
Response to the short comments

Reviewer 1

Reviewer Comment 1.1 — This paper uses long short-term memory (LSTM) neural networks
to fill in gaps in spatially distributed time-series data. The performance of the LSTM-based gap-
filling method is compared to that of a traditional, popular gapfilling method: autoregressive
integrated moving average (ARIMA). Overall, this paper is well written, structured and results
seem su�ciently justified and useful. However, this paper is very technical and there is no physical
insight beyond just feeding data into a standard code. I think this paper should be published
as technical note (not as research article). Several aspects could be further improved in order to
having it published in this journal.

Response: We thank the reviewer for overall positive assessment of our manuscript. While we
emphasized the scientific importance of gap-filling the spatio-temporal data to capture and understand
dynamic behaviors of complex systems, we also agree with the reviewer that our primary focus was
to introduce a technical method that can fill data gaps by capturing the dynamic features using deep
neural network that contains LSTM layers. We are resubmitting this manuscript as a technical note as
suggested.

Reviewer Comment 1.2 — Would you guarantee the LSTM method in your paper can
achieve the same excellent performance in other areas of the whole world? Is it possible that the
good performance of the LSTM model is just applicable for the case given by the manuscript? The
authors should include one more test for another area (maybe not in the text but in the supporting
materials).

Response: There is unfortunately no guarantee for any model to have the same performance in other
applications, which is the case for all data-driven and physics-based models. The performance of data-
driven models can be optimized by iterating on various model configurations based on data types and
characteristics of the relations between predictors and desired responses, as we have demonstrated in our
study case when comparing ARIMA with LSTM-based DNNs. Sometimes the ARIMA works better, and
sometimes the DNNs work better, and we believe that we have started down the path of predicting which
model will work better for a given case. The LSTM-based DNN model we adopted in our study has the
same chain-like nature as other recurrent neural networks, meaning that this architecture lends itself
well to sequences, so it will often be a useful (if not the best) approach for dynamic system behaviors
(Karim et al., 2017; Malhotra et al., 2015; Kratzert et al., 2018; Malhotra et al., 2016; Wang et al.,
2017; Reddy and Prasad, 2018; Lipton et al., 2015). The optimal model configuration and performance
we can achieve would be case by case, and our focus of this technical note is to introduce a general
method that can be broadly applied to other systems and be evaluated similarly. We have emphasized
this aspect of transferrability in our discussion and conclusion sections. We call on the community
participation to test the transferrability of this method to other monitoring systems.

Reviewer Comment 1.3 — LSTM model is only compared to ARIMA. Why not compare
LSTM with other widely-used methods (such as Kriging interpolation and Gaussian process)? Fur-
thermore, are the authors familiar with DIEOF (Data Interpolating Empirical Orthogonal Func-
tions) which are proposed by Beckers and Rixen (2003)? I think that DIEFOF is powerful and

1



useful for filling temporal and spatial gaps in geophysical datasets. Maybe the authors can compare
LSTM with DIEOF.

Response: There are many interpolation approaches that are commonly used, including the EOF-based
approaches and kriging (based on Gaussian processes) that the reviewer mentioned. We did discuss
that kriging and the Gaussian processes are mostly used for spatial interpolation rather than spatio-
temporal interpolation. We have added more discussions on the EOF related interpolation methods,
such as least squares EOF (LSEOF), data interpolation EOF (DINEOF), and recursively subtracted EOF
(REEOF), which are widely used to fill in missing data from geophysical fields such as clouds in sea
surface temperature datasets or other satellite-based images with regular gridded domains. However, as
discussed by Beckers and Rixen (2003), ”For the method to have a chance to work, one needs, for each
moment, at least a su�ciently large number of data points (otherwise one should drop the whole picture)
and for each spatial point a su�cient amount of data in time (otherwise one should discard the point from
the analysis)”, which is a challenge for most of the monitoring networks that are sparsely distributed.
Therefore, we keep using ARIMA as the benchmark since it is the most commonly used method in
time series analysis (a conclusion based on reviewing the hydrological literature) and gap filling. While
we acknowledge that we did not (and could not) explore every possible interpolation method, we feel
that by choosing such a representative approach is appropriate for assessing the performance of our
proposed method without loss of generality. We have also acknowledged this aspect in our introductions,
discussion and conclusion sections.

New description of DINEOF has been added in manuscript at P3L1-P3L5: ” Empirical Orthogonal
Functions (EOF) related interpolation methods, such as least squares EOF(LSEOF), data interpolation
EOF (DINEOF), and recursively subtracted EOF (REEOF), are widely used to fill in missing data from
geophysical fields such as clouds in sea surface temperature datasets or other satellite-based images with
regular gridded domains (Beckers and Rixen, 2003; Beckers et al., 2006; Alvera-Azcárate et al., 2016).
However, the requirement of gridded data by the EOF methods limits their use in filling data gaps in
irregularly spaced monitoring networks.”

Reviewer Comment 1.4 — The present title “Using Deep Learning to Fill Spatio-Temporal
Data Gaps in Hydrological Monitoring Networks” are inaccurate. I suggest new title like “Using
Long Short Term Memory Neural Network Model to Fill Spatio-Temporal Data Gaps in Hydrolog-
ical Monitoring Networks”

Response: Our neural network models contain both LSTM and CNN layers. Therefore, we modified
our title to : ”Technical note: Using Deep Neural Network Models to Fill Spatio-Temporal Data Gaps
in Hydrological Monitoring Networks”. Deep neural network is a broader term that allows flexible
architecture we are using to include multiple types of layers.
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Response to referee comments

Reviewer 2

General Remarks: The paper presents an interesting use of deep learning with LSTM Networks
for infilling groundwater data. The article is timely and tries to make a comprehensive description
and explanation of how the Deep learning technique is implemented using statistical and machine
learning techniques. The paper is a welcome contribution to the field of groundwater and hydro-
logical earth sciences. However, I cannot recommend publication in the present form due to the
comments and questions raised. The paper needs major revision.

Response: We thank the reviewer for the positive assessment of our manuscript and the constructive
comments. We have addressed all the individual comments to improve our manuscript for possible
publication.

Reviewer Comment 2.1 — The paper states that long-term spatiotemporal changes in
subsurface hydrological flow is usually quantified using a network of wells. However this paper does
not deal with the long-term trend or analysis. Hourly data is hardly interpreted or used for the
long term. Hourly information for sure contains noise that would be advisable to remove for the
long term analysis.

Response: There seems to be some confusion between long-term changes and long-term trends. We
have rephrased to clarify that monitoring networks capture the dynamic system behaviors over long
time windows, which allows the discovery of signals over a spectrum of time scales as revealed by the
spectral analysis we presented in the manuscript. While long-term trends, e.g., low-frequency variations,
are usually smoother and could be captured by existing time series analysis method like ARIMA (see
our comparison analyses between LSTM-based DNN and ARIMA gap filling results), our focus is on
capturing high-frequency dynamics that are important signatures for understanding managed systems.
We have clarified those points in our objectives and reiterate in conclusions to avoid confusion.

Reviewer Comment 2.2 — Observations are mentioned to be spatially sparse, and temporal
gaps exist. Many papers have solved the same type of problem, without using the term spa-
tiotemporal. Almost every course in hydrology deals in one chapter with the issue of using spatial
correlation and temporal correlation to fill in data. So in this respect, the authors are invited to
clearly indicate what innovation is brought by this work to spatiotemporal analysis.

Response: We agree with the reviewer that a lot has been done in hydrology for spatial and temporal
analyses. However, there have been very few studies that address spatial and temporal correlations
simultaneously due to the di�culty in parameterizing the spatial and temporal correlations all together.
Deep neural networks provide an alternative way to represent such correlations without assuming the
explicit form of correlations a priori, which is the innovation our work originally aimed to bring and
demonstrate. However, we found there are multiple steps towards accomplishing that goal as it involves
merging two types of deep neural networks to represent both the spatial and temporal correlations
and evaluate various configurations thoroughly. In order to bring the spatial component together with
the temporal correlations, also related to a comment raised by Reviewer #1, we added multi-well DNN
models to take advantage of information from neighboring wells. The multi-well DNN models were found
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to ourperform their single-well counterparts as shown in the newly added Section 4.3. We emphasized
in the introduction and conclusion that the primary advantage of using DNN approach is to address
both spatial and temporal correlations without assuming their explicit forms before hand.

Reviewer Comment 2.3 — Following point two, it is known that in most of the cases, aquifers
with little or no human intervention have low variability. Conventional guidelines and measures in
hydrogeological science are typically based on monthly data.

Response: It is true that some aquifers with no or little human intervention have low variability, for
which monthly data could be su�cient to understand the system behavior. However, anthropogenic
activities, in particular, dam operations, have increasingly impacted the river and aquifer systems by
altering the exchange patterns between river water and groundwater, and the associated thermal and
biogeochemical processes (Song et al., 2018; Shuai et al., 2019; Zachara et al., 2020). Due to significant,
high-frequency (hourly) stage variations caused by dam regulations to meet power generation needs, it
is insu�cient to use monthly data to understand such systems as have been demonstrated in numerous
studies performed at our study site. Our study site is representative of many dam-regulated gravel-bed
rivers across the world. Therefore, our study could have broader impacts to many other systems. We
have made this point clear in our study site description section.

We added a paragraph at P4 L30-P5 L6: ”The understanding we developed from earlier studies is
that the physical heterogeneity contributes to the di↵erent response behaviors at di↵erent locations while
the river stage dynamics lead to multi-frequency dynamics in those responses. The seasonal and annual
variations are driven by natural climatic forcing (Amaranto et al., 2019, 2018), whereas the higher-
frequency (i.e., daily and sub-daily) fluctuations are primarily induced by operations of the upstream
hydroelectric dam operations to meet various demands of human society (Song et al., 2018). Our system
is representative of many dam-regulated gravel-bed rivers across the world, where dam operations as
a typical anthropologenic activity have significantly altered the hydrologic exchanges between river
water and groundwater, as well as the associated thermal and biogeochemical processes (Song et al.,
2018; Shuai et al., 2019; Zachara et al., 2020). Note that the multi-frequency variations in data are
characterizing the dynamic features of data, which could exist in both short-term and long-term time
series data as a result of short-term or long-term monitoring e↵ort.”

Reviewer Comment 2.4 — In the present paper the idea of nonlinear dynamics is mentioned
almost everywhere in the introduction and justification of the work. This is somewhat surprising
and needs better justification, since groundwater dynamics, in many cases, can be represented with
linear models. As it is concluded in this paper results, ARIMA can approximate the system quite
well.

Response: This comment is related to the earlier comment 2.3 as high-frequency dynamics lead to
higher level of nonlinearity in system responses, especially for the specific conductance that is a result
of mixing of water from various sources. We have shown that a linear model like ARIMA was not able
to capture such nonlinearity, while LSTM-based DNN performed better. We have explained this point
in the revised manuscript. Please also refer to our response to comment 2.3 for the importance of
capturing high-frequency dynamics for many dam-regulated systems, which was also better articulated
in the revised manuscript.

Reviewer Comment 2.5 — The particular case study presented here shows a relative complex
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dynamic nature indeed, but it seems it is due to human intervention (however I could be wrong).
Can you comment on this and the uncertainties associated?

Response: The reviewer is partially right that human intervention contributes to the complexity of
system behavior by creating high-frequency flow dynamics. However, the full complexity is a result of
interactions between such human-induced variations and the natural heterogeneity of aquifer physical
properties (Zachara et al., 2020). There is significant uncertainty associated with aquifer physical
heterogeneity at our study site as revealed by previous studies. We have added these additional discussion
about the system complexity in the revised manuscript.

a The human intervention might a↵ect your calculation and therefore, extractions might not be
following a random but more human induced behaviour. So data understanding or replica-
bility used in one year might not be the same in another. It would be advisable first to check
how much and when extraction took place. Is this data filled in for a long term analysis, or
short-term? This question arises since the hourly step is used.

Response: Please refer to our response to Comment 2.1 for explaining our use of long-term
data versus long-term trend analyses. The reviewer is right that high-frequency flow variations are
mainly caused by the dam operations while the seasonal and interannual variabilities are controlled
by climatic forcing like precipitation and melting of snow pack in the headwater systems. We have
clarified the drivers of the high-frequency and low-frequency variations in the revision. We used
multiple years of training data from dry, normal and wet hydrologic years to capture potential
operational patterns associated with various conditions. LSTM units include a ’memory cell’ that
can maintain information in memory for long periods of time.

The model learns to extract the information from the input during the training process, typically
by the end of 30 epochs we train the model for. The amount of information maintained by the
LSTM is dependent on the size of the input time series. Future work is required to identify what
information the LSTM model remembers in the cell, i.e., opening the black box of the DNN model.
While this is a very important next step and an active research area, it is beyond the scope of
this technical note to describe the relevant method and results imagining the level of e↵ort that is
required. After the data gaps are filled, the dataset can be used for both long-term or short-term
analyses as we will have long-term dataset with high temporal resolution.

To illustrate what can be done to open the DNN box, we are providing an example where we
examined the memory cells of a model with an input window size of 120 hours, output of 1 hour,
trained on data from well 1-1. We investigated which of the inputs (SpC, water level, temperature)
drives the state of the LSTM units, i.e., which input has the most influence on the LSTM units, for
the validation period (year 2011). We divided the data into 8640 input samples of 120 hours each
and ran each input through the trained model. We then extracted the hidden state of each unit
in the three LSTM layers at each time sample and calculated the Pearson correlation coe�cient
between the hidden states of all the units and the normalized input. Next, we calculated the
percentage of the 8640 samples for each input variable to have the largest positive and negative
correlations with the hidden states of the LSTM units in each of the three layers. The results
for the top positive and negative correlations are show in table 2.1, from which we see that the
water level occurs the most frequent (almost 50% of cases) as the highest positive and negative
correlation for the LSTM units in layers 1 and 2. SpC is consistently the second most frequent
as the highest correlated in all the layers. SpC occurs most frequently (42.62%) as the highest
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negatively correlated with the hidden states in the third LSTM layer. Thus, for this given model,
the memory of the LSTM units are most strongly driven by the dynamics of the water level in the
input, then followed by the dynamics of the SpC.

Layer 1
Rank SpC (%) Temperature (%) Water Level (%)

Highest Positive 32.6% 14.9% 52.4%
Highest Negative 32.4% 22.1% 45.6%

Layer 2
Rank SpC (%) Temperature (%) Water Level (%)

Highest Positive 28.5% 20.2% 51.3%
Highest Negative 29.6% 16.3% 54.2%

Layer 3
Rank SpC (%) Temperature (%) Water Level (%)

Highest Positive 28.2% 20.2% 51.6%
Highest Negative 42.6% 17.9% 39.4%

Table 2.1: Percent of input samples in 2011 (8640 in total) for each measurement to have the largest
positive and negative Pearson correlation coe�cient (R) with the hidden states of each LSTM layer

Taking a closer look, as seen in figure 2.1, the top positively correlated LSTM unit with SpC (R
= 0.897) closely follows the dynamics of the SpC.

b If indeed human intervention influence the dynamics of the groundwater system, the logical
approach would be to find a variable to represent direct or indirect measurement of extrac-
tions.

Response: Thanks for the suggestion. Please refer to our response to your earlier comment.
We have looked into both memory cells and state cells to illustrate how and where the extraction
occurs.

c It is suggested to read the paper by Amaranto et al. (2018) “Semi-seasonal groundwater
forecast using multiple data-driven models in an irrigated cropland”. J Hydroinformatics, 20
(6): 1227–1246. DOI: https://doi.org/10.2166/hydro.2018.002 and - Amaranto et al. (
2019). A spatially enhanced data driven multimodel to improve semiseasonal groundwater
forecasts in the High Plains aquifer, USA. Water Resources Research, 55, 5941– 5961. https:
//doi.org/10.1029/2018WR024301

Response: Thank you for the paper suggestions. Both of the papers listed above use data-driven
approaches to improve groundwater forecasts. The MuMoC framework select neighboring wells
to assist groundwater predictions is of our interest. Although the authors used data with coarser
temporal resolution (daily or monthly) to make monthly predictions, which is di↵erent from our
purpose of filling short gaps (up to 3 days) for capturing high-frequency dynamics, the idea of
using information from neighboring wells applies to our case. We have explored multi-well DNN
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Figure 2.1: Well 1-1 normalized measurements over time (2011-04-15 04:00:00 to 2011-04-20
03:00:00), along with the hidden state of the top positvely correlated LSTM unit in the third
layer

models to use information from neighboring wells, which led to improved accuracy in gap filling.
Please refer to the new added section 4.3: Performance of multi-well DNN models. We have
reviewed and discussed these two papers in our revision.

Reviewer Comment 2.6 — The regional aquifer and geology might play a more significant role
in the study, since not only the river but the size and other interventions and hydrometeorological
recharges might be correlated.

Response: We agree that the regional aquifer and geology play an important role as shown in previous
studies performed by our colleagues (Chen et al., 2012, 2013; Zachara et al., 2020). The aquifer
is composed of two distinct geologic formations, a highly permeable formation (Hanford formation,
consisting of coarse gravelly sand and sandy gravel) underlain by a much less permeable formation (the
Ringold Formation, consisting of silt and fine sand). The dominant hydrogeologic features of the aquifer
are defined by the interface between the Hanford and Ringold formations and the heterogeneity within
the Hanford formation. The understanding we developed from these earlier studies is that the physical
heterogeneity contributes to the di↵erent response behaviours at di↵erent locations while the river stage
dynamics lead to multi-frequency dynamics in those responses. We have added more information and
re-organized the entire section 2: Study Site and Data Description to better describe our system to help
readers understand. The recharge from rainfall is negligible due to the semi-arid climate.

Reviewer Comment 2.7 — The stations are so close, and the hourly variation appears to
be periodic with an amplitude of 4 or 5cm, according to Figure 1 (and on other graphs). It is
intriguing, the question I would have is what happens every hour? and if this hourly variation is
noise on the measurement device or data? What is the precision of the measurement device? What
is the volume of water extracted to reach the variation of 1 cm? Where the recharge water comes
from(has this been studied in the past)? Is this 5 cm recharge volume feasible in one hour? Could
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be the water from the river a↵ecting your measurements (interflow)? It is advisable to present the
time series of the river flow. It would be also useful to have a few hydrological balances (note that
this is a hydrological journal). The problematic still can be questioned due to its apparent complex
dynamics with the river and human intervention (not a typical, natural aquifer).

Response: The reviewer is right that the water table elevation di↵erence is small due to the close
distance between wells and the highly permeable aquifer material (hydraulic conductivity in the range of
4000-7000 m/d). The rapid change in groundwater table is at first caused by pressure wave propagation
from the river stage variation, and then by recharge water coming from the river or displacement of
groundwater from other parts of the aquifer depending on flow directions and locations of interest. The
stainless-steel pressure transducer CS451 from campbell scientific (Scientific) was used for water level
measurements. The measurement range of the pressure transducer in our study site is 0 to 10.2m with
a standard accuracy of ±0.1%, which leads to an accuracy of 1cm. In this case, the pressure changes
with an amplitude of 4 5cm are the actual measurements and our consistent 10-year data has proven
this point. In our revision, we have included the measurement accuracy information and numerous
hydrologic modeling studies(Song et al., 2018; Shuai et al., 2019; Zachara et al., 2020) performed at
the site to help readers better understand the flow conditions and where the recharging water comes
from.

Reviewer Comment 2.8 — On the model setup, Please explain why you use Mx128.

