
Response to referee comments

Reviewer 1

I am happy to see that the authors tested a simpler model architecture, as suggested in previous
reviews. The paper has become shorter and more concise, which is great. It is worth remembering
that this is intended as a technical note, rather than a full paper, but there are still some open
questions from my side.

Reviewer Comment 1.1 — Conceptually, I don’t understand why the manuscript is framed
as gap filling, when the setup of the model matches the common setup of forecasting (i.e. having
historic observations + additional inputs to predict the next time step). From my point of view,
gap filling is a task that is performed on historic data records where observations of both sides
of the gap are available. This raises the question why you would not make use of this additional
information, since interpolating between two points is most likely easier than predicting into the
future. If the framing of the manuscript should indeed be focused around gap filling, I think it
might be worth discussing the decision for running a gap filling model in this forecasting setup.

Response:
We thank the reviewer for the positive assessment on the work we have done to improve the

manuscript in our last revision. We framed our manuscript as gap filling because that is the purpose of
our work. We recognize that multiple approaches can be applied for this purpose using the information
before the gaps only or involving data from both sides of the gaps, as we described in the introduction,
including interpolation, extrapolation, regression, predictive models and so on. In this technical report,
we explore a forward forecasting approach for filling in the data gaps for a fair comparison between the
LSTM models and the ARIMA models because ARIMA does not use observations after the gap for its
estimations. We explicitly state this in the introduction as suggested by a reviewer in previous revisions.

We also recognize that Bi-directional LSTMs could be used to frame the gap filling as an interpolation
problem as we discussed in the conclusion as a potential research topic for the future because non-trivial
effort is needed to build, train and evaluate the bi-directional LSTMs.

Reviewer Comment 1.2 — 2. Why are ARIMA and LSTM not treated equally? That is,
why does the ARIMA model predict all missing values at once, while the LSTM predicts only one
time step at a time (and is then re-run for the next time step with the previous prediction filled
into the input sequence). I think both models could be set up similarly and I wonder if you ever
tested this and if the results suggested that this is the optimal setting for both models.

Response: We have revised the ARIMA predictive settings to match those of LSTM models for both
single-well and multi-well models by following reviewer’s suggestions, i.e., they predict the next time
step immediately after the input window and the input window is sliding hour-by-hour to fill the entire
length of a gap. We also searched a wider range of input windows for the ARIMA models for optimal
performance per reviewer’s another comment below. Please see the details for the response to comment
1.3. These changes did lead to slightly improved performance for ARIMA in terms of reducing the
relative error outliers although all the conclusions on relative performance between LSTM and ARIMA
stay unchanged. The new results have been updated for Figures 7, 8, 9 and 10 in the revision.
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Response to referee comments

Reviewer 2

The paper explores in relative novel tools from Deep Learning LSTM models for reconstructing
time series data. The potential of the paper describes well a setup and have improved significantly
from the previous version. Now, it is more clear the problem, motivation and complexity in the
modelling system presented. However, I still find the formulation somehow unfair in introducing
spatiotemporal information. The comparison with ARIMA is 1D, but the LSTM has been fed with
Spatial information (2D) so would question the idea of fair input information in both models. Now
from the perspective of time series, the work is valuable and shows clear contribution on the trade-
offs in complexity and usefulness of the LSTM and ARIM for filling gap (in special cases). It is to
highlight that the concept here is as a technical note, and the case study is not so common and the
very complex in nature. This added to the large availability of data, makes it an important problem
to solve with LSTM, and this is an important aid to the area of Deep Learning and appllication
cases of LSTM. I think is worth to share in this journal.

Aside from the above, maybe I would like to comment on small issues that I hope can be
commented or updated if the paper is published.

Response:
In Section 4.3, we did train a multi-well ARIMA model and a multi-well LSTM model. Both types

of multi-well models used data from wells 1-1, 1-10A, and 1-16A to estimate the SpC for well 1-1. We
compared the multi-well models to the their single-well counterparts in Figure 9, along with a statistical
analysis in Table 3 that has been added in the revision.

Minor comments are in the abstract

Reviewer Comment 2.1 — Even the process followed an Hyperparameter optimization, it is
important to describe the ranges and sequence of such pipeline of optimal steps.

Response: We used a grid-search approach to find the optimal LSTM configuration for a given gap-
length at each well. This involved iterating over all combinations of input time window size (M), the
number of units (U) in the LSTM layer, and the learning rate (L) listed in Table 1 for each well. We
have updated section 3.1.1 to specifically state this.

