Century. In July and August, precipitation is simulated to decrease in the near future but to recover by the end 

of the 21st Century. 

3.2 January-February streamflow projections variability  

Three streamflow classes and four weather classes were identified based on the minimal interclass Euclidean distance variance 

among all class number possibilities calculated by the Ascending Hierarchical Classification (AHC) (Figure 6). Three 10 

streamflow classes (HiQ, MoQ and LoQ for high, medium and low increase of streamflow) and four weather classes (HiPT, 

MoPT, LoPT and HiT) were identified. Three weather classes (HiPT, MoPT and LoPT) show a gradient from high to low 

increase for both precipitation and temperature while one weather class (HiT) show a high increase in temperature only (Figure 

6). 

The two classes were then aggregated to form a combination of streamflow and weather classes (Table 4). Seven out of the 15 

eight members from class HiPT show a large increase of streamflow (HiQHiPT) while one member show a moderate increase 

(MoQHiPT). Eight  of the 13 HiT members show a moderate increase of streamflow (MoQHiT) while four have a low increase 

(LoQHiT) and one has a high increase (HiQHiT) of streamflow. MoPT has the greatest number of members and consists of 

eight members that demonstrates low increases of streamflow (LoQMoPT) and eleven members demonstrating moderate 

increase (MoQMoPT). Lastly, the class LoPT consists of members with the lowest change of precipitation and temperature 20 

with three members that show moderate increases of streamflow (MoQLoPT) and eight members showing a low increase 

(LoQLoPT). The interclass variability is generally consistent between watersheds with the exception of Big Creek. In Big 

Creek the classes HiQHiT and LoQHiT show relatively low streamflow increases as compared to the other three watersheds 

(Table 4). 

Figure 7 shows scatter plots of averaged change of streamflow to average change of precipitation, temperature, snowmelt and 25 

rain between the historical period and simulated values for the 2040s period for all nine classes shown in Table 4. HiQHiPT 

and LoQLoPT classes are associated with the highest (lowest) increases of streamflow due to high (low) increases of snowmelt 

and rain (Figure 7). MoQLoPT also demonstrates a larger increase in simulated streamflow compared to LoQLoPT, which is 

likely due to a larger increase of precipitation amounts. The three weather classes containing HiT are associated with a large 

increase of temperature and a moderate increase of rain and snowmelt with the exception of LoQHiT which shows a low 30 

increase of snowmelt (Figure 7). Lastly, MoQMoPT and LoQMoPT demonstrate similar change of precipitation and 

temperature, but MoQMoPT clearly has a higher increase in both rainfall and snowmelt compared to LoQMoPT. The main 

visual difference between watersheds was that a lower increase of snowmelt is expected in Big Creek 
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3.3 Atmospheric circulation and streamflow projections 

The 50 members average change of temperature and precipitation between the historical period and the 2040’s is shown in 

Figure 8. An increase of air temperature at 850hPa (T850) and geopotential height at 500hPa (Z500) is expected to occur 

within the entire domain with a stronger gradient closer to the Arctic (Figure 8c). precipitation is also simulated to increase by 

the 2040s throughout the domain while SLP is expected to decrease (Figure 8d). In the region close to the Great Lakes, the 5 

magnitude of warming and variability between members is higher on the northern shorelines as compared to the open water 

and shorelines south of the Lakes (Figure 8a). Precipitation increases is also projected to be higher on land and on the east side 

of the Great Lakes and toward the Atlantic coast (Figure 8b and 8d). 

The internal contribution of each member of CanESM2-LE to the change of climate variables was averaged for each class 

(Figure 9). The class HiQHiPT is projected to be associated with positive temperature, precipitation, and southwesterly winds 10 

change anomalies between high pressure anomalies in the east and low pressure anomalies in west side of the domain (Figure 

9a and 9h). LoQLoPT has opposite pressure gradient anomalies and is the only class that show negative increase of 

precipitation and temperature anomalies occurring simultaneously (Figure 9g and 9n). LoQMoPT demonstrates a similar 

pattern to LoQLoPT, but the negative pressure anomalies is attenuated, and precipitation increases is higher (Figure 9e and 

9l). MoQHiT and LoQHiT are characterized by positive temperature and pressure change anomalies over southern Ontario, 15 

while MoQMoPT and MoQLoPT has an opposite pattern. 

3.4 Antecedant conditions and streamflow 

Alternative factors are examined that may help to explain the January-February evolution of streamflow between the historical 

and the future period. Figure 10 shows the change of precipitation amount in November-December, groundwater flow in 

January-February and amount of snowpack water equivalent for the first and the last day of the January-February period. 20 

November-December precipitation are expecting to increase for all classes but a large intraclass and interclass variability is 

shown. The classes HiHiPT, HiHiT, MoHiT and the two LoPT weather classes show visually a higher increase of November-

December precipitation as compared to the other classes. The amount of snowpack water equivalent at the beginning of the 

January-February period is expected to decrease with low variability between the classes but a large intra-class variability 

(Figure 10). The snowpack at the end of January-February is expected to decrease significantly for all classes with a low 25 

intraclass variability. The groundwater flow shows visually a large difference between watersheds with a higher increase in 

Credit River and Grand River compared to Big Creek and Thames River. 
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4 Discussion 

4.1 Historical simulations  

The observed seasonal cycle of streamflow was visually well reproduced by the simulated CTL and ensemble data for the 

historical period (1961-1990) (Figure 3). However, the simulated streamflow from CTL and the ensemble overestimated 

streamflow between November and February in the Thames and Big Creek watersheds. The overestimation is stronger in 5 

January for the ensemble which can be attributed to an overestimation of precipitation (Figure 5). Winter overestimation were 

previously reported for the Grand River watershed  (Erler et al., 2018) and was attributed to the representation of the winter 

processes and the monthly resolution. In our study the control simulations performed very well in Grand River suggesting that 

the hydrological model structure is not responsible for the discrepancies. The quality of CanGRD observations could be 

incriminated but CanGRD observations are very consistent between watersheds in January-February. However, precipitation 10 

amounts are higher in Big Creek and Thames River in December (Figure 5) and groundwater flows are not increasing as much 

as in the Grand River watershed in January-February (Figure 10). This result suggests a January-February overestimation of 

the simulated groundwater flow in the historical period to adjust to the excess of precipitation amount in December. This 

hypothesis is strengthened by the groundwater discharge parameter Gwflow_coef which is higher in Thames and Big Creek 

river (Table 2). These results highlight the cascade of uncertainties in hydrological modelling and the need of diversify the 15 

climate data and the number of watersheds that are used in the projections of streamflow. 

4.2 Increase of streamflow amplified or attenuated by Z500 anomalies 

Despite the discrepancies highlighted in the last section, the results show a clear increase of streamflow in January-February 

(Figure 3) which has been previously simulated for other watersheds in the Great Lakes region (Byun et al., 2019; Erler et al., 

2018; Grillakis et al., 2011; Kuo et al., 2017). January-February streamflow increases are likely caused by temperature and 20 

precipitation increases (Figure 5 and 8) that causes rain and snowmelt amounts to rise (Figure 4). (Grillakis et al., 2011) used 

several hydrological models in a small catchment close to Lake Ontario and reported that streamflow increases are due to 

rainfall increases in January and snowmelt increases in February. In our study we found an increase of rain and snowmelt for 

both months (Figure 4). The future increase of January-February rain and snowmelt is due to a warming (Figure 8) that have 

a global feature (Hoegh-Guldberg et al., 2018). Warming amplitudes projected for southern Ontario with CanESM2-LE are 25 

conformed to the CMIP5 multi-model projections with the same RCP8.5 scenario (Zhang et al., 2019). January-February 

precipitation increases are likely to occur in a large part of the domain (Figure 8) which also conforms to other climate models 

(Zhang et al., 2019). Precipitation increase between Lake Ontario/Erie and the East coast (Figure 8) is not expected by the 

multi-model projections and is likely inherent to CanESM2-LE. This precipitation pattern is probably associated to stronger 

winds from the east coast (Atlantic Ocean) due to a higher pressure decrease on land (Figure 8). 30 

The 50 members produce a variable increase of streamflow (Figure 3) which is likely due to the variability in atmospheric 

circulation (Figure 9). 14% of the ensemble shows a high increase of streamflow simultaneously with high geopotential height 
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anomalies near the Atlantic Ocean (Table 4 and Figure 9a and 9h). This geopotential height pattern has been previously found 

to be responsible for increased precipitation and temperature in the Great Lakes region (Mallakpour and Villarini, 2016; 

Thiombiano et al., 2017), thereby increasing the streamflow and high flow events (Bradbury et al., 2002; Mallakpour and 

Villarini, 2016). 14% of the ensemble corresponds to the opposite geopotential pattern attenuating streamflow increase due to 

a lowered warming and lowered precipitation (Table 4, Figure 7 and Figure 9g and 9n). 6% of the ensemble also shows a low 5 

warming but a moderate increase in precipitation and snowmelt (Figure 7 and 9f and 9m) which is likely due to the north-west 

wind anomalies that bring more snow into the region (Figure 9f and 9m). Another 16% of the ensemble shows a moderate 

increase in streamflow which may be driven by high-geopotential height anomalies on the Great Lakes (Figure 9b and 9i). 

This pattern drives moderate increases of snowmelt and the rain-to-snow ratio associated with strong warming (Figure 7, 9b 

and 9i). Correspondence between high geopotential height and high temperature on the Great Lakes in winter have been 10 

previously reported (Ning and Bradley, 2015). 

4.3 Consistency in the weather classes 

The weather classes that show high (HiPT), moderate (MoPT) and low (LoPT) warming and wetting trends or high warming-

only trend (HiT) (Figure 7), are clearly linked to atmospheric circulation patterns (Figure 9). However, the classes shown in 

Figure 9 are composed of members that have their own atmospheric variability signatures. Z500 anomalies associated with 15 

each member were investigated to verify the consistency among the members of the same weather class (Figure 11). 

The members that comprise classes HiPT show consistently high Z500 anomalies in the east coast (six out of eight members) 

(Figure 11). The remaining two members (#13 and #48) show higher Z500 anomalies north of the Great Lakes. Eight members 

of the class LoPT show low Z500 in the east coast but two members (#1 and #10) show low pressure in the northern side of 

the Great Lakes. HiT show generally high-pressure systems in the region of Great Lakes even though four of the thirteen 20 

members depict a different pattern (#2, #20, #31 and #47). Members in the MoPT class show low level pressure in the vicinity 

of the Great Lakes (Figure 9) but a high diversity in circulation patterns were observed (Figure 11). For the MoPT members, 

pressure gradients are generally lower (Figure 11) which indicates conditions closer to the global signal. This suggests there 

is greater impact of global or continental patterns on local weather conditions for the MoPT class members. Despite the 

differences between members of the same weather class, this study gives a good approximation of what to expect in term of 25 

the possible weather conditional changes and the associated regional atmospheric evolution. 

4.4 Lag between atmospheric circulation shifts, local climate conditions and streamflow 

Interclass variability in January-February streamflow increases is likely associated with temperature and precipitation 

variability. The weather class HiPT was found to be associated to high streamflow increases with  MoQHiPT showing the 

lowest but still higher than average streamflow increase (Table 4). The weather class LoPT shows lower streamflow increase 30 

even though few members (class MoQLoPT) are associated with higher increase due to more precipitation and snowfall (Figure 

7). However, within HiT and MoPT weather classes, the modulation of January-February weather conditions between the 
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historical period and 2040’s translates to a large range of streamflow projections. Four of the thirteen HiT members and eight 

of the nineteen MoPT members demonstrate lower increases of streamflow (Table 4). These discrepancies between the 

evolution of weather conditions and streamflow are possibly due to the timing at which the change of temperature and 

precipitation occur. To account for the routing delay between the runoff and streamflow at the outlet, our analyses use a lag-

time of 6 days between the precipitation/temperatures and the streamflow. Any remaining delay between weather conditions 5 

and streamflow could occur due to snow accumulation/melting and groundwater recharge/discharge. The differences between 

the MoPT classes and the HiT classes are very low in term of the starting snowpack volume (Figure 10) which suggests there 

is a low impact of late fall snowpack volume change on January-February streamflow change. However, the snowpack 

remaining at the end of January-February is decreasing at a higher rate for MoQMoPT class as compared to LoQMoPT (Figure 

10) which may be associated with a higher increase in snowmelt (Figure 7). These two classes show very similar change of 10 

temperature and precipitation influence on streamflow (Figure 7) suggesting that weather conditions obscure intra-seasonal 

variability change. Indeed, a simultaneous or decoupled change in precipitation and temperature may differently impact the 

rain to snow ratio, the snowfall or the snowmelt. Variance within the HiT classes may be from similar processes. Despite 

similar change in temperature and precipitation, the decrease of remaining snowpack at the end of the period is weaker for 

LoQHiT compared to MoQHiT (Figure 10). The lower streamflow in LoQHiT may also be associated with a lower increase 15 

of groundwater flow due to a lower increase of November-December precipitation change (Figure 10). A further analysis 

shows a correlation between the 50 members November-December change of precipitations and the January-February change 

of groundwater flow close to 0.7 in each watershed. This correlation suggests an enhancement or attenuation of the streamflow 

in January-February due to the late-fall amount of precipitation. These results emphasize the implication of late fall 

atmospheric circulation for the evolution of winter streamflow. A late fall atmospheric circulation similar to HiT, favouring 20 

dry anomalies, will not have the same implication for winter streamflow compared to a pattern bringing rain. Similarly, an 

increase in snowfall, following by a cold period is expecting to delay the snowmelt and flow volume to early spring. The 

atmospheric patterns can also occur successively several times in the same month, which is expected to impact greatly the 

streamflow, especially high flows. 

4.5 Spatial variability of streamflow change modulation 25 

The changes in the amount of rain and snowmelt between the historical period and the 2040’s are visually similar for three of 

the watersheds (Figure 7). The Big Creek watershed is distinctly different as it shows a lower snowmelt contribution to 

streamflow (Figure 7). This suggests that there will be less snow available to be melted in this watershed as it is situated in the 

southern part of the study area near Lake Erie and experiences the mildest winters (Figure 5). In this watershed, the snowmelt 

volume is expected to increase until the 2040s before decreasing during the second half of the 21th Century (Figure 3). The 30 

same trend is expected for Thames River because of its southerly latitude and lower elevation (Figure 3). In Grand River the 

snowmelt is expected to stabilize after the 2040s. In the Credit River watershed, the snowmelt may continue to increase after 

the 2040s. Additionally, the increase in snowmelt is expected to occur only in January for Thames River and Big Creek 
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watersheds while the increase will be stronger in February for Grand and Credit River. A similar South-North pattern is 

observed in previous studies. A high increase of streamflow in December and January followed by a decrease of streamflow 

in February was simulated for the  Canard watershed near Lake Erie (Rahman et al., 2012) while this shift is expected to occur 

between February and March further north near Lake Ontario (Grillakis et al., 2011; Sultana and Coulibaly, 2011) or Lake 

Simcoe (Kuo et al., 2017; Oni et al., 2014). These results suggest that the peak in snowpack depletion will occur more and 5 

more early in the future, increasing strongly the winter streamflow in the first decades. Towards the end of the 21st century, 

the increase of streamflow will slow down due to the warming reducing the snowpack. This process will occur first in the 

warmest watersheds, classically situated further south, in low lands and close to the Great Lakes. However, similar to previous 

studies in southern Ontario, the reduced snowpack is not projected to decrease the streamflow in winter because the winter 

precipitation are also projected to increase as suggested in the majority of the climate models (Zhang et al., 2019). 10 

5 Conclusion  

This study used a 50-member ensemble of regional climate data, forced with the IPCC RCP8.5 scenario, as input in the PRMS 

hydrological model to show how the internal variability of climate is transferred to the near future winter (January-February) 

projections of streamflow in four diverse watersheds in southern Ontario. An ascending hierarchical classification was used to 

construct classes of similar change of temperatures/precipitations/streamflow and define streamflow change probabilities and 15 

associated regional atmospheric drivers. First, the results showed that all members of the ensemble are associated with a 

January-February increase in streamflow due to a strong warming trend and an increase in precipitation projected by the 

RCP8.5 scenario. Second, the results suggested that the future increase of temperature and precipitation in January-February 

will be modulated by the internal variability of climate with implication for hydrological processes. We projected: 

 20 

(i) 14% of the ensemble showing a large (small) increase in the near future streamflow due to the modulation of rain and 

snowmelt associated with the development of high (low) pressure anomalies in the east coast of North America. 

(ii) 16% of the ensemble showing a moderate streamflow enhancement due to an increase in the rainfall to snowfall ratio 

associated with warmer conditions driven by high pressure over the Great Lakes region.  

(iii) 38% of the ensemble showing a change of temperature and precipitations close to the 50-members average with a small 25 

contribution of internal variability of climate to the long-term trends of temperature and precipitation in southern Ontario. 

 

The evolution of streamflow in January-February will be also modulated by inter-member variability of groundwater recharge 

from November-December precipitation and by the evolution of snow accumulation/melting due to the timing of the increase 

of temperature and precipitation.  30 
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This study focussed on average change while the intra-seasonal variability of atmospheric circulation may greatly impact the 

streamflow and especial high-flows due to day to day variability. The use of the same regional ensemble together with a 

classification of daily atmospheric fields would be useful to assess the future projections of high-flows in the region. The 

results of this study are based on a single regional ensemble and are therefore subject to the internal characteristics of the global 

climate model. Future studies could use other global climate models and different scenarios and can be extended to the end of 5 

the 21st century. Other hydrological models could also be used to increase the confidence regarding the hydrological processes 

projections. This work is important to assess the natural variability of the hydrological projections and help the society to be 

prepared for large range of possible changes in flooding regimes in future. 
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Figure 1: Location map of the four studied watersheds in Southern Ontario. 
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Figure 2: Daily observed (OBS) and simulated (CTL) streamflow during the validation period (2009-2013). 
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Figure 3: 50-members range and average streamflow and number of high-flows for the historical and two future periods. 
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Figure 4: 50-members range and average rain, snowmelt and actual ET amounts for the historical and two future periods. 
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Figure 5: 50-members range and average temperature and precipitation amounts for the historical and two future periods. 
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Figure 6 Left: Results of the Ascending Hierarchical Classification (AHC) for the normalized change of streamflow (Q) (above) and 

normalized change of average Temperature (T) and Precipitation (P)  (below). Colored numbers represent Q classes.  Right: 4-

watersheds average change of streamflow (Q) (Colors) with respect to average change of P and T. Large hollow circles represent the 

4 weather classes. 5 
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Figure 7: Change of streamflow (Colors) with respect to changes of daily temperature and precipitation amount (above) and 

snowmelt and rain amounts (Below) between the historical and the 2040’s future period in January-February. 
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Figure 8. 50-members ensemble average change of atmospheric conditions between the historical and the 2040’s period in January-

february for a. CRCM5-LE average temperature (shade) and standard deviation (black lines), b. CRCM5-LE average precipitation 

(shade) and standard deviation (black lines), c. CanESM2-LE T850 (shade) and Z500 (black lines) and d. CanESM2-LE precipitation 

(shade), SLP (blue lines) and wind (vectors). 5 
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Figure 9: a-g: Classes averaged internal contribution of a-g T850 (shade) and Z500 (black lines, in intervals of 1m) and h-n: 

Precipitations (shade), SLP (lines, in intervals of 0.1Pa) and wind (vectors) to the 50-members average change between the historical 

and the 2040’s period in January-February. 5 
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Figure 10: Evolution between the historical and 2040's period for first row: precipitation amount (mm) in November-December, 

second row: snowpack amount (mm water-equivalent) in December 25th, third row: Groundwater flow in January-February and 

fourth row: snowpack amount (mm water-equivalent) in February 23th. 5 
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Figure 11: Internal change of T850 (shade) and Z500 (black lines, interval 2m) between the historical and the 2040’s period in 

January-February for each member. 
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Table 1: Geomorphic, land use, and soil characteristics of the four watersheds examined in this study 

 Size 

(km²) 

Altitude 

(m) 

Land use (%) Soil type (%) 

Barren Forest Shrub Crops/Grass Sand Loam Clay 

Big Creek 571 179-336 1.9 17 0 81.1 78.6 6.4 15 

Grand River 5091 178-531 7.1 11.9 0 80.9 30.4 31.6 38 

Thames River 3061 215-423 6.9 5.4 0 87.7 14 46.7 39.4 

Credit River 646 190-521 6.6 31.7 0 61.8 42.5 49.1 8.4 
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Table 2 Parameter values after calibration (C= Calibrated, GIS= estimated by arcpy_GSFLOW) 

Parameter Unit Big  

Creek  
Grand  

River 
Thames 

River 

Credit  

River 

Spatial 

and 

temporal 

Source 

dday_intcp Degrees 

days 

-27 – -10 -26 – -9 -26 – -11 -26 – -9 monthly C 

dday_slope Degrees 

days / °F 

0.38 – 0.41 0.38 – 0.42 0.38 – 0.42 0.38 – 0.42 monthly C 

tmax_index °F 29.3 – 80 31.2 – 78 29.3 – 80 26.5 – 78.3 monthly C 

jh_coef per °F 0.005 – 0.021 0.005 – 0.02 0.005 – 0.021 0.003 – 0.02 monthly C 

Jh_coef_hru per °F 22 – 22.9 20.4 – 21.4 20.7 – 21.3 20.4 – 21.5 HRU GIS 

Adjmix_rain Decimal 

fraction 

0 0 1 0 One C 

Cecn_coef Calories 

per °C > 0 

20 15 10 0 One C 

emis_noppt Decimal 

fraction 

0.757 0.757 0.757 0.757 One C 

Fastcoef_lin Fraction / 

day 

0.001 0.2 0.1 0.2 One C 

Fastcoef_sq none 0.005 0.1 0.4 0.5 One C 

Freeh2o_cap inches 0.07 0.01 0.01 0.01 One C 

Gwflow_coef Fraction / 

day 

0.01 0.05 0.06 0.03 One C 

Potet_sublim Decimal 

fraction 

0.1 0.75 0.1 0.6 One 

 

