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Abstract. The spatio-temporal dynamics in subsurface hydrological flows over a long time window are usually quantified

through a network of monitoring wells; however, such observations often are spatially sparse and temporal gaps exist due

to poor quality or instrument failure. In this study, we explore the ability of recurrent neural networks to fill gaps in a spa-

tially distributed time-series dataset from a well network that monitors the dynamic and heterogeneous hydrologic exchanges

between the Columbia River and its adjacent groundwater aquifer at the U.S. Department of Energy’s Hanford site. This 10-5

year-long dataset contains hourly temperature, specific conductance, and groundwater table elevation measurements from 42

wells with various lengths of gaps. We employ a long short-term memory (LSTM) model to capture the temporal variations in

the observed system behaviors for gap filling. The performance of the LSTM-based gap filling method was evaluated against

a traditional autoregressive integrated moving average (ARIMA) method in terms of both the error statistics and how well

they capture the temporal patterns in river corridor wells that exhibit various dynamics signatures. Our study demonstrates that10

the ARIMA models yield better average error statistics, yet they tend to have larger errors during time windows with abrupt

changes or high-frequency (daily and subdaily) variations. The LSTM-based models are found to excel in capturing both the

high-frequency and low-frequency (monthly and seasonal) dynamics, although the inclusion of high-frequency fluctuations

may also lead to overly dynamic predictions in time windows that lacks such fluctuations. The LSTM is able to take advantage

of the spatial information from neighboring wells to improve the gap filling accuracy, especially for long gaps in system states15

that vary at subdaily scales. Despite the fact that LSTM models require substantial training data and have limited extrapolation

power beyond the conditions represented in the training data, they afford the great flexibility to account for the spatial and tem-

poral correlations and nonlinearity in data without a-priori assumptions. Thus, LSTMs provide effective alternatives to fill in

data gaps in spatially distributed time-series observations characterized by multiple dominant frequencies of variability, which

are essential for advancing our understanding of dynamic complex systems.20
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1 Introduction

Long-term hydrological monitoring using distributed well networks is of critical importance for understanding how ecosystems

respond to chronic or extreme perturbations, as well as for informing policies and decisions related to natural resources and

environmental issues (Wett et al., 2002; Taylor and Alley, 2002; Grant and Dietrich, 2017). One of the most common methods

to collect hydrologic and chemistry data in groundwater is through wells (Güler and Thyne, 2004; Strobl and Robillard, 2008;5

Lin et al., 2012); however, most well data have temporal gaps due to instrument failure or poor quality of measurements for

numerous reasons. These data gaps degrade the quality of the dataset and increase the uncertainty in the spatial and temporal

patterns that are derived from them. While gap filling is essential for developing understanding of dynamic system behaviours

and for use in creating continuous, internally consistent boundary conditions for numerical models, one outstanding challenge

is to capture the nonstationarity in data.10

Various statistical methods have been developed to fill gaps in spatio-temporal datasets, with the most commonly used being

the autoregressive integrated moving average (ARIMA) method (Han et al., 2010; Zhang, 2003). For any given spatial location,

ARIMA uses temporal autocorrelations to predict unobserved data points in a time series. Spatio-temporal autocorrelations

can be considered by using multivariate ARIMA and space-time autoregressive models (Kamarianakis and Prastacos, 2003;

Wikle et al., 1998; Kamarianakis and Prastacos, 2005); however, ARIMA cannot capture nonlinear trends because it assumes15

a linear dependence between adjacent observations (Faruk, 2010; Valenzuela et al., 2008; Ho et al., 2002). In addition, all

existing space-time ARIMA models assume fixed global autoregressive and moving average terms, which would fail to capture

evolving dynamics in highly dynamic systems (Pfeifer and Deutrch, 1980; Griffith, 2010; Cheng et al., 2012, 2014). Spectral-

based methods, such as singular spectrum analysis, maximum entropy method, and Lomb-Scargle periodogram, have been

used to account for nonlinear trends while filling in gaps in spatio-temporal datasets (Ghil et al., 2002; Hocke and Kämpfer,20

2008; Kondrashov and Ghil, 2006). However, these methods use a few optimal spatial or temporal modes occurring at low

frequencies to predict the missing values, with the other higher frequency components discarded as noise, which may lead

to reduced accuracy of the statistical models in fitting the observations and in predicting missing values (Kondrashov et al.,

2010; Wang et al., 2012). Kriging and maximum likelihood estimation used in spatial and spatio-temporal gap filling often

face computational challenges in computing the covariance matrix of the data vector, which can be quite large (Katzfuss and25

Cressie, 2012; Eidsvik et al., 2014). Other nonlinear methods have been explored with some success, including expectation-

maximization or Bayesian probabilistic inference including hierarchical models, Gaussian process, and Markov chain Monte

Carlo; the spatial and temporal correlations are most effectively captured by using models that build dependencies in different

stages or hierarchies (Calculli et al., 2015; Banerjee et al., 2014; Datta et al., 2016; Finley et al., 2013; Stroud et al., 2017).

In general, the expectation-maximization algorithm and Bayesian-based methods are sensitive to the choice of initial values30

and prior distributions in parameter space (Katzfuss and Cressie, 2011, 2012). Moreover, the prior distributions with all the

associated parameters in both the spatial and temporal domains need to be specified, which becomes increasingly difficult

in more complex systems. Empirical Orthogonal Functions (EOF) related interpolation methods, such as least squares EOF

(LSEOF), data interpolation EOF (DINEOF), and recursively subtracted EOF (REEOF), are widely used to fill in missing data
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from geophysical fields such as clouds in sea surface temperature datasets or other satellite-based images with regular gridded

domains (Beckers and Rixen, 2003; Beckers et al., 2006; Alvera-Azcárate et al., 2016). However, the requirement of gridded

data by the EOF methods limits their use in filling data gaps in irregularly spaced monitoring networks.

