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Abstract: Microwave remote sensing is the most promising tool for monitoring near-surface soil moisture 9 
distributions globally. With the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive 10 
(SMAP) missions in orbit, considerable efforts are made to evaluate derived soil moisture products via 11 
ground observations, microwave transfer simulation, and independent remote sensing retrievals. Due to 12 
the large footprint of the satellite radiometers of about 40 km in diameter and the spatial heterogeneity 13 
of soil moisture, minimum sampling densities for soil moisture are required to challenge the targeted 14 
precision. Here we use 400 m resolution simulations with the regional Terrestrial System Modeling 15 
Platform (TerrSysMP) and its coupling with the Community Microwave Emission Modelling platform 16 
(CMEM) to quantify the maximum sampling distance allowed for soil moisture and brightness 17 
temperature validation. Our analysis suggests that an overall sampling distance of finer than 6 km is 18 
required to validate the targeted accuracy of 0.04 cm3/cm3 with a 70% confidence level in SMOS and SMAP 19 
estimates over typical mid-latitude European regions. The maximum allowed sampling distance depends 20 
on the land-surface heterogeneity and the meteorological situation, which influences the soil moisture 21 
patterns, and ranges from about 6 km to 17 km for a 70% confidence level for a typical year. At the 22 
maximum allowed sampling distance on a 70% confidence level, the accuracy of footprint-averaged soil 23 
moisture is equal or better than brightness temperature estimates over the same area. Estimates strongly 24 
deteriorate with larger sampling distances. For the evaluation of the smaller footprints of the active and 25 
active/passive products od SMAP the required sampling densities increase; e.g., when a grid resolution of 26 
3 km diameter is sampled by 3 sites of footprints of 9 km sampled by 5 sites required already only 50%-27 
60% of the pixels have a sampling error below the nominal values. The required minimum sampling 28 
densities for ground-based radiometer networks to estimate footprint averaged brightness temperature 29 
are higher than for soil moisture due to the non-linearities of radiative transfer, and only weakly 30 
correlated in space and time. This study provides a basis for a better understanding of the sometimes 31 
strong mismatches between derived satellite soil moisture products and ground-based measurements.  32 
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1. Introduction 34 

Information on the global soil moisture distribution is required, e.g., for weather forecasting, climate 35 
research, and agricultural applications. Due to the high spatial variability of soil moisture, its in-situ 36 
observation is practically impossible on continental scales. Passive microwave satellite remote sensing at 37 
L-band frequencies may achieve this goal because of the strong dependency of the soil dielectric constant 38 
on soil moisture, the - compared to higher frequencies - reduced sensitivity of the brightness 39 
temperatures to surface roughness and vegetation (Njoku and Kong, 1977;Ulaby et al., 1986),  and the 40 
high transparency of the atmosphere at these wavelengths. The first operational L-band soil moisture 41 
detection satellite, SMOS (Soil Moisture and Ocean Salinity) was launched in 2008 (Kerr et al., 2010) and 42 
was followed in 2015 by SMAP (Soil Moisture Active Passive), which initially were performing with an 43 
active instrument to achieve higher spatial resolution (Entekhabi et al., 2010); the active component did 44 
fail, however, shortly after the full operation of the satellite. Both satellites are currently continuously and 45 
globally observing passive microwave brightness temperatures, from which soil moisture products are 46 
derived at a spatial resolution of 36 km and 9 km.  47 