Old statement: ”We performed a hyperparameter search to explore different LSTM model configu-
rations, including the input time window size M , the number of units (U) in the LSTM layer, and the
learning rate (L) at each well.”

New statement: ”We used a grid-search approach to explore different LSTM model hyperparameter
configurations to find the best model for a given gap length at each well. This involved iterating over
all combinations of input time window size (M), the number of units (U) in the LSTM layer, and the
learning rate (L) listed in Table 1 for each well”

Reviewer Comment 2.2 — The overall LSTM input output structure for all optimals might
be better understood in a table, where the performance and AIC are shown.

Response:
We have added a table in the online supplemental material (Table S1) showing the optimal LSTM

configuration for a given gap length at each well, along the the models MAPE score for the gap length,
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the AIC for the model on the validation set, and range of AIC scores for all models for a given gap
length and well on the validation set. The table is shown below (Table 2.1).

We have also added a similar table in the online supplemental material for the optimal multi-well
LSTM configurations (Table S3). The table is also shown below (Table 2.2),
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Table 2.1: The best LSTM configurations and performance for a given gap length at each well
based on the validation data set (2011): the input time window size (M), the number of units (U)
in the LSTM layer, the learning rate (L), the SpC MAPE score, the Akaike Information Criterion
(AI) for the model on the validation set, and range of AIC scores for all models for a given gap
length and well on the validation set.
Well Gap Length M U L MAPE AIC AIC Min AIC Max

1-1 1 96 128 1e-3 0.189 1.31 × 104 −1.13 × 105 2.63 × 104

6 96 128 1e-3 0.701 3.50 × 104 −9.08 × 104 4.19 × 104

12 72 32 1e-4 1.24 −8.11 × 104 −8.11 × 104 5.40 × 104

24 72 32 1e-4 1.95 −7.33 × 104 −7.33 × 104 6.50 × 104

48 144 32 1e-5 2.85 −6.77 × 104 −6.80 × 104 7.50 × 104

72 24 64 1e-5 3.67 −3.89 × 104 −6.42 × 104 8.08 × 104

1-10A 1 120 128 1e-3 0.19 4.75 × 104 −7.82 × 104 5.58 × 104

6 120 128 1e-3 0.685 6.24 × 104 −6.29 × 104 7.39 × 104

12 120 128 1e-3 1.1 6.69 × 104 −5.82 × 104 8.07 × 104

24 144 128 1e-3 1.63 7.23 × 104 −5.22 × 104 8.70 × 104

48 168 64 1e-5 2.16 −2.35 × 104 −4.90 × 104 9.14 × 104

72 168 64 1e-5 2.39 −2.22 × 104 −4.63 × 104 9.37 × 104

1-15 1 48 32 1e-3 0.0163 −1.31 × 105 −1.32 × 105 1.93 × 104

6 48 32 1e-3 0.0521 −1.04 × 105 −1.10 × 105 2.68 × 104

12 48 32 1e-3 0.109 −1.02 × 105 −1.02 × 105 4.18 × 104

24 96 128 1e-4 0.229 3.26 × 104 −9.25 × 104 5.70 × 104

48 144 64 1e-3 0.372 −5.27 × 104 −8.50 × 104 7.15 × 104

72 144 64 1e-3 0.506 −4.98 × 104 −8.08 × 104 8.00 × 104

2-2 1 168 32 1e-3 0.49 −6.06 × 104 −7.54 × 104 6.52 × 104

6 168 32 1e-3 1.62 −4.86 × 104 −5.66 × 104 7.75 × 104

12 144 128 1e-5 3.07 8.00 × 104 −4.95 × 104 8.47 × 104

24 144 128 1e-5 4.42 8.34 × 104 −4.54 × 104 9.15 × 104

48 144 128 1e-5 6.61 8.69 × 104 −4.19 × 104 9.63 × 104

72 144 128 1e-5 7.52 8.66 × 104 −4.01 × 104 9.85 × 104

2-3 1 168 64 1e-3 0.142 −8.62 × 104 −1.16 × 105 2.28 × 104

6 168 64 1e-3 0.369 −6.95 × 104 −9.87 × 104 4.64 × 104

12 168 64 1e-3 0.663 −5.97 × 104 −8.78 × 104 6.02 × 104

24 24 64 1e-5 1.09 −5.59 × 104 −7.92 × 104 7.59 × 104

48 48 64 1e-5 1.7 −4.82 × 104 −7.18 × 104 8.95 × 104

72 48 64 1e-5 2.28 −4.35 × 104 −6.72 × 104 9.51 × 104

2-5 1 120 32 1e-3 0.109 −1.15 × 105 −1.18 × 105 2.51 × 104

6 144 64 1e-4 0.332 −6.72 × 104 −9.56 × 104 5.49 × 104

12 144 64 1e-4 0.586 −5.70 × 104 −8.46 × 104 6.89 × 104

24 144 64 1e-4 0.999 −4.90 × 104 −7.66 × 104 8.08 × 104

48 120 64 1e-5 1.39 −4.51 × 104 −7.12 × 104 8.92 × 104

72 120 64 1e-5 1.77 −4.16 × 104 −6.76 × 104 9.19 × 104
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Table 2.2: The best multi-well LSTM configurations and performance for a given gap length based
on the validation data set (2011): the input time window size (M), the number of units (U) in the
LSTM layer, the learning rate (L), the SpC MAPE score, the Akaike Information Criterion (AI)
for the model on the validation set, and range of AIC scores for all models for a given gap length
on the validation set.

Gap Length M U L MAPE AIC AIC Min AIC Max

1 144 128 1e-3 0.154 4.56 × 104 −8.40 × 104 6.11 × 104

6 144 128 1e-3 0.63 6.27 × 104 −6.68 × 104 7.13 × 104

12 24 32 1e-4 1.14 −5.97 × 104 −5.97 × 104 8.08 × 104

24 24 32 1e-4 1.75 −5.43 × 104 −5.43 × 104 8.89 × 104

48 96 128 1e-5 2.69 7.90 × 104 −4.84 × 104 9.46 × 104

72 96 128 1e-5 3.15 8.09 × 104 −4.74 × 104 9.74 × 104
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Reviewer Comment 1.3 — Looking at Figure 6: If you perform hyper parameter tuning and
one model (almost) constantly picks the largest (or smallest) value, usually you should increase the
search range, as this indicates that eventually even larger (or smaller) parameters would be better.
Looking at e.g. the input window length of the ARIMA model.

Response:
We have expanded the search range of the ARIMA model input window from 192 to 504 hours in

an increment of 24 hours for all wells to identify optimal input windows to make sure the optimal input
window is not at the upper or lower bound of the search range, as shown in the updated Figure 6. In
general, larger optimal windows are resulted, which has consequently led to improved performance. We
also noticed that the performance improvement for input windows larger than 288 hours is marginal in
terms of the MAPE for all gap lengths across the wells we tested.

Reviewer Comment 1.4 — To my understanding, part of this technical note is the bench-
marking/comparison of two models, LSTMs and ARIMA. As such, I think this paper is still missing
a statistical analysis of the modeling results. The entire discussion is currently focussed around
a few plots and a textual description of what one can see in these figures. However, to a certain
degree I would argue that this analysis/interpretation is rather subjective. I think it would benefit
the paper to have a table that compares both models on a range of different metrics, including
statistical tests of e.g. the robustness/significance of the results. Right now, I wonder what the
takeaway message of this paper is. I would argue that it was probably known that both models,
LSTMs and ARIMA, are generally capable of time series forecasting. If I would be a user with
similar data or a similar problem, what is the additional knowledge that I can gain from reading
this paper?

Response:
We have added two table comparing the LSTM and ARIMA models on several statistics: one

comparing the performance of the LSTM and ARIMA models filling in gap lengths of 24 hours (same
models in Figure 8) that is added to the main paper in section 4.1 (Table 1.1 in this response, Table
2 in the revision), and another comparing the two approaches for all gap lengths that is added to the
supplemental material (Table 1.2 in this response, Table S2 in the supplemental material). In addition,
we have added a table of statistics for the models in Figure 9 to section 4.3, comparing the single and
multi-well ARIMA and LSTM models (Table 1.3 in this response, Table 3 in the revision)

We have also added the following statistical analysis of the two models in Section 4.1:
”In addition to the relative errors, we calculated the MAPE, Root Mean Squared Error (RMSE),

Nash–Sutcliffe model efficiency coefficient (NSE) [Nash and Sutcliffe, 1970], and Kling-Gupta Efficiency
(KGE) [Gupta et al., 2009] for the best LSTM and ARIMA model per gap length to compare the two
approaches. Table 1.1 compares the performance of the LSTM and ARIMA models filling in gap lengths
of 24 hours. The table for all gap lengths is in the online supplemental material (Table S2).