Deep neural networks (DNNs) (Schmidhuber, 2015) are data-driven tools that, in principle, could provide a powerful way

of extracting the nonlinear spatio-temporal patterns hidden in the distributed time-series data without knowing their explicit5

forms (Längkvist et al., 2014). They are increasingly being used in geoscience domains to extract patterns and insights from

the streams of geospatial data and to transform the understanding of complex systems (Reichstein et al., 2019; Shen, 2018;

Sun, 2018; Sun et al., 2019; Gentine et al., 2018). The umbrella term of DNN contains numerous categories of architectures,

depending on the problem at hand. For the analyses in this paper, which are focused on filling gaps in time-series data, a

natural choice of the architecture is recurrent neural networks (RNNs) (JORDAN, 1986). RNNs take sequences (e.g., time10

series) as input and output single values or sequences that follow. They are designed to use information about previous events

to make predictions about future events, essentially by letting the model “remember.” However, for longer sequences of data,

RNNs have been shown to lose memory from previously trained data, i.e., they “forget” (Hochreiter et al., 2001). The earlier

information becomes exponentially less impactful for the prediction as the size of the sequence increases. Long short-term

memory (LSTM) networks are variations of RNNs that are explicitly designed to avoid this problem by using memory cells to15

retain information about relevant past events (Hochreiter and Schmidhuber, 1997). RNNs and LSTMs have been successfully

applied to text prediction (Graves, 2013), text translation (Wu et al., 2016), speech recognition (Graves et al., 2013), and image

captioning (You et al., 2016). Recently, the applications of RNNs and LSTMs are also emerging in hydrology. For example,

Kratzert et al. (2018) used LSTMs to predict watershed runoff from meteorological observations, Zhang et al. (2018) used

LSTMs for predicting sewer overflow events from rainfall intensity and sewer water level measurements, and Fang et al.20

(2017) used LSTMs to predict soil moisture with high fidelity.

Our study aims to evaluate the potential of using the LSTM models for filling gaps in spatio-temporal time series data

collected from a distributed network. The LSTM-based gap filling method is tested using datasets collected to understand the

interactions between a regulated river and a contaminated groundwater aquifer. We treat the gap filling as a forecasting problem,

i.e., we use the historical data as input to predict the missing values in the data gaps. The performance of the LSTM-based gap25

filling method is compared with traditional time series approaches (i.e., ARIMA) to identify situations in which LSTM models

outperform or under-perform the ARIMA models.

2 Study Site and Data Description

A 10-year (2008–2018) spatio-temporal dataset was collected from a network of groundwater wells that monitor temperature

(Water conductivity and temperature probe CS547A by Campbell Scientific), specific conductance (SpC) (Water conductivity30

and temperature probe CS547A by Campbell Scientific), and water-table elevation (stainless-steel pressure transducer CS451

by the Campbell Scientific) at the 300 Area of the U.S. Department of Energy Hanford site, located in southeastern Washington

State. The groundwater well network was originally built to monitor the attenuation of legacy contaminants. The groundwater
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aquifer at our study site is composed of two distinct geologic formations: a highly permeable formation (Hanford formation,

consisting of coarse gravelly sand and sandy gravel) underlain by a much less permeable formation (the Ringold Formation,

consisting of silt and fine sand). The dominant hydrogeologic features of the aquifer are defined by the interface between the

Hanford and Ringold formations and the heterogeneity within the Hanford formation (Chen et al., 2012, 2013).

The intrusion of river water into the adjacent groundwater aquifer causes mixing of two water bodies with distinct geo-5

chemistry and stimulates biogeochemical reactions at the interface. The river water has lower SpC (0.1–0.12 mS/cm) than the

groundwater (averaging ∼ 0.4 mS/cm). Groundwater has a nearly constant temperature (16–17◦C) as opposed to seasonally

varying river temperature (3–22◦C). The highly heterogeneous coarse-textured aquifer (Zachara et al., 2013) interacts with

dynamic river stages to create complex river intrusion and retreat pathways and dynamics. The time series of multi-year SpC

and temperature observations at the selected set of wells in the network have demonstrated these complicated processes of10

river water intrusion into our study site (Figure 1). Wells near the river shoreline (e.g., wells 1-1, 1-10A, 2-2, and 2-3) tend

to be strongly affected by river water intrusion in spring and summer. As such, the dynamic patterns of SpC and temperature

correspond well with river stage fluctuations, specifically that SpC decreases and temperature increases with increasing river

stage. Fluctuations of SpC in well 2-2 appear to be stronger and at higher frequency than in other wells, likely indicating its

higher connectivity with the river. For wells that are farther inland (e.g., well 1-15), on the other hand, temperatures remain15

consistently within the groundwater temperature range and SpC has three noticeable dips (dropping from 0.5 to 0.4 mS/cm

range), coinciding with the high river stages in years 2011, 2012, and 2017, which are featured with higher peak river stages

than other years such that the river water was able to intrude further into the groundwater aquifer. In wells located at an inter-

mediate distance from the river, such as Well 2-5, the intrusion of river water is evident in most of the years except in low-flow

years such as 2009 and 2015, during which both SpC and temperature remain nearly unchanged.20

The understanding we developed from earlier studies is that the physical heterogeneity contributes to the different response

behaviors at different locations while the river stage dynamics lead to multi-frequency dynamics in those responses. The sea-

sonal and annual variations are driven by natural climatic forcing (Amaranto et al., 2019, 2018), whereas the higher-frequency

(i.e., daily and sub-daily) fluctuations are primarily induced by operations of the upstream hydroelectric dam operations to

meet various demands of human society (Song et al., 2018). Our system is representative of many dam-regulated gravel-bed25

rivers across the world, where dam operations, as a typical anthropologenic activity, have significantly altered the hydrologic

exchanges between river water and groundwater, as well as the associated thermal and biogeochemical processes (Song et al.,

2018; Shuai et al., 2019; Zachara et al., 2020). Note that the multi-frequency variations in data characterize the dynamic features

of data, which could exist in both short-term and long-term time series data as a result of short-term or long-term monitoring

effort.30

To understand the multi-frequency variations of the river water and groundwater mixing in each well at the study site, we

perform spectral analysis on multi-year SpC observations at each selected well using a discrete wavelet transform (DWT). The

DWT is widely used for time–frequency analysis of time series and relies on a "mother wavelet", which is chosen to be the

Morlet wavelet (Grossmann and Morlet, 1984) to deal with the time-varying frequency and amplitude in time-series data at

this site (Stockwell et al., 1996; Grinsted et al., 2004). We illustrate the Wavelet Power Spectrum (WPS) in log scale and its35
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Figure 1. Groundwater monitoring well network at the 300 Area of the Hanford site and the monitoring data at select wells. Each well

represented by a dot is instrumented to measure groundwater elevation, temperature, and SpC. The wells selected for this study are marked

with red dots with well names. The three variables monitored in wells and in the river are shown in time-series plots with blue (water

elevation), black (SpC), and red (temperature) lines. Base map @Google Maps.

normalized global power spectrum (average WPS over the time domain) for the multi-year SpC time series in the first two

columns of Figure 2. Data gaps are shown as blank regions in Figure 2; examples include early year 2009 at well 1-1, the

beginning of year 2011 at well 1-10A, and the later part of year 2012 at well 2-2. The amplitude of WPS represents the relative

importance of variation at a given frequency compared to the variations at other frequencies across the spectrum. At wells 1-1,

1-10A, 2-3, 2-5, and 2-2, the strong intensities of SpC signals appear at the half-year and yearly frequencies; however, well5

1-15 has a different pattern in that most of its high intensities are below the 256-hour frequency. The averaged WPS further

shows the contrast in behaviors: wells 1-1, 1-10A, 2-3, and 2-5 have a dominant frequency at half a year; well 2-2 has multiple

dominant frequencies at daily, monthly, and seasonal scales; while well 1-15 has similar intensities at the half-year and hourly

scales. Applying this information to the task at hand, we hypothesize that gap filling at well 2-2 could be more challenging due

to such mixture of dynamics signatures.10
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Figure 2. WPS analysis of SpC at each well from 2008 to 2018. The first column is the spectrogram (in log10 scale) of SpC in each well; the

second column is the averaged WPS; the third column is the coherence between SpC in each well and the river stage; and the fourth column

is the averaged coherence with p < 0.05 values indicated in red.

Since the dynamics of the system are driven by the river stage, we perform magnitude-squared wavelet coherence analysis

via the Morlet wavelet to reveal dynamic correlations between the SpC and river stage time series (Grinsted et al., 2004; Vacha5

and Barunik, 2012). Wavelet coherence in the time-frequency domain is plotted in the third column in Figure 2 and the average

coherence is plotted in the fourth column; statistically significant values at the 95th percent confidence interval are indicated

with red points. A larger coherence at a given frequency indicates a stronger correlation at that frequency between the SpC at

a well and the river stage. We consider these two variables highly correlated when the coherence is larger than 0.7 (shown in

green to red colors in Coherence plots). We found that such high correlations exist at multiple frequencies, from subdaily to10

daily to yearly, at all the wells close to the river (e.g., 1-1, 1-10A, 2-2, and 2-3), while the higher correlation regimes in wells

farther from the river (e.g., 1-15 and 2-5) are shifted towards longer periods at semi-annual and annual frequencies and less

persistent in time.

As can be seen in Figure 2, many of the wells have long data gaps, which have unknown effects on our ability to estimate

dynamics from the wavelet spectra. As such, gap filling is needed to infer observations and guide modeling of the underlying15

system. Figure 3 provides a summary of gap lengths for the overall network of monitoring wells. The majority of the gap

lengths of all the three monitored variables are less than 50 hours. Therefore, in our investigations we explore the ability of

the methods in filling gaps of 1-, 6-, 12-, 24-, 48-, and 72-hour lengths using hourly data over an input window to capture the

multi-frequency fluctuations.

Figure 3. Histograms of gap lengths for each monitored variable, aggregated across all wells in the monitoring network during 2008-2018.
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3 Gap-Filling Methods

In this section, we describe two methods we implemented to fill gaps of various lengths in SpC measurements at selected wells:

an LSTM model and the traditional ARIMA model. We focused our analyses on filling gaps in SpC because of its importance

to reveal river water and groundwater mixing. Same set of analyses can be performed on water level and temperature. An input

with M time steps (input window length) is provided to both LSTM and ARIMA models for predicting the next time step that5

immediately follows the input window. For gaps larger than one hour, the gap-filling models are applied to fill in one missing

value at a time. The entire gap is filled by sliding the input window forward hour by hour and treating the gap-filled values of

the previous missing hours as observed values.

The input window may contain multiple variables from a single or multiple wells that are relevant to the prediction. After

experimenting with different sets of input variables (SpC only, SpC and water level, SpC plus water level and temperature), we10

found that including SpC and water level measurements in the input window yielded the most robust performance. Therefore,

we used historic water level (m) and SpC (mS/cm) observations to fill gaps in SpC time series of a single well. Using

measurements from multiple wells as input allows the models to account for both the temporal and spatial correlations in the

data to impact gap-filling performance. Wells were selected based on adequate data availability and their distances from the

target well. Assuming the observations from W (W ≥ 1) wells are used to fill in data gaps, the input size of the model is then15

M × 2W .

3.1 LSTM Models for Gap Filling

We designed an LSTM architecture, as shown in Figure 4, to train models of an input size of M time steps and an output size

of one time step. The LSTM model contains a single LSTM layer followed by an output dense layer. The detailed structures of

the LSTM layer is provided in the supplemental materials (Figures S1 and S2).20

Training data for the LSTM models were created by finding data segments of M +1 hours that have no missing values, i.e.,

no gaps in the data, for both measurements over a specified monitoring window. The well data were then pre-processed by

normalizing all measurements to zero mean and unit variance for each variable, as SpC is on a scale of 10−1, and water level

is on a scale of 102. Validation datasets were used to select the best model hyperparameters and the optimal input window

size M (3.1.1) for gap filling at each well. Another independent testing period was selected at each well, depending on data25

availability, to compare the gap filling performance using the LSTM and ARIMA methods. The complete set of alternatives

we considered for each LSTM model configuration is shown in Table 1. We used the Adam optimizer (Kingma and Ba, 2014)

for training and the mean-squared error as the loss function. The models were trained for 50 iterations (i.e., epochs) over the

training data.

To evaluate the accuracy of the trained LSTM models in filling SpC data gaps during the validation and testing processes,30

we assumed that synthetic gaps of various lengths (e.g., 1, 6, 12, 24, 48, and 72 hours, referred to as gap scenarios hereafter)

exist in the validation or testing dataset of a well. We assume only the SpC measurements are missing while the water level

measurements are available. Then an LSTM model configured with an input ofM is givenM hours of data from the time series
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Figure 4. Illustration of LSTM models for gap filling. (a) Architecture of the LSTM models, where M is the input window size. Includes

example input with M = 24 and example LSTM layer with 128 units; (b) Example of an LSTM unit, where A is the repeating module of

the LSTM unit and h is the output.

preceding the occurrence of a gap (assuming no missing values in these M hours) to fill the gap hour by hour. The accuracy of

the gap-filling model is evaluated by calculating the mean absolute percentage error (MAPE; %) between the SpC values that

are filled in (i.e., predicted) and that were observed:

MAPE = 100× 1

n

n∑
t=1

∣∣∣∣Prediction−Observation

Observation

∣∣∣∣ , (1)

where n is the total number of synthetic missing data points during the evaluation period.5

In addition to the LSTM models trained for the single-well setup, we also trained multi-well LSTM models that used observa-

tions from wells 1-1, 1-10A, and 1-16A to fill in data gaps for well 1-1. We explored the same set of configuration parameters

for single-well models as shown in Table 1 in multi-well LSTM models. We then compared the gap filling performance of the

multi-well LSTM with the single-well LSTM model for well 1-1. The multi-well models were not explored for the other wells

due to lack of neighboring wells in close proximity.10
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Table 1. Parameters used in training single-well LSTM models.

Parameter Values

Training wells 1-1, 1-10A, 1-15, 2-2, 2-3, 2-5

Synthetic gap length (hours) 1, 6, 12, 24, 48, 72

Model input window (M hours) 24, 48, 72, 96, 120, 144, 168

LSTM Units (U units) 32, 64, 128

Learning Rate (L) 1e-3, 1e-4, 1e-5

Training period 2012-2015

Validation perioda 2011

Testing Periodb 2008 for well 2-5; 2017 for well 1-15; 2016 for all other wells

a used to select the best LSTM model configurations and hyperparameters.
b used to evaluate performance of LSTM vs ARIMA.

3.1.1 Optimizing LSTM model configuration

We used a grid-search approach to explore different LSTM model hyperparameter configurations to find the best model for a

given gap length at each well. This involved iterating over all combinations of input time window size (M ), the number of units

(U ) in the LSTM layer, and the learning rate (L) listed in Table 1 for each well. We chose the optimal LSTM configuration

using model performance on the validation data set (see Table 1) based on the MAPE defined in Eq. (1). The combination that5

yielded the lowest SpC MAPE were selected as the best configuration for a given gap length at each well. These configurations

are shown in Table S1 in the online supplemental material. The best model configurations were then used to evaluate the

LSTM-based gap filling method against the ARIMA-based method (3.2) using relative errors (similar to MAPE by setting n=1

in Eq. (1) and removing the absolute value operation) calculated for each data point in the testing period (Table 1), which varied

among the wells due to availability of continuous data required for testing.10

3.2 ARIMA Models for Gap Filling

ARIMA is one of the most general classes of models for extrapolating time series to produce forecasts and we used it as a

baseline to compare and assess the LSTM gap-filling method. ARIMA can be applied to nonstationary time series data using a

combination of differencing, autoregressive, and moving average components. A nonseasonal ARIMA(p,d,q) model is given
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by:

Yt = c+φ1Y
d
t−1 +φpY

d
t−p + ...+ θ1et−1 + θqet−q + et, (2)

where φs and θs are polynomials of orders p and q, respectively, each containing no roots inside the unit circle. es are the error

terms, Y d
. is Y. differenced d times, and c is a constant. Note that only non-seasonal terms (p,d,q) are included in Eq. (2).

Seasonal structure can be added with parameters (P,D,Q)m to the base ARIMA model to become ARIMA(p,d,q)(P,D,Q)m,5

with a periodic component containing m periods. c 6= 0 implies a polynomial of order d+D in the forecast function. The

detailed mathematical equations for the seasonal ARIMA are provided in the online supplemental materials.

The main task in ARIMA-based forecasting is to select appropriate model orders, i.e., the values of p,q,d,P,Q,D. If d and D

are known, we can select the orders p,q,P,Q via an information criterion such as the Akaike Information Criterion (AIC):

AIC =−2log(L)+ 2(p+ q+P +Q+ k), (3)10

where k = 1 if c 6= 0 and 0 otherwise, and L is the likelihood of the model fitted to the differenced data. The ARIMA models

were built using the auto.arima function from the R package forecast (Hyndman et al., 2007), which applies the

Hyndman-Khandakar algorithm (Hyndman and Khandakar, 2008) that minimizes the AIC to obtain the best-fit parameters of

the ARIMA model.

Similar to the LSTM-based gap filling, we explored various input window sizes, from 24 to 504 hours in an increment of 2415

hours, for the ARIMA model at each well to identify optimal input windows within the search range. An optimal input window

size is chosen for each gap length of each well using the same MAPE metric (i.e., Eq. (1)) on the validation dataset.

4 Results and Discussion

4.1 Performance of single-well LSTM models

We selected the best combination of LSTM units (U ) and learning rate (L) for each input time window (M ) under each gap20

length at each well using the MAPE metric. The validation MAPEs of those selected models were summarized in boxplots

under different grouping, as shown in Figure 5. Each MAPE boxplot was drawn from a group of models with one parameter

(corresponding to each x-axis) fixed at the given value while all the other parameters, including the training wells and gap

scenarios, cycle through their possible combinations.

As shown in Figure 5 (a), model performance deteriorates as the gap length increases, indicating that the LSTM-based method25

tends to lose ground truth information from its input to inform prediction. In comparing MAPEs across various input window

sizes shown in Figure 5 (b), we observe that models with all input windows have comparable MAPE summary statistics, with

those larger input windows (> 96 hours) leading to slightly smaller MAPE quartiles. The larger input windows also yield fewer

outliers on the larger MAPE end, indicating that the memory units in the LSTM layers are capturing important daily to weekly

signatures (evident in WPS plots in Figure 2 for all wells except for Well 1-15) for some wells.30
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The performance of single-well LSTM models varied among the wells as shown in Figure 5 (c). The LSTM models for well

1-15 lead the performance with the smallest MAPEs, while those for well 2-2 yield the worst performance. The LSTM models

for wells 1-1,1-10A, 2-3 and 2-5 performed comparably overall, with slightly more large MAPE outliers for well 2-3.

4.2 Single-well LSTM and ARIMA comparisons

The single-well LSTM gap filling approach was compared to the ARIMA approach using relative errors calculated for each5

data point that was assumed to be missing in the testing data by setting n=1 in Eq. (1) for MAPE. Relative errors were used to

show overestimations or underestimations by both approaches. Their respective best model configurations determined on the

validation dataset (i.e., data from year 2011) were used in comparing the two approaches. Figure 6 illustrates the optimal input

windows for the LSTM and ARIMA methods. We observe that LSTM models require much less input information than the

ARIMA method under all gap lengths for all the wells.10

Figure 7 shows the boxplots of relative errors under different gap lengths for all testing wells. For both approaches, the relative

errors increase as the gap length increases as expected. The ARIMA models tend to perform better than the LSTM models

in terms of interquartile range. However, the ARIMA models, in general, produce more outliers of large positive or negative

relative errors than the LSTM models, especially for larger gap lengths (48 and 72 hours). For well 1-15, the relative errors of

both approaches are small for all gap lengths. Both approaches appear to have larger error outliers at well 2-3.15

For each well, we performed a T-Test to calculate the T-Score and P-Value between the relative errors of the two models to

determine the significance in the difference of the performance of the models. As seen in Table 2, each well has a high T-Score

and P-Value significantly less than 0.05. Thus, the differences between their relative errors are significant and meaningful.

In addition to the relative errors, we calculated the MAPE, Root Mean Squared Error (RMSE), Nash–Sutcliffe model efficiency

coefficient (NSE) (Nash and Sutcliffe, 1970), and Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) for the best LSTM and20

ARIMA model per gap length to compare the two approaches. Table 2 compares the performance of the LSTM and ARIMA

models filling in gap lengths of 24 hours. The table for all gap lengths is in the online supplemental material (Table S2).

NSE is a metric used to assess the predictive skills and accuracy of hydrological models. Values range from −∞ to 1, where 1

indicates a perfect model fit, 0 indicates that the model has the same predictive power as the mean of the observations, and less

than 0 indicates that the model is a worse predictor than the mean of the observations. NSE is calculated on the SpC predictions25

by the following equation:

NSE = 1−
∑n

t=1 (Pt−Ot)
2∑n

t=1 (Ot−µ(O))
2 , (4)

where n is the total number of synthetic missing data points during the evaluation period, Pt and Ot are the predicted and

observed SpC values at time t, and µ(O) is the mean observed SpC value.