Before and after the launch of SMOS and SMAP several soil moisture monitoring networks for 48 
evaluation and retrieval algorithm development were established, such as ESA’s efforts at the Valencia 49 
Anchor Station (VAS) in eastern Spain, SMOSREX (Surface Monitoring Of Soil Reservoir Experiment) in 50 
France, the upper Danube watershed located in southern Germany (Delwart et al., 2008;de Rosnay et al., 51 
2006;dall'Amico et al., 2012;Kerr et al., 2016), and the SMAP Cal/Val project (Colliander et al., 52 
2017a;Burgin et al., 2017;Chen et al., 2017;Chen et al., 2018). All those networks have been established 53 
since ground truth should be the only standard to evaluate these products. According to the Level 1 54 
baseline and the minimum SMAP science requirements (SMAP Science Data Cal/Val Plan, O’Neill et al., 55 
2015) the spatial resolution of Level 2 (Passive Soil Moisture Product L2_SM_P) and Level 3 (daily 56 
composite L3_SM_P) soil moisture products is 36 km, which have to reach an accuracy for soil moisture 57 
of 0.04 cm3/cm3 with a probability of 70%. A wide range of measurement techniques and protocols exist 58 
for setting up and performing ground-based observations for such evaluations. SMAP Cal/Val suggests 59 
that volumetric soil moisture should be observed in-situ at 5 cm and 100 cm depth; optimal 60 
sensing/mounting depths are, however,  still debated (Lv et al., 2016a; Lv et al., 2018; Lv et al., 2019). For 61 
core validation sites a minimum of six stations should cover one SMAP grid cell or footprint (O’Neill et al., 62 
2015; Famiglietti et al., 2008); but this value has not yet been shown to guarantee the nominal accuracy 63 
by a thorough analysis (Jackson et al., 2012; Crow et al., 2012). More recent results show that the spatial 64 
representativeness of the soil moisture tends to increase with the timescale of data series, but so does 65 
their spread (Molero et al., 2018). For Cal/Val, it is required to have instantaneous soil moisture values 66 
rather than averages in different timescales.  Relevant studies typically use ground-based soil moisture 67 
networks with fixed average sampling distance over rather homogeneous land surfaces, which are, 68 
however, not necessarily representative for all land surface types. For SMAP core calibration/validation 69 
sites, the data product grid-cell should be sampled with at least eight stations to reach with 70% 70 
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confidence an estimated soil moisture uncertainty of 0.03 m3/m3 given a spatial soil moisture standard 71 
deviation of 0.07m3/m3 as assessed from field measurements (Colliander et al., 2017b). According to the 72 
same source, grid-cells with a dimension of 9 km (as for downscaled SMAP products) should be sampled 73 
with at least five stations and pixels with 3 km diameter with at least three stations to reach with 70 % 74 
confidence an accuracy of 0.03 and 0.05 m3/m3, respectively, while assuming a spatial soil moisture 75 
standard deviation of 0.05 m3/m3 within the grid-cell. 76 

Ochsner et al., (2013) point out that too few resources are currently devoted to in-situ soil moisture 77 
monitoring networks, and that despite their increasing number, a standard for network density and 78 
sampling procedures are missing. The International Soil Moisture Network (ISMN, 79 
https://ismn.geo.tuwien.ac.at/en/) is an effort for unifying global soil moisture observation networks 80 
(Dorigo et al., 2011). Coopersmith et al., (2016) suggested temporary network extensions around 81 
permanent installations to quantify the representativeness of the latter. Qin et al., (2013) suggested the 82 
use of MODIS-derived apparent thermal inertia to interpolate between in-situ soil moisture 83 
measurements. So far, the required sampling density is discussed only concerning in-situ measurements, 84 
which heavily depend on sensor quality and network location (Vereecken et al., 2008; Brocca et al., 2010; 85 
Bhuiyan et al., 2018). Higher station numbers are necessary, as well as the establishment of general rules 86 
for their selection (Cosh et al., 2017). Chen et al. (2017, 2018, 2019) suggest the utilization of TC (Triple 87 
collocation), which is a statistic method to characterize systematic biases and random errors, or ETC 88 
(Extended Triple collocation) to analyze the noise component in soil moisture observations, and to use 89 
correlation to evaluate the representativeness of soil moisture networks. They also suggest that the core 90 
validation sites should allow validating the retrieved soil moisture to an accuracy of 0.04 cm3/cm3 with a 91 
probability of 70% in terms of unbiased RMSE because the bias itself is hard to eliminate.  92 

Establishing ground monitoring networks for calibration/validation of soil moisture products from 93 
satellite L-band observations is challenging partly due to the different spatial scales between observations 94 
from soil moisture sensors and satellites. Moreover, from a direct comparison between satellite soil 95 
moisture products and ground-based measurements from existing soil moisture networks, it is impossible 96 
to isolate the sampling error, and only very few studies investigate systematically the station density 97 
required to allow for a given accuracy taking the land heterogeneity into account. In our study, we use a 98 
400-m resolution virtual reality generated with a regional terrestrial modeling system coupled with an 99 
observation operator to estimate such minimum station densities. The virtual reality contains realistic soil, 100 
land cover, and topography variability and allows us to arbitrarily vary the sampling density and, thus, 101 
average sampling distance in steps of 400 m. Section 2 introduces the virtual reality, and the observation 102 
operator used to transfer the terrestrial system states into virtual observations. In Section 3, we derive 103 
the error growth with increasing average sampling distance for soil moisture and brightness temperatures. 104 
Conclusions and discussion are provided in Section 4.   105 

2. Methodology and data 106 
2.1 Virtual reality 107 

https://ismn.geo.tuwien.ac.at/en/
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The modeling system used to create the virtual reality from which we draw the virtual soil moisture 108 
observations and compute brightness temperatures is the Terrestrial Systems Modeling Platform 109 
(TerrSysMP, Shrestha et al., 2014; Gasper et al., 2014; Sulis et al., 2015) developed within the framework 110 
of the Transregional Collaborative Research Center 32 (TR32, Simmer et al., 2015). TerrSysMP consists of 111 
the atmospheric model COSMO (Consