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Abstract: Microwave remote sensing is the most promising tool for monitoring global-scale near-surface 10 

soil moisture distributions globally. With the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture 11 

Active Passive (SMAP) missions in orbit, considerable efforts are made to evaluate theirderived soil 12 

moisture products via ground observations, forward microwave transfer simulation, and independent 13 

remote sensing retrievals. Due to the large footprint of the satellite radiometers of about 40 km in 14 

diameter and the spatial heterogeneity of soil moisture, minimum sampling densities for soil moisture are 15 

required to challenge the targeted precision. Here we use 400 m resolution simulations with the regional 16 

terrestrial system model Terrestrial System Modeling Platform (TerrSysMP) and its coupling with the 17 

Community Microwave Emission Modelling platform (CMEM) to quantify the maximum sampling distance 18 

requiredallowed for soil moisture and brightness temperature validation.  Our analysis suggests that an 19 

overall sampling resolutiondistance of betterfiner than 6 km is required to validate the targeted accuracy 20 

of 0.04 cm3/cm3 (with a 70% confidence level) in SMOS and SMAP estimates over typical midlatitudemid-21 

latitude European regions. The minimummaximum allowed sampling resolutiondistance depends on the 22 

land-surface inhomogeneityheterogeneity and the meteorological situation, which influenceinfluences 23 

the soil moisture patterns, and ranges from about 76 km to 17 km for a 70% confidence level for a typical 24 

year. At the minimummaximum allowed sampling resolution fordistance on a 70% confidence level also, 25 

the accuracy of footprint-averaged soil moisture is equal or better than brightness temperature estimates 26 

is equal or better than 15 K/10 K for H/V polarization.over the same area. Estimates strongly deteriorate 27 

with sparserlarger sampling densities, e.g., at 3/9 km with 3/5 sampling sites the confidence leveldistances. 28 

For the evaluation of derived footprint estimates can reach about 0.5-0.6 for soil moisture which is much 29 

less than the standard 0.7 requirements for ground measurements. The representativenessthe smaller 30 

footprints of ground-based soil moisture the active and brightness temperature observations - and thus 31 

theiractive/passive products od SMAP the required sampling densities increase; e.g., when a grid 32 

resolution of 3 km diameter is sampled by 3 sites of footprints of 9 km sampled by 5 sites required already 33 

only 50%-60% of the pixels have a sampling error below the nominal values. The required minimum 34 
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sampling densities - for ground-based radiometer networks to estimate footprint averaged brightness 35 

temperature are higher than for soil moisture due to the non-linearities of radiative transfer, and only 36 

weakly correlated in space and time. This study provides a basis for a better understanding of the 37 

sometimes strong mismatches between derived satellite soil moisture products and ground-based 38 

measurements.  39 
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 43 

1. Introduction 44 

Information on the global soil moisture distribution is required, e.g., for weather forecasting, climate 45 

research, and agricultureagricultural applications. Due to the high spatial variability of soil moisture, its 46 

in-situ observation is practically impossible on continental scales. Passive microwave satellite remote 47 

sensing at L-band frequencies may achieve this goal because of the strong dependency of the soil 48 

dielectric constant on soil moisture, the - compared to higher frequencies - reduced sensitivity of the 49 

brightness temperatures to surface roughness and vegetation (Njoku and Kong, 1977;Ulaby et al., 1986),  50 

and the high transparency of the atmosphere at these wavelengths (Njoku and Kong, 1977;Ulaby et al., 51 

1986).. The first operational L-band soil moisture detection satellite, SMOS (Soil Moisture and Ocean 52 

Salinity) was launched in 2008 (Kerr et al., 2010) and was followed in 2015 by SMAP (Soil Moisture Active 53 

Passive), which additionally carriesinitially were performing with an active instrument to achieve higher 54 

spatial resolution (Entekhabi et al., 2010); the active component did fail, however, shortly after the full 55 

operation of the satellite. Both satellites are currently continuously and globally observing passive 56 

microwave brightness temperatures, from which soil moisture products are derived at tens of kilometersa 57 

spatial resolution of 36 km and 9 km.  58 

Before and after the launch of SMOS and SMAP several soil moisture monitoring networks for 59 

evaluation and retrieval algorithm development were set upestablished, such as ESA’s validation efforts 60 

at the Valencia Anchor Station (VAS) in eastern Spain and, SMOSREX (Surface Monitoring Of Soil Reservoir 61 

Experiment) in France, the upper Danube watershed located in southern Germany (Delwart et al., 2008;de 62 

Rosnay et al., 2006;Lemaitredall'Amico et al., 20042012;Kerr et al., 2016), and the SMAP Cal/Val project 63 

(Brown et al., 2008;Delwart et al., 2008;Colliander et al., 2017a;Burgin et al., 2017;Chen et al., 2017;Chen 64 

et al., 2018).. All those networks have been established since ground truth should be the only standard to 65 

evaluate these products. According to the Level 1 baseline and the minimum SMAP science requirements 66 

(SMAP Science Data Cal/Val Plan, (O’Neill et al., 2015)) the spatial resolution of Level 2 (Passive Soil 67 

Moisture Product L2_SM_P) and Level 3 (daily composite L3_SM_P) soil moisture products is 36 km with , 68 

which have to reach an accuracy for soil moisture of 0.04 cm3/cm3. with a probability of 70%. A wide range 69 

of measurement techniques and protocols exist for setting up and performing ground-based observations 70 

for evaluation.such evaluations. SMAP Cal/Val suggests, that volumetric soil moisture should be observed 71 

in-situ at 5 cm and 100 cm depth while; optimal sensing/mounting depths are, however,  still debated (Lv 72 

et al., 2016a;Lv et al., 2018;Lv et al., 2019). For core validation sites, a minimum of six - better 15 73 

observations - overstations should cover one SMAP grid cell or footprint is suggested (O’Neill et al., 74 

2015;Famiglietti et al., 2008),; but this value has not substantiated yet been shown to guarantee the 75 

nominal accuracy by a thorough analysis (Jackson et al., 2012;Crow et al., 2012).. More recent results 76 

show that the spatial representativeness of the soil moisture tends to increase with the timescale of data 77 

series, but so does their spread (Molero et al., 2018). For Cal/Val, it is required to have instantaneous soil 78 

moisture values rather than averages in different timescales.  Relevant studies typically use ground-based 79 
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soil moisture networks with fixed resolutionsaverage sampling distance over rather homogeneous land 80 

surfaces, which are, however, not necessarily representative for all land surface types. For SMAP core 81 

calibration/validation sites a 36-km footprint, the data product grid-cell should be sampled with at least 82 

be sampled with eight stations leading to areach with 70% confidence for an estimated mean soil moisture 83 

uncertainty of 0.03 m3/m3 given a spatial variabilitysoil moisture standard deviation of 0.07m3/m3. A 9-km 84 

footprint should at least  as assessed from field measurements (Colliander et al., 2017b). According to the 85 

same source, grid-cells with a dimension of 9 km (as for downscaled SMAP products) should be sampled 86 

with at least five stations leading to a 70% confidence for an estimated mean soil moisture uncertainty of 87 