Response: We use 128 (i.e. 128 units for each LSTM layer) because this number of units showed
better performance after we experimented with di↵erent model architectures with di↵erent number of
units. We have added this rationale to the manuscript at P10 L5-L6 ”Each of the three LSTM layers
has 128 units because this configuration outperformed others with more or fewer number of units”.

Reviewer Comment 2.9 — Page 7, line 10, mentions the supplemental material, but I cannot
find it in the paper.

Response: The supplemental materials can be found using this link
https://www.hydrol-earth-syst-sci-discuss.net/ hess-2019-196/hess-2019-196-supplement.

pdf

Reviewer Comment 2.10 — Important: choice of (a very complex model) LSTM has to be
justified, since it seems AR-type models is enough. Frankly, I don’t see the need for complex models
like LSTM, but if you have arguments to defend your position, please present them to convince the
readers.

Response: We are interested in using an LSTM-based DNN for this problem because DNNs have had
success in predicting values in time-series data without assuming explicit temporal dependence forms.
We added several examples of this on P3 L12. We aimed to explore whether an DNN model would
provide improved performance over traditional methods (i.e. ARIMA). Our study demonstrated that
more complex DNN models were able to capture high-frequency variations in system dynamics, for
which a simpler ARIMA model failed to capture. The choice of the DNN architecture was a result of
hyperparameter search based on the validation performance of the models. Related to our response
to other relevant comments, we restructured the methodology section and added more reasoning for
the choice of the DNN architecture and the advantages and necessity of using LSTM-based DNNs in
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our revision. For example, We have expanded the introduction section to discuss recent applications of
LSTMs to hydrology and earth sciences and the relevance to gap filling problems.

New section (P3 L21-P43): ”There have been applications of RNNs and LSTMs emerging in hydrol-
ogy. For example, Kratzert et al. (2018) used LSTMs to predict watershed runo↵ from meteorological
observations, Zhang et al. (2018) used LSTMs for predicting sewer overflow events from rainfall inten-
sity and sewer water level measurements, and Fang et al. (2017) used LSTMs to predict soil moisture
with high fidelity. Compared to a single RNN/LSTM layer, more complex LSTM architectures such as
stacked and bidirectional LSTMs, CNN-LSTM or convolutional LSTM have the potential to capture
extra features (Graves et al., 2013; Pascanu et al., 2013) as shown in various applications, including ac-
tion recognition (Zhu et al., 2016) and vulnerable road users location predictions (Saleh et al., 2017). A
bidirectional RNN/LSTM works by duplicating the recurrent network into two networks: one responsible
for fitting the positive time direction (i.e. the forward states) and the other responsible for the negative
time direction (i.e the backwards state)(Schuster and Paliwal, 1997). In general, the input sequence is
fed as-is to the forward state and a reversed copy of the input sequence is fed to the backwards state.
The bidirectional LSTM can be used in history matching problems.

Our study aims to evaluate the potential of using LSTM layers within a DNN architecture to fill
gaps in spatio-temporal environmental time series. We treat the gap filling as a forecasting problem,
i.e., we use the historical data as input to predict the missing values in the data gaps. We demonstrate
our method using a test case that focuses on understanding the interactions between a regulated river
and contaminated groundwater aquifer. We adopt the stacked-LSTM combined with the convolutional
layer as our DNN model to understand the interactions between a regulated river and contaminated
groundwater aquifer. The DNN-based gap filling method is compared with traditional time series
approaches (e.g., ARIMA) to identify situations in which DNNs outperform ARIMA as well as what the
optimal configurations might be for this particular application.”

Reviewer Comment 2.11 — On page 14, it states that other configurations of LSTM can be
further explored; however, it is not clear why this was not done before. Not sure why the selected
configuration was just tried to see if it works or not, without any analysis what is the best structure.
This relates to comment 8 and 9.

Response: We acknowledge that we did not explain this point as well as we could have. We performed
hyperparameter searches on: Number of LSTM layers, number of units per LSTM layer, number (and
size of) dense layers, activation functions. This was performed for data on one well (399-1-1) with
a smaller subset of input and output prediction windows, experimenting with di↵erent architecture
configurations. However, this was not an exhaustive search of all possible configurations. We have
dedicated a subsection 3.1.1 on hyperparameter search to make this clear.

Reviewer Comment 2.12 — I am a bit in confusion how to interpret the statements made
in conclusion. The ARIMA is not suited or less suited for filling high frequency (hourly, or short
gaps) and more suitable for a long term period (24, 48 and 74 hours). It is suggested we need deep
learning for filling high-frequency gaps (of one hour)?. Maybe is good to elaborate on the simplicity
of what this translates to, I am not sure if the meaning is right.

Response: We acknowledge a potential source of confusion in terms of high-frequency fluctuations
in system states versus short-term or long-term data records/gaps. In the revised manuscript, we made
extra e↵ort to distinguish those two concepts to avoid further confusion. In our study, we found ARIMA
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to be suitable for time series with less dynamic behavior, while DNNs excel in capturing high-frequency
dynamics (daily and subdaily) in time-series observations for various data gaps.

Reviewer Comment 2.13 — Not sure if there is an idea of how high is the overall error; in
the figure 8, with well 1-15 it seems almost perfect representation (zero error in the validation data
for many points). Also in the same well, it appears like high negative correlation up to 128 hours.

Response: Well 1-15 has the smallest error as been illustrated in Figures 8 and 9. The mean error
shown in testing period in Figure 9 is 0.05%. Please note that the log10 scale of wavelet power spectrum
is plotted in Figure 9, where the blue colors represent weak power rather than negative correlation.
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Response to referee comments

Reviewer 3

General note: I was asked by the editor to review this manuscript, although groundwater hy-
drology is not my area of expertise. However, machine learning is and therefore most of my review
will be around the methods and experimental setting used in this manuscript. This manuscript
presents an approach for filling gaps in time series of ground water well measurements. Specifically,
the authors compare two di↵erent methods (LSTM-based and ARIMA) for di↵erent gap lengths
for six di↵erent wells. Although I generally welcome publications that try to make use of deep
learning based methods for various applications in earth science, I see various major concerns with
the manuscript at hand. Overall, it seems like the authors are not too familiar with the methods
they apply (especially the LSTM-based model) and many decisions made seem questionable and
lack any justification or explanation. Because of these concerns, I’m not sure if I can recommend
this manuscript for publication. If it should be published at all, major revisions are required.

Response: Thank you for reviewing and providing the summary. We agree with the reviewer that it
is important to demonstrate that we know what we are doing, and we appreciate the reviewer’s careful
attention to make sure we did our due diligence. We have taken major revisions to address all the
comments raised by the reviewer, as illustrated by the point-by-point response below.

Reviewer Comment 3.1 — Model architecture: Coming from the field of machine learning,
I was surprised by the creativity of the authors in finding their model architecture. To be honest,
I have never seen such a combination of LSTM layers, dense layers and convolutional layers for a
time series task and I wonder if the authors know what they are doing. Here is a list of sub points
to this major comment:

a First: Did you perform any hyperparameter search at all to find this architecture? If yes,
please give details on the model configurations (in terms of layers) you tried, if not, why not?
To propose such an exotic architecture, it is required to see quantitative evidence that this is
required and not a much simple LSTM-based model would be better (e.g. single LSTM layer
with single dense + dropout layer)

Response: We performed hyperparameter searches on: Number of LSTM layers, number of
units per LSTM layer, number (and size of) dense layers, activation functions. This was performed
for data on one well (399-1-1) with a smaller subset of input and output prediction windows,
experimenting with di↵erent architecture configurations. We have dedicated a subsection 3.1.1
on hyperparameter search.

New description is at P9 L12 to P10 L6: We performed a hyperparameter search to explore
di↵erent model architecture configurations, i.e., the number of LSTM layers, number of units
per LSTM layer, number (and size of) dense layers, and activation functions. The search was
performed on well 1-1 only due to computational cost. We chose the optimal DNN architecture
using model performance on validation data set of well 1-1 (see Table 1) using MAPE defined in
Eq. (1).

The final DNN architecture, as shown in Figure 4, contains three LSTM layers, followed by two
dense layers with dropout, a convolutional layer, and a final output dense layer. Stacking three
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layers of LSTM was found to yield better performance than a one- or two-layer architecture. Each
of the three LSTM layers has 128 units because this configuration outperformed others with more
or fewer number of units.

b Why do you stack 3 LSTM layers? In theory, a single LSTM layer is turing-complete. Besides
probably natural language processing, where the training data consists of million/billion of
samples, there is almost always no need to use more than a single LSTM layer. Additionally,
since you have very limited training data (2 years of hourly data are just 17520 data points),
the size of your LSTMs seem to be exorbitantly large. Especially with 3 LSTM layers.

Response: In response to using multiple LSTM layers, there has been research looking at the
benefits of using multiple RNNs/LSTMs in a model in comparison to a single RNN/LSTM (Graves
et al., 2013; Pascanu et al., 2013). Likewise, there has been work in using multiple LSTMs for
action recognition (Zhu et al., 2016), tra�c prediction (Du et al., 2017), and vulnerable road
users location predictions (Saleh et al., 2017). As such, we investigated the potential benefits
of using multiple LSTM layers in our problem domain. We have added additional sentences in
the revision to discuss previous uses of stacked LSTMs and some comparisons of single versus
multiple in di↵erent domains to give context on why we are interested in this model architecture
and updated our references with the cited articles.

New paragraph (P3 L24-L27): Compared to a single RNN/LSTM layer, more complex LSTM
architectures such as stacked and bidirectional LSTMs, CNN-LSTM or convolutional LSTM have
the potential to capture extra features (Graves et al., 2013; Pascanu et al., 2013) as shown in
various applications, including action recognition (Zhu et al., 2016) and vulnerable road users
location predictions (Saleh et al., 2017). .

c Why the combination of convolutional layers and dense layers after the LSTM? Probably the
standard is to have a single dense layer that uses the hidden output of the LSTM to map to
your desired target shape. Why do you think so much complexity is needed after the LSTM,
since the LSTM should capture the complex temporal dependencies already?

Response: As stated in our response in 3.1a, we performed some hyperparameter searches,
experimenting with di↵erent architecture configurations which led us to use convolutional and
dense layers. We acknowledge that more information on the extensive analysis and experimentation
we have performed would be useful in further justifying the choice of model architecture, so we
have provided those details in supplemental material.

d Why do you have the convolutional layer at all? If I understand your setting correctly, the
convolutional layer can again look at the entire sequence (M x 64, with M the input sequence
length). Why is this necessary? The task of the LSTM is to summarize the input sequence
and store all the information necessary for predicting the M+1 time step (first step of your
N time step long gap) in it’s cell state. e. Another point related to the convolutional layer. I
see that the filter size was solely chosen to be able to map from a sequence length of M to an
output of N (filter size M-N+1). However, are the authors aware of what that means? For
example, for predicting the first of the N time steps, the convolutional filter will only look
at the first M-N+1 input sequence elements, e↵ectively ignoring what has happened at the
time steps preceding the current time step. Why do you want this? It makes absolutely no
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sense to not include the most informative information (the previous time steps) necessary to
predict the next time step.

Response: Yes, the intent was to map from a sequence length of M to an output of N. The
reviewer is correct that the convolutional filter does limit the model in ignoring the most recent
time steps. As stated in our response to comment 3.1c, we felt our exploration of architectures,
including using convolutional layers, resulted in a good architecture. Furthermore, the time steps
immediately preceding the current time are not necessarily the most informative information in the
presence of dynamical behavior. However, in response to the reviewers concern, we trained models
with a single LSTM and dense layer and compared the results against the original architecture
(see response in 3.3c).

Reviewer Comment 3.2 — Related work: Since (correct me if I’m wrong) this is not a
forecast task, but just filling gaps in historic data records, I wonder if the authors have done some
research, which approaches are currently used in the field of deep learning, before proposing their
own method. E.g. for gap filling in historic time series, Bi-directional LSTMs are commonly used
over normal LSTMs, since they do two sided gap filling (closer to interpolation), compared to the
standard LSTM, which basically extrapolates into the future. I would also advise to add some
related work section of LSTM-based gap filling into the introduction.

Response: The reviewer is correct that the goal is to test gap filling in historical records. For our
work, we treat the gaps as a forecasting problem which means we use the historical data as input to
predict the values during gap period. Bi-directional architectures have been used for gap-filling and is
another model type applicable to the work if we treat the gap filling as a history matching problem. As
we stated in the conclusion section, the bi-directional LSTMs can be explored in future work to keep
the scope of this study manageable. We have also added a paragraph describing multiple deep learning
techniques that have been applied to gap filling in hydrology, including LSTMs. We have also added a
brief description regarding bi-directional LSTMs.

New Description P3 L21-31: There have been applications of RNNs and LSTMs emerging in hydrol-
ogy. For example, Kratzert et al. (2018) used LSTMs to predict watershed runo↵ from meteorological
observations, Zhang et al. (2018) used LSTMs for predicting sewer overflow events from rainfall inten-
sity and sewer water level measurements, and Fang et al. (2017) used LSTMs to predict soil moisture
with high fidelity. Compared to a single RNN/LSTM layer, more complex LSTM architectures such as
stacked and bidirectional LSTMs, CNN-LSTM or convolutional LSTM have the potential to capture
extra features (Graves et al., 2013; Pascanu et al., 2013) as shown in various applications, including ac-
tion recognition (Zhu et al., 2016) and vulnerable road users location predictions (Saleh et al., 2017). A
bidirectional RNN/LSTM works by duplicating the recurrent network into two networks: one responsible
for fitting the positive time direction (i.e. the forward states) and the other responsible for the negative
time direction (i.e the backwards state) (Schuster and Paliwal, 1997). In general, the input sequence is
fed as-is to the forward state and a reversed copy of the input sequence is fed to the backwards state.
The bidirectional LSTM can be used in history matching problems..

Reviewer Comment 3.3 — Training setup: There are various points around the model training
setup that I see problematic. Some of them might overlap to other points mentioned above or below.

3



a Input features for any neural network should be normalized to zero mean, unit variance and
not to the range of 0 to 1. This will basically bias your network during the start of the training
in a wrong way. Maybe as some intuition: Most (all?) activation functions are centered
around zero, e.g. the sigmoid function in all gates of the LSTM. With randomly initialized
weights (which are normally initialized around 0), using your normalization would bias the
entire network to always have pre-activations of larger than zero, and thus sigmoid values
close to one. However, what you want is in expectancy to be undecided in the beginning (pre-
activation of 0, equals to sigmoid of 0.5). Long story short, you should re-run all experiments
with di↵erent normalizations, at least for the LSTM.

Response: Thank you for the comment. We have re-run the experiments using the zero
mean, unit variance normalization. In comparing models trained with the original 0 to 1 scaling
normalization technique against the zero mean normalization, the di↵erent normalization has a
mixed result on model performance. As seen in figure 3.1 of this response, only models trained on
wells 1-15 and 2-3 gain a notable improvement in performance, with 100% and 51.28% of model
configurations tested on the gap lengths gaining an increase in performance, respectively. However,
for wells 1-1, 1-10A, 2-2, and 2-5, only 21.15%, 39.74%, 37.82%, and 27.57% of configurations
saw an improvement in performance. As such, while some model configurations do benefit (i.e.
models trained on well 1-15 and 2-3), a majority of configurations tested on the four gap lengths
do not improve in SpC MAPE performance when using zero mean normalization. We therefore
kept our original normalization.

b Results of neural networks are generally a↵ected by some stochasticity, because of the random
weight initialization and the randomness of stochastic gradient descent. This requires almost
always to train multiple models for the exact same setting with di↵erent random initialization
(seeds) and to report the average model performance and variations across those repetitions.
Otherwise, results might not be reproducible, since you might only be lucky (or unlucky) with
your single initialization.

Response: We have re-run our experiment using three additional initialization seeds. Model
results presented are now averaged over the initialization seeds.

New sentence P8 L18: Each model configuration was trained using four di↵erent initialization
seeds and error metrics were averaged to determine the best configuration. .

c In general, you have very few data points for such a large deep learning model, as already
stated above. You could either think of ways, how to combine the data of all wells in a single
model, or reduce your model size drastically, which is what I would propose here.

Response: We have the ability to combine the data of input from neighboring wells (up to five
more) for the large deep learning model, which for 4 years would be approximately 210240 data
points. We have used well 1-1 as example to show the comparison of model performance between
single-well and multi-well models. We trained a multi-well model using 3 wells (1-1, 1-10A, and
1-16) and compared the performance to the single-well models trained on 1-1. With additional
spatial information involved, we have added the extra discussion regarding to this e↵ort under new
subsection (”4.3 Performance of multi-well DNN models”) on our manuscript.
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Figure 3.1: Comparison of models trained using scaling normalization on the data versus models
trained using zero-mean, unit-variance normalization per well. Each data point represents the
MAPE of a unique model configuration (size of input window, size of output window) tested on a
gap length (1 hour, 24 hours, 48 hours, or 72 hours) for 2011 data. The x-axis of each plot is the
natural log SpC MAPE of a unique model configuration trained on data normalized with scaling
between 0 to 1. The y-axis is the natural log of the SpC MAPE of the same model configuration
trained on data normalized via zero-mean. The dashed black line in each plot is the line y = x.

Similar to the reviewer’s comments for 3.1a, we have also performed more extensive experimenta-
tion on smaller models (single LSTM layer with single dense + dropout layer) that only predicts
SpC using the same model configurations as the original model (input window, output window,
years of data), but limited to data from well 1-1. We compare the models against each other via
gap filling on data from 2011. As seen in figure 3.2 of this response, the single LSTM performs
better when filling in gaps of 1 hour for both normalization methods. However, our model archi-
tecture performs better in comparison for filling in gaps of 24, 48, and 72 hours. As such, the
original model architecture is more robust in filling in larger gaps.

d I found it very hard to follow your training and testing setup, until late in the paper. E.g.
around the number of possible model configurations, and total train-test combinations. I
would advise to a sentence at the very beginning of the methods like “We train one model
for a single well and evaluate this model on the same well and all other wells.”

Response: Thank you for the great suggestion. We have added a sentence to the beginning to
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Figure 3.2: Comparison of models trained using the original model architecture versus a single
LSTM layer with a single dense layer architecture. The left plot is for models trained on data
normalized by scaling between 0 and 1. The right plot is for models trained on data normalized by
zero-mean. Each data point represents the MAPE of a unique model configuration (size of input
window, size of output window) tested on a gap length (1 hour, 24 hours, 48 hours, or 72 hours) for
2011 data. The x-axis of each plot is the natural log SpC MAPE of a unique model configuration
using the original model architecture. The y-axis is the natural log of the SpC MAPE of the same
model configuration using the single LSTM architecture. The dashed black line in each plot is the
1:1 line.
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further clarify our training, valuation and testing setup. Also, table 1 had been updated to clarify
the three independent time periods.

New description at P8 L10-L8: ”After evaluating the gain in performance improvement by us-
ing increasingly more training data (details provided in the online supplemental materials), we
concluded that 4 years of training data (2012-2015) was su�cient for all the models. Validation
datasets were used to select the best model hyperparameters (section 3.1.1) and the optimal
combination of M and N (section 3.1.2) for gap filling at each well. Another independent period
was selected at each well, depending on data availability, to compare the gap filling performance
using the DNN and ARIMA methods. The complete set of alternatives we considered for each
DNN model configuration is shown in Table 1. Excluding combinations with M < N , 1080 unique
models (180 models per well) were trained. We used an Adam optimizer (Kingma and Ba, 2014)
for training and the mean-squared error as the loss function. The models were trained for 30
iterations (i.e., epochs) over the training data.”

e Furthermore, why are models tested out-of-sample, meaning being trained on di↵erent wells
than evaluated? Is there any idea behind it? Is the idea to learn a model that should be able
to fill gaps in time series of any well at any location? If yes, you should probably re-think
your entire training setup. If not, I don’t see the need for this evaluation, since this is also
not done for the ARIMA model.

Response: The intent on evaluating models on wells di↵erent from the training well was to
analyze how well the model does on data from a well it has not seen. However, as noted by the
reviewer, this evaluation was not done for the ARIMA model. As such, we removed this evaluation
in order to make the paper more straight forward and less confusing in its comparison of our DNN
model and ARIMA. Furthermore, we have updated Figure 6 without the additional analysis and
removed Figure 6f.

Reviewer Comment 3.4 — LSTM vs ARIMA comparison:

a Why did you perform Hyperparameter search for the ARIMA method and not for the LSTM-
based model?

Response: A hyperparameter search for the ARIMA approach is performed by using the
“auto.arima” function in R automatically. We also performed a hyperparameter search on the
architecture of the DNN models. This includes: the number of LSTM layers, the number of units
per LSTM layer, andthe number (and size of) dense layers, and activation functions, as in the
subsection 3.1.1.

b Why is ARIMA not tested on wells that are not the training well, while the LSTM is?

Response: ARIMA is not tested on other wells since the ARIMA model is built dynamically
based on the 168 historical hours for each well. The information carried by the ARIMA model is
not enough to train other well. Also according to the comment 3e, we have removed the model
evaluation on testing (which includes figure 6(f) on the non-training wells to reduce the confusion.
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c P12 L6f: How was the best model decided? On training or test period? As of P13 Line
2f it seems like you picked the best model based on the test period results. If this is true,
your results are biased and do not represent the true expected results of your methods. You
either chose the best model by the training period, or better, have a third independent period
(called validation split in machine learning) and pick your model based on the performance
in this third data split, which is neither used for training nor for the final model evaluation.

Response: The best model for each well was decided on the data period from 2011 (now labeled
as the validation period in our paper). Based on the reviewer’s suggestion, we have added a third
independent time period (i.e. testing period) used to compare our DNN models to the ARIMA
method. So now, we have three datasets: training, validation, and testing. The training period
is used to fit the model (data from 2012-2015). The validation period (year 2011 for all wells)
was used to determine the optimal model configuration. The testing period is the year 2016 for
comparing the model performance against the ARIMA method for all wells except 2-5 and 1-15.
The testing time periods for 2-5 and 1-15 are year 2008 and 2017 respectively because there was
lack of SpC observations during 2016. Table 1 has been updated to clarify training, validation
and testing period.

New description at P8 L12-L15: ”Validation datasets were used to select the best model hyperpa-
rameters (section 3.1.1) and the optimal combination of M and N (section 3.1.2) for gap filling
at each well. Another independent testing period was selected at each well, depending on data
availability, to compare the gap filling performance using the DNN and ARIMA methods.”

Reviewer Comment 3.5 — SpC: Later in the results section, you state that only SpC is of
interest and no results for any of the other two variables are presented in this manuscript. This is
totally okay, but my question is, why then do you model all three variables? Why not train the
model using three inputs (temp, level and SpC) and predict only SpC?

Response: We performed other similar analyses for groundwater table and temperature, but they
are not shown here because SpC is our primary interest for this study and also for space consideration.
The reviewer is right that we don’t have to predict all three variables. We experimented with a simpler
architecture to predict SpC only. Those results are shown in response to comment 3.3c, which showed
the simpler architecture performs better on smaller gaps, but our DNN model outperforms on larger
hour gaps.

Reviewer Comment 3.6 — P 11 L 20: “We also observe that models with a daily 24-hour
input window outperform other models with longer input windows as shown in Figure 6 (c).” This
statement, figure 6(c) and thus your conclusion in the following sentences and the rest of the paper
are misleading. It is completely logical, that the averaged MAPE over all settings for the input
sequence length of 24h is the lowest, since this only includes models, where you predicted N=1h,
6h, 12h or 24h (as of table 1: N ¡= M). And as you have seen from all other experiments, filling only
small gaps is easier for any model than filling large gaps. So the fact that the 24h input sequence
has the smallest error is not due to the 24h input sequence, but due to the short output sequence
for M=24h inputs. I would bet that if you train a model with input length 168h and only evaluate
for 1h, 6h, 12h and 24h performance should be similar/better than for a 24h input window. It is
probably better to remove figure 6(c) or rethink how you can fairly compare the average results over
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di↵erent input sequence length, since the di↵erent input sequence length also mean you evaluate
them for di↵erent gap filling length.

Response: Thank you for the feedback. We re-did the analysis in Figure 6 by limiting the predicting
output window sizes to 1h, 6h, 12h, and 24h for all input window sizes to provide a fair comparison. In
comparing MAPEs across various input window sizes shown in Figure 6 (b), we observe that models with
all input windows have comparable median MAPEs, with those of 24, 72, 144 and 168 hours leading to
slightly smaller median MAPEs. We are now including all the models correspond to an input window
size in boxplots rather than just showing a mean value as in the original manuscript. The input window
size of 24 hours led to robust performance in terms of the fraction of small MAPEs, median and outliers
on the large MAPE end. As the reviewer noted, the averaged MAPE for the model with input length of
168h, 7.33, is similar to that of the 24h input length models (6.39). In addition, we removed the original
figure 6(a) for simplification and moved that analysis to the supplemental material, only showing results
with 4 years of data. The updated figure and caption is shown in figure 3.3.

Figure 3.3: Updated Figure 6: Gap filling performance for SpC evaluated against the validation
datasets under multiple model configuration parameters (a-c) or grouped by training wells (d). (a)
distribution of SpC MAPE vs. tested gap lengths; (b) distribution of SpC MAPE vs. model input
window size M ; (c) distribution of SpC MAPE vs. model output window size N ; (d) distribution
of SpC MAPE aggregated by wells

New sentence P13 L12-L21: As shown in Figure 6(a), model performance deteriorates as the gap
length increases, indicating that the DNN-based method tends to lose ground truth information from its
input to inform prediction. In comparing MAPEs across various input window sizes shown in Figure 6
(b), we observe that models with all input windows have comparable median MAPEs, with those of 24,
72, 144 and 168 hours leading to slightly smaller median MAPEs. The 144- and 168-hour input windows
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also yield lower third quartile of MAPE and fewer outliers on the larger MAPE end, indicating that the
memory units in the LSTM layers are capturing important daily to weekly signatures (evident in WPS
plots in Figure 2 for all wells except for Well 1-15) for some wells. As shown in 6 (c), daily and subdaily
output windows yield comparable median MAPEs, with the 24-hour output window leading to smaller
third quartile and fewer large MAPE outliers than its 1-, 6-, and 12-hour counterparts. Overall, an input
window of 144 hours and an output windows of 24 hours appear to be a robust model configuration for
all wells and gap lengths considered.

Minor Comments:

Reviewer Comment 3.7 — Title: At no point of this manuscript I see the term “spatio-
temporal” justified. You are only filling temporal gaps in time gaps of a single well, without any
spatial input information (e.g. the input features of the neighboring wells). So I would strongly
advise to change all occurrences of the spatio-temporal framing to temporal only or clearly justify
what in your work is the spatial component.

Response: We have trained multi-well DNN models by including multiple neighboring wells to address
both spatial and temporal components in our study. The additional discussion related to this e↵ort has
been added to new subsection 4.3. Please also refer to our response to comment 3.3c.

Reviewer Comment 3.8 — P3 L4: Connor et al. (1994) is not the citation you should cite
here for the RNN. Jordan (1986) would be more appropriate. Also the blog post from Olah (2015)
is probably misleading here.

Response: We thank the reviewer for the comment. We have removed the citation of Olah (2015)
and updated our citation for the RNN to Jordan (1986).

Reviewer Comment 3.9 — P3 L11 Ma et al (2015) is definitely not the correct reference here
and you should cite the original LSTM paper by Hochreiter & Schmidhuber (1997).

Response: We thank the reviewer for the comment. We have updated the citation and references
accordingly.

Reviewer Comment 3.10 — P3 L11f. Beside text prediction, text translation, speech recog-
nition and image captioning, LSTMs have also already been applied to earth science and even in
hydrology, which might be also/more relevant to mention here.

Response: On P2 Line-35, we cite papers using DL in geophysical domain. However, as implied by
the reviewer, we have added a brief description of LSTMs applied to earth science and hydrology (this
is the same update in response to reviewer comment 2.10)

New section (P3 L21-24): There have been applications of RNNs and LSTMs emerging in hydrology.
For example, Kratzert et al. (2018) used LSTMs to predict watershed runo↵ from meteorological ob-
servations, Zhang et al. (2018) used LSTMs for predicting sewer overflow events from rainfall intensity
and sewer water level measurements, and Fang et al. (2017) used LSTMs to predict soil moisture with
high fidelity.

Reviewer Comment 3.11 — P 4 L 2 “select” -“selected”

10



Response: Thanks for the catch. It has been modified in the revised manuscript.

Reviewer Comment 3.12 — P5 L15: In this entire discussion you mention “highly correlated”
(L19), “lower correlations” (L20), “correlates well” (L20) and many more of these statements. Such
statements usually required some quantitative measures (e.g. correlation coe�cient). Otherwise,
what is a high correlation and what low?

Response: We have added the following sentences to clarify:
New sentences (P5 L13-L18):”A larger coherence at a given frequency indicates a stronger correlation

at that frequency between the SpC at a well and the river stage. We consider these two variables highly
correlated when the coherence is larger than 0.7 (shown in green to red colors in Coherence plots). We
found that such high correlations exist at multiple frequencies, from subdaily to daily to yearly, at all
the wells close to the river (e.g., 1-1, 1-10A, 2-2, and 2-3), while the higher correlation regimes in wells
farther from the river (e.g., 1-15 and 2-5) are shifted towards longer periods at semi-annual and annual
frequencies and less persistent in time.”

Reviewer Comment 3.13 — P5 L27 here you state you only investigate 24-, 48-, 72-h gaps.
In table 1 you have much longer periods listed as well as in figure 6, while then in figure 7 again
only 24, 48, 72. This is a bit inconsistent.

Response: We didn’t include the comparison for gap length of 1 hour because both methods were
highly accurate in filling such small data gaps. We added this explanation on P14 L1-2 to be consistent.

Reviewer Comment 3.14 — P5 L23 delete “clearly”

Response: Agreed. It has been deleted in the manuscript.

Reviewer Comment 3.15 — P6 L3 What you mean is not a dropout layer, but the combination
of a dense layer with additional dropout. Two consecutive dropout layer would mean simply
applying dropout again to the result of your previous dropout output. Correctly it would state
“followed by dense layer with dropout”.

Response: We have updated the sentence to correctly describe the model.
New sentence at P9 L3 to L4: The final DNN architecture, as shown in Figure 4, contains three

LSTM layers, followed by two dense layers with dropout, a convolutional layer, and a final output dense
layer

Reviewer Comment 3.16 — This model architecture is generally described as a stacked LSTM
model, given that the LSTM layers are ”stacked” on top of each other.” This is a tautology. Maybe
simply remove this sentence or rephrase it.

Response: We have removed the sentence.

Reviewer Comment 3.17 — P7 L7 “select” - “selected”

Response: Thanks for the catch. It has been modified in the manuscript.
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Reviewer Comment 3.18 — P7 L17 This is not called a “sigmoid neural net layer”. You
could say “A linear layer with sigmoid activation function”. At least call it “neural network” not
“neural net”.

Response: We have been updated the sentence to say “A linear layer with a sigmoid activation
function” in the manuscript.

New sentence (P11-L6): Each gate is composed of a linear layer with a sigmoid activation function.

Reviewer Comment 3.19 — P7 L17: The pointwise multiplication is not part of the gate
it-self, but how the gate is combined with the cell state.

Response: We have updated the sentence to distinguish the multiplication from the gate. See the
previous response (3.18) for the updated sentence.

Reviewer Comment 3.20 — P7 L18 and Fig5: all gates (f,i,o) and the cell and hidden state
are vectors and should be written in lower, bold, italics letter and not capital letters

Response: We have updated the gate letters accordingly.

Reviewer Comment 3.21 — P7 L 23: “Finally, an output gate (O t ) decides what to output
based on the input and previous memory state. The sigmoid layer of the output gate decides what
parts of the memory state will be output...” The second sentence is basically a repetition of the
first. Consider rephrasing.

Response: The second sentence in the instruction of output gate has been removed in the revised
manuscript.

Reviewer Comment 3.22 — Table 1: Any particular reason, why you excluded 96h from the
list of possible output window length, since otherwise possible input and output window length
seems to be equal?

Response: We were not able to complete the training for all cases correspond to the output window of
96 hours within allocated computing hours. In the analyses with other output window sizes, we found the
performance kept deteriorating when the output window size exceeded 24 hours. We also constrained all
the analyses in the revised manuscript to not exceed 24 hours so that we have the same pool of models
to compare across other parameters, see our response to comment 3.6. Therefore, our conclusions are
not impacted by missing the 96hr output window, and we didn’t take extra computational resources to
finish training those cases.

Reviewer Comment 3.23 — P10 L 22 How are the terms (P, D, Q)m combined into equation
2. This needs more explanation.

Response: Equation 2 only contains non-seasonal terms (p, d, q), i.e., autoregressive terms, nonsea-
sonal di↵erences and moving-average terms. The model with seasonal terms are much more complicated,
so we added the equations with seasonal terms in online supplemental material with a note added to
the revised manuscript on P12 L5.
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Reviewer Comment 3.24 — P11 L 19: In your setting, you always extrapolate. So this
statement is not correct.

Response: The statement has been removed in revised manuscript.

Reviewer Comment 3.25 — P11 L 32: delete “very”

Response: Yes. It has been deleted in the manuscript.

Reviewer Comment 3.26 — LSTM results in general: It would be good to see only insample
results at some point. How good does the LSTM perform for the same well it was trained for (as
average over the 6 wells or for each well independently).

Response: From the reviewers comment on 3.3e, we have redone the LSTM analysis to only include the
test results for the models on the same well it was trained for, which is consistent with the training/testing
performed with the ARIMA analysis.

Reviewer Comment 3.27 — Figure 7: Missing the information that results are only for SpC.

Response: We have updated the figure caption to explicitly state the results are for SpC only

Reviewer Comment 3.28 — The point above applies to the entire section here.

Response: We have updated the section to explicitly state that the results are for SpC only

Reviewer Comment 3.29 — P12 L15: “It is noted that the optimal. . . ” I would be cautious
with such statements, unless you perform similar hyperparameter search for LSTMs as you did for
ARIMA.

Response: We have updated the sentence to limit the scope to our experimental runs.
New sentence (P13 L30 - P14 L1): We observe that DNN models require less or equal input

information than that required by the ARIMA method for the wells tested.

Reviewer Comment 3.30 — P13 L 8f I do not see this in Figure 8. For me, there is no visible
di↵erence (or very hard to detect) in the Arima and LSTM error at any special frequencies. Maybe
a better visualization or some quantitative measures would help.

Response: We revised the description to show a better linkage between the time when larger relative
errors occur and the time window when higher-frequency variations show more energy in WPS plots.
Please refer to P16 L17-27: ”the time windows of high relative errors are found to approximately co-
locate with the time when high-frequency (daily and subdaily) signals are gaining more power. The
di↵erence between the DNN and ARIMA models tend to be amplified during those time windows. Wells
1-1, 1-10A, and 2-2 share similar seasonal patterns in WPS, with the highest intensity bin above 1024
hours across February to July. Their average WPSs all show peaks around daily and subdaily frequen-
cies. Well 2-3 has its greatest energy between 16 to 256 hours from January to July. Well 2-5 has low
intensities of variability at daily and subdaily frequencies with the low-frequency variations (monthly
and seasonal) dominating the Jan to March time frame. For well 1-15, one of its strongest intensities
is above 2048 hours across the entire year, and the other strong intensities are narrow bands between
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16 to 256 hours. In general, both DNN and ARIMA are e↵ective at capturing low-frequency variabil-
ity (monthly and seasonal). Although DNN is more e↵ective at capturing high-frequency (daily and
subdaily) fluctuations and nonlinearities in the datasets, it may also lead to overly dynamic predictions
when the training data contain more significant high-frequency signatures than the system behavior to
be predicted.”

Reviewer Comment 3.31 — Figure 8. Why are the results now with the ARIMA model and
72 hour inputs and not 168 as in Figure 7?

Response:
Thank you for catching the mistake. The revised figure (Figure 9 in the revised manuscript) now

shows the ARIMA models with the same parameters (input window size, output window size) that were
used in the original Figure 7 (Figure 8 in the revised manuscript). These optimal ARIMA parameters
are shown in the new Figure 7 to provide more information.

Reviewer Comment 3.32 — P14 L 1 Again, I don’t see the LSTM outperforming ARIMA
from Figure 8 column 3. Not sure how these (also column 4) help here. Maybe it is due to my lack
of understanding of the data itself, but I think some quantitative measures are better than these
figures. (e.g. a table with some metrics)

Response: Please refer to our response to comment 3.30. Columns 3 and 4 were meant to show
when the higher-frequency variations are gaining more power during the testing time period, which were
found to colocate with the time window larger relative errors occur. Hope the more detailed explanation
provided in the revise text P16 L17-27 helps with understanding. We haven’t found a better way to
quantitatively relate magnitude of error and the composition of flow variations.

Reviewer Comment 3.33 — “In general, both LSTM and ARIMA are e↵ective at capturing
longer term variability, but LSTM is more e↵ective at capturing high-frequency fluctuations and
nonlinearities in the dataset.” I don’t see any (quantitative) evidence for such a statement.

Response: Please refer to our responses to comments 3.30 and 3.32. The purpose of the original
Figure 8 (Figure 9 in revised manuscript) is to show LSTM-based DNN was able to better match the
observed behavior during time windows when high-frequency fluctuations are significant. Hope the revise
text explains that better.

Reviewer Comment 3.34 — Conclusion: As of everything written above, I think the conclu-
sions need to be entirely rewritten, including possible new results of di↵erent model configurations
etc. I will not go into more detail here, since I raised many concerns above, that apply similarly to
the same statements in the conclusion (e.g. LSTM and ARIMA comparisons etc). Furthermore,
you miss to say for which variable you are doing gap filling (SpC only)

Response: Agreed. We have updated our conclusions section based on the additional analysis we
have done, including the multi-well model, zero-mean normalization and di↵erent seeding experiments.
As previously stated, we have explicitly mentioned we are analyzing gap filling results for the SpC only.
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Abstract. Long-term
:::
The

:
spatio-temporal changes

::::::::
dynamics

::::
over

::
a

::::
long

::::
time

:::::::
window

:
in subsurface hydrological flow are

usually quantified through a network of wells; however, such observations often are spatially sparse and temporal gaps exist

due to poor quality or instrument failure. In this study, we explore the ability of deep neural networks to fill in gaps in spa-

tially distributed time-series data
:
,
::::::::
especially

:::
for

:::
the

:::::::
datasets

::::
with

:::::::::::::
high-frequency

::::::::
dynamics. We selected a location at the U.S.

Department of Energy’s Hanford site to demonstrate and evaluate the new method, using a 10-year spatio-temporal hydro-5

logical dataset of temperature, specific conductance, and groundwater table elevation from 42 wells that monitor the dynamic

and heterogeneous hydrologic exchanges between the Columbia River and its adjacent groundwater aquifer. We employ a

::::
deep

:::::
nueral

:::::::
network

:::::::
(DNN)

::::::::::
architecture

:::
that

::::::::
contains

::::::
stacked

:
long short-term memory (LSTM)-based architecture, which is

specially designed
:
,
:::::::::::
convolutional

:::
and

::::::
dense

:::::
layers to address both

::
the

:
spatial and temporal variations in the property fields.