KGE is another goodness-of-fit metric used to evaluate hydrological models by combining the three components of NSE of30

model errors (i.e. correlation, bias, ratio of variances or coefficients of variation) in a more balanced way. It has the same range
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of values as NSE, where 1 indicates a perfect model fit. KGE is calculated on a model’s SpC predictions by the following

equations:

KGE = 1−
√
(r− 1)2 +(α− 1)2 +(β− 1)2 (5)

r =
cov(O,P)

σ(O) ∗σ(P)
(6)

α=
σ(P)

σ(O)
(7)5

β =
µ(P)

µ(O)
, (8)

where cov is the covariance, σ is the standard deviation, and µ is the arithmetic mean.

The LSTM and ARIMA models yielded comparable average metrics at all the wells for the gap length of 24 hours, as can

be seen in Table 2. The NSE and KGE resulted from both models are close to 1 for all the wells with negligible differences

between the two models. The difference in MAPE and RMSE is also small, with relatively more notable differences for wells10

2-2 and 2-3, where the ARIMA models resulted in lower MAPE and RMSE.

Table 2. Comparison of single-well LSTM and ARIMA models on 24-hour synthetic gap in the SpC data on the test set for each well. The

models are the same ones used in Figure 8. The calculated statistics are: MAPE, Root Mean Squared Error (RMSE), Nash–Sutcliffe model

efficiency coefficient (NSE), and Kling-Gupta Efficiency (KGE). The T-Score and P-Value are calculated on the relative errors of the two

models per well.

Well Model Type MAPE RMSE NSE KGE T-Score P-Value

1-1 LSTM 1.38 8.33× 10−3 0.991 0.988 19.1 1.00× 10−80

ARIMA 1.36 8.98× 10−3 0.989 0.994

1-10A LSTM 1.37 8.07× 10−3 0.986 0.968 −24.6 1.48× 10−131

ARIMA 1.5 9.60× 10−3 0.98 0.987

1-15 LSTM 0.259 1.88× 10−3 0.989 0.982 −48.9 0.00

ARIMA 0.119 1.18× 10−3 0.996 0.997

2-2 LSTM 2.97 1.87× 10−2 0.922 0.962 48.1 0.00

ARIMA 2.23 1.64× 10−2 0.939 0.967

2-3 LSTM 2.15 1.63× 10−2 0.945 0.965 21.6 4.69× 10−102

ARIMA 1.72 1.48× 10−2 0.954 0.971

2-5 LSTM 0.929 6.86× 10−3 0.976 0.988 −9.6 9.22× 10−22

ARIMA 0.866 7.45× 10−3 0.971 0.977

In addition to the error statistics, it is also important to examine how well a gap-filling method captures the desired dynamics

patterns in the gap-filled time series. Therefore, the SpC time series reproduced by the gap-filling methods during the testing
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period (2016 for wells 1-1, 1-10A, 2-2, 2-3; 2017 for well 1-15; 2008 for well 2-5) with 24-hour synthetic gaps are evaluated

against the real time series. Model configurations are the same as those used in error statistics comparison (Figure 6). A gap

length of 24 hours is selected as an example because we consider it as a reasonably challenging case to fill gaps in time series

data exhibiting significant nonstationarity, such as the SpC data at well 2-3. Moreover, the relative performance between the

two approaches are similar at other gap lengths with varying error magnitudes.5

As shown in the first column of Figure 8, both approaches capture the general dynamic patterns in the data fairly well. The

time series of relative errors for both methods are provided in Figure S3 in the online supplemental materials for more details.

The ARIMA approach (blue lines in column 1) missed some abrupt changes that occur over a short time window (i.e., at higher

frequency), leading to more error spikes in all wells, consistent with relative error outliers in Figure 7. This is an indication that

the ARIMA models lack mechanisms to represent such high-frequency changes. The LSTM approach (red lines in column 110

plots), on the other hand, is able to better capture such dynamics in all the wells. However, the inclusion of such high-frequency

fluctuations may also lead to overly dynamic predictions in time windows dominated by lower-frequency fluctuations, which

contributed to less desirable relative errors distributed between the first and third quartiles in some wells (i.e., wells 1-1, 2-

3, 2-2, and 1-15), as shown in Figure S4 in the supplemental materials. This is likely caused by the variability in dynamics

signatures among the training, validation and testing periods, as well as the selection of training loss functions and validation15

metric that balance between the occurrence of small vs large errors to achieve optimal solutions.

To further investigate how the relative performance of the two gap-filling methods depends on the inherent dynamics in each

time series, spectral analyses for the testing SpC datasets were performed using the same wavelet decomposition method for

the multi-year analyses (shown earlier in Figure 2). As shown in Figure 8, the time windows of high relative errors are found

to approximately co-locate with the time when the high-frequency (daily and subdaily) signals are gaining more power. The20

difference between the LSTM and ARIMA models tend to be amplified during those time windows. Wells 1-1, 1-10A, and 2-2

share similar seasonal patterns in WPS, with the highest intensity bin above 1024 hours across February to July. Their average

WPSs all show peaks around daily and subdaily frequencies. Well 2-3 has its greatest energy between 16 to 256 hours from

January to July. Well 2-5 has low intensities of variability at daily and subdaily frequencies with the low-frequency variations

(monthly and seasonal) dominating the Jan to March time frame. For well 1-15, one of its strongest intensities is above 204825

hours across the entire year, and the other strong intensities are narrow bands between 16 to 256 hours. In general, both LSTM

and ARIMA are effective at capturing low-frequency variability (monthly and seasonal). Although LSTM is more effective at

capturing high-frequency (daily and subdaily) fluctuations and nonlinearities in the datasets, it may also lead to overly dynamic

predictions in time windows with no considerable high-frequency fluctuations. However, the errors during these time windows

are small and can be improved by smoothing if such fluctuations are not desirable.30
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Figure 5. Gap filling performance for SpC evaluated against the validation datasets, grouped by gap lengths (a), model input window size

M (b), and training wells (c).
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Figure 6. Optimal input windows for the LSTM and ARIMA models to fill gaps of various lengths at each well.