C 

Smidx_coef Decimal 

fraction 

0.0001 0.05 0.04 0.001 One C 

Smidx_exp 1 / inch 0.2 0.2 0.2 0.3 One C 

Soil_rechr_max inches 0.24 – 1.81 0.24 – 1.84 0.2 – 1.9 0.71– 5.5 HRU GIS+C 

Soil_moist_max inches 1.2 – 9.1 0.79 – 6.12 0.8 – 6.3 0.79 – 6.1 HRU GIS 

Tmax_allrain °F 34 35 33 36 One C 

hru_percent_ 

imperv 

Decimal 

fraction 

0.1 – 0.6 0.1 – 0.6 0.1 – 0.6 0.1 – 0.6 HRU GIS 

Carea_max Decimal 

fraction 

0.4 – 0.9 0.4 – 0.9 0.4 – 0.9 0.4 – 0.9 HRU GIS 

Ssr2gw_exp none 3 1 1.5 3 One C 

Ssr2gw_rate Fraction / 

day 

0.30 – 0.95 0.02 – 0.66 0.01 – 0.26 0.02 – 0.47 HRU GIS+C 

Slowcoef_sq none 0.0004 – 7.6 0 – 133 0.002 – 1.97 0 – 11.9 HRU GIS+C 

Slowcoef_lin Fraction / 

day 

0.02 – 12.3 0 – 0.07 0.004 –0.71 0 – 0.33 HRU GIS+C 

K_coef hours 2.8 – 8.4 1.6 – 3.2 1.78 – 3.56 1.35 – 2.68 Segment GIS+C 

Pref_flow_den Decimal 

Fraction 

0.1 0.1 0.1 0.2 One C 
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Rain_adj Decimal 

Fraction 

0.77 – 0.86 0.69 – 1.12 0.92 – 1.04 0.87 – 0.94 HRU 

Monthly 

GIS 

Snow_adj Decimal 

Fraction 

0.96 – 1.06 0.69 – 1.12 0.92 – 1.04 0.72 – 0.76 HRU 

Monthly 

GIS 
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Table 3: Efficiency of PRMS model for best fit parameters 

 Calibration Validation 

NSE PBIAS NSE PBIAS 

Big Creek 0.75 1.8 0.74 6.7 
Grand River 0.71 -5 0.69 1.7 

Thames River 0.72 -10.8 0.72 -5.3 

Credit River 0.71 -0.1 0.65 18 
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Table 4: Classes members, percentage of the total member in the class and average January-February increase of streamflow 

between historical and 2040’s period. 

Name Members % ∆Q (mm/day) 

Big  

Creek 

Grand 

River 

Thames 

River 

Credit  

River 

HiQHiPT 5,15,22,27, 

42,46,48 

14% 0.43 (0.09) 0.55 (0.10) 0.73 (0.11) 0.43 (0.09) 

HiQHiT 6 2% 0.32  

 

0.46 0.57 0.35  

MoQHiPT 13 2% 0.33 0.40 0.56 0.29  

MoQHiT 2,11,14,17, 

20,32,47,50 

16% 0.29 (0.05) 0.37 (0.03) 0.49 (0.08) 0.27 (0.02) 

MoQMoPT 12,16,21,23,26,28, 

30,34,36,43,46 

22% 0.25 (0.05) 0.36 (0.04) 0.49 (0.06) 0.26 (0.04) 

MoQLoPT 1,19,25 6% 0.25 (0.02) 0.36 (0.02) 0.44 (0.02) 0.28 (0.02) 

LoQHiT 3,31,39,45 8% 0.15 (0.03) 0.29 (0.02) 0.38 (0.02) 0.19 (0.04) 

LoQMoPT 4,8,24,33, 

37, 38,41,49 

16% 0.19 (0.06) 0.25 (0.04) 0.36 (0.05) 0.17 (0.06) 

LoQLoPT 7,9,10,18, 

29,35,40 

14% 0.12 (0.11) 0.23 (0.06) 0.30 (0.10) 0.16 (0.05) 
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