The performance of gap filling using an LSTM framework is evaluated using test datasets with synthetic data gaps created10

by assuming the observations were missing for a given time window (i.e., gap length), such that the mean absolute percentage

error can be calculated against true observations. Such test datasets also allow us to examine how well the original nonlinear

dynamics are captured in gap-filled time series beyond the error statistics. The performance of the LSTM-based gap-filling

method is compared to that of a traditional , popular gap-filling method:
:::
the

::::::::::
DNN-based

::::
gap

:::::
filling

:::::::
method

:::
was

:::::::::
evaluated

::::::
against

:
a
:::::::::

traditional
:

autoregressive integrated moving average (ARIMA) . Although ARIMA appears to perform slightly15

better than LSTM on average
::::::
method

:::
in

:::::
terms

::
of

:::::
both

::::
error

::::::::
statistics

::::
and

::::::::
capturing

:::::::::
nonlinear,

:::::::
dynamic

:::::::
patterns

:::
in

:::::
wells

:::
that

::::::
exhibit

:::::::
various

::::::::
dynamics

:::::::::
signatures.

:::::::::
Although

:::
the

:::::::
ARIMA

:::::::
models

::::
yield

::::::
better error statistics, LSTM is better able to

capture nonlinear
:::
they

:::
fail

:::
to

::::::
capture

::::::
abrupt

:::::::
changes

::
or

:::::::::::::
high-frequency

:::::
(daily

::::
and

::::::::
subdaily)

:::::::::
variations

::
in

::::::
system

:::::
states

::::
that

::
are

:::::::
typical

::::::::::::
characteristics

::
of

::
a
::::::::
complex

:::::::
dynamic

:::::::
system.

::::
The

::::::::::
DNN-based

:::::::
models

:::::
excel

::
in

::::::::
capturing

:::::
both

:::::::::::::
high-frequency

:::
and

::::::::::::
low-frequency

::::::::
(monthly

:::
and

::::::::
seasonal)

:
dynamics that are present in time series . Thus, LSTMs show promising potential20

to outperform ARIMA
:
at

:::
all

:::::
wells,

::::::::
although

::::
they

::::
may

::::
also

:::::
lead

::
to

::::::
overly

:::::::
dynamic

::::::::::
predictions

:::
as

::::::
guided

:::
by

:::
the

:::::::
training

::::
data.

::::
The

:::::
DNN

::
is

:::::
shown

:::
to

:::::::
improve

:::
the

:::::::::
predictive

:::::
ability

:::
by

::::::
taking

::::::::
advantage

:::
of

:::
the

::::::
spatial

::::::::::
information

::::
from

:::::::::::
neighboring

::::
wells

:::::
under

::::::
highly

::::::::::
challenging

:::::::::
situations,

:::::
such

::
as

:::::::
multiple

:::::
days

::
of

:::::
gaps

::
in

::::::
system

:::::
states

::::
that

::::
vary

::
at
::::::::

subdaily
::::::
scales.

::::
The

::::::::::
DNN-based

::::::
models

::::::
afford

:::
the

::::
great

:::::::::
advantage

:::
of

:::::::::
accounting

:::
for

::::::
spatial

::::
and

:::::::
temporal

::::::::::
correlations

::::
and

::::::::::
nonlinearity

:::
in

::::
data

::::::
without

::::::
apriori

:::::::::::
assumptions.

::::::::
Although

:::::
DNN

:::::::
models

::::::
require

:::::::::
substantial

:::::::
training

::::
data

::::
and

::::::::::::
computational

::::::::
resources

:::
and

:::::
have25

1



::::::
limited

:::::::::::
extrapolation

:::::
power

:::::::
beyond

:::
the

:::::::::
conditions

::::::::::
represented

::
in

:::
the

:::::::
training

::::
data,

::::
they

:::::::
showed

:::::::::
promising

:::::::
potential

:
for gap

filling in highly dynamic time-series observations characterized by multiple dominant modes of variability. Capturing such

dynamics is essential to generate the most valuable observations to advance our understanding of dynamic complex systems.

Copyright statement. TEXT

1 Introduction5

Long-term hydrological monitoring using distributed well networks is of critical importance for many areas, including under-

standing how ecosystems respond to chronic or extreme perturbations, as well as informing policies and decisions related to

natural resources and environmental issues (Wett et al., 2002; Taylor and Alley, 2002; Grant and Dietrich, 2017). One of the

most common methods of collecting hydrological data in groundwater is through wells (Güler and Thyne, 2004; Strobl and Ro-

billard, 2008; Lin et al., 2012); however, wells are necessarily sparse, leaving spatial gaps in the dataset. Moreover, most well10

data will also have temporal gaps due to instrument failure or poor quality of measurements for numerous reasons. These data

gaps degrade the quality of the dataset and increase the uncertainty in the spatial and temporal patterns that are derived from

them. Gap filling is necessary for developing understanding of the underlying system as well as for use in creating continuous,

internally consistent boundary conditions for numerical models. Many natural systems exhibit nonlinear or/and nonstationary

::::::::::::
non-stationary behaviors due to evolving nonlinear dynamics, which makes it challenging to reproduce those complex patterns15

while filling in data gaps.

Various statistical methods have been developed to fill gaps in spatio-temporal datasets, with the most commonly used being

the autoregressive integrated moving average (ARIMA) method (Han et al., 2010; Zhang, 2003). For any given spatial location,

ARIMA uses temporal autocorrelation to predict unobserved data points in a time series. Spatio-temporal autocorrelations

can be considered by using multivariate ARIMA and space-time autoregressive models (Kamarianakis and Prastacos, 2003;20

Wikle et al., 1998; Kamarianakis and Prastacos, 2005); however, ARIMA cannot capture nonlinear trends because it assumes

a linear dependence between adjacent observations (Faruk, 2010; Valenzuela et al., 2008; Ho et al., 2002). In addition, all

existing space-time ARIMA models assume fixed global autoregressive and moving average terms, which would fail to capture

evolving dynamics in highly dynamic systems (Pfeifer and Deutrch, 1980; Griffith, 2010; Cheng et al., 2012, 2014). Spectral-

based methods, such as singular spectrum analysis, maximum entropy method, and Lomb-Scargle periodogram, have been25

used to account for nonlinear trends while filling in gaps in spatio-temporal datasets (Ghil et al., 2002; Hocke and Kämpfer,

2008; Kondrashov and Ghil, 2006). However, these methods use a few optimal spatial or temporal modes occurring at low

frequencies to predict the missing values, with the other higher frequency components discarded as noise, which may lead

to reduced accuracy of the statistical models in fitting the observations and in predicting missing values (Kondrashov et al.,

2010; Wang et al., 2012). Kriging and maximum likelihood estimation used in spatial and spatio-temporal gap filling often30

face computational challenges as they require computing the covariance matrix of the data vector, which can be quite large

2



(Katzfuss and Cressie, 2012; Eidsvik et al., 2014). Other nonlinear methods have been explored with some success, including

expectation-maximization or Bayesian probabilistic inference including hierarchical models, Gaussian process, and Markov

chain Monte Carlo; the spatial and temporal correlations are most effectively captured by using models that build dependencies

in different stages or hierarchies (Calculli et al., 2015; Banerjee et al., 2014; Datta et al., 2016; Finley et al., 2013; Stroud et al.,

2017). In general, the expectation-maximization algorithm and Bayesian-based methods are sensitive to the choice of initial5

values and prior distributions in parameter space (Katzfuss and Cressie, 2011, 2012). Moreover, the prior distributions with all

the associated parameters in both the spatial and temporal domains need to be specified, which becomes increasingly difficult

in more complex systems.
::::::::
Empirical

::::::::::
Orthogonal

::::::::
Functions

::::::
(EOF)

::::::
related

:::::::::::
interpolation

::::::::
methods,

::::
such

::
as

:::::
least

::::::
squares

:::::
EOF

::::::::
(LSEOF),

::::
data

::::::::::
interpolation

:::::
EOF

:::::::::
(DINEOF),

::::
and

:::::::::
recursively

:::::::::
subtracted

::::
EOF

:::::::::
(REEOF),

::
are

::::::
widely

::::
used

:::
to

::
fill

::
in

:::::::
missing

::::
data

::::
from

::::::::::
geophysical

:::::
fields

::::
such

::
as

::::::
clouds

::
in

:::
sea

::::::
surface

::::::::::
temperature

:::::::
datasets

::
or

:::::
other

::::::::::::
satellite-based

::::::
images

::::
with

::::::
regular

:::::::
gridded10

:::::::
domains

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Beckers and Rixen, 2003; Beckers et al., 2006; Alvera-Azcárate et al., 2016)

:
.
::::::::
However,

:::
the

:::::::::::
requirement

::
of

:::::::
gridded

:::
data

:::
by

:::
the

::::
EOF

:::::::
methods

:::::
limits

:::::
their

:::
use

::
in

:::::
filling

::::
data

::::
gaps

::
in

:::::::::
irregularly

::::::
spaced

:::::::::
monitoring

:::::::::
networks.

Deep neural networks (DNNs) (Schmidhuber, 2015) are data-driven tools that, in principle, could provide a powerful way

of extracting the nonlinear spatio-temporal patterns hidden in the distributed time-series data without knowing their explicit

forms (Längkvist et al., 2014). They are increasingly been used in geoscience domains to extract patterns and insights from15

the streams of geospatial data and to transform the understanding of complex systems (Reichstein et al., 2019; Shen, 2018;

Sun, 2018; Sun et al., 2019; Gentine et al., 2018). The umbrella term of DNN contains numerous categories of architectures,

depending on the problem at hand. For the analyses in this paper, which are focused on filling gaps in time-series data, a

natural choice of architecture is recurrent neural networks (RNNs) (Connor et al., 1994; Olah, 2015)
::::::::::::::
(JORDAN, 1986). These

networks take sequences (e.g., time series) as input and output single values or sequences that follow. They are designed to20

use information about previous events to make predictions about future events, essentially by letting the model “remember.”

However, for longer sequences of data, RNNs have been shown to lose memory from previously trained data, i.e., they “forget”

(Hochreiter et al., 2001). This affects the performance of RNNs, particularly for data where the beginning of a sequence im-

pacts the prediction, since this information becomes exponentially less impactful for the prediction as the size of the sequence

increases. Long short-term memory (LSTM) networks are variations of RNNs that are explicitly designed to avoid this problem25

by using memory cells to retain information about relevant past events (Ma et al., 2015)
:::::::::::::::::::::::::::::
(Hochreiter and Schmidhuber, 1997).

RNNs and LSTMs have been successfully applied to text prediction (Graves, 2013), text translation (Wu et al., 2016), speech

recognition (Graves et al., 2013), and image captioning (You et al., 2016) . (Specifics on LSTM architectures are described

in Section 3.1.1.)This makes LSTMs well suited for the problem at hand, particularly for data where multiple timescales of

variability can affect responses (Liu et al., 2016; Song et al., 2017).
:
).

:::::
There

:::::
have

::::
been

:::::::::::
applications

::
of

::::::
RNNs

::::
and

:::::::
LSTMs30

::::::::
emerging

::
in

:::::::::
hydrology.

::::
For

::::::::
example,

::::::::::::::::::
Kratzert et al. (2018)

::::
used

:::::::
LSTMs

::
to

::::::
predict

:::::::::
watershed

::::::
runoff

:::::
from

:::::::::::::
meteorological

:::::::::::
observations,

::::::::::::::::
Zhang et al. (2018)

::::
used

:::::::
LSTMs

:::
for

::::::::
predicting

::::::
sewer

:::::::
overflow

::::::
events

:::::
from

::::::
rainfall

::::::::
intensity

:::
and

::::::
sewer

:::::
water

::::
level

:::::::::::::
measurements,

:::
and

::::::::::::::::
Fang et al. (2017)

:::
used

:::::::
LSTMs

:::
to

::::::
predict

::::
soil

:::::::
moisture

:::::
with

::::
high

:::::::
fidelity.

:::::::::
Compared

::
to
::

a
::::::
single

::::::::::
RNN/LSTM

:::::
layer,

::::
more

::::::::
complex

::::::
LSTM

::::::::::
architectures

::::
such

::
as

:::::::
stacked

:::
and

:::::::::::
bidirectional

:::::::
LSTMs,

::::::::::
CNN-LSTM

::
or

::::::::::::
convolutional

:::::
LSTM

:::::
have

:::
the

:::::::
potential

::
to

:::::::
capture

::::
extra

:::::::
features

::::::::::::::::::::::::::::::::::
(Graves et al., 2013; Pascanu et al., 2013)

::
as

::::::
shown

::
in

::::::
various

:::::::::::
applications,35
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::::::::
including

:::::
action

:::::::::
recognition

:::::::::::::::
(Zhu et al., 2016)

:::
and

:::::::::
vulnerable

::::
road

::::
users

:::::::
location

:::::::::
predictions

::::::::::::::::
(Saleh et al., 2017).

::
A

:::::::::::
bidirectional

::::::::::
RNN/LSTM

::::::
works

:::
by

:::::::::
duplicating

::::
the

::::::::
recurrent

:::::::
network

::::
into

::::
two

:::::::::
networks:

:::
one

::::::::::
responsible

:::
for

::::::
fitting

:::
the

:::::::
positive

:::::
time

:::::::
direction

::::
(i.e.

::
the

:::::::
forward

::::::
states)

:::
and

:::
the

::::
other

::::::::::
responsible

::
for

:::
the

:::::::
negative

::::
time

::::::::
direction

:::
(i.e

::
the

:::::::::
backwards

:::::
state)

::::::::::::::::::::::::
(Schuster and Paliwal, 1997)

:
.
::
In

::::::
general,

:::
the

:::::
input

::::::::
sequence

:
is
:::
fed

::::
as-is

::
to

:::
the

:::::::
forward

::::
state

:::
and

::
a

:::::::
reversed

::::
copy

::
of

:::
the

::::
input

::::::::
sequence

::
is

:::
fed

::
to

:::
the

:::::::::
backwards

::::
state.

::::
The

::::::::::
bidirectional

::::::
LSTM

:::
can

:::
be

::::
used

::
in

::::::
history

::::::::
matching

:::::::::
problems.5

This

:::
Our

:
study aims to evaluate the potential of using

:::::
LSTM

:::::
layers

::::::
within a DNN architecture that utilizes LSTMs for filling gaps

in a
::
to

:::
fill

::::
gaps

::
in spatio-temporal environmental dataset,

::::
time

:::::
series.

:::
We

::::
treat

:::
the

::::
gap

:::::
filling

::
as

:
a
::::::::::
forecasting

:::::::
problem,

::::
i.e.,

:::
we

:::
use

:::
the

::::::::
historical

:::
data

:::
as

::::
input

::
to

::::::
predict

:::
the

:::::::
missing

:::::
values

::
in
:::
the

::::
data

:::::
gaps.

:::
We

::::::::::
demonstrate

:::
our

:::::::
method using a test case that

focuses on understanding the interactions between a regulated river and contaminated groundwater aquifer. The use of a DNN10

:::
We

:::::
adopt

::
the

:::::::::::::
stacked-LSTM

::::::::
combined

::::
with

:::
the

::::::::::::
convolutional

::::
layer

::
as

:::
our

:::::
DNN

::::::
model

::
to

:::::::::
understand

:::
the

::::::::::
interactions

:::::::
between

:
a
::::::::
regulated

::::
river

:::
and

::::::::::::
contaminated

::::::::::
groundwater

:::::::
aquifer.

:::
The

::::::::::
DNN-based

::::
gap

:::::
filling

:::::::
method is compared with traditional

::::
time

:::::
series approaches (e.g., ARIMA) to identify situations in which a DNN outperforms more commonly used methods

:::::
DNNs

:::::::::
outperform

:::::::
ARIMA

:
as well as what the optimal configurations might be for this particular application.

2 Study Site and Data Description15

A 10-year (2008–2018) hourly spatio-temporal dataset was collected from a network of groundwater wells that monitor tem-

perature
::::::
(Water

::::::::::
conductivity

::::
and

::::::::::
temperature

::::::
probe

:::::::
CS547A

:::
by

:::::::::
Campbell

:::::::::
Scientific), specific conductance (SpC)

::::::
(Water

::::::::::
conductivity

:::
and

::::::::::
temperature

::::::::::::
probeCS547A

::
by

:::::::::
Campbell

::::::::
Scientific), and water-table elevation

::::::::::::
(stainless-steel

:::::::
pressure

:::::::::
transducer

:::::
CS451

:::
by

:::
the

:::::::::
Campbell

::::::::
Scientific)

:
at the 300 Area of the U.S. Department of Energy Hanford site, located in southeastern

Washington State. The
:::::::::::
groundwater well network was

::::::::
originally built to monitor the attenuation of legacy contaminants.20

The time series of river stage from 2008 to 2018 (Figure 1) shows large and dynamic fluctuations in river stage. These

fluctuations are due not only to natural processes but also to regulation of the river by the upstream hydroelectric dam operations

(Song et al., 2018), which on average vary ⇠0.5 m diurnally and up to ⇠2-3 m annually. The water elevation dynamics in each

groundwater well is driven by river stage fluctuations, which in turn influence contaminant recharge to groundwater and lead

to highly complex transport behaviors of the contaminants at the site (Arntzen et al., 2006; Zachara et al., 2016)
::::::::::
groundwater25

::::::
aquifer

::
at

:::
our

:::::
study

:::
site

::
is

:::::::::
composed

::
of

::::
two

::::::
distinct

::::::::
geologic

:::::::::
formations:

::
a
:::::
highly

:::::::::
permeable

:::::::::
formation

::::::::
(Hanford

:::::::::
formation,

::::::::
consisting

::
of

::::::
coarse

:::::::
gravelly

::::
sand

::::
and

:::::
sandy

::::::
gravel)

::::::::
underlain

:::
by

::
a

:::::
much

:::
less

:::::::::
permeable

:::::::::
formation

:::
(the

:::::::
Ringold

::::::::::
Formation,

::::::::
consisting

::
of

:::
silt

::::
and

:::
fine

::::::
sand).

:::
The

:::::::::
dominant

::::::::::::
hydrogeologic

:::::::
features

::
of

:::
the

::::::
aquifer

:::
are

::::::
defined

:::
by

:::
the

:::::::
interface

::::::::
between

:::
the

:::::::
Hanford

:::
and

:::::::
Ringold

:::::::::
formations

::::
and

::
the

::::::::::::
heterogeneity

:::::
within

:::
the

::::::::
Hanford

::::::::
formation

::::::::::::::::::::::
(Chen et al., 2012a, 2013a).