Figure 7. Boxplots of relative errors for filling SpC gaps of various lengths (1, 6, 12, 24, 48, and 72 hours) at each well during the test

periods. The best LSTM and ARIMA models were used for evaluation. The LSTM and ARIMA models are represented by red bars and blue

bars, respectively.
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Figure 8. Columns 1 shows time series of model predictions from the LSTM (in red) and ARIMA (in blue) methods, respectively, assuming

24-hour synthetic gap in the SpC data, compared with observations (in black). The best model configurations were used for all models. The

testing data come from year 2016 for wells 1-1, 1-10A, 2-2, and 2-3, from year 2017 for well 1-15 and from 2008 for well 2-5. Column 2 is

the spectrogram of each well and column 3 is the WPS averaged over for the corresponding year.

5

There is also significant difference in computational cost between the LSTM and ARIMA methods for gap filling. ARIMA

requires very little computational resources: the auto.arima function in R requires approximately 40 seconds for fit and

validate a model for each prediction segments on a personal computer with a 3.00 GHz CPU. Conversely, training and validating

a single LSTM model takes approximately 20-30 minutes on dual NVIDIA P100 12GB PCI-e based GPUs.

4.3 Performance of multi-well models10

We evaluated the predictive ability of the multi-well models using both approaches in filling gaps of various lengths in the SpC

data at well 1-1 by comparing the performance against their single-well counterparts. Well 1-1 was chosen because of data

availability in nearby wells (wells 1-10A and 1-16A). Similar to the single-well ARIMA and LSTM model for well 1-1, the

multi-well models also predict the SpC measurement using water level and SpC from three wells. We adopted the same LSTM

architecture from the single-well LSTM model and trained the same set of alternatives considering input window sizes, LSTM15

units, and learning rates for various gap lengths as listed in Table 1. The same training and validation periods were adopted to

select the optimal combination of M , U , and L. The optimal combinations are shown in Table S3 in the online supplemental

material. For the multi-well ARIMA models, we included additional variables as regression terms when building and fitting

models using the same auto.arima function. The optimal input window sizes of ARIMA are 216, 240, 288, 288, 288, and

192 hours for gap length 1, 6, 12, 24, 48, and 72 hours, respectively. They are smaller than the optimal window sizes of the20

single-well models.

The boxplots of relative errors yielded from the single-well and multi-well models using both approaches are provided in

Figure 9 for comparison. Additionally, we include performance metrics comparing the single and multi-well models in Table

3. Additional spatial information seems to exacerbate the relative errors by the ARIMA models, except for large gaps (e.g.,

72 hours). The LSTM approach, on the contrary, benefits from the information carried by the neighboring wells to fill in25

those larger gaps, while the performance for small gaps stay unchanged. The aggregated performance metrics in Table 3 show

slightly improved metrics for multi-well ARIMA models for gaps smaller than 24 hours compared to the single-well models,

while the turning point in relative performance is at 12 hours for the LSTM models. The deteriorated performance metrics of

the multi-well LSTM models at the larger gap lengths are consistent with their larger inter-quartile ranges as revealed by the

boxplots of relative errors in Figure 9. However, the multi-well LSTM and ARIMA models can reduce the occurrence of large30

relative errors for larger gaps, providing more robust gap-filling under those circumstances.

This comparisons show that, although the information from a single well may be sufficient to fill in gaps smaller than a day,

including spatial information from neighbouring wells in the LSTM and ARIMA models could potentially increase the chance

of successes in filling data gaps under more challenging circumstances, such as capturing more complex dynamic patterns
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with longer data gaps. While the aggregated metrics provide an overall assessment of model performance, examining the

distribution of relative errors could provide complementary information on the large error spikes when selecting optimal model

configurations.

Figure 9. Comparing relative error performance between the best single-well LSTM models (well 1-1, red), multi-well LSTM models (wells

1-1, 1-10A and 1-16A, yellow), single-well ARIMA model (blue), and multi-well ARIMA model (green) for filling in various SpC gap

lengths for well 1-1 during the test period (year 2016).

5 Conclusion

In this study, we implemented an LSTM-based gap filling method to account for spatio-temporal correlations in monitoring5

data. We extensively evaluated the method on filling data gaps in groundwater SpC measurements that are often used to indicate

groundwater and river water interactions along river corridors. We optimized an LSTM architecture to take advantage of a 10-

year spatially distributed multi-variable time series dataset collected by a groundwater monitoring well network for filling SpC

data gaps. A primary advantage of using LSTM is the ability to incorporate spatio-temporal correlations and nonlinearity in

model states without assuming a priori an explicit form of correlations or nonlinear functions in advancing system states. We10

compared the performance of single-well LSTM-based gap-filling method with a traditional gap-filling method, ARIMA, to

evaluate how well an LSTM model can capture multi-frequency dynamics. We also trained LSTM and ARIMA models that

take input from multiple wells to predict responses at one well. The multi-well models were compared with single-well models

to assess the improvement in gap filling performance by including additional spatial correlation from neighboring wells.

In general, both LSTM and ARIMA methods were highly accurate in filling smaller data gaps (i.e., 1 and 6 hours). They were15

reasonably effective at filling in medium gaps between 12 and 48 hours, while more work is needed for gaps larger than 48
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Table 3. Comparison of single-well and multi-well LSTM and ARIMA models for all synthetic gap lengths in the SpC data. The models

are the same ones used in Figure 9. Calculations are performed on the test data set for well 1-1 (year 2016). The calculated statistics are:

MAPE, Root Mean Squared Error (RMSE), Nash–Sutcliffe model efficiency coefficient (NSE), and Kling-Gupta Efficiency (KGE). T-Score

and P-Value are calculated on the relative errors of the two single-well models for each gap length and calculated on the relative errors of the

two multi-well models.

Gap Length Model Type MAPE RMSE NSE KGE T-Score P-Value

1

Single-Well LSTM 0.117 7.76× 10−4 1.0 0.999 11.6 6.14× 10−31

Single-Well ARIMA 0.183 1.23× 10−3 1.0 1.0

Multi-Well LSTM 0.117 7.94× 10−4 1.0 1.0 9.37 8.54× 10−21

Multi-Well ARIMA 0.134 1.22× 10−3 1.0 1.0

6

Single-Well LSTM 0.435 2.92× 10−3 0.999 0.995 13.8 4.46× 10−43

Single-Well ARIMA 0.461 3.29× 10−3 0.999 0.999

Multi-Well LSTM 0.435 2.98× 10−3 0.999 0.998 12.2 5.82× 10−34

Multi-Well ARIMA 0.405 3.16× 10−3 0.999 0.999

12

Single-Well LSTM 0.75 5.07× 10−3 0.997 0.996 16.0 2.05× 10−57

Single-Well ARIMA 0.781 5.47× 10−3 0.996 0.996

Multi-Well LSTM 1.19 6.48× 10−3 0.994 0.985 5.25 1.55× 10−7

Multi-Well ARIMA 0.77 5.40× 10−3 0.996 0.997

24

Single-Well LSTM 1.38 8.33× 10−3 0.991 0.988 19.1 1.00× 10−80

Single-Well ARIMA 1.36 8.98× 10−3 0.989 0.994

Multi-Well LSTM 2.26 1.17× 10−2 0.982 0.968 7.77 8.48× 10−15

Multi-Well ARIMA 1.47 9.55× 10−3 0.988 0.99

48

Single-Well LSTM 2.13 1.21× 10−2 0.98 0.988 17.8 3.24× 10−70

Single-Well ARIMA 2.15 1.34× 10−2 0.976 0.988

Multi-Well LSTM 3.49 1.76× 10−2 0.958 0.969 28.4 7.83× 10−174

Multi-Well ARIMA 2.35 1.40× 10−2 0.974 0.981

72

Single-Well LSTM 2.56 1.40× 10−2 0.974 0.983 26.7 4.91× 10−154

Single-Well ARIMA 2.57 1.46× 10−2 0.971 0.985

Multi-Well LSTM 4.41 2.19× 10−2 0.936 0.955 31.7 4.78× 10−214

Multi-Well ARIMA 3.02 1.78× 10−2 0.958 0.972

hours. Both models captured the long-term trends in data (i.e., low-frequency variations at the monthly or seasonal time scales).

The ARIMA method was found to have difficulty in capturing abrupt changes. Thus, it is more suitable for time series with

less dynamic behavior. Compared with the ARIMA models, the LSTM models excel in dealing with high-frequency dynamics

(daily and subdaily) and nonlinearities, although they require more training data and computational resources. As a side effect
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of including high-frequency (daily and subdaily) fluctuations in the model, the LSTM approach may produce overly dynamic

predictions in time windows that lacks such dynamics. Thus, availability of sufficient training data that cover a wide range of

conditions is critical for the success of LSTM methods, as is with any deep learning method. Extrapolating the LSTM models

to conditions beyond those in the training data remains as a major challenge.

Wavelet analysis could provide useful insights to the dynamic signatures of the data and the change in composition of their5

important frequencies over time, which can serve as a prior basis for selecting an appropriate gap-filling method. For example,

the ARIMA method would work well if the dynamics are dominated by seasonal cycles, while more sophisticated approaches

like LSTM-based methods could work better if there is evidence of weekly, daily and subdaily fluctuations. Depending on the

mixture of high- and low-frequency variability inherent in the time series, different LSTM architecture and configurations can

be explored and evaluated through hyperparameter search with respect to LSTM layers, dense layers and activation functions10

to achieve better performance in capturing more complex dynamics. The optimal LSTM model configuration and performance

that could be achieved would vary case by case.

We also demonstrated that incorporating spatial information from neighboring stations in LSTM models could contribute to

performance improvement under challenging scenarios with dynamic system behaviours with reasonably longer data gaps up

to 2 days. However, other alternatives need to be explored for gaps beyond 2 days. The bidirectional and convolutional LSTMs15

are two promising methods to leverage information from the future time window and from spatially distributed networks.

While we introduced a new method that can be broadly applied to fill in gaps in irregularly spaced network for monitoring

groundwater and surface water interactions, the transferrability of this method to other monitoring systems could be evaluated

more extensively by community participation. Capturing spatio-temporal dynamics in system states is essential for generating

the most valuable insights to advance our understanding of dynamic complex systems.20
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