0.03 m3/m3, while a 3-km footprint should and pixels with 3 km diameter with at least be sampled with 88 

three stations leading to areach with 70 % confidence for an estimatedaccuracy of 0.03 and 0.05 m3/m3 89 

mean soil moisture uncertainty in both cases , respectively, while assuming a spatial soil moisture 90 

uncertaintystandard deviation of 0.05 m3/m3 within the respective footprintsgrid-cell. 91 

(Ochsner et al., 2013)) point out that too few resources are currently devoted to in-situ soil moisture 92 

monitoring networks, and that despite their increasing number, a standard for network density and 93 

sampling procedures isare missing. Coopersmith et al., 2016 suggestThe International Soil Moisture 94 

Network (ISMN, https://ismn.geo.tuwien.ac.at/en/) is an effort for unifying global soil moisture 95 

observation networks (Dorigo et al., 2011). (Coopersmith et al., 2016)) suggested temporary network 96 

extensions around permanent installations to quantify the representativeness of the latter.  (Qin et al., 97 

2013) suggest) suggested the use of MODIS-derived apparent thermal inertia to interpolate between in-98 

situ soil moisture measurements. So far, the required sampling density is discussed only concerning in-99 

situ measurements, which heavily depend on sensor quality and network location (Vereecken et al., 100 

2008;Brocca et al., 2010;Bhuiyan et al., 2018). No study is known to us, which investigates systematically 101 

the station density required for the evaluation of derived soil moisture or brightness temperatures taking 102 

the true. Higher station numbers are necessary, as well as the establishment of general rules for their 103 

selection (Cosh et al., 2017). Chen et al. (2017, 2018, 2019) suggest the utilization of TC (Triple collocation), 104 

which is a statistic method to characterize systematic biases and random errors, or ETC (Extended Triple 105 

collocation) to analyze the noise component in soil moisture observations, and to use correlation to 106 

evaluate the representativeness of soil moisture networks. They also suggest that the core validation sites 107 

should allow validating the retrieved soil moisture to an accuracy of 0.04 cm3/cm3 with a probability of 108 

70% in terms of unbiased RMSE because the bias itself is hard to eliminate.  109 

Establishing ground monitoring networks for calibration/validation of soil moisture products from 110 

satellite L-band observations is challenging partly due to the different spatial scales between observations 111 

from soil moisture sensors and satellites. Moreover, from a direct comparison between satellite soil 112 

moisture products and ground-based measurements from existing soil moisture networks, it is impossible 113 

to isolate the sampling error, and only very few studies investigate systematically the station density 114 

required to allow for a given accuracy taking the land heterogeneity into account. In our study, we use a 115 

400-m resolution virtual reality generated with a regional terrestrial modeling system coupled with an 116 
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observation operator to estimate such minimum station densities for the evaluation of L-band satellite 117 

observations and soil moisture retrieval products. This. The virtual reality contains realistic soil, land cover, 118 

and topography variability and allows us to arbitrarily vary the sampling resolution at density and, thus, 119 

average sampling distance in steps of 400 m, which is impossible in field campaigns.. Section 2 introduces 120 

our model-based the virtual reality, and the observation operator used to transfer the terrestrial system 121 

states into virtual observations. In Section 3, we analyzederive the error growth with increasing average 122 

sampling distances in timedistance for soil moisture and spacebrightness temperatures. Conclusions and 123 

discussion are provided in Section 4.   124 

2. Methodology and data 125 

2.1 Virtual reality 126 

The modeling system used to create the virtual reality from which we draw the virtual soil moisture 127 

observations and compute brightness temperatures is the Terrestrial Systems Modeling Platform 128 

(TerrSysMP, (Shrestha et al., 2014;Gasper et al., 2014;Sulis et al., 2015) developed within the framework 129 

of the Transregional Collaborative Research Center 32 (TR32, Simmer, et al.., 2015). TerrSysMP consists 130 

of the atmospheric model COSMO (Consortium For Small Scale Modelling, (Baldauf et al., 2011), the land 131 

surface model CLM (Community Land Model Version 3.5, (Oleson et al., 2008)),, and the distributed 132 

hydrological model ParFlow v693 (Ashby and Falgout, 1996;Kollet et al., 2010). The platform has especially 133 

been, specially designed for high-performance computing environments (Gasper et al.., 2014) and), has 134 

been extensively evaluated against observations (Sulis et al.., 2015, 2018; Shrestha et al.., 2018b) andas 135 

well as similar regional terrestrial system models (Sulis et al.., 2017). The effect of spatial resolution on 136 

simulated soil moisture and the resulting exchange fluxes between land and atmosphere has been studied 137 

with TerrSysMP by Shrestha et al. (2015, 2018a).  138 

The simulated domain in this study is centered on the Neckar catchment in southwestern Germany 139 

(Figure 1). Notable features include the upper Rhine valley in the west, the Black Forest mountains in the 140 

southwest, and the foothills of the Alps in the southeast. The landscape has height variations of about 141 

1100 m with lowest elevations found in the Rhine valley and highest in the Black Forest. The topographic 142 

data areWe use for this study available simulation results generated by the research unit FOR2131 143 

(Schalge et al., 2019;Schalge et al., 2016) over an area containing the Neckar catchment in southwestern 144 

Germany in its center (Figure 1). CLM and ParFlow were run at the horizontal computational grid with 400 145 

m resolution. ParFlow has 50 vertical soil layers in which the upper 10 coincide with the ten soil layers of 146 

CLM. The vertical resolution is variable with smaller steps near the land surface. The atmospheric model 147 

COSMO runs at a 1.1 km horizontal resolution, and COSMO is forced at the lateral boundaries with a 148 

COSMO-DE analysis from the operational weather forecast run by the German national weather service 149 

(Deutscher Wetterdienst, DWD) available at hourly time steps. The main topographic features of the 150 

modeling area are the upper Rhine valley in the west, the Black Forest in the southwest, and the foothills 151 

of the Alps in the south. The heights range from 80 m to 1900 m. The area was selected by the research 152 

unit because of its heterogeneity in topography and land-use typical for midlatitude European river 153 
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catchments; thus, it is also well suited for our study. The objective of the research unit is the setup and 154 

test of a strongly coupled data assimilation system with a fully-coupled regional terrestrial model. Their 155 

virtual reality run (VR01), the results of which we are exploiting in this study, is the so-called nature run 156 

from which the research unit draws the virtual observations to be assimilated in a lower-resolved model 157 

version using ensemble methods. The model area can be covered by about  15 x 20 SMOS pixels, which 158 

suffices for the statistical analyses performed to determine required sampling densities. There exist two 159 

soil moisture monitoring networks close to the domain, which are used for soil moisture validation studies 160 

with satellite-based L-band observations (Montzka et al., 2013).  161 

 The topographic data for VR01 is obtained from the European Environment Agency EEA 162 

(http://www.eea.europa.eu/data-and-maps/data/eu-dem), which is also the source for the CORINE land 163 

use data (http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-164 

3)(http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3) used to 165 

characterize vegetation in the model domain. Since CORINE uses many more land -use classes than CLM, 166 

the CORINE classes are aggregated to the five classes discriminated in the CLM in the modeling area: 167 

broadleaf forests which can be found mostly in hilly areas throughout the domain in smaller patches, 168 

needle leaf forests which dominate at higher elevation such as the Black Forest, grassland which is 169 

relatively rare and only appears in small patches, and crops which is the most dominant land use type 170 

throughout the domain and appears almost anywhere. All other classes, such as urban areas, are treated 171 

as bare soil in our studyVR01. 172 

The Leaf Area Index (LAI) for the specific plant classes is taken from MODIS estimates corrected for 173 

known biases (Tian et al., 2004). We have not used the tiling approach in CLM; instead, we used the most 174 

dominant land use type for each grid-cell because the resolution is high enough to warrant this approach. 175 

The SAI is estimated from the LAI by a slightly modified formulation (no dead leaf for crops, constant base 176 

SAI of 10  % of maximum LAI) byInstead of the tiling approach implemented in CLM, the dominant land 177 

use type for each grid-cell is used, because the resolution of 400 m is high enough to warrant this approach. 178 

The SAI (Stem Area Index) is estimated from the LAI by formulations slightly modified from those 179 

implemented in the CLM. For crops, SAI is just 10% of the LAI; thus SAI is larger in summer than in winter.   180 

For all other types, SAI is 10% of LAI plus a "dead leaf" component. The “dead leaf" component is 181 

estimated empirically from the change of the LAI from the previous and current month. The “dead leaf" 182 

component is only a major contributor during fall, but even there the needle leaf trees, for instance, show 183 

only a small increase of SAI. The VR01 region is mostly covered by deciduous trees that have 1-2 months 184 

of high SAI because the dead-leaf component decays rather quickly.  Details about SAI calculation in VR01 185 

are described in (Schalge et al., 2016)), (Lawrence and Chase, 2007)), and (Zeng et al., 2002).). 186 

The soil map (Figure 1, upper row) is derived from a product of the German Federal Institute for 187 

Geosciences and Natural Resources BGR (http://www.bgr.bund.de/DE/Themen/Boden/ 188 

Informationsgrundlagen/Bodenkundliche_Karten_Datenbanken/BUEK1000/buek1000_node.html). Soil 189 

values for regions near the edge of our domain in France and Switzerland were extrapolated. Variability 190 
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was added to the relatively large polygons of constant soil parameters following Baroni et al. (2017) to 191 

represent better what would be found in reality at higher resolutions. The soil color wasthe modeling 192 

domain in France and Switzerland are extrapolated. Variability was added to the relatively large polygons 193 

of constant soil parameters to represent better what would be found in reality at higher resolutions 194 

following (Baroni et al., 2017). The soil color is derived from the carbon content of the soil with carbon-195 

rich soils being darker, except for the bare soil areas, which all use the same relatively light color class. 196 

There is deep soil geology included in ParFlow as well as alluvial channels below rivers to account for 197 

deeper subsurface flow,; but these features will not directly impact the results shown here as they only 198 

appear below the soil layers. 199 

CLM and ParFlow use the same horizontal computational grid with 400 m resolution. ParFlow has 200 

50 vertical soil layers, the upper 10 of which coincide with the ten soil layers of CLM.  201 

 202 

 

Figure 1: TerrSysMP simulation area at 400 m resolution with the Neckar catchment roughly in the 

center indicated by the black line. Soil sand (left) and clay fractions (right) are displayed in the upper 

row sub-figures, while the Plant Functional Types (PTFs) used by CLM are shown in the lower left sub-

figure, and topography (in m) in the lower right sub-figure. 
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The vertical resolution is variable with smaller steps near the land surface. The atmospheric model 203 

COSMO runs at a 1.1 km horizontal resolution which allows for convection permitting simulations. COSMO 204 

is forced at the lateral boundaries with a COSMO-DE analysis from the operational weather forecast runs 205 

from the German national weather service (Deutscher Wetterdienst, DWD) available at hourly time steps. 206 

 207 

2.2 Generation of L-Band passive microwave observations 208 

The radiative transfer model CMEM (Rosnay et al., 2009) computes the land emissivity based on a 209 

dielectric mixture model for soil moisture, soil sand and clay soil fractions, soil surface roughness, 210 

 

Figure 1: TerrSysMP simulation area at 400 m resolution with the Neckar catchment roughly in the 

center. Soil sand (left) and clay fractions (right) are displayed in the upper row sub-figures, while the 

Plant Functional Types (PTFs) used by CLM are shown in the lower left sub-figure (here we use a 

discrete scale representing the five classes including: 0 bare soil; 1 needle leaf evergreen temperate 

trees; 8 broadleaf deciduous temperate trees; 15 warm c4 grass; 16 crop) and topography (in m) in the 

lower right sub-figure. 
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vegetation optical thickness, single scattering albedo, and land surface orientation relative to the satellite 211 

viewing perspective. Depending on the sand and clay fractions, brightness temperatures may vary by tens 212 

of Kelvins given the same near-surface soil moisture. Vegetation optical thickness depends on LAI, which 213 

varies in our virtual reality with time depending on PFT type. Also, soil temperature and snow depth (not 214 

shown) impact the simulated brightness temperatures. More details can be found, e.g.,the VR01 with 215 

time depending on PFT type. Depending on the particular Plant Functional Type (PFT) CMEM uses different 216 

parameters to calculate the vegetation optical thickness from the respective LAI. Soil effective 217 

temperature is computed with a new scheme introduced by (Lv et al., 2014).  The new scheme is a 218 

discretization of the integral formulation and takes advantage of multi-layer soil temperature/moisture 219 

profile information with a wider range of soil properties. This allows to better adapt CMEM to the available 220 

land surface model data. Also, soil temperature and snow depth impact the simulated brightness 221 

temperatures. More details can be found in the SMOS global surface emission model handbook (Rosnay 222 

et al., 2009).   223 

From the 400 m resolution brightness temperatures, virtual satellite observations are generated 224 

with CMEM taking the satellite antenna function into account. Figure 2 shows the centers of the about 225 

320 footprints coveringcorresponding to the model areaSMOS L1 TB data product at 41˚ incidence angle 226 

for onea potential satellite overpass and - on the same scale - the satellite antenna function for one 227 

footprint, which will change somewhat inchanges shape withdepending on the elevation of the individual 228 

400 m model grid areas, orbit altitude and declination, and satellite viewingscanning and incidence angle.  229 

Not each SMOS overflight will cover the whole area in reality. But in our study, we assume for 230 

simplicity, that all footprints indicated in Figure 2 are observed once a day at 6 a.m.,. local time, which 231 

corresponds to the approximate ascending and descending or ascending overpass time of SMOS and 232 

SMAP, respectively. The satellite footprint is much larger than the nominal satellite spatial resolution of 233 