The intrusion of river water into the adjacent groundwater aquifer causes mixing of two water bodies with distinct geo-30

chemistry and stimulates biogeochemical reactions at the interface. The river water has lower SpC (0.1–0.2 mS/cm) than

groundwater (averaging ⇠ 0.4 mS/cm). Groundwater has a nearly constant temperature (16–17�
C) as opposed to seasonally

varying river temperature (3–22�C). The highly heterogeneous coarse-textured aquifer (Zachara et al., 2013) interacts with dy-
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namic river stages to create complex river intrusion and retreat pathways and dynamics(Chen et al., 2013b, 2012b). The time

series of multi-year SpC and temperature observations at the select
:::::::
selected set of wells in the network have demonstrated these

complicated processes of river water intrusion into our study site (Figure 1). For wells that are farther inland (e.g., well 1-15),

temperatures remain consistently within the groundwater temperature range and SpC has three noticeable dips (dropping from

0.5 to 0.4 mS/cm range), coinciding with the high river stages in years 2011, 2012, and 2017, which are featured with higher5

peak river stages than other years so the river water could intrude further into the groundwater aquifer. Wells close to the
:::::
Wells

:::
near

:::
the

:::::
river shoreline (e.g., wells 1-1, 1-10A, 2-2, and 2-3) tend to be strongly affected by river water intrusion in spring and

summer. As such, the dynamic patterns of SpC and temperature correspond well with river stage fluctuations, specifically that

SpC decreases and temperature increases with increasing river stage. Fluctuations of SpC in well 2-2 appear to be stronger and

at higher frequency than in other wells, likely indicating its higher connectivity with the river.
:::
For

:::::
wells

:::
that

:::
are

::::::
farther

::::::
inland10

::::
(e.g.,

::::
well

:::::
1-15),

:::
on

:::
the

:::::
other

:::::
hand,

::::::::::
temperatures

:::::::
remain

::::::::::
consistently

:::::
within

:::
the

:::::::::::
groundwater

::::::::::
temperature

:::::
range

::::
and

::::
SpC

:::
has

::::
three

:::::::::
noticeable

::::
dips

::::::::
(dropping

::::
from

:::
0.5

::
to
::::

0.4
:::::::
mS/cm

::::::
range),

:::::::::
coinciding

::::
with

:::
the

::::
high

::::
river

:::::
stages

:::
in

::::
years

:::::
2011,

:::::
2012,

::::
and

:::::
2017,

:::::
which

:::
are

:::::::
featured

::::
with

::::::
higher

::::
peak

:::::
river

:::::
stages

::::
than

:::::
other

::::
years

:::
so

:::
the

::::
river

:::::
water

::::
was

::::
able

::
to

::::::
intrude

::::::
further

::::
into

:::
the

::::::::::
groundwater

:::::::
aquifer. Well 2-5 is located at an intermediate distance from the river compared to other wells shown in Figure 1,

so the intrusion of river water is evident in most of the years except in low-flow years such as 2009 and 2015, during which15

both SpC and temperature remain nearly unchanged.

:::
The

::::::::::::
understanding

:::
we

::::::::
developed

:::::
from

:::::
earlier

:::::::
studies

:
is
::::
that

:::
the

:::::::
physical

:::::::::::
heterogeneity

::::::::::
contributes

::
to

:::
the

:::::::
different

::::::::
response

::::::::
behaviors

::
at

::::::::
different

::::::::
locations

:::::
while

:::
the

:::::
river

::::
stage

:::::::::
dynamics

::::
lead

::
to

::::::::::::::
multi-frequency

::::::::
dynamics

:::
in

:::::
those

:::::::::
responses.

::::
The

:::::::
seasonal

:::
and

::::::
annual

::::::::
variations

:::
are

:::::
driven

:::
by

::::::
natural

::::::
climatic

::::::
forcing

:::::::::::::::::::::::::
(Amaranto et al., 2019, 2018),

:::::::
whereas

:::
the

::::::::::::::
higher-frequency

::::
(i.e.,

::::
daily

:::
and

:::::::::
sub-daily)

::::::::::
fluctuations

::
are

::::::::
primarily

:::::::
induced

::
by

:::::::::
operations

::
of

:::
the

::::::::
upstream

:::::::::::
hydroelectric

::::
dam

::::::::
operations

::
to
:::::
meet20

::::::
various

::::::::
demands

::
of

::::::
human

::::::
society

:::::::::::::::
(Song et al., 2018)

:
.
::::
Our

::::::
system

::
is

:::::::::::
representative

:::
of

:::::
many

::::::::::::
dam-regulated

:::::::::
gravel-bed

:::::
rivers

:::::
across

:::
the

:::::
world,

::::::
where

:::
dam

:::::::::
operations

::
as

:
a
::::::
typical

::::::::::::::
anthropologenic

::::::
activity

::::
have

::::::::::
significantly

::::::
altered

:::
the

:::::::::
hydrologic

:::::::::
exchanges

:::::::
between

::::
river

:::::
water

:::
and

:::::::::::
groundwater,

::
as

::::
well

::
as

::
the

:::::::::
associated

:::::::
thermal

:::
and

:::::::::::::
biogeochemical

::::::::
processes

:::::::::::::::::::::::::::::::::::::::::::::::
(Song et al., 2018; Shuai et al., 2019; Zachara et al., 2020)

:
.
::::
Note

::::
that

:::
the

:::::::::::::
multi-frequency

:::::::::
variations

::
in

::::
data

:::
are

::::::::::::
characterizing

:::
the

::::::::
dynamic

:::::::
features

::
of

::::
data,

::::::
which

:::::
could

::::
exist

:::
in

::::
both

::::::::
short-term

::::
and

::::::::
long-term

::::
time

:::::
series

::::
data

::
as

::
a

:::::
result

::
of

:::::::::
short-term

::
or

::::::::
long-term

:::::::::
monitoring

::::::
effort.25

To understand the dynamic behaviors
:::::::::::::
multi-frequency

::::::::
variations

:
of all the variables in each well at the study site, we perform

spectral analysis on multi-year SpC observations at each selected well using a continuous wavelet transform . The continuous

wavelet transform
::::::
discrete

:::::::
wavelet

::::::::
transform

:::::::
(DWT).

:::
The

:::::
DWT

:
is widely used for time–frequency analysis of time series and

relies on a “mother wavelet,”
:::::::
"mother

::::::::
wavelet", which is chosen to be the Morlet wavelet (Grossmann and Morlet, 1984) to

deal with the time-varying frequency and amplitude in time-series data at this site (Stockwell et al., 1996; Grinsted et al., 2004).30

The
::
We

::::::::
illustrate

:::
the Wavelet Power Spectrum (WPS) for the multiyear SpC time series and the

:
in

:::
log

:::::
scale

:::
and

::
its

:
normalized

global power spectrum (average WPS over the time domainfor each well) are displayed )
:::

for
:::
the

:::::::::
multi-year

::::
SpC

:::::
time

:::::
series

in the first two columns in
::
of Figure 2. Data gaps are indicated

:::::
shown

:
as blank regions

:
in
::::::

Figure
::
2; examples include early

year 2009 at well 1-1, the beginning of year 2011 at well 1-10A, and the later part of year 2012 at well 2-2.
:::
The

:::::::::
amplitude

::
of

::::
WPS

:::::::::
represents

:::
the

::::::
relative

:::::::::
importance

:::
of

:::::::
variation

::
at

:
a
:::::
given

:::::::::
frequency

::::::::
compared

::
to

:::
the

::::::::
variations

::
at

:::::
other

:::::::::
frequencies

::::::
across35
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Figure 1. Groundwater monitoring well network at the 300 Area of the Hanford site and the monitoring data at select wells. Each well

represented by a dot is instrumented to measure groundwater elevation, temperature, and SpC. The wells selected for this study are marked

with red dots with well names. The three variables monitored in wells and in the river are shown in time-series plots with blue (water

elevation), black (SpC), and red (temperature) lines.

::
the

:::::::::
spectrum. At wells 1-1, 1-10A, 2-3, 2-5, and 2-2, the strong intensities of SpC signals appear at the half-year and yearly

frequencies; however, well 1-15 has a different pattern in that most of its high intensities are below the 256-hour frequency.

The averaged WPS more clearly shows the contrast in behaviors: wells 1-1, 1-10A, 2-3, and 2-5 have a dominant frequency

at half a year; well 2-2 has multiple dominant frequencies at daily, monthly, and seasonal scales; while well 1-15 has similar

intensities at half-year and hourly scales. Applying this information to the task at hand, we hypothesize that gap filling at5

well 2-2 could be more challenging due to the multiple sources of its dynamic behaviors, manifested as significant powers at

multiple frequencies.

Since the dynamics of the system are driven by the river stage, we perform magnitude-squared wavelet coherence analysis

via the Morlet wavelet to reveal dynamic correlations between the SpC and river stage time series (Grinsted et al., 2004; Vacha

and Barunik, 2012). Wavelet coherence in the time-frequency domain is plotted in the third column in Figure 2 and the average10

coherence is plotted in the fourth column; statistically significant values at the 95th percent confidence interval are indicated

with red points. Red regions in the third column indicate that the two signals are highly correlated, while blue regions indicate

lower correlations. SpC correlates well with river stagein every well at multiple time scales, with the exception of well 1-15.
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Figure 2.
::::
WPS

::::::
analysis

::
of

::::
SpC

:
at
::::
each

::::
well

:::
from

::::
2008

::
to
:::::
2018.

:::
The

:::
first

::::::
column

::
is

::
the

::::::::::
spectrogram

::
(in

:::::
log10

::::
scale)

::
of

::::
SpC

:
in
::::
each

::::
well;

:::
the

:::::
second

::::::
column

:
is
:::

the
:::::::
averaged

:::::
WPS;

::
the

::::
third

::::::
column

::
is

::
the

::::::::
coherence

:::::::
between

:::
SpC

::
in

::::
each

:::
well

:::
and

:::
the

::::
river

::::
stage;

:::
and

:::
the

:::::
fourth

::::::
column

:
is
:::
the

:::::::
averaged

:::::::
coherence

::::
with

:::::::
p < 0.05

:::::
values

:::::::
indicated

::
in

:::
red.

High correlations are found in
::
A

:::::
larger

::::::::
coherence

::
at

:
a
:::::
given

::::::::
frequency

::::::::
indicates

:
a
:::::::
stronger

:::::::::
correlation

::
at

:::
that

:::::::::
frequency

:::::::
between

::
the

::::
SpC

::
at
::
a
::::
well

:::
and

:::
the

::::
river

::::::
stage.

:::
We

:::::::
consider

:::::
these

:::
two

::::::::
variables

::::::
highly

::::::::
correlated

:::::
when

:::
the

:::::::::
coherence

::
is

:::::
larger

::::
than

:::
0.7

::::::
(shown

::
in

:::::
green

::
to

::::
red

:::::
colors

::
in

:::::::::
Coherence

::::::
plots).

:::
We

::::::
found

:::
that

:::::
such

::::
high

::::::::::
correlations

::::
exist

:::
at

:::::::
multiple

::::::::::
frequencies,

:::::
from

:::::::
subdaily

::
to

::::
daily

::
to
::::::
yearly,

::
at

:::
all

:::
the wells close to the river (e.g., 1-1, 1-10A, 2-2, and 2-3)at half-year and yearly frequencies.
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High correlations ,
:::::
while

:::
the

::::::
higher

:::::::::
correlation

:::::::
regimes in wells farther from the river (e.g., 1-15 and 2-5) are shifted towards

longer periods and
::
at

::::::::::
semi-annual

:::
and

::::::
annual

::::::::::
frequencies

:::
and

:
less persistent in time.

WPS analysis of SpC at each well. The first column is the spectrogram of SpC in each well; the second column is the

averaged WPS; the third column is the coherence between SpC in each well and the river stage; and the fourth column is the

averaged coherence with p < 0.05 values indicated in red.5

As can be clearly seen in Figure 2, many of the wells have long data gaps, which have unknown effects on our ability to

estimate dynamics from the wavelet spectra. As such, gap filling is needed to infer observations and guide modeling of the

underlying system. Figure 3 provides a summary of gap lengths for the overall network of monitoring wells. The majority of

the gap lengths of all the three monitored variables are less than 50 hours. Therefore, in our investigations we explore the ability

of the methods in filling gaps at
:
of
:
24-, 48-, and 72-hour lengths

::::
using

::::::
hourly

::::
data

::
to

::::::
capture

:::
the

:::::::::::::
high-frequency

::::::::::
fluctuations.10

Figure 3. Histograms of gap lengths for each monitored variable, aggregated across all wells in the monitoring network during 2008-2018.

3 Gap-Filling Methods

In this section, we describe two methods we use
:::::::::::
implemented to fill gaps

:
of

:::::::
various

::::::
lengths

:
in SpC measurements at select

::::::
selected

:
wells: a DNN model using several LSTM network layers and the traditional ARIMA model for comparison and

assessing the strengths and limitations of the LSTM-based
:::::
DNN model. In both models

:::::::
methods, an input with M data points

::::
time

::::
steps

:
(input window length) is provided to predict outputs of N time steps that follow the input window (output window15

length) .
:::
that

::::::
follow

:::
the

::::
input

::::::::
window.

:::
The

:::::::::::
performance

::
of

::::
both

:::::::
methods

:::::
were

::::::::
evaluated

::::
using

::::::
testing

:::::::
datasets

:::
for

:::
the

:::::::
selected

:::::
wells.

3.1 Stacked LSTM ArchitectureWe designed the DNN
::::::
Models

:::
for

::::
Gap

::::::
Filling

:::
We

:::::::
designed

::
a

::::
DNN

:
architecture to train models of input size

::
an

::::
input

::::
size

::
of M and output size

:::
time

:::::
steps

:::
and

:::
an

:::::
output

::::
size

::
of N

::::
time

:::::
steps to fill gaps of various lengths in groundwater well measurements. The DNN architecture is shown in Figure 4,20

which contains three LSTM layers, followed by two consecutive dropout layers, a convolutional layer, and a final output dense

layer. This model architecture is generally described as a stacked LSTM model, given that the LSTM layers are "stacked" on
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top of each other. Each input and predicted output
::
at

:
a
::::
time

::::
step contain the following three well measurements

::::::::::::
measurements

::::
from

:
a
::::::
single

::::
well

::
or

:::::::
multiple

:::::
wells: water level (m), temperature (�C), and SpC (mS/cm), leaving the model to generalize

nonlinear connections among them. Stacked LSTM layers take advantage of the temporal correlations of the measurements

to improve model performance
::::::::
Assuming

:::
the

:::::::::::
observations

::::
from

:::
W

::::::::
(W � 1)

::::
wells

:::
are

:::::
used

::
to

:::
fill

::
in

::::
data

::::
gaps,

:::
the

:::::
input

::::
size

::
of

:::
the

:::::
model

::
is
::::
then

:::::::::
M ⇥ 3W .

:::::::::
Similarly,

:::
the

:::::
model

::::::
output

:::
can

:::
be

:::::
those

::::
three

::::::::
variables

::
in
::::

the
::::
next

::
N

::::
time

:::::
steps

:::
for

:::
one

:::
or5

::::
more

:::::
wells.

::::::
Using

:::::::
multiple

:::::
wells

::
as

:::::
input

::::
adds

:
a
::::::

spatial
::::::::::
component

::
to

:::
the

:::::
model

::::::
allows

:::
the

:::::
DNN

::::::
model

::
to

:::::::
account

:::
for

::::
both

::
the

::::::::
temporal

::::
and

::::::
spatial

::::::::::
correlations

::
in

:::
the

::::
data

::
to

:::::::
improve

:::::::::
gap-filling

:::::::::::
performance.

::::::
Wells

::::
were

:::::::
selected

:::::
based

:::
on

::::::::
adequate

:::
data

::::::::::
availability

:::
and

::::
their

::::::::
distances

:::::
from

:::
the

::::
river.

::::::
While

:::
the

:::::
DNN

:::::
model

::::
can

::
be

::::
used

::
to

:::
fill

::
in

::::
gaps

:::
in

::
all

:::::
three

::::::::
variables,

:::
we

::::::
focused

:::
our

::::::::
analyses

::
on

::::::
filling

::::
gaps

::
in

::::
SpC

:::::::
because

::
of

::
its

::::::::::
importance

::
to

:::::
reveal

::::
river

:::::
water

::::
and

::::::::::
groundwater

:::::::
mixing.

:::::
Same

:::
set

::
of

:::::::
analyses

:::
can

:::
be

::::::::
performed

:::
on

:::::
water

::::
level

::::
and

::::::::::
temperature.

:
10

:::
We

:::::::
explored

:::::::
different

:::::
DNN

::::::
model

::::::::::
architectures

::::
that

::::::
contain

::
a

:::::
single

::
or

:::::::
multiple

::::::
LSTM

:::::
layers

:::
for

::::
each

::::::
desired

:::::::::::
combination

::
of

::
M

::::
and

::
N

::
at

::::
each

::::
well

:::::
under

::::::
various

:::::::
lengths

::
of

::::
gaps

::::
with

:::::::
different

:::::::
amount

::
of

:::::::
training

::::
data

::
(2,

::
4
:::
and

::
6

::::::
years).

:::::::
Training

::::
data

::
for

:::
the

:::::
DNN

:::::::
models

::::
were

::::::
created

:::
by

::::::
finding

::::
data

::::::::
segments

::
of

:::::::
M +N

:::::
hours

::::
that

::::
have

::
no

:::::::
missing

::::::
values,

::::
i.e.,

::
no

:::::
gaps

::
in

:::
the

::::
data,

:::
for

::
all

:::::
three

::::::::::::
measurements

::::
over

::
a
:::::::
specified

::::::::::
monitoring

:::::::
window.

::::
The

::::
well

::::
data

:::::
were

::::
then

:::::::::::
preprocessed

::
by

:::::::::::
normalizing

::
all

::::::::::::
measurements

::
to

::::
fall

:::::::
between

:
0
::::

and
::
1

:::::
using

:::::::
different

::::::
scaling

::::::
factors

:::
for

:::::
each

:::::::
variable,

::
as

:::::::::::
temperature

::::::::::::
measurements

:::
are15

::
on

::
a

::::
scale

::
of

::::
10

1,
:::::

SpC
::
is

::
on

::
a

::::
scale

:::
of

:::::
10

�1,
:::
and

:::::
water

:::::
level

::
is

::
on

::
a
:::::
scale

::
of

::::
10

2.
:::::
After

:::::::::
evaluating

:::
the

::::
gain

::
in

:::::::::::
performance

:::::::::::
improvement

::
by

:::::
using

::::::::::
increasingly

:::::
more

:::::::
training

::::
data

::::::
(details

::::::::
provided

::
in

:::
the

::::::
online

:::::::::::
supplemental

:::::::::
materials),

:::
we

:::::::::
concluded

:::
that

:
4
:::::
years

::
of

:::::::
training

::::
data

::::::::::
(2012-2015)

:::
was

::::::::
sufficient

:::
for

::
all

:::
the

:::::::
models.

:::::::::
Validation

::::::
datasets

:::::
were

::::
used

::
to

:::::
select

:::
the

:::
best

::::::
model

:::::::::::::
hyperparameters

::::::
(3.1.1)

::::
and

:::
the

:::::::
optimal

::::::::::
combination

:::
of

::
M

::::
and

::
N

::::::
(3.1.1)

:::
for

::::
gap

:::::
filling

::
at
:::::
each

::::
well.

:::::::
Another

:::::::::::
independent

:::::
testing

::::::
period

:::
was

:::::::
selected

::
at
::::
each

:::::
well,

:::::::::
depending

::
on

::::
data

::::::::::
availability,

::
to

:::::::
compare

:::
the

:::
gap

::::::
filling

::::::::::
performance

:::::
using

:::
the

:::::
DNN20

:::
and

:::::::
ARIMA

::::::::
methods.

:::
The

::::::::
complete

:::
set

::
of

::::::::::
alternatives

:::
we

:::::::::
considered

:::
for

::::
each

:::::
DNN

:::::
model

:::::::::::
configuration

::
is

::::::
shown

::
in

:::::
Table

::
1.

::::::::
Excluding

::::::::::::
combinations

::::
with

:::::::
M <N ,

:::::
1080

::::::
unique

::::::
models

::::
(180

:::::::
models

:::
per

::::
well)

:::::
were

::::::
trained.

:::
We

:::::
used

::
an

::::::
Adam

::::::::
optimizer

:::::::::::::::::::
(Kingma and Ba, 2014)

:::
for

::::::
training

::::
and

:::
the

:::::::::::
mean-squared

:::::
error

::
as

:::
the

::::
loss

:::::::
function.

::::
The

::::::
models

::::
were

::::::
trained

:::
for

:::
30

::::::::
iterations

::::
(i.e.,

::::::
epochs)

:::::
over

:::
the

:::::::
training

::::
data.

:::::
Each

:::::
model

::::::::::::
configuration

:::
was

:::::::
trained

::::
using

::::
four

::::::::
different

:::::::::::
initialization

:::::
seeds

:::
and

:::::
error

::::::
metrics

::::
were

::::::::
averaged

::
to

::::::::
determine

:::
the

::::
best

::::::::::::
configuration.25

::
In

:::::::
addition

::
to

:::
the

:::::
DNN

::::::
models

::::::
trained

:::
for

:::
the

::::::::::
single-well

:::::
setup,

:::
we

::::
also

::::::
trained

:::::::::
multi-well

::::::
models

::::
that

::::
used

:::::::::::
observations

::::
from

:::::
wells

:::
1-1,

::::::
1-10A,

::::
and

:::::
1-16A

::
to

:::
fill

::
in

::::
data

::::
gaps

:::
for

:::
well

::::
1-1.

:::
We

::::::::
explored

::
the

:::::
same

:::
set

::
of

:::::::::::
configuration

:::::::::
parameters

::::::
shown

::
in

::::
Table

::
1
:::
for

:::::::::
single-well

::::::
models

:::
in

::::::::
multi-well

:::::::
models.

:::
We

::::
then

:::::::::
compared

:::
the

:::
gap

:::::
filling

:::::::::::
performance

::
of

:::
the

:::::::::
multi-well

:::::
DNN

::::
with

:::
the

:::::::::
single-well

:::::
DNN

::::::
model

:::
for

::::
well

::::
1-1.

::::
The

:::::::::
multi-well

::::::
models

:::::
were

:::
not

::::::::
explored

:::
for

:::
the

:::::
other

:::::
wells

:::
due

::
to
::::

lack
:::

of

::::::::::
neighboring

::::
wells

::
in
:::::
close

:::::::::
proximity.30

::
To

:::::::
evaluate

:::
the

::::::::
accuracy

::
of

:::
the

:::::::
trained

:::::
DNN

::::::
models

::
in

::::::
filling

::::
SpC

::::
data

::::
gaps

::::::
during

:::
the

::::::::
validation

::::
and

::::::
testing

:::::::::
processes,

::
we

::::::::
assumed

:::
that

::::::::
synthetic

::::
gaps

:::
of

::::::
various

:::::::
lengths

::::
(e.g.,

::
1,
:::
24,

::::
48,

:::
and

:::
72

:::::
hours,

:::::::
referred

::
to

::
as
::::

gap
::::::::
scenarios

::::::::
hereafter)

:::::
exist

::
in

:::
the

::::::::
validation

::
or

::::::
testing

::::::
dataset

:::
of

:
a
:::::
well.

::::
Then

::
a
:::::
DNN

:::::
model

:::::::::
configured

:::::
with

::::
input

::::
and

::::::
output

:::::::
windows

:::
of

::
M

::::
and

::
N

:::
on

:
a
:::::
single

::
or

::::::::
multiple

::::
wells

::
is
:::::
given

:::
the

::::
first

:::
M

::::
hours

:::
of

::::
data

::::
from

:::
the

::::
time

:::::
series

:::::::::
preceding

:::
the

:::::::::
occurrence

::
of

::
a

:::
gap

:::::::::
(assuming

::
no

:::::::
missing

::::::
values

::
in

:::::
these

::
M

::::::
hours)

::
to

:::
fill

::
in

:::
the

::::
first

:::::::
missing

:::::
value

::
in

:::
the

::::
gap

::
by

::::::
taking

:::
the

::::
first

:::::
value

::
of

:::
the

::::::::
predicted

:::
N35
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:::::
hours.

::::
This

::::::::
gap-filled

:::::
value

::
is
::::

then
:::::::

treated
::
as

::
if

::
it

:::
was

::::::::
observed

:::::
when

::::::::
repeating

::::
this

::::::::
procedure

:::
to

::
fill

:::
in

:::
the

:::
gap

:::
of

:::
the

::::
next

::::
hour.

::::
This

::::::
sliding

:::::::
window

::::::
moves

::::::
forward

:::::
hour

::
by

::::
hour

::::
until

:::
the

:::::
entire

::::
gap

::
of

:::
the

::::
data

::
is

:::::
filled.

:::
The

::::::::
accuracy

::
of

:::
the

:::::::::
gap-filling

:::::
model

::
is

::::::::
evaluated

:::
by

:::::::::
calculating

:::
the

:::::
mean

::::::::
absolute

:::::::::
percentage

::::
error

::::::::
(MAPE;

:::
%)

:::::::
between

:::
the

::::
SpC

::::::
values

::::
that

:::
are

:::::
filled

::
in

::::
(i.e.,

::::::::
predicted)

::::
and

:::
that

::::
were

:::::::::
observed:

MAPE = 100⇥
:::::::::::::

1

n
:

nX

t=1

�����
Prediction�Observation

Observation
::::::::::::::::::::::

����� ,
:::::::::::::::::::::::::::

(1)5

:::::
where

::
n

:
is
:::
the

:::::::
number

::
of

::::
data

:::::
points

:::::
being

::::::::
missing.

Table 1.
::::::::
Parameters

::::
used

::
in

::::::
training

:::::::::
single-well

::::
DNN

:::::::
modelsa.

Parameter Values

Training wells
:::
1-1,

:::::
1-10A,

::::
1-15,

::::
2-2,

:::
2-3,

:::
2-5

Synthetic gap length (hours)
::
1,

::
24,

:::
48,

::
72

Model input window
::
(M

::::::
hours)

::
24,

:::
48,

:::
72,

:::
96,

:::
120,

::::
144,

:::
168

Model output window
::

(N
:::::
hours)

: ::
1,

::
6,

::
12,

:::
24,

:::
48,

::
72,

::::
120,

::::
144,

:::
168

Training period
:::::::
2012-2015

:

Validation periodb
:::
2011

:

Testing Periodc
::::
2008

::
for

::::
well

:::
2-5;

::::
2017

:::
for

:::
well

:::::
1-15;

::::
2016

::
for

::
all

:::::
other

::::
wells

:
a

::
no

:::::
models

::::
were

::::::
trained

::
for

:::::::::::
combinations

:::
with

:::::::
M <N . Each of the

:
b

:::
used

::
to

:::::
select

::
the

::::
best

::::
DNN

:::::
model

:::::::::::
configurations

:::
and

:::::::::::::
hyperparameters.

:
c

:::
used

::
to

:::::::
evaluate

:::::::::
performance

::
of

::::
DNN

::
vs
:::::::
ARIMA.

:

3.1.1
::::::::::::::
Hyperparameter

::::::
search

:::
for

::::
the

:::::::
optimal

::::
DNN

:::::::::::
architecture

:::
We

::::::::
performed

::
a

:::::::::::::
hyperparameter

:::::
search

::
to

:::::::
explore

:::::::
different

:::::
model

::::::::::
architecture

::::::::::::
configurations,

::::
i.e.,

:::
the

::::::
number

::
of

::::::
LSTM

::::::
layers,

::::::
number

::
of

:::::
units

:::
per

::::::
LSTM

:::::
layer,

:::::::
number

::::
(and

::::
size

:::
of)

:::::
dense

::::::
layers,

:::
and

::::::::
activation

:::::::::
functions.

::::
The

:::::
search

::::
was

:::::::::
performed

:::
on

:::
well

::::
1-1

::::
only

:::
due

::
to

::::::::::::
computational

::::
cost.

:::
We

::::::
chose

:::
the

::::::
optimal

:::::
DNN

::::::::::
architecture

:::::
using

:::::
model

:::::::::::
performance

::
on

:::::::::
validation

::::
data10

::
set

::
of

::::
well

:::
1-1

::::
(see

:::::
Table

::
1)

:::::
using

::::::
MAPE

:::::::
defined

::
in

:::
Eq.

:::
(1).

:

:::
The

::::
final

:::::
DNN

::::::::::
architecture,

:::
as

:::::
shown

::
in
::::::
Figure

::
4,

:::::::
contains

:
three LSTM layers,

::::::::
followed

:::
by

:::
two

:::::
dense

:::::
layers

::::
with

::::::::
dropout,

:
a
:::::::::::
convolutional

:::::
layer,

:::
and

::
a
::::
final

:::::
output

:::::
dense

:::::
layer.

::::::::
Stacking

::::
three

:::::
layers

::
of

::::::
LSTM

::::
was

:::::
found

::
to

::::
yield

:::::
better

:::::::::::
performance

::::
than

:
a
::::
one-

::
or

::::::::
two-layer

:::::::::::
architecture.

::::
Each

:::
of

:::
the

::::
three

::::::
LSTM

:::::
layers

:
has 128 units , with

:::::::
because

:::
this

:::::::::::
configuration

::::::::::::
outperformed
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:::::
others

::::
with

:::::
more

::
or

:::::
fewer

:::::::
number

::
of

:::::
units.

:::
The

::::::
output

::::
from

:
the last LSTM layer returning an

::
of

:::
size

:
M x 128 output, which

is fed into two consecutive dense layers with dropout of 0.3, reducing the output from M x 128 to M x 64. A dense layer

is a neural network where every input neuron is connected to every output neuron with a weight matrix and bias vector.

Dropout is a regularization technique that randomly disables a select fraction of neurons during training to enhance robust

model performance and prevent overfitting (Hinton et al., 2012). The output from the second dense layer
::
of

:::
size

:::
M

:
x
:::
64 is fed5

into a convolutional layer with 24 filters of size M -N+1, reducing the output size to N x 24. Finally, a dense layer is applied

to yield a model output of our desired size, N x 3.
:::::
N ⇥ 3

:::
for

:
a
::::::
single

::::
well

::
or

:::::::
multiple

::
of

:::
that

:::::
when

:::
the

::::::
model

:
is
::::::::
designed

::
to

:::
fill

::
in

:::
data

:::::
gaps

::
in

:::::::
multiple

:::::
wells.

:
The detailed structures of the LSTM layers, dense layer, and convolutional layer are provided

in the supplemental material.
:::::::
Dropout,

::::
i.e.,

::::::::
randomly

:::::::
disables

:
a
:::::::

selected
:::::::

fraction
:::
of

:::::::
neurons,

::::
was

::::
used

::
in

:::
the

:::::
dense

:::::
layers

:::
as

::
the

::::::::::::
regularization

::::::::
technique

::
to
::::::::

enhance
:::::
robust

::::::
model

::::::::::
performance

::::
and

::::::
prevent

:::::::::
overfitting

:::::::::::::::::
(Hinton et al., 2012).

:::
We

:::::::
adopted

::
a10

::::::
dropout

::::
rate

::
of

:::
0.3

::::
after

::::::
testing

:
a
:::
set

::
of

::::::::::
alternatives

::
(0,

::::
0.1,

:::
0.2,

:::
0.3

::::
and

::::
0.4).

:

Each memory unit in the LSTM layer is further illustrated in Figure 5. The top panel shows generic representations of

an RNN (Olah, 2015) in a looped (left) or chain
::::::
chained

:
(right) form, which allows information to be passed to the next

successor and persist. While all RNNs have the form of a chain of repeating modules of neural network (i.e., boxes labeled

as A
::
A

:
in Figure 5), the module being repeated can take different structural design to control the information flow, leading15

to different variants of RNN. Standard LSTMs use three gates, as shown in the bottom panel of Figure 5, to control the flow

of information from one state to another and capture long-term dependencies. Each gate is composed of a sigmoid neural net

layer and a pointwise multiplication operation
::::
linear

:::::
layer

::::
with

:
a
:::::::
sigmoid

::::::::
activation

:::::::
function. A forget gate (Ft:ft) decides what

information to throw away from the previous memory state by using a sigmoid function that outputs a value between 0 and 1,

where 0 represents completely forget the information and 1 represents completely keep the information. An input gate (It:it)20

decides which values from the new input to be used for updating the memory state. The input gate is combined with a vector of

new candidate input values out of a tanh layer (generate
:::::::
generates

:
values between -1 and 1) through pointwise multiplication

to generate
::::
yield information to be added to the current state. Finally, an output gate (Ot:ot) decides what to output based on

the input and
:::
the previous memory state. The

:::::::
previous

::::::
hidden

::::
state

::::
and

:::
the

::::::
current

:::::
input

:::
are

:::::
passed

:::
to

:
a
:
sigmoid layer of the

output gatedecides what parts of the memory state will be output, while the tanh layer scales the current memory state. The25

:::::
Then, pointwise multiplication of the outputs from the tanh and sigmoid layers leads to the output of this repeating module.

For a more detailed description of the components of the LSTM unit, the reader is referred to Olah (2015) and Ma et al. (2015)

:::::::::::::::::::::::::::::
Hochreiter and Schmidhuber (1997).

3.2 Training the Stacked LSTM Models

Training data for the stacked LSTM models are created by finding data segments of M +N hours that have no missing values,30

i.e., no gaps in the data, for all three measurements over a specified monitoring window. The well data are then preprocessed

by normalizing all measurements to fall between 0 and 1 using different scaling factors for each variable, as temperature

measurements are on a scale of 101, SpC is on a scale of 10�1, and water level is on a scale of 102. The model is trained
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Figure 4. Architecture of the stacked LSTM
::::
DNN

:
models, where M is the input window size and N is the output window size. Includes

example input and output data with M = 24 and N = 12. For a more detailed diagram of the LSTM layers, dense layer, and convolutional

layer, see Figures S1, S2, and S3, respectively, in the Supplemental Online Material.

for 30 iterations (i.e., epochs) over the training data. We use an Adam optimizer (Kingma and Ba, 2014) for training and the

mean-squared error for the loss function. We train a stacked LSTM model for each desired combination of M ,

3.1.1
::::::::::
Optimizing

:::
M

:::
and

:::
N

:::
for

::::
gap

:::::
filling

:::::
Using

:::
the

:::::::
optimal

:::::
DNN

:::::::::::
architecture,

:::
we

::::::
further

::::::::
analyzed

:::::
model

:::::::
MAPE

::::::
metrics

::::::
during

:::
the

:::::::::
validation

::::::
period

::::
with

:::::::
various

:::::::::::
combinations

::
of

:::
M

::::
and

:
N

:::::
under

::::
each

::::
gap

:::::::
scenario

::::
for

::::
each

:::::
well.

::::
The

::::::::::
combination

::::
that

:::::::
yielded

:::
the

::::::
lowest

::::
SpC

:::::::
MAPE5

::::
were

:::::::
selected

::
as

:::
the

::::
best

:::::::::::
configuration

:::
for

::
a

:::::
given

:::
gap

::::::
length at each wellgiven a certain amount of training data. The set of

alternatives we consider for each model configuration parameter is shown in Table 1. Training wells were chosen based on

adequate data availability and their distance from the river. Excluding combinations with M <N , a total of 810 unique models

(135 model configurations for each of six wells) are trained.
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Figure 5. A diagram for network representing an LSTM unit. The top panel shows the looped and chain versions of a generic RNN, where

xt ::
xt is the input, ht :

ht is the output, and A is the repeating module of the LSTM unit. The bottom panel shows a diagram of the LSTM unit

with the three main information gates: a forget gate (Ft:
ft), an input gate (It:it), and an output gate (Ot:

ot). Images
::::::
adapted

:
from Olah (2015).

Parameters varied during LSTM model training. No models are trained where M <N . 24, 48, 72, 96, .
::::

The
::::
best

::::::
model

:::::::::::
configurations

:::::
were

::::
then

::::
used

::
to

:::::::
evaluate

::::
the

:::::::::::
LSTM-based

:::::
DNN

:::
gap

:::::
filling

:::::::
method

::::::
against

:::
the

:::::::::::::
ARIMA-based

::::::
method

:::::
(3.2)

::::
using

:::::::
relative

::::::
errors

:::::::
(similar

::
to

::::::
MAPE

:::
by

::::::
setting

:::
n=1 , 6, 12, 24, 48, 72, 1-1, 1-10A, 2-2 2 years (2012-2013), 4 years

(2012-2015)
::
in

:::
Eq.

:
(1year (2011) 120, 144, 168 (hours) 120, 144, 168 (hours) 2-3, 2-5, 1-15 6 year (2010, 2012-2016)

3.2 Testing the Stacked LSTM Models for Gap Filling5

:
)
:::
and

:::::::
remove

:::
the

:::::::
absolute

:::::
value

:::::::::
operation)

::::::::
calculated

:::
for

:::
the

::::::
testing

::::::
period

::
as

:::::
listed

::
in

::::
table

::
1.
::::

The
::::
test

:::::
period

::::::
varied

::::::
among

::
the

:::::
wells

::::
due

::
to

:::::::::
availability

::
of

:::::::::
continuous

::::
data

:::::::
required

:::
for

:::::::
testing.

To evaluate the accuracy of the trained stacked LSTM models in filling in measurement gaps, we assume synthetic gaps

of various lengths (e. g., 1, 24, 48, and 72 hours, referred to as gap scenarios hereafter) exist in a dataset containing all three

variables monitored in year 2011 at each testing well (same as the training wells shown in Table 1). Given a model configuration10

(M, N, and training period ), an LSTM model is trained for the six training wells , which is then tested on filling in synthetic

data gaps of various lengths in all the wells. There are 36 training-testing well pairs in total. During testing, each model is

13



given the first M hours of data from the time series preceding the occurrence of a gap (assuming no missing values in these M

hours). Then the model is used to fill in the first missing value in the gap by taking the first value of the predicted N hours from

the model. This gap-filled value is then treated as if it was observed when repeating this procedure to fill in the gap of the next

hour. The input data window keeps sliding in this way, hour by hour, until the model has filled the entire gap. The accuracy of

the gap-filling model is evaluated by calculating the mean absolute percentage error (MAPE; %) between the values that are5

filled in (i.e., predicted) and the true values:

MAPE = 100⇥ 1

n

nX

t=1

�����
Prediction�Observation

Observation

����� ,

where n is the number of data points being missing.

3.2 ARIMA model
::::::
Models

:::
for

:::::
Gap

::::::
Filling

ARIMA is one of the most general classes of models for extrapolating time series to produce forecasts and we used it as a base-10

line to compare and assess the LSTM-based
::::
DNN

:
gap-filling method. ARIMA is applicable to nonstationary processes in that

the dataset can be made stationary by differencing if necessary. Differencing, autogressive, and moving average components

make up a nonseasonal ARIMA(p,d,q) model given by:

Yt = c+�1Y
d
t�1 +�pY

d
t�p + ...+ ✓1et�1 + ✓qet�q + et, (2)

where �s and ✓s are polynomials of orders p and q, respectively, each containing no roots inside the unit circle. es are the error15

terms, Y d
. is Y. differenced d times, and c is a constant.

::::
Note

:::
that

::::
only

::::::::::::
non-seasonal

:::::
terms

::::::
(p,d,q)

:::
are

::::::::
included

::
in

::::
Equ.

::::
(2).

Seasonal structure can be added with parameters (P,D,Q)m to the base ARIMA model to become ARIMA(p,d,q)(P,D,Q)m,

including a periodic component containing m periods. c 6= 0 implies a polynomial of order d+D in the forecast function.
:::
The

::::::
detailed

::::::::::::
mathematical

::::::::
equations

:::
for

:::::::
seasonal

:::::::
ARIMA

::::
have

:::::
been

:::::
added

::
in

:::::
online

::::::::::::
supplemental

::::::::
materials.

The main task in ARIMA-based forecasting is to select appropriate model orders, i.e., the values of p,q,d,P,Q,D. If d and20

D are known, we can select the orders p,q,P,Q via an information criterion such as the Akaike Information Criterion (AIC):

AIC =�2log(L)+ 2(p+ q+P +Q+ k), (3)

where k = 1 if c 6= 0 and 0 otherwise, and L is the maximized likelihood of the model fitted to the differenced data. The best

fitted parameters of the ARIMA model can be determined by minimizing the AIC.

Similar to the LSTM-based
::::::::::
DNN-based gap filling, an ARIMA model is built for each combination of input and output25

window sizes for each well using the auto.arima function from the R package called forecast (Hyndman et al., 2007).

The length of output N in ARIMA corresponds to the gap lengths. Each trained ARIMA model is only
:::
was

:
tested on the well

that is used for training the model, not tested on any other wells (as is
::
as

::::
was done in the LSTM approach)

::::
DNN

::::::::
approach.

Accuracy of
::
the

:
ARIMA-based gap filling can also be evaluated on the same synthetic gaps as in the LSTM approach

:::
was

::::::::
evaluated using the same MAPE metric shown in Eq. (1)

::::::
during

:::
the

::::::
testing

:::::
period

:::::
listed

:::
in

:::::
Table

:
1
::::
and

::::::::
compared

:::::
with

:::
the30

::::::::::
DNN-based

:::::::
methods.
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4 Results and Discussion

4.1 Performance of LSTM in filling gaps
:::::::::
single-well

:::::
DNN

::::::
models

We evaluate
:::
We

::::::::
evaluated

:
the accuracy of LSTM

:::::
DNN

::::::
models in filling gaps of various lengths

::
of

:::
the

::::
SpC

::::::::::::
measurements

::
in

::
the

::::
year

:::::
2011

:
following the steps described in section 3.3. MAPEs are summarized for different LSTM

::::
3.1.1.

:::::::
MAPEs

:::::
were

::::::::::
summarized

::
in

::::::::
boxplots

:::
for

:::::::
different

:::::
DNN

:
model configuration parametersand for testing and training wells, as shown in5

Figure 6for SpC. Other similar analyses for groundwater table and temperature are done but not shown here because SpC is our

primary interest for this study. Each MAPE shown in the plots represents an average of .
:::::
Each

::::::
MAPE

::::::
boxplot

::::
was

:::::
drawn

:::::
from

a group of models with one parameter (corresponding to each x-axis) fixed at the given value while all the other parameters,

including training-testing well pairs
::
the

:::::::
training

:::::
wells and gap scenarios, cycle through their possible combinations. As can

be seen in Figure 6 (a), using more training data improves the model performance on average, consistent with a standard10

observation in machine learning applications that model performance is highly dependent on the amount of training data

available. When the amount of training data increases from 2 to 4 and 6 years, the MAPE drops slightly with consistent

variability across all combinations. We therefore conclude that 2 years of data is sufficient to train the LSTM models we need

for gap filling, although 4 years of training data would be better
::::::::
Although

:::
we

::::::::
attempted

::
to

::::
train

:::::::
models

::::
with

::::::
output

:::::::
window

::::
sizes

::::::
greater

::::
than

::
24

::::::
hours,

::::
these

:::::::
models

:::::::::
performed

::::::::
noticeably

::::::
worse

::::
than

::::
those

::::
with

::::::
output

::::::::
windows

:::
less

::::
than

::
or

:::::
equal

::
to

:::
2415

::::
hours

:::::::
(results

::::::
shown

::
in

:::
the

:::::
online

:::::::::::
supplemental

:::::::::
materials).

:::::
Thus,

::::
our

:::::::
analyses

::::
here

:::::
focus

::
on

:::::::
models

::::
with

:::::
output

:::::::
window

::::
less

:::
than

:::
or

::::
equal

::
to
:::
24

:::::
hours.

In
::
As

::::::
shown

::
in

:
Figure 6 (b

:
a), model performance deteriorates as the gap length increases. This is because the performance

of LSTMs tends to degrade as it loses ,
:::::::::
indicating

:::
that

:::
the

::::::::::
DNN-based

:::::::
method

:::::
tends

::
to

:::
lose

:
ground truth information from its

input to predict, i. e., the model begins to transition from interpolation to extrapolation. We also observe that models with a daily20

24-hour input window outperform other models with longer input windows as
:::::
inform

:::::::::
prediction.

::
In

:::::::::
comparing

:::::::
MAPEs

::::::
across

::::::
various

:::::
input

:::::::
window

::::
sizes

:
shown in Figure 6 (

::
b),

:::
we

:::::::
observe

:::
that

:::::::
models

::::
with

::
all

:::::
input

::::::::
windows

::::
have

::::::::::
comparable

:::::::
median

:::::::
MAPEs,

::::
with

:::::
those

::
of

:::
24,

::::
72,

:::
144

::::
and

:::
168

:::::
hours

:::::::
leading

::
to

:::::::
slightly

::::::
smaller

:::::::
median

:::::::
MAPEs.

::::
The

::::
144-

::::
and

::::::::
168-hour

:::::
input

:::::::
windows

::::
also

::::
yield

:::::
lower

:::::
third

::::::
quartile

::
of

::::::
MAPE

::::
and

:::::
fewer

::::::
outliers

:::
on

::
the

::::::
larger

::::::
MAPE

:::
end,

:::::::::
indicating

:::
that

:::
the

:::::::
memory

:::::
units

::
in

:::
the

:::::
LSTM

::::::
layers

:::
are

::::::::
capturing

::::::::
important

:::::
daily

::
to

::::::
weekly

:::::::::
signatures

:::::::
(evident

::
in

:::::
WPS

::::
plots

::
in
::::::
Figure

::
2

:::
for

::
all

:::::
wells

::::::
except25

::
for

:::::
Well

:::::
1-15)

::
for

:::::
some

::::::
wells.

::
As

::::::
shown

::
in

::
6
:
(c). This likely results from an optimal number of memory units for capturing

daily and subdaily memories. The output window lengths are shown in log scale in Figure 6 (d)to allow sufficient separation

between the smaller time windows (i.e., 1, 6, and 12 hours). Daily and
::::
daily

:::
and

:
subdaily output windows yield comparable

performances in gap filling the SpC time series
::::::
median

::::::
MAPEs, with the 12-hour output window slightly outperforming

:::::::
24-hour

:::::
output

:::::::
window

::::::
leading

::
to
:::::::
smaller

::::
third

:::::::
quartile

:::
and

:::::
fewer

::::
large

::::::
MAPE

:::::::
outliers

::::
than its 1-, 6-, and 24-hour counterparts. There30

is a significant performance deterioration when the output window increases from 24 hours to 48 hours and beyond.
:::::::
12-hour

::::::::::
counterparts.

:
Overall, an input window of 24

:::
144

:
hours and an output windows of 12

::
24

:
hours appear to be a robust model

configuration for all wells considered.
:::
and

:::
gap

::::::
lengths

::::::::::
considered.

:
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We also tested how models trained on one well perform in filling gaps in other wells (defined as testing wells), given their

vast differences in dynamic signatures. The performance of models trained on each well is
:::::::::
single-well

:::::
DNN

::::::
models

::::::
varied

:::::
among

:::
the

:::::
wells

::
as

:
shown in Figure 6 (e), from which we observe that models trained on wells

::
d).

::::
The

:::::
DNN

::::::
models

:::
for

::::
well

1-15 , 2-3,1-10A, and 2-5 performed comparably in filling in gaps in the other wells, with the models of well 1-15 leading with

a small margin. Models trained on well
::::
lead

:::
the

::::::::::
performance

:::::
with

:::
the

:::::::
smallest

:::::::
MAPEs,

:::::
while

:::::
those

:::
for

::::
well

:
2-2 yielded the5

largest error when tested to fill gaps in the 2011 testing data of all wells including itself. When the performanceis grouped by

wells being tested, as shown in Figure 6 (f), all models can perform very well in filling in gaps for well 1-15 and reasonably

well for
::::
yield

:::
the

:::::
worst

:::::::::::
performance.

::::
The

:::::
DNN

::::::
models

:::
for

:
wells 1-1,1-10A, 2-3 , and 2-5 , while all models appear to have

difficulty in filling gaps for well 2-2. When selecting the optimal LSTM configuration of 24-hour input window and 12-hour

output window using 4 years of training data, the models trained on well 2-3 perform the best in filling gaps of various lengths10

for all the 6 wells.
::::::::
performed

::::::::::
comparably

:::::::
overall,

::::
with

::::
more

:::::
large

::::::
MAPE

::::::
outliers

:::
for

::::
well

::::::
1-10A.

:

Figure 6. Gap filling performance for SpC evaluated against
::
the

::::::::
validation

::::::
datasets

:::::
under multiple model configuration parameters (a-d

::
a-c)

or grouped by training and testing wells (e and f
:
d). (a) average MAPE vs. number

:::::::::
distribution of years of training data, (b) average

:::
SpC

MAPE vs.
::::
tested

:
gap lengths, ;

:
(c
:
b) average

:::::::::
distribution

::
of

:::
SpC

:
MAPE vs.

::::
model

:
input window size M ,

:
; (d

:
c) average

::::::::
distribution

::
of

::::
SpC

MAPE vs.
:::::
model output window size N ,

:
; (ed) average

::::::::
distribution

::
of

::::
SpC

:
MAPE aggregated by wellsused to train the models, and (f)

average MAPE aggregated by wells being tested on.95% confidence intervals of the averaged MAPE value are shown in shaded area in plots

(a) -(d) and as the error bars in (e) and (f).
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4.2 ARIMA
:::::::::
Single-well

:::::
DNN

:
and LSTM

:::::::
ARIMA comparisons

Both ARIMA and LSTM approaches are tested in filling gaps of various lengths. Figure 8 shows the interquartile ranges of

:::
The

::::::::::
single-well

::::::::::
DNN-based

:::
gap

::::::
filling

::::::::
approach

:::
was

:::::::::
compared

::
to

:::
the

:::::::
ARIMA

::::::::
approach

:::::
using

:
relative errors calculated for

each data point that is
::::
was assumed to be missing in the testing data by setting n=1 in Eq. (1) , each bounded by its 25th to

75th percentiles under different gap lengths. The relative errors shown in Figure 8 are the results using
:::
for

::::::
MAPE.

::::
Best

::::::
model5

:::::::::::
configurations

::::::::::
determined

::
on

:::
the

:::::::::
validation

::::::
dataset

::::
(i.e.,

:::
data

:::::
from

::::
year

:::::
2011),

::
as

::::::::
described

::
in

:::::::
sections

:::::
3.1.1

:::
and

:::
3.2,

:::::
were

::::
used

::
in

:::::::::
comparing

:::
the

:::
two

::::::::::
approaches.

::::::
Figure

::
7

::::::::
illustrates

:::
the

::::
input

::::
and

::::::
output

:::::::
windows

:::::::
selected

::
as

:
the best model configurations

trained for each well by the two approaches respectively. The gray lines representing
::
for

:::::
DNN

::::
and

:::::::
ARIMA

::::::::
methods.

::::
The

:::::
output

:::::::
window

:::
N

::
of

::
an

::::::::
ARIMA

:::::
model

::
is
:::
the

:::::
same

::
as
::::

the
:::::
length

::
of
::::

the
:::
gap

::
it

::
is

::::
built

::
to

::::
fill.

:::
We

:::::::
observe

:::
that

:::::
DNN

:::::::
models

::::::
require

:::
less

:::
or

:::::
equal

::::
input

:::::::::::
information

::::
than

:::
that

::::::::
required

::
by

::::
the

:::::::
ARIMA

:::::::
method

:::
for

:::
the

:::::
wells

:::::
tested.

:::::
None

:::
of

:::
the

:::::::
optimal10

:::::
output

:::::::
window

::::
sizes

:::::::
exceeds

:::
24

:::::
hours

:::
for

:::
the

::::
DNN

:::::::
models.

:::
We

::::
only

:::::::::
compared

:::
two

::::::::
methods

::
for

::::
gap

::::::
lengths

::
of

:::
24,

:::
48

:::
and

:::
72

::::
hours

:::::::
because

::::
both

::::::::
methods

::::
were

::::::
highly

:::::::
accurate

::
in

:::::
filling

:::::
small

::::
gaps

::::
such

::
as

::::
one

::::
hour.

:

Figure 7.
::::
Best

::::
input

:::
and

:::::
output

:::::::
windows

::
for

:::::
DNN

:::
and

::::::
ARIMA

::::::
models

::
for

:::::
filling

::::
gaps

::
of

:::::
various

::::::
lengths

::
at

::::
each

::::
well.

:::::
Figure

::
8

:::::
shows

:::
the

:::::::::::
interquartile

:::::
ranges

:::
of

::::::
relative

:::::
errors

:::::
under

::::::::
different

:::
gap

:::::::
lengths

:::
for

::
all

:::::::::
individual

:::::
wells,

::::
each

::::::::
bounded

::
by

:::
its

::::
25th

::
to

::::
75th

::::::::::
percentiles.

:::::::
Relative

::::::
errors

::::
were

:::::
used

::
to

:::::
show

:::::::::::::
overestimations

::
or

:::::::::::::::
underestimations

::
by

:::::
both

::::::::::
approaches.

:::
The

:::::::::
horizontal

:::::
dotted

:::::
lines

:::::::
represent

:
the ±5% relative error range for each model correspond to

:::
that

:::
are typical measurement15

errors of the SpC sensors deployed at the site. Most of the relative errors yielded from both gap-filling methods are within

±5% measurement error except for well 2-2 with 48- and 72-hour gaps. The ARIMA models tend to perform better than the

17



LSTM
::::
DNN

:
models in terms of error statistics. For both approaches, the relative errors increase as the gap length increases

as expected
:
,
:::::::::
especially

::
so

:::
for

::::
well

:::
1-1

:::::
when

:::
the

::::
gap

::::::
lengths

:::
are

:::
48

:::
and

:::
72

::::::
hours.

:::::
While

:::
all

:::
the

::::::
relative

::::::
errors

::::::
yielded

:::::
from

::
the

::::::::
ARIMA

::::::
method

:::
are

::::::
within

:::
the

:::::
±5%

:::::::::::
measurement

::::
error

::::::
range,

::::
there

:::
are

::
a

:::
few

:::::
cases

:::::
using

:::::
DNN

::::::
leading

::
to

:::::::
relative

:::::
errors

::::::
outside

:::
the

::::::
typical

:::::::::::
observational

::::
error

:::::
range

::::
with

::::::
longer

::::
gaps

:::
for

:::::
wells

::::
1-1,

:::::
1-10A

::::
and

:::
2-2. The relative errors in the ARIMA

models tend to distribute symmetrically on both sides of 0
::
%, whereas errors in the LSTM models

::::
DNN

::::::
models

::::::
appear

::
to

:
skew5

toward the negative side for wells 1-1 and 2-2 and towards the positive side for wells 1-10A and 2-3. Also for both approaches,

the smallest and largest errors occur at wells 1-15 and 2-2, respectively.
::
all

:::::
wells

:::::
except

:::
for

::::
well

::::
2-5. For well 1-15, the relative

errors for all three gap lengths are very close to 0. Well
::::
Wells

:::
1-1

::::
and 2-2 has the largest

::::
have

:::::
larger relative errors over the

testing window. It is noted that the optimal input window size M for the LSTM models is smaller than that required by the

ARIMA method for all the wells tested, indicating that LSTM models can rely on less input information than the ARIMA10

models to produce predictions of comparable accuracy. We also note that the optimal LSTM model configuration selected for

each well based on its testing performance is different from that selected based on testing performance averaged across a range

of training-testing well pairs.
:::::
period

:::::
using

::::
both

::::::::::
approaches.

Figure 8. Summary of
:::
SpC

:
relative errors for filling gaps of various lengths (i.e., 24, 48, and 72 hours) for best LSTM

::::
DNN

:
and ARIMA

models tested for each well.Their corresponding model input and output configuration (M and N for LSTM and and M for ARIMA) are

shown for each well along the horizontal axis.

In addition to the error statistics, it is
::::
also important to examine how well a gap-filling method can capture

:::::::
captures the

desired dynamic patterns in the gap-filled time series. Therefore, the SpC time series reproduced by the gap-filling methods15

for the testing dataset
:::::
during

:::
the

::::::
testing

::::::
period

:::::
(2016

:::
for

:::::
wells

::::
1-1,

::::::
1-10A,

::::
2-2,

::::
2-3;

::::
2017

:::
for

::::
well

:::::
1-15;

:::::
2008

:::
for

::::
well

::::
2-5)

with 24-hour synthetic gaps are evaluated against the real time series. Model configurations are the same as those used in error
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statistics comparison
::::::
(Figure

::
7). As shown in the first and second columns of Figure 9, the ARIMA approach (column 1) can

capture the smooth changes in the observations but not abrupt changes that occur over a short time window (i.e., at higher

frequency); these occur in all wells except 1-15.
::::
The

:::::
spikes

::
in

:::::
errors

::::::
during

:::::
those

:::::
rapid

:::::::
changes

::::
were

:::
not

::::::::
captured

::
in

::::::
Figure

:
7
::
as

::::
they

:::
are

::::::
outside

:::
of

:::
the

::::::::::
interquartile

::::::
ranges

::
of

:::
the

::::::
relative

::::::
errors.

:
This is an indication that ARIMA fails to capture higher

frequency
::::::::::::
high-frequency

:::::
(daily

::::
and

::::::::
subdaily) dynamics and nonlinear trends despite having smaller errors on average. The5

LSTM
::::
error

::::::::
quartiles.

:::
The

:::::
DNN

:
approach, on the other hand, is able to better resolve nonlinearity, nonstationary, and highly

dynamic temporal patterns in time series, despite not having as small relative errors as the ARIMA approach. This holds for

nearly all wells, including
:::::
capture

:::::
such

::::::::
dynamics

::
in

:::::
some

:::::
wells

::::
(e.g.,

:::::
wells

:::::
1-15,

:::
2-3

:::
and

:::::
2-5).

::::::::
However,

:::
the

:::::
DNN

::::::::
approach

::::::
appears

::
to

:::::::::::
overestimate

:::
the

::::::::::::
high-frequency

:::::
(daily

::::
and

:::::::
subdaily)

::::::::::
fluctuations

::
in

:::::
some

:::::
wells

:::
near

:::
the

::::
river

::::
(i.e.,

:::::
wells

::::
1-1,

::::::
1-10A,

:::
and

::::
2-2),

::::::
which

:::::::::
contributed

:::
to

:::
less

::::::::
desirable

::::::
relative

::::::
errors

:::::::::
distributed

:::::::
between

:::
the

::::
first

:::
and

:::::
third

:::::::
quartiles

::::
(7).

::::
This

::
is

:::::
likely10

:::::
caused

:::
by

:::
the

:::::::::
variability

::
in
:::::::::

dynamics
:::::::::
signatures

::::::
among

:::
the

:::::::
training,

:::::::::
validation

::::
and

:::
test

:::::::
periods.

::::
For well 1-15, which has

::::::
exhibits

:
less dynamic behavior . Both

:
in

:::::
SpC,

::::
both gap filling methods exhibit difficulties in filling gaps for well 2-2

:::::::
perform

:::
well

:
in terms of both

::
the

:
relative errors and capturing real dynamic patterns, especially during January, October, and November

when the SpC appeared to be highly dynamic .
::
the

::::::::
dynamic

:::::::
patterns.

:

To15

::
To

::::::
further

:
investigate how the relative performance of both

:::
the

:::
two

:
gap-filling methods depends on the inherent dynamics

in each time series, wavelet analyses results
::::::
spectral

:::::::
analyses

:
for the testing SpC dataset are extracted from the

:::::::
datasets

::::
were

:::::::::
performed

:::::
using

:::
the

:::::
same

::::::
wavelet

:::::::::::::
decomposition

::::::
method

:::
for

:::
the

:
multi-year analyses (shown earlier in Figure 2

:
2). As

shown in Figure 9for the testing window of year 2011, the time windows of high relative errors are found to approximately

co-locate with the time when high-frequency
:::::
(daily

::::
and

::::::::
subdaily) signals are gaining more power. The LSTM models tend20

to outperform the ARIMA models
::::::::
difference

:::::::
between

:::
the

:::::
DNN

:::
and

::::::::
ARIMA

::::::
models

::::
tend

::
to

:::
be

::::::::
amplified

:
during those time

windows. Wells 1-1, 1-10A, 2-3, and 2-5
:::
and

:::
2-2

:
share similar seasonal patterns in WPS, with the highest intensity bin above

1024 hours . Among these four wells, well 2-5
:::::
across

::::::::
February

::
to

::::
July.

:::::
Their

:::::::
average

::::::
WPSs

:::
all

::::
show

::::::
peaks

::::::
around

:::::
daily

:::
and

:::::::
subdaily

::::::::::
frequencies.

:::::
Well

:::
2-3 has its greatest intensity above 2048 hours across the entire year

:::::
energy

::::::::
between

::
16

::
to

::::
256

::::
hours

:::::
from

:::::::
January

::
to

::::
July.

::::
Well

:::
2-5

:::
has

::::
low

::::::::
intensities

::
of

:::::::::
variability

::
at

::::
daily

::::
and

:::::::
subdaily

::::::::::
frequencies

::::
with

:::
the

::::::::::::
low-frequency25

::::::::
variations

::::::::
(monthly

:::
and

:::::::::
seasonal)

:::::::::
dominating

:::
the

::::
Jan

::
to

::::::
March

::::
time

::::::
frame. For well 1-15, the strongest intensities tend to

group into three bands: one at
:::
one

::
of

:::
its

:::::::
strongest

:::::::::
intensities

::
is

:::::
above

:
2048 hours across the entire year, one between 256 to

2048 hoursfrom January to March, and one occurring below 128 hours in June
:::
and

:::
the

:::::
other

:::::
strong

:::::::::
intensities

:::
are

::::::
narrow

:::::
bands

:::::::
between

::
16

:::
to

:::
256

:::::
hours. In general, both LSTM

::::
DNN

:
and ARIMA are effective at capturing longer term variability , but

LSTM
:::::::::::
low-frequency

:::::::::
variability

::::::::
(monthly

:::
and

:::::::::
seasonal).

::::::::
Although

:::::
DNN is more effective at capturing high-frequency

:::::
(daily30

:::
and

::::::::
subdaily)

:
fluctuations and nonlinearities in the dataset

:::::::
datasets,

::
it
::::
may

::::
also

::::
lead

::
to

::::::
overly

:::::::
dynamic

::::::::::
predictions

:::::
when

:::
the

::::::
training

::::
data

::::::
contain

:::::
more

:::::::::
significant

:::::::::::::
high-frequency

::::::::
signatures

::::
than

:::
the

::::::
system

::::::::
behavior

::
to

::
be

::::::::
predicted.

In terms of computational cost , ARIMA

:::::
There

::
is

:::
also

:::::::::
significant

:::::::::
difference

::
in

::::::::::::
computational

::::
cost

:::::::
between

:::
the

:::::
DNN

::::
and

:::::::
ARIMA

:::::::
methods

:::
for

::::
gap

:::::
filling.

::::::::
ARIMA

requires very little
:::::::::::
computational

:
resources: the auto.arima function in R requires approximately 40 seconds for

:
fit

::::
and35
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::::::
validate

::
a

:::::
model

:::::
using one year of data on a personal computer with a 3.00 GHz CPU. Conversely, training and testing a single

LSTM
::::::::
validating

:
a
:::::
single

:::::
DNN

:
model takes approximately 20-30 minutes on dual NVIDIA P100 12GB PCI-e based GPUs.

Columns

4.3
:::::::::::

Performance
::
of

:::::::::
multi-well

:::::
DNN

::::::
models

:::
We

::::::::
evaluated

:::
the

::::::::
predictive

::::::
ability

:::
of

:::
the

:::::::::
multi-well

:::::
DNN

::::::
models

::
in

::::::
filling

::::
gaps

::
of

:::::::
various

::::::
lengths

::
in
:::

the
:::::

SpC
::::
data

::
at

::::
well5

:::
1-1

::
by

:::::::::
comparing

:::
the

:::::::::::
performance

::::::
against

::::
their

::::::::::
single-well

:::::::::::
counterparts.

::::
Well

:::
1-1

::::
was

::::::
chosen

:::::::
because

::
of

::::
data

::::::::::
availability

::
in

:::::
nearby

:::::
wells

::::::
(wells

:::::
1-10A

::::
and

::::::
1-16A).

:::::::::
Moreover,

::::
both

:::
the

:::::::
ARIMA

::::
and

:::::::::
single-well

:::::
DNN

:::::::
methods

::::
had

::::::::
difficulty

::
in

::::::::
capturing

::
its

:::::::
dynamic

:::::::
patterns

::
as

::::::::
discussed

::
in

::::::
Section

::::
4.2.

::::::
Similar

::
to

:::
the

:::::::::
single-well

:::::
DNN

:::::
model

:::
for

::::
well

:::
1-1,

:::
the

:::::::::
multi-well

:::::
DNN

::::::
models

:::
also

::::::
predict

:::
the

:::::
three

:::::::
variables

:::
for

:::
the

::::
well

:::
1-1

:::::
only.

:::
We

:::::::
adopted

:::
the

::::
same

:::::
DNN

::::::::::
architecture

:::::
from

:::
the

:::::::::
single-well

::::::
models

::::
and

::::::
trained

:::
the

::::
same

:::
set

::
of

::::::::::
alternatives

::::::::::
considering

:::::
input

:::::::
window

::::
sizes

:::
and

::::::
output

:::::::
window

:::::
sizes

::
for

:::::::
various

:::
gap

:::::::
lengths

::
as

:::::
listed10

::
in

::::
Table

:::
1.

::::
Only

::::::
output

:::::::
window

::::
sizes

::::::
smaller

::::
than

:::
24

:::::
hours

::::
were

::::::::::
considered

::
as

:::::
learnt

::::
from

:::
the

::::::::::
single-well

::::::
models.

::::
The

:::::
same

::::::
training

::::
and

::::::::
validation

:::::::
periods

:::::
were

:::::::
adopted

::
to

:::::
select

:::
the

:::::::
optimal

:::::::::::
combination

::
of

:::
M

::::
and

:::
N .

::::::
Results

:::::
were

::::::::::
summarized

:::
in

:::::
Figure

:::
10,

::::::
where

::::
each

::::::
boxplot

::::
was

::::::::
generated

::
in

:::
the

:::::
same

::::::
manner

:::
as

::
in

:::::
Figure

::
6.

:

::::::::
Compared

::
to

:::
the

::::::::::
single-well

::::
DNN

:::::::
models,

:::
the

:::::::::
multi-well

::::
DNN

:::::::
models

::::::::::
significantly

:::::::
improve

:::
the

:::
gap

:::::
filling

::::::::
accuracy

::
at

::::
well

:::
1-1

::::
with

:::::
longer

::::
gaps

::::
(48

:::
and

::
72

::::::
hours)

:::::
while

:::::::
perform

::::::::::
comparably

::::
with

::::::
smaller

::::
gaps

::::
(i.e.,

:
1 and 2 show time series of ARIMA15

::
24

::::::
hours),

:::
as

:::::
shown

:::
in

:::::
Figure

:::
10

:::
(a).

::::
The

:::::::::
multi-well

:::::
DNN

:::::::
models

::::::
reduce

:::
the

::::::
fraction

:::
of

:::::
larger

:::::::
MAPEs

:::::
under

:::
all

:::
the

:::::
input

::::::
window

:::::
sizes

::::::
(figure

::
10

::::
(b))

:::
and

:::
all

:::::
output

::::::::
windows

::::::
(figure

::
10

::::
(c)).

:::::::
Further

:::
one

::
to

:::
one

:::::::::::
comparisons

:::::::
between

::::::::
different

::
M

:
and

LSTM
::
N

:::::::::::
combinations

:::
are

:::::::
provided

::
in
::::::
figure

::
11

:::::
under

:::::::
different

::::
gap

::::::::
scenarios.

:::::::
Natural

:::
log

:::::
scales

::::
were

:::
on

::::
both

::::
axes

:::
for

:::::
better

:::::::::
separations

::
in

::::
data

::::::
points.

:::
All

:::
the

:::::
points

:::::
below

:::
the

:::
1:1

::::
line

::::::::
represent

::::
cases

::::::
where

:
a
:::::::::
multi-well

:::::
DNN

::::::::::
outperforms

:
a
::::::::::
single-well

:::::
DNN.

:::
The

::::::::::
percentage

::
of

:::::
points

::::::
below

:::
the

:::
1:1

:::
line

::::::::
increases

::::
with

:::
the

::::
gap

:::::::
lengths:

::::::
17.9%,

::::::
35.7%,

::::::
64.3%,

::::
and

::::::
82.1%

:::
for

::::
gaps20

::
of

::
1,

:::
24,

:::
48,

::::
and

::
72

::::::
hours,

::::::::::
respectively.

::::::::::
Therefore,

::::::::
including

::::::
spatial

::::::::::
information

::::
from

::::::::::::
neighbouring

::::
wells

::::::
could

:::::::::
potentially

:::::::
increase

::
the

::::::
chance

:::
of

::::::::
successes

::
in

:::::
filling

::::
gaps

:::::
under

:::::
more

:::::::::
challenging

:::::::::::::
circumstances,

::::
such

::
as

::::
more

::::::::
complex

:::::::
dynamic

:::::::
patterns

:::
and

:::::
longer

::::
data

:::::
gaps.

5 Conclusion

In this study, we implemented an LSTM
:
a
::::::::::
DNN-based

::::
gap

:::::
filling

:::::::
method

:
to account for spatio-temporal correlations in a25

:::::::::
monitoring

::::
data.

::::
We

:::::::::
extensively

::::::::
evaluate

:::
the

::::
new

:::::::
method

::
in

:::::
filling

::::
data

:::::
gaps

::
in

::::
SpC

::::::::::::
measurements

::::
that

:::
are

:::::
often

::::
used

:::
to

::::::
indicate

:::::::::::
groundwater

:::
and

::::
river

:::::
water

::::::::::
interactions

:::::
along

::::
river

::::::::
corridors.

:::
We

:::::::::
optimized

:
a
:::::
DNN

::::::::::
architecture

:::
that

:::::::
contains

:::::::
stacked

::::::
LSTM,

::::::::::::
convolutional,

:::
and

:::::
dense

::::::
layers

::
to

::::
take

::::::::
advantage

:::
of

:
a
:
10-year spatially distributed

:::::::::::
multi-variable

:
time series dataset

collected by a groundwater monitoring well network . We evaluated the performance of the LSTM-based gap filling method by

creating synthetic data gapsof various lengths (24, 48 and 72 hours) so that the accuracy of the filled data could be quantified30

in terms of error statistics and how well the original nonlinear dynamics are captured. The performance of the LSTM-based

::
for

::::::
filling

::::
SpC

::::
data

:::::
gaps.

::
A

:::::::
primary

:::::::::
advantage

::
of

:::::
using

:::::
DNN

::
is

:::
the

::::::
ability

::
to

::::::::::
incorporate

:::::::::::::
spatio-temporal

::::::::::
correlations

::::
and

20



::::::::::
nonlinearity

::
in

:::::
model

:::::
states

::::::
without

::::::::
assuming

:::
an

::::::
explicit

::::
form

:::
of

:::::::::
correlations

::
or
::::::::
nonlinear

::::::::
functions

::
in

:::::::::
advancing

::::::
system

:::::
states

::
as

:
a
::::::
priori.

:::
We

::::::::
compared

:::
the

:::::::::::
performance

::
of

::::::::::
single-well

::::::::::
DNN-based gap-filling method is compared to that of a traditional ,

popular
:::
with

::
a

::::::::
traditional

:
gap-filling method, ARIMA. ,

::
to

:::::::
evaluate

::::
how

::::
well

::
a
:::::
DNN

:::
can

:::::::
capture

:::::::::::::
multi-frequency

:::::::::
dynamics.

:::
We

:::
also

::::::
trained

:::::
DNN

::::::
models

::::
that

::::
take

::::
input

:::::
from

:::::::
multiple

::::
wells

::
to
::::::
predict

:::::::::
responses

::
at

:::
one

::::
well.

::::
The

:::::::::
multi-well

::::
DNN

:::::::
models

::::
were

::::::::
compared

::::
with

::::::::::
single-well

::::::
models

::
to
::::::
assess

:::
the

:::::::::::
improvement

::
in

::::
gap

:::::
filling

:::::::::::
performance

::
by

::::::::
including

:::::::::
additional

::::::
spatial5

:::::::::
correlation

::::
from

::::::::::
neighboring

:::::
wells.

:

In general, both ARIMA and LSTM are
::::
DNN

:::
and

::::::::
ARIMA

::::
were

::::::
highly

:::::::
accurate

:::
in

:::::
filling

:::::
small

::::
data

::::
gaps

:::::
(i.e.,

:
1
::::::
hour).

::::
They

::::
were

:
reasonably effective at filling in gaps of 24, 48, and 72 hours. The relative errors are

:::
were

:
mostly within the range of

instrument measurement error. The models both capture
:::
Both

:::::::
models

:::::::
captured

:::
the long-term trends in data ,

::::
(i.e.,

::::::::::::
low-frequency

::::::::
variations

::
at

:::
the

:::::::
monthly

::
or

:::::::
seasonal

::::
time

::::::
scales),

:
except during some time windows with highly dynamic fluctuations. ARIMA10

is
:::
The

:::::::
ARIMA

::::::
method

::::
was found to be suitable for time series with less dynamic behavior. LSTMs

:::::
DNNs excel in dealing with

high-frequency dynamics
::::
(daily

::::
and

::::::::
subdaily) or nonlinearities, although they do require more training data and computational

power.
::::::::
resources.

::::
The

:::::
DNN

::::::::
approach

::::
also

::::::::
appeared

::
to

:::::::::::
overestimate

:::
the

:::::::::::::
high-frequency

:::::
(daily

:::
and

:::::::::
subdaily)

::::::::::
fluctuations

::
in

::::
some

:::::
wells

::::
near

:::
the

::::
river

:::::
(i.e.,

::::
wells

::::
1-1,

::::::
1-10A,

::::
and

::::
2-2),

::::::
which

:::
was

:::::
likely

::::::
caused

:::
by

:::
the

:::::::::
variability

::
in

::::::::
dynamics

:::::::::
signatures

:::::
among

::::
the

:::::::
training,

:::::::::
validation

:::
and

::::
test

:::::::
periods.

:
Availability of sufficient training data is critical for the success of LSTM15

::::::::::
DNN-based methods, as

:
is
:
with any DNN-based learning methods. In the gap-filling use case studied here, 2 years of training

data yielded similar results compared with 4 and 6 years of training data. A general guideline is to have training data that covers

various scenarios of inter-annual, seasonal, daily and even sub-daily dynamics, which is best assessed by understanding the

nature of physical processes and drivers underlying the time series data
::::::
method.

:::::::::::
Extrapolating

:::
the

:::::
DNN

:::::::
models

::
to

:::::::::
conditions

::::::
beyond

:::::
those

::
in

:::
the

::::::
training

::::
data

:::::::
remains

::
as

::
a

:::::
major

::::::::
challenge.20

Wavelet analysis could provide useful insights to the dynamic signatures of the data and the change in composition of their

important frequencies over time, which can serve as a prior basis for selecting an appropriate gap-filling method. For example,

the ARIMA method would work well if the dynamics are dominated by seasonal cycles, while more sophisticated approaches

like LSTMs
:::::::::
DNN-based

::::::::
methods could work better if there is evidence of

::::::
weekly,

:
daily and subdaily fluctuations. There

may also be challenging situations for LSTMs, such as the highly dynamic time windows in our case study. The capability of25

learning over long sequences differentiates LSTM from other RNNs that do not have such memory. Depending on the mixture

of long- and short-term
::::
high-

::::
and

::::::::::::
low-frequency

:
variability inherent in the time series, different LSTM

:::::
DNN

::::::::::
architecture

:::
and

:
configurations can be further explored and evaluated to

::::::
through

::::::::::::::
hyperparameter

:::::::
searches

::::
with

:::::::
respect

::
to

::::::
LSTM

::::::
layers,

:::::
dense

:::::
layers

::::
and

::::::::
activation

::::::::
functions

:::
to achieve better performance in capturing more complex dynamics. Capturing such

dynamics
:::
We

::::
also

:::::::::::
demonstrated

::::
that

:::::::::::
incorporating

::::::
spatial

::::::::::
information

::::
from

::::::::::
neighboring

:::::::
stations

::
in

:::::
DNN

:::::
could

:::::::::
contribute

::
to30

::::::::::
performance

:::::::::::
improvement

:::::
under

::::::::::
challenging

::::::::
scenarios

::::
with

:::::::
dynamic

::::::
system

:::::::::
behaviours

::::
with

::::::
longer

::::
data

::::
gaps

:::::::
(multiple

::::::
days).

:::
The

:::::::
optimal

:::::
DNN

::::::
model

:::::::::::
configuration

:::
and

:::::::::::
performance

::::
that

:::::
could

::
be

::::::::
achieved

::::::
would

::::
vary

::::
case

:::
by

::::
case.

::::
The

:::::::::::
bidirectional

:::::
LSTM

::::
can

::
be

::::::::
explored

::
to

:::::::::
formulate

:::
the

:::
gap

::::::
filling

::
as

::
a
::::::
history

::::::::
matching

::::::::
problem

:::
and

:::::::
evaluate

::::
the

::::
value

:::
of

::::::::
observed

::::
data

::
in

:::::
future

::::
time

::::::::
window

::::::
relative

:::
to

:::::::
missing

::::
data

:::
for

::::::
filling

:::
the

::::
data

:::::
gaps.

::::::
While

:::
we

:::::::::
introduced

::
a
::::
new

:::::::
method

:::
that

::::
can

:::
be

::::::
broadly

:::::::
applied

::
to

:::
fill

::
in

::::
gaps

::
in
::::::::::

irregularly
::::::
spaced

:::::::
network

:::
for

:::::::::
monitoring

:::::::::::
groundwater

::::
and

::::::
surface

:::::
water

:::::::::::
interactions,

:::
the35

21



::::::::::::
transferrability

::
of

::::
this

::::::
method

::
to

:::::
other

:::::::::
monitoring

:::::::
systems

:::::
could

:::
be

::::::::
evaluated

:::::
more

:::::::::
extensively

:::
by

::::::::::
community

:::::::::::
participation.

::::::::
Capturing

:::::::::::::
spatio-temporal

:::::::::
dynamics

::
in

::::::
system

::::::
states is essential for generating the most valuable insights to advance our

understanding of dynamic complex systems. Future research could involve time series from multiple locations to explicitly

account for spatial correlations.
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