NSE is a metric used to assess the predictive skills and accuracy of hydrological models. Values
range from −∞ to 1, where 1 indicates a perfect model fit, 0 indicates that the model has the same
predictive power as the mean of the observations, and less than 0 indicates that the model is a worse
predictor than the mean of the observations. NSE is calculated on the SpC predictions by the following
equation:
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NSE = 1−
∑n

t=1 (Pt −Ot)
2∑n

t=1 (Ot − µ(O))2
, (1)

where n is the total number of synthetic missing data points during the evaluation period, Pt and
Ot are the predicted and observed SpC values at time t, and µ(O) is the mean observed SpC value.

KGE is another goodness-of-fit metric used to evaluate hydrological models by combining the three
components of NSE of model errors (i.e. correlation, bias, ratio of variances or coefficients of variation)
in a more balanced way. It has the same range of values as NSE, where 1 indicates a perfect model fit.
KGE is calculated on a model’s SpC predictions by the following equations:

KGE = 1−
√

(r − 1)2 + (α− 1)2 + (β − 1)2 (2)

r =
cov(O,P)

σ(O) ∗ σ(P)
(3)

α =
σ(P)

σ(O)
(4)

β =
µ(P)

µ(O)
, (5)

where cov is the covariance, σ is the standard deviation, and µ is the arithmetic mean.
The LSTM and ARIMA models yielded comparable average metrics at all the wells for the gap length

of 24 hours, as can be seen in Table 1.1. The NSE and KGE resulted from both models are close to 1
for all the wells with negligible differences between the two models. The difference in MAPE and RMSE
is also small, with relatively more notable differences for wells 2-2 and 2-3, where the ARIMA models
resulted in lower MAPE and RMSE.”

In addition, we updated the analysis of the multi-well models in section 4.3 of the revision as follows:
”The boxplots of relative errors yielded from the single-well and multi-well models using both ap-

proaches are provided in Figure 9 for comparison. Additionally, we include performance metrics com-
paring the single and multi-well models in Table 3. Additional spatial information seems to exacerbate
the relative errors by the ARIMA models, except for large gaps (e.g., 72 hours). The LSTM approach,
on the contrary, benefits from the information carried by the neighboring wells to fill in those larger
gaps, while the performance for small gaps stay unchanged. The aggregated performance metrics in
Table 3 show slightly improved metrics for multi-well ARIMA models for gaps smaller than 24 hours
compared to the single-well models, while the turning point in relative performance is at 12 hours for
the LSTM models. The deteriorated performance metrics of the multi-well LSTM models at the larger
gap lengths are consistent with their larger inter-quartile ranges as revealed by the boxplots of relative
errors in Figure 9. However, the multi-well LSTM and ARIMA models can reduce the occurrence of
large relative errors for larger gaps, providing more robust gap-filling under those circumstances.”

Minor comments are in the abstract

Reviewer Comment 1.5 — Figure 4: I think this figure is misleading to someone unfamiliar
with LSTMs. You actually drew a fully connected network, rather than a recurrent (sequential)
neural network. As of now, it seems like all inputs go into the LSTM at once (no time steps are
visible in this figure), and the outputs of all time steps (since on the left side the timesteps are top
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Table 1.1: Comparison of single-well LSTM and ARIMA models on 24-hour synthetic gap in
the SpC data on the test set for each well. The models are the same ones used in Figure 8.
The calculated statistics are: MAPE, Root Mean Squared Error (RMSE), Nash–Sutcliffe model
efficiency coefficient (NSE), and Kling-Gupta Efficiency (KGE). The T-Score and P-Value are
calculated on the relative errors of the two models per well.