40 km that is defined by 3 dB contour of the main lobe; thus areas much larger in diameter contribute to 234 

one satellite-observed brightness temperature (i.e., 50% of one satellite-observed brightness 235 

temperature originates from an area roughly ten times larger than the nominal satellite footprint).  236 
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 237 

 

Figure 2: Dots in the left sub-figure indicate the centers of SMOS footprints for one hypothetical 

satellite overpass. The right sub-figure shows the antenna pattern in dB of one satellite footprint on 

the same scale as the map on the left.  
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 238 

The virtual reality employed in this study is a physically consistent state of the terrestrial system in 239 

space and time because it has been produced by a numerical model based on the conservations equations 240 

for mass, energy, and momentum. When applying the satellite observation operator CMEM to this model 241 

state, we assume that the model state is correct and, as well as the simulated microwave transfer is error-242 

free.brightness temperature. Thus, our sampling study only quantifies the impact of the sampling density 243 

but does not includeof a surface network on the comparison between area-averaged values and their 244 

estimates from the surface network, i.e., we ignore errors of the dynamic model (TerrSysMP) and/or of 245 

the forward operator (CMEM). Based on the modeling results, we analyze a range of ground-based 246 

network configurations with sampling points at least 400 m apart, and we assume that all quantities (state 247 

of the terrestrial system and brightness temperature) do not vary within 400 m. While this is an 248 

approximation, we believe that our results and their outcome can be generalized, except that their 249 

outcome might be too optimistic. . We will come back to this point in the discussion section. 250 

With the model area coveringSince one SMOS/SMAP footprint containingcovers approximately 251 

106x106 model grid columns, that in the VR01, the respective area couldcan be sampled by one up to a 252 

maximum of 106x106 (virtual) sites. If the foot-printfootprint area is sampled with n sites, there are 253 

106 106

n

x
C

106 106

n

x
C  sampling combinations (SC, hereafter) possible, with 254 

 

Figure 2: Dots in the left sub-figure indicate the centers of SMOS footprints for one hypothetical 

satellite overpass. The right sub-figure shows the antenna pattern of one satellite footprint at nadir on 

the same scale as the map on the left sub-figure.  
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which is an unordered, non-overlapping collection of distinct elements of a prescribed size taken from a 257 

given set. For example, with an averagea 10 km distance between sampling sites of 10 km, about 6x6 258 

sampling sites are possible within one footprint, which can be spatially distributed in 6 6 104

106 106
1.69 10x

x
C ≈ ×259 

≈ ×6 6 104

106 106 1.69 10
x

x
C  ways. It is computationally not feasible to consider all those combinations. When we 260 

divide, however, we first divide each footprint into equally-sized sub-areas, each containing exactly one 261 

sampling site (this assumes a certain degree of homogeneity within the network (which would in reality 262 

also be strived for), the number of potential sampling networks is drastically reduced. If we set, e.g., the 263 

average sampling distance ofwithin a 43-km wide footprint  x 43 km2 area to i km, we divide the footprint 264 

into 
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 265 

400m-resolution model columns. When we further select within each of the equally-sized sub-areaareas 266 

of a satellite footprint the same model column (i.e., the one with row number k and column number l 267 

both, e.g. starting at 1 in the upper left column of each subarea), a regular equidistant observation 268 

network within the SMOS/SMAP footprints is enforced similar to, e.g., the one used in the study by 269 

(Famiglietti et al., 2008). For each footprint (subscript f) at a particular time (subscript t) of a certain 270 

sampling distance (i km, subscript d), the number of network configurations SCftd for soil moisture is  271 
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This results for a certain sampling distance (i km) for all 320 footprints and all 365 days of a year to a 274 

sample size of 275 
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from which we will compute the PDF of the resulting sampling errors. For each day given two 278 

observationsone observation per day for all 320 footprints and summed over all sampling distances, we 279 

get samples of size  280 
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and forfrom which we will compute PDFs of the maximum allowed sampling distances. For each satellite 282 

footprintgrid-cell with two observationsone observation per day taken over one year and summed over 283 

all sampling distances, we get  284 
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  (5) 285 

samples, from which we determine the one with spatial distribution of the maximum allowed sampling 286 

errordistances. E.g., for 800 m sampling distance, we determine the maximum from 287 

2
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 samples, the number of which increases with 288 

the square of the sampling distance. This 289 

The sampling described above is applied to both soil moisture and (brightness temperature) with 290 

and (without) considering the satellite weighting function (Figure 2b). The confidence level required 291 

bySince SMAP Cal/Val in core-sites is 70%. Thus, instead ofrequires that the maximum error,nominal 292 

accuracy of 0.04 cm3/cm3 for retrievals should be met with a probability of 70%, we take the error at the 293 

7070th percentile, if not specified otherwise. In the following, we mostly use the more intuitive sampling 294 

distance (km), but also the sampling density (sites per km2) when we are qualifying tendencies. The 295 

relationship between the sampling distance and the sampling density is simply 296 

 =
2

1
samplingdensity

samplingdistance
  (6) 297 

E.g., the 15/5/3 sites for grid-cells with diameters of 36/9/3 km recommended by SMAP Cal/Val would be 298 

around 0.0116/0.0617/0.3333 sites per km2 and correspond to a sampling distance of 9.295/4.025/1.732 299 

km. We note here that the grid size of the SMAP passive soil moisture product is 36 km x 36 km per pixel, 300 

which is the ISEA-4H9 discrete global grid for SMOS (43 km x 43 km). The 43 km in all equations shall be 301 

exchanged by 36 km when computing the number of sampling networks by equations (1) to (3).   302 

3. Results 303 

We first discuss in detail the results for soil moisture sampling. Then we extend the same methodology to 304 

brightness temperature and compare both results. We also evaluate the potential sampling error for 305 

“footprints” with grid sizes of 3 km and 9 km satellite footprint sizes, because the SMAP products also 306 

include combined active-passive soil moisture retrievals at higher spatial resolutions (e.g., EASE-grid 9 km) 307 

and a product only based on the active sensor (EASE-grid 3 km). Two kinds of percentages are used in this 308 
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study. One is the confidence level, which is related to the number of potential network configurations for 309 

one footprint as given by Equation (2)(2). The other percentage is related to the PDF of the maximum 310 

allowed sampling distance with a confidence level of 70% (we also use 100% for comparison), which is 311 

based on Equation (3)(3)/(4)(4)/(5)(5). The site numbers defined by  SMAP are equivalent to the latter. 312 

3.1 Soil moisture 313 

We compare the true (but virtual) spatial arithmetic average of soil moisture at the SMOS/SMAP 314 

resolution with the arithmetic average of soil moisture at 0.05 m depth computed from the sampling 315 

points taken at average distances ranging from 400 m (i.e., each TerrSysMPVR01 grid column, no sampling 316 

error) to 18 km (about half the radius of a SMAP or SMOS pixel. By Equation (3), (4), and (5),First, we 317 

analyze the probability density function of the sampling error as it varies with the sampling distance, 318 

taking the SCft samples for one whole year of all footprints in the terms of Probability density function 319 

(Figurewhole model area into account (Equation (3)(3), Figures 3 and 6,). Then we analyze the evolution 320 

over the year of the daily PDF of the maximum allowed sampling distance (for keeping the sampling error 321 

below the nominal value of 0.04 cm3/cm3 with 70% confidence) from SCtd samples (Equation (4)(4), Figures 322 

4 and 7). Finally, we look at the spatial variability of the maximum allowed sampling distance (for keeping 323 

the sampling error below the nominal value of 0.04 cm3/cm3 with 70% confidence)  based on 
ft

SC ),along 324 

time dimension (Figure 4 and 7, based on 
tdSC ) and along spatial dimension (Figure all samples of one 325 

SMOS/SMAP pixel over the year SCfd (Equation (5), Figures 5 and 8, based on 
fd

SC ).). When we later 326 

compare analyze the sampling errors for brightness temperatures, we use footprint averages weighted 327 

by the antenna function; using that strategy alsothe weighting function according to the dB pattern for 328 

soil moisture leads to differences below 0.01 cm3/cm3; thus, the averaging procedure does not impact our 329 

conclusions for soil moisture.  330 

For each average sampling distance, we We compute for the maximum sampling error for each 331 

sampling distance and each footprint the maximum sampling error obtained from the twice-daily 332 

observations over one year of all network configurations. The distributiondistributions of the 333 

corresponding 320 values isare displayed in the box-whisker plots in Figure 3 (top). Thus each value 334 

entering the distribution at a given average sampling distance (individual box-whisker plot in Figure 3) 335 

stems from that sampling network for one of the 320 SMOS/SMAP footprints, which leads to the largest 336 

sampling error taking all twice-daily observations over a year into account (Equation (3)(3)). With a 337 

sampling distance of 400m, we exactly reproduce the true (but virtual) arithmetic soil moisture average, 338 

i.e., the maximum error is zero. Maximum errors naturally increase with sampling distance, as 339 

demonstrated by the widening of the maximum error distribution. The median of the maximum sampling 340 

error increases aboutalmost linearly, with about 0.022 cm3/cm3 per kilometer increase in sampling 341 

distance. The spread of the maximum error increases from less than 0.01 cm3/cm3 at 0.8 km to 342 

approximately 0.4 cm3/cm3 at 18 km, with quite some variability between the sampling steps. To 343 

guarantee an absolutea sampling error below 0.04 cm3/cm3 (the assumed accuracy of SMOS/SMAP 344 
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retrievals) , which with 100% confidence everywhere in the region at any time of the year, (Figure 3, top), 345 

the maximum average sampling distance should not exceed 2.8 km. At an average sampling distance of 346 

With a 4.8 km sampling distance, for 50% of the SMOS/SMAP pixels sampling networks exist, which would 347 

lead to the occurrence ofarea and/or days of the year, we get sampling errors above 0.04 cm3/cm3 at least 348 

once per year..  At an averagea sampling distance of 4.4 km (less thanabout 18 sites within a 43 km x 43 349 

km pixel), the same would hold for more than 75% of the SMOS pixels. We note here that the size of the 350 

average footprints of the SMAP passive soil moisture product is 36 km x 36 km per pixel which is somewhat 351 

less than for SMOS. only 25% of the satellite pixels.  352 

For SMAP CAL/VAL core validation sites the target accuracy should be reached with a confidence 353 

level of only 70%. Figure 3 (bottom) displays the distributionPDF of the 70maximum sampling error 354 

corresponding to the 70th percentile of the sampling error atPDF computed for each satellite pixel instead 355 

of the maximum error (100 percentile) shown in Figure 3 (top). over the year. Thus, to guarantee ana 356 

sampling error below 0.04 cm3/cm3 for all network configurations for only up to 70% of all SMOS/SMAP 357 

pixels and all days of the year, a minimum sampling distance of 6 km is required. At an averagea sampling 358 

distance of 12 km, already only 50% of the pixels fulfill this requirement. Overall, about one-quarter of 359 

the nominal stations arerequired for 100% confidence is needed, when the requirement to stay within 360 

the 0.04 cm3/cm3 error margin is relaxed from 100% confidence level to 70%. 361 
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 362 

 

Figure 3: Box-whisker-plots (median in red, 25- and 75-percentiles as bounds of the box, whiskers 

encompass all values) of the maximum sampling errors for the 320 satellite footprints of the arithmetic 

mean soil moisture estimated for all network configurations observing twice-a-day over one year at 

given average sampling distances (abscissa). The top subfigure shows the absolute maximum error, 

while the bottom subfigure displays the results for the 70th percentile of the error at each satellite 

footprint. The horizontal dashed line is the 0.04 cm3/cm3
 retrieval error anticipated for SMOS and 

SMAP. 
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From the simulations363 

 364 

As outlined above, we can also quantify from the requiredsimulations the allowed maximum sampling 365 

distance for eachon a daily observation of the whole area, and for each ofbasis from the 320 SMOS/SMAP 366 

footprints over timesamples with the size given by the samples defined in Equation (4)(4). According to 367 

Figure 4, (bottom), for 80 percent% of the SMOS/SMAP pixels, the maximum allowed sampling distance 368 

is between 8.4 km and 16 km, which is 7 - 26 stations for SMOS (43 km) and 5 - 18 stations for SMAP 369 

passive (36 km) to reach thekeep the sampling error below 0.04 cm3/cm3 with 70% confidence level. A 370 

seasonal variation is not obvious, but rainfall events (Figure 4, top) affect the distributions by increasing 371 

the maximum allowed sampling distances because the surface soil moisture becomes more 372 

 

Figure 3: Box-whisker-plots (median in red, 25th- and 75th-percentiles as bounds of the box, whiskers 

encompass all values of the maximum sampling errors for the 320 satellite footprints of the arithmetic 

mean soil moisture estimated for all network configurations observing twice-a-day over one year at 

the given sampling distances (abscissa). The top subfigure shows the absolute maximum error, while 

the bottom subfigure displays the results for the 70th percentile of the sampling error distribution at 

each satellite footprint. The horizontal dashed line is the 0.04 cm3/cm3
 retrieval error anticipated for 

SMOS and SMAP. 
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homogeneously distributed in space. due to the typically quite widespread precipitation in that region. 373 

The opposite occurs during drought events,dry periods because of evaporation, draining, and runoff 374 

tendsover various soil and land cover types tend to create spatially inhomogeneousheterogeneous soil 375 

moisture distributions. , which typically reaches its maximum at intermediate soil moisture levels (Brocca 376 

et al., 2010). 377 

 378 

 

Figure 4: Time series of the distribution of the maximum soil moisture sampling distance for each 

SMOS/SMAP pixel required to assure a sampling error below 0.04 cm3/cm3 (70% confidence) for the 

year 2015. The grey intensity is proportional to the probability of occurrence. Also the median and the 

5 and 95-percentiles are indicated as lines.    
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 379 

The spatial distribution of the annual average maximum sampling distance requiredallowed to 380 

guarantee a sampling error below 0.04 cm3/cm3 (with 70% confidence computed from the samples given 381 

by Equation (5) and its RMS for the year 2015 (Figure 5) indicates, that the southeastern region requires 382 

on average sampling distances of up toonly below 16 km; thus only nine sites are required within a 383 

SMOS/SMAP pixel to estimate the footprint-averaged soil moisture with a sampling error below 0.04 384 

cm3/cm3. HoweverAlso, the annual variation is particularly small (blue). For the rest of the region, 385 

maximum allowed sampling distances range from 7 km to 10 km; (radius); thus, many more than nine 386 

 

Figure 4: Precipitation in VR01 (upper panel), and time series of the distribution of the maximum 

allowed soil moisture sampling distance for each SMOS/SMAP pixel to assure a sampling error below 

0.04 cm3/cm3 (70% confidence) for the year 2015 (bottom panel),. The colored intensity is proportional 

to the probability of occurrence. The 10th and 90th-percentiles are indicated as blue and read lines, 



 

20 

 

sites are required within one footprint. The annual variation of the maximum sampling distances for those 387 

footprints is larger than in the southeast. The mean allowed sampling distances and their day-to-day 388 

variations are only weakly correlated (correlation coefficient 0.40), but show larger-scale common 389 

patterns.  390 

 391 

 

Figure 5: Spatial distribution of the mean soil moisture sampling distance in the model area required 

for keeping the maximum sampling error below 0.04 m3/m3 over the whole year. The circle diameter 

indicates the maximum sampling distance in the scale shown in the map, while its color (see color bar) 

gives the RMS of the maximum sampling distance over time for the year 2015. 
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brightness392 

 393 

3.2 Brightness temperature 394 

We now determine the maximum sampling distances for networks of ground-based microwave 395 

radiometers observing the land surface requiredradiometer allowed to estimate SMOS/SMAP footprint 396 

brightness temperatures. To this goal, we transform the target accuracy of SMOS/SMAP soil moisture 397 

retrievals of 0.04 cm3/cm3 to the accuracy of the corresponding brightness temperature, which is 398 

approximately 10 K for H polarization and 5 K for V polarization according to CMEM forward simulations. 399 

(Sabater et al., 2011;Monerris Belda, 2009). We note that this brightness temperature accuracy is not the 400 

instrument observing error of the (virtual) microwave radiometer, but the sensitivity of the microwave 401 

forward transfer model to soil moisture. We are aware, that the radiometric accuracies of ground-based 402 

and satellite-borne sensors are much better, and that the accuracy of the soil moisture-brightness 403 

temperature relation is mainly responsible for the retrieval accuracy; thus, we use the 10K/5K uncertainty 404 

only as a proxy for the overall error.  405 

According to By comparing the high-res TB for certain sampling distances with the antenna pattern 406 

TB from the satellite operator, Figure 6 alreadyshows different patterns to the soil moisture. Even at a 407 

 

Figure 5: Spatial distribution of the mean of the maximum allowed soil moisture sampling distance in 

the model area required for keeping the maximum sampling error below 0.04 m3/m3 over the whole 

year. The circle radius indicates the maximum allowed sampling distance in the scale shown in the 

map, while its color (see color bar) gives the RMS of the maximum allowed sampling distance over 

time for the year 2015. 
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sampling distance of 800 m, the sampling error might exceed the 10K/ (5K) limit atin certain regions and 408 

times. If we want to keep the limit with a probability of 90%only 75 percentiles  (the upper boundary of 409 

the boxes in Figure 6 H/V, 100% confidence panels), athe maximum sampling distance must stay below 410 

4.4 km/4 km will confine the sampling error to below 10 K/5 K for H/V polarization brightness 411 

temperatures.. For an averagea sampling distance of 5.2 km, the error may go beyond the nominal 10 K/5 412 

K for both polarizations already (5 K) with a probability of 50%, and already for % For 9.2 km average 413 

sampling distance, and the maximum sampling error is always above the nominal values for some region 414 

and/or a day in the year. Even if we relaxrequire that the nominal error tois undercut only with a 415 

probability of 70% offor all pixels and days, the requirement cannot be met already at 800 m averagea 416 

sampling distance, while the average sampling distance required to fulfill the nominal accuracy for of 800 417 

m is not enough. If only 50% of all networks moves from 5.2 to 10 kmare required to fulfill the 10K/(5K) 418 

bound, a sampling distance of 10 km is sufficient.  419 
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 420 

The time series of the distribution of the maximum sampling distances for brightness temperature 421 

(Figure 7) is quite similar to the one for the maximum sampling distances for soil moisture. Figure 7 only 422 

illustrates the periods without freeze/thaw state transformations and liquid water in the soil dominate 423 

the brightness temperature signal. Values range from 6.8 km to 16.4 km for most cases. The spread of the 424 

sampling error has, however, a distinct seasonal variation; e.g., the maximum sampling distance for 90% 425 

percent of the sampling configurationsfootprints is 11.6 km from DOY 100 to 275 and 8.8 km for the rest 426 

of the year.  427 

 

Figure 6: Same as Figure 3 but for the sampling error of the brightness temperature. The respective 

brightness temperature errors equivalent to a soil moisture accuracy of 0.04 cm3/cm3 of 10 K for H 

polarization and 5 K for V polarization are indicated as dashed horizontal lines. 
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 428 

 

Figure 7: Time series of the distribution of maximum sampling distances (70% confidence in 10K/5K 

for H/V polorization) for brightness temperature at every sites in 2015. The degree of grayness 

indicates the probability of occurrence.   
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 429 

The spatial distribution of the annual average maximum sampling distance requiredallowed to 430 

guarantee a sampling error belowless than 10K/5K for H/V polarized brightness temperatures and its RMS 431 

for the year 2015 (Figure 8) are similar for H and V polarizations, but show different and much stronger 432 

patternsshows a substantial spatial contrast compared to the results for soil moisture (Figure 5). 433 

SimilarlyAgain, the southeast corner of the model region hasallows for larger maximum sampling 434 

distances, but there are now also other distinct regions with larger minimumallowed maximum sampling 435 

distances. Additional input parameters required - especially LAI - and internal parameters in CMEM 436 

nowadditionally impact the representativeness of different sites - especially LAIfor brightness 437 

temperatures. LAI dominates the variation of the representativeness of ground-based observations and 438 

also its temporal variation, as can be inferred from the correlation between large maximum sampling 439 

distances with its variability over the year (correlation coefficient is 0.84/0.83 for H/V polarization), which 440 

 

Figure 7: Time series of the distribution of maximum sampling distances (70% confidence in 10K/5K 

for H/V polorization) for brightness temperature at every sites in 2015. The color indicates the 

probability of occurrence.   
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is not observed for soil moisture.  LAI is the only input in CMEM, which can lead to such a temporal 441 

variation because other inputs and internal parameters such as air temperature, soil moisture, soil 442 

properties, etc. are either fixed or do not impact onas strongly the brightness temperature significantly.  443 