Well Model Type MAPE RMSE NSE KGE T-Score P-Value

1-1 LSTM 1.38 8.33× 10−3 0.991 0.988 19.1 1.00× 10−80

ARIMA 1.36 8.98× 10−3 0.989 0.994

1-10A LSTM 1.37 8.07× 10−3 0.986 0.968 −24.6 1.48× 10−131

ARIMA 1.5 9.60× 10−3 0.98 0.987

1-15 LSTM 0.259 1.88× 10−3 0.989 0.982 −48.9 0.00
ARIMA 0.119 1.18× 10−3 0.996 0.997

2-2 LSTM 2.97 1.87× 10−2 0.922 0.962 48.1 0.00
ARIMA 2.23 1.64× 10−2 0.939 0.967

2-3 LSTM 2.15 1.63× 10−2 0.945 0.965 21.6 4.69× 10−102

ARIMA 1.72 1.48× 10−2 0.954 0.971

2-5 LSTM 0.929 6.86× 10−3 0.976 0.988 −9.6 9.22× 10−22

ARIMA 0.866 7.45× 10−3 0.971 0.977

to bottom) are used to predict the output. Figure (b) is actually the more correct depiction of the
LSTM and I don’t understand why both visualizations are needed.

Response: We have modified Figure 4 to make it clear that the middle layer (yellow and green) are
individual LSTM units and not a fully connected network. The point of Figure 4(a) is to show the
overall structure of the model and Figure 4(b) shows how the input data is fed into an individual LSTM
unit.

Reviewer Comment 1.6 — P 3, L 32 “at the 300 Area of the U.S. Department of Energy
Hanford site”. What is the 300 for?

Response:
Hanford’s 300 Area is a U.S. Department of Energy (DOE) site where the fuel manufacturing opera-

tions occur. It is a numbered naming convention for the site. Details can be seen https://www.hanford.gov/page.cfm/300Area

Reviewer Comment 1.7 — P 8, L 25: “The well data were then pre-processed by normalizing
all measurements via zero-mean and unit variance for each variable”. You do not normalize “via”
zero-mean and unit variance, you rather normalize to zero mean and unit variance. Normalizing
via zero-mean and unit-variance sounds like you subtract a mean of zero and divide by a variance
of one, which is hopefully not what you have done.

Response: We have updated the line to say “normalizing all measurements to zero mean and unit
variance” to clarify.

Reviewer Comment 1.8 — P9 L 7ff You use plural for “multi-well models” throughout this
passage but you only trained one multi-well model to predict at well 1-1, or?
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Response: Yes, only one type of multi-well LSTM model is trained to predict at well 1-1 due to data
availability. It is clarified in the text. ”In addition to the LSTM models trained for the single-well setup,
we also trained multi-well LSTM models that used observations from wells 1-1, 1-10A, and 1-16A to fill
in data gaps for well 1-1”

Reviewer Comment 1.9 — P17 L 17: Which “auto.arima” function?

Response: The function we used in our study applies the Hyndman-Khandakar algorithm developed
by Hyndman and Khandakar [2008] that minimizes the Akaike Information Criterion (AIC) to obtain an
optimized ARIMA model. The following details have been added to section 3.2:

”The ARIMA models were built using the auto.arima function from the R package forecast [?],
which applies the Hyndman-Khandakar algorithm [Hyndman and Khandakar, 2008] that minimizes the
AIC to obtain the best-fit parameters of the ARIMA model.”
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Table 1.2: Comparison of single-well LSTM and ARIMA
models for all synthetic gap lengths in the SpC data. The
models are the same ones used in Figure 7. The calculated
statistics are: MAPE, Root Mean Squared Error (RMSE),
Nash–Sutcliffe model efficiency coefficient (NSE), and Kling-
Gupta Efficiency (KGE). The T-Score and P-Value are cal-
culated on the relative errors of the two models for each well
and gap length.

Gap Length = 1 hr

Well Model Type MAPE RMSE NSE KGE T-Score P-Value

1-1 LSTM 0.117 7.76× 10−4 1.0 0.999 11.6 6.14× 10−31

ARIMA 0.183 1.23× 10−3 1.0 1.0

1-10A LSTM 0.185 1.41× 10−3 1.0 0.997 −7.52 5.89× 10−14

ARIMA 0.299 2.45× 10−3 0.999 0.999

1-15 LSTM 0.0559 4.00× 10−4 1.0 1.0 −4.29 1.79× 10−5

ARIMA 0.0548 4.34× 10−4 0.999 1.0

2-2 LSTM 0.276 2.11× 10−3 0.999 0.997 7.13 1.01× 10−12

ARIMA 0.451 3.89× 10−3 0.997 0.998

2-3 LSTM 0.129 1.05× 10−3 1.0 0.999 2.88 3.96× 10−3

ARIMA 0.2 1.97× 10−3 0.999 0.999

2-5 LSTM 0.113 1.02× 10−3 0.999 0.998 −1.09 2.76× 10−1

ARIMA 0.171 1.62× 10−3 0.999 0.999

Gap Length = 6 hr

Well Model Type MAPE RMSE NSE KGE T-Score P-Value

1-1 LSTM 0.435 2.92× 10−3 0.999 0.995 13.8 4.46× 10−43

ARIMA 0.461 3.29× 10−3 0.999 0.999

1-10A LSTM 0.589 4.03× 10−3 0.996 0.984 −15.4 2.08× 10−53

ARIMA 0.653 4.86× 10−3 0.995 0.994

1-15 LSTM 0.109 9.16× 10−4 0.997 0.999 −1.86 6.31× 10−2

ARIMA 0.0747 6.43× 10−4 0.999 0.999

2-2 LSTM 0.981 7.14× 10−3 0.989 0.985 4.58 4.79× 10−6

ARIMA 1.01 8.29× 10−3 0.984 0.992

2-3 LSTM 0.517 4.15× 10−3 0.997 0.997 4.35 1.37× 10−5

ARIMA 0.521 5.75× 10−3 0.993 0.993

2-5 LSTM 0.314 2.64× 10−3 0.996 0.998 −5.03 4.98× 10−7

ARIMA 0.352 3.13× 10−3 0.995 0.995

Gap Length = 12 hr

Well Model Type MAPE RMSE NSE KGE T-Score P-Value

1-1 LSTM 0.75 5.07× 10−3 0.997 0.996 16.0 2.05× 10−57

ARIMA 0.781 5.47× 10−3 0.996 0.996

1-10A LSTM 0.947 5.96× 10−3 0.992 0.969 −19.2 1.88× 10−81

ARIMA 0.947 6.32× 10−3 0.991 0.99

1-15 LSTM 0.166 1.37× 10−3 0.994 0.996 −3.41 6.49× 10−4
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ARIMA 0.0893 8.16× 10−4 0.998 0.998

2-2 LSTM 1.87 1.22× 10−2 0.967 0.981 39.4 0.00
ARIMA 1.51 1.13× 10−2 0.971 0.985

2-3 LSTM 0.98 7.78× 10−3 0.988 0.993 4.42 1.01× 10−5

ARIMA 1.03 1.26× 10−2 0.966 0.974

2-5 LSTM 0.569 4.60× 10−3 0.989 0.994 −6.96 3.51× 10−12

ARIMA 0.566 4.86× 10−3 0.988 0.989

Gap Length = 24 hr

Well Model Type MAPE RMSE NSE KGE T-Score P-Value

1-1 LSTM 1.38 8.33× 10−3 0.991 0.988 19.1 1.00× 10−80

ARIMA 1.36 8.98× 10−3 0.989 0.994

1-10A LSTM 1.37 8.07× 10−3 0.986 0.968 −24.6 1.48× 10−131

ARIMA 1.5 9.60× 10−3 0.98 0.987

1-15 LSTM 0.259 1.88× 10−3 0.989 0.982 −48.9 0.00
ARIMA 0.119 1.18× 10−3 0.996 0.997

2-2 LSTM 2.97 1.87× 10−2 0.922 0.962 48.1 0.00
ARIMA 2.23 1.64× 10−2 0.939 0.967

2-3 LSTM 2.15 1.63× 10−2 0.945 0.965 21.6 4.69× 10−102

ARIMA 1.72 1.48× 10−2 0.954 0.971

2-5 LSTM 0.929 6.86× 10−3 0.976 0.988 −9.6 9.22× 10−22

ARIMA 0.866 7.45× 10−3 0.971 0.977

Gap Length = 48 hr

Well Model Type MAPE RMSE NSE KGE T-Score P-Value

1-1 LSTM 2.13 1.21× 10−2 0.98 0.988 17.8 3.24× 10−70

ARIMA 2.15 1.34× 10−2 0.976 0.988

1-10A LSTM 2.09 1.09× 10−2 0.974 0.911 −16.4 2.68× 10−60

ARIMA 2.17 1.32× 10−2 0.962 0.981

1-15 LSTM 1.0 6.51× 10−3 0.869 0.907 −44.2 0.00
ARIMA 0.168 1.67× 10−3 0.991 0.995

2-2 LSTM 4.64 2.80× 10−2 0.825 0.932 60.8 0.00
ARIMA 2.95 2.04× 10−2 0.905 0.952

2-3 LSTM 3.26 2.04× 10−2 0.915 0.919 29.7 4.62× 10−189

ARIMA 2.89 2.38× 10−2 0.88 0.91

2-5 LSTM 2.34 1.22× 10−2 0.925 0.928 −33.9 3.18× 10−243

ARIMA 1.25 1.09× 10−2 0.937 0.928

Gap Length = 72 hr

Well Model Type MAPE RMSE NSE KGE T-Score P-Value

1-1 LSTM 2.56 1.40× 10−2 0.974 0.983 26.7 4.91× 10−154

ARIMA 2.57 1.46× 10−2 0.971 0.985

1-10A LSTM 2.58 1.32× 10−2 0.962 0.888 −17.8 5.10× 10−70

ARIMA 2.84 1.75× 10−2 0.931 0.957

1-15 LSTM 1.27 8.18× 10−3 0.794 0.845 −42.8 0.00
ARIMA 0.211 1.79× 10−3 0.99 0.988

2-2 LSTM 5.91 3.44× 10−2 0.736 0.914 80.0 0.00
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ARIMA 3.66 2.46× 10−2 0.861 0.931

2-3 LSTM 4.8 2.90× 10−2 0.829 0.864 23.5 3.91× 10−120

ARIMA 3.49 2.56× 10−2 0.862 0.901

2-5 LSTM 3.08 1.55× 10−2 0.88 0.884 −31.5 9.51× 10−212

ARIMA 1.47 1.06× 10−2 0.941 0.96

Table 1.3: Comparison of single-well and multi-well LSTM and ARIMA models for all synthetic
gap lengths in the SpC data. The models are the same ones used in Figure 9. Calculations are
performed on the test data set for well 1-1 (year 2016). The calculated statistics are: MAPE, Root
Mean Squared Error (RMSE), Nash–Sutcliffe model efficiency coefficient (NSE), and Kling-Gupta
Efficiency (KGE). T-Score and P-Value are calculated on the relative errors of the two single-well
models for each gap length and calculated on the relative errors of the two multi-well models.

Gap Length Model Type MAPE RMSE NSE KGE T-Score P-Value

1

Single-Well LSTM 0.117 7.76× 10−4 1.0 0.999 11.6 6.14× 10−31

Single-Well ARIMA 0.183 1.23× 10−3 1.0 1.0
Multi-Well LSTM 0.117 7.94× 10−4 1.0 1.0 9.37 8.54× 10−21

Multi-Well ARIMA 0.134 1.22× 10−3 1.0 1.0

6

Single-Well LSTM 0.435 2.92× 10−3 0.999 0.995 13.8 4.46× 10−43

Single-Well ARIMA 0.461 3.29× 10−3 0.999 0.999
Multi-Well LSTM 0.435 2.98× 10−3 0.999 0.998 12.2 5.82× 10−34

Multi-Well ARIMA 0.405 3.16× 10−3 0.999 0.999

12

Single-Well LSTM 0.75 5.07× 10−3 0.997 0.996 16.0 2.05× 10−57

Single-Well ARIMA 0.781 5.47× 10−3 0.996 0.996
Multi-Well LSTM 1.19 6.48× 10−3 0.994 0.985 5.25 1.55× 10−7

Multi-Well ARIMA 0.77 5.40× 10−3 0.996 0.997

24

Single-Well LSTM 1.38 8.33× 10−3 0.991 0.988 19.1 1.00× 10−80

Single-Well ARIMA 1.36 8.98× 10−3 0.989 0.994
Multi-Well LSTM 2.26 1.17× 10−2 0.982 0.968 7.77 8.48× 10−15

Multi-Well ARIMA 1.47 9.55× 10−3 0.988 0.99

48

Single-Well LSTM 2.13 1.21× 10−2 0.98 0.988 17.8 3.24× 10−70

Single-Well ARIMA 2.15 1.34× 10−2 0.976 0.988
Multi-Well LSTM 3.49 1.76× 10−2 0.958 0.969 28.4 7.83× 10−174

Multi-Well ARIMA 2.35 1.40× 10−2 0.974 0.981

72

Single-Well LSTM 2.56 1.40× 10−2 0.974 0.983 26.7 4.91× 10−154

Single-Well ARIMA 2.57 1.46× 10−2 0.971 0.985
Multi-Well LSTM 4.41 2.19× 10−2 0.936 0.955 31.7 4.78× 10−214

Multi-Well ARIMA 3.02 1.78× 10−2 0.958 0.972
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