 444 

3.3 Maximum sampling distance differences between soil moisture and brightness 445 

temperature 446 

The differences in the variability of the maximum allowed sampling distance for soil moisture and 447 

brightness temperature can be explained by using the microwave transfer model CMEM. The relationship 448 

between soil moisture and brightness temperature is complex and non-unique (Figure 9a, b). E.g.,For 449 

example, a soil moisture value of  0.4 cm3/cm3 can relaterelates to a wide range of brightness 450 

temperaturetemperatures from 180 K to 250 K for H polarization and 225 K to 265 K for V polarization 451 

due to the variation of vegetation cover, soil properties, and terrain.   452 

 

Figure 8: Spatial distribution of the maximum distances of stations (diameter of circles, see scale) for 

surface-based brightness temperature network resolutionobservations required into keep the model 

region.  The circle diameter indicates the maximum sampling distance which keeps the error below 10 

K for H polarization (left panel) and 5 K for V polarization in the scale shown in the map, while its(right 
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 453 

TheAs already mentioned in the introduction, the spatial resolution for the SMAP active product is 454 

3 km and for the passive-active merged soil moisture product 9 km. SMAP CAL/VAL requires for core 455 

stations 3three stations for the evaluation of the prior and 5five stations for the latter product. (Colliander 456 

et al., 2017b). We computed the average station distance for both products required to keep the sampling 457 

error below the nominal 0.04 cm3/cm3 for both products by using the same methodology used above. Due 458 

to limited computation capacity, not allonly the higher-resolution footprints are used, but only thosepixels 459 

in the center of the 43-km SMOS footprints. are evaluated. According to the results displayed in (Figure 460 

10, the confidence level for most of ), the 3/9-probability that 3 km footprintsand 9 km pixels sampled by 461 

3/5 stationswith 3 and 5 stations, respectively, have sampling errors below the nominal value of 0.04 462 

cm3/cm3 is below 50%-6040% and thus much lower than the required 70%.  The temporal variation of the 463 

confidence level is larger for the 3 km than for the 9 km footprintsgrid size. 464 

 

Figure 9: Scatter plots of the joint PDF between brightness temperature at H (left) and V (right) 

polarization against soil moisture computed from the 400 m resolution virtual reality for one year. 

Both the temporal and spatial variation are accountedis included.  
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 465 

 466 

 

Figure 10: The spatial distribution of the soil moisture sampling confidence to achieve the 0.04 

cm3/cm3 accuracy requirement by sampling 3/9-km footprints with 3/5 sites.  The colors show the 

minimum confidence level throughout the year 2015 for every footprint. The size of circles indicate 

the standard deviation of the confidence level over the time. 

 

Figure 10: The spatial distribution of the soil moisture sampling confidence to achieve the 0.04 

cm3/cm3 accuracy requirement by sampling 3 km (left) and 9 km footprints (right) with 3 and 5 sites, 

respectively (see the scale below the color bar). The colors show the minimum confidence level 

throughout the year 2015 for every footprint. The scale is soil moisture accuracy that can be achieved.  
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3.4 The impact of land surface inhomogeneity 467 

Areas with vegetation water content >above 5 kg/m2 (mostly forests) are flagged in SMAP retrievals. The 468 

networks used in the studies by (Colliander et al., 2017b; Famiglietti et al., 2008) were selected based 469 

onbecause of their relative homogeneity; thus, forested patches, open water, permanent ice and snow, 470 

urban areas, and wetlands are excluded. Soil moisture maps from SMAP/SMOS are, however, global. Thus 471 

estimates are provided everywhere; thushence, signals from open water surfaces on sub-grid scales may 472 

influence the products.  We used our simulated observations to study the impact of sub-pixel 473 

contributions of forested areas on the sampling errors.  474 

In total, only 16 of the 320 footprints incovering the model area have forest fractions below 15% 475 

and negligible surface water contributions; such footprints are usually considered as an ideal footprint for 476 

soil moisture Cal/Val.  We compare their sampling statistics with the statistics for all footprints in Figure 477 

11, which shows that inIn terms of both soil moisture and brightness temperature, thetheir maximum 478 

sampling errors for the selected sites are considerably lower compared to all sites for all sampling 479 

distances. (Figure 11). Thus, excluding sites with larger forest fractions above 15% is beneficial for both 480 

soil moisture and brightness temperature evaluationsleads to lower sampling errors.  481 
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 482 

 

Figure 11: The maximum sampling errors of the arithmetic mean soil moisture/brightness temperature 

estimated from all sites and from sites with < 15% forest cover at given average sampling distances.  
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 483 

The results shown in Figure 11 do not mean that forest sites always have higher soil moisture errors than 484 

non-forest sites, but by picking Cal/Val sites with favorable conditions reduces the required sampling 485 

density, which may, however, affect their representativeness. Moreover, the required sampling density 486 

inferred from non-forest sites cannot be extended to forest sites.  487 

4. Conclusion and discussion 488 

We used a virtual reality generated with thea fully coupled subsurface-vegetation-atmosphere model 489 

platform TerrSysMP over southwestern Germany with a spatial resolution of 400 m for the land 490 

components to quantify the sampling error of meanfor the arithmetic averaged soil moisture and the 491 

weighted average brightness temperatures estimated from in-situ ground-based observation networks 492 

covering the 43 km x 43 km SMOS/SMAP-like footprints over of  43 km diameter for a wide range of 493 

 

Figure 11: The maximum sampling errors of the arithmetic mean of soil moisture (top) and brightness 

temperature (bottom) estimated from all sites and from sites with forest cover below 15 % against 

average sampling distance.  
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potential average sampling distances. By using a simulated virtual reality at such a high resolution, we 494 

have a physically consistent three-dimensional evolution of the terrestrial system at our disposition, from 495 

which we can take virtual soil moisture observations at any resolution at and above 400 m,and – via the 496 

radiative transfer model CMEM and we can simulate SMOS/SMAP-like observations taking into account 497 

the a satellite antenna function and the– microwave radiative transfer model CMEM.   498 

A comparison between the representativeness of ground-based soil moisture and brightness temperature 499 

observation networks reveals the complexity behind the sampling density issue. observations from the 500 

highest resolution at 400 m to any larger resolution.   501 

We adopted as an upper threshold for the sampling error of the estimated soil moisture and 502 

brightness temperature forground-based sensor networks when estimating averages over SMOS/SMAP 503 

pixels the target SMOS/SMAP soil moisture retrieval accuracy of 0.04 cm3/cm3. We quantified the 504 

maximum sampling distance of ground-based observations required to keep, which still keeps the 505 

sampling error below that accuracy either for all andor for 70% of theall SMOS/SMAP pixels overin the 506 

modeling region and over one year for all network configurations possible for the specified average 507 

sampling distances. A major assumption in our study is, that the estimation of soil moisture for an area 508 

with a diameter of about 400 m is possible, or in other words that a single station within a 400-m area is 509 

representative for its spatial average, an assumption also discussed in Famiglietti et al. (2008). Compared 510 

to the region analyzed in Famiglietti et al. (2008), our study uses a much more realistic terrain and excludes 511 

subjective factors in selecting suitable Cal/Val sites. Because of this, the soil moisture error in our study 512 

grows much faster with increasing sampling distance. We also find that the estimation of area-averaged 513 

brightness temperatures from a network of ground-based stations has a different error growth with 514 

increasing sampling distance compared to soil moisture despite an initial linear growth for both of them 515 

(compare Figures 3 and 6). Thus, a representative soil moisture network does not guarantee a 516 

representative radiometer network for the estimation of area-averaged brightness temperature, or that 517 

brightness temperatures computed for the soil moisture stations can be used for that estimate. But Figure 518 

3 and 6 also show, that sampling distances below 6 km still fulfill the 70th percentage requirement for 519 

keeping the sampling error below the nominal error.  520 

Besides plant types, there is no clear pattern similarity between clay/sand/elevation (Figure 1) and 521 

spatial sampling distance (Figure 5). Soil properties may be related to the regional climate (annual 522 

precipitation, radiation flux balance, etc.). For instance, arid regions usually contain higher sand fractions, 523 

but such regions are seldom the focus of soil moisture studies because of its low variation. Transition 524 

zones like our model area usually encompass various soil properties, which are often correlated with 525 

landuse and vegetation and thus the plant function type used in the CLM. Topography also affects the soil 526 

moisture and TB distribution, but it is difficult to infer the impact of landuse and vegetation because soil 527 

properties determine both the water holding capacity and the plant cover. In practice, soil moisture 528 

monitoring networks avoid complex terrain. Homogenous terrain and landscape lead to an 529 

overestimation of satellite soil moisture product accuracies.  530 
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The statistical results in our study differ from those in Famiglietti et al. (2008) because our focus is 531 

on the satellite footprint scale and not the representativeness of one station within a network. For 532 

example, a particular sensor may not represent the true 400 m average, but one such sensor every 400 m 533 

may statistically sufficiently represent a much larger footprint. A similar concept is adapted in ensemble 534 

forecasts using members, e.g., with different physics packages, none of which is expected to be the truth 535 

(Lewis, 2005; Leutbecher and Palmer, 2008). The space detected by a soil moisture sensor, which is 536 

measuring the dielectric constant of the soil or other media using capacitance/frequency domain 537 

technology, is about a ten-centimeter sphere. Thus, the study by Famiglietti et al. (2008) assumes soil 538 

moisture homogeneity on the scale of meters. We believe that the 400-m soil moisture homogenous 539 

assumption does not interfere with our conclusions and that our study can be considered as a 540 

complement to the study by Famiglietti et al. (2008). 541 

The calibration and validation of L-band passive remote sensing ofsatellite-based L-band soil 542 

moisture isestimates are difficult due to itsthe large sub-pixel variability (Lv et al., 2019; Lv et al., 2016b). 543 

Even with a perfect microwave transfer model and perfect sensors, we can hardly find aan appropriate 544 

in-situ observation to compare with. While soil moisture also varies in the vertical, sensors are usually 545 

mounted at a fixed depth; thus, comparisons with satellite observations require the knowledge of the 546 

microwave penetration depth, which is, however, unknown in general. (Lv et al. (., 2018) developed a 547 

model based on the soil effective temperature, which sheds light on this fundamental problem. This study 548 

isolates the sampling density issue from other factors and is a test of the current Cal/Val network standard 549 

without pre-knowledge of the site. The SMAP team suggests 15 sites for a 36 km by 36 km footprint,grid-550 

size (Colliander et al., 2017b), and this study agrees with this configuration for typical midlatitudemid-551 

latitude European regions. from the sampling error perspective. For a 36 km by 36 km grid-size, the 552 

required sampling sites would ranges from about 36 (6 km) to 4 (17 km). However, 5five sites for 9 km by 553 

9 km and 3three sites for 3 km by 3 km will miss the 70 % confidence level requirements over this area. 554 

Since SMAP’s 9-km and 3-km soil moisture products are from a combination of passive and active 555 

microwave signals, which has lower accuracy than the passive one(Entekhabi et al., 2010), their Cal/Val 556 

campaigns shall determine sampling distances with less confidence level.   557 

It is difficultOur virtual reality contains extensive land cover variability (Figure 1), thus it would be 558 

helpful to set up an observation network, which represents adopt our approach for less complex regions 559 

with variabilities closer to the whole satellite footprint precisely. We typical Cal/Val station networks. 560 

Overall, we find that a maximum soil moisture sampling distance of roughly below 3 km if we wantis 561 

necessary to be 100% sure thatkeep the sampling error iserrors always below the nominal value of 0.04 562 

cm3/cm3. If we allow. The allowance for a failure probability of 30 % a maximum samplingextends this 563 

distance ofto 10 km is sufficient.. For brightness temperatures, the sampling requirement isrequirements 564 

are much stricter, becausemore strict; already at 800 m sampling distance, it cannot be guaranteed, that 565 

the sampling error remains below the equivalent threshold of 10K/5K for H and V-polarization, 566 

respectively, even when allowing for a 30% probability of failure. The error sources in retrieving soil 567 
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moisture from TB data is also large in reality but not concerned in this study because VR01 and the TB 568 

produced by CMEM exclude the uncertainty except the sampling distance.  569 

Our results are not only useful for the planning of ground-based soil moisture networks, they also 570 

contribute to a better understanding of the relation between brightness temperatures observed at the 571 

ground – or simulated at high resolution - and the ones observed from satellites apart from non-linearity 572 

effects of radiative transfer (e.g.,(Drusch et al., 1999)). The study allows, e.g., to quantify to what extent 573 

a bias between satellites brightness temperature and forward simulation could be explained by the spatial 574 

sampling (e.g., Figures 5, 8, and 11), and to understand the similarities and dissimilarities between 575 

observed soil moisture and brightness temperature time-series (Figures 4 and 7). Since ground-based soil 576 

moisture networks will always cover only certain parts of a satellite pixel, a bias must be expected 577 

between both. Biases in satellite and ground-based estimates of soil moisture can also be caused by the 578 

different representativeness of the latter for soil moisture and brightness temperatures.  579 

While the requiredallowed maximum sampling distances do not change much over the year for soil 580 

moisture - except after large-scale precipitation events which allow for larger sampling distances - its 581 

equivalent for brightness temperature has a strong seasonal variation because of the blurring effect of 582 

vegetation during the growing season when brightness temperatures become more homogeneous. The 583 

spatial distribution of the maximum sampling distances and their local variances behave quite differently 584 

between soil moisture and brightness temperature. The spatial patterns are different, and while the 585 

maximum allowed sampling distance and its variance are strongly related for brightness temperature, 586 

they are barely related for soil moisture; this different behavior is caused by the complexity of other 587 

factors influencing microwave radiative transfer.  588 

Our study strongly suggests that the sampling density of current SMOS/SMAP ground-based Cal/Val 589 

networks should be reviewed carefully and the resulting potential sampling error of estimated pixel-mean 590 

soil moisture and brightness temperatures considered in such studies. should be reviewed carefully. We 591 

expect this study will help to better understand the errors of satellite-derived soil moisture better.  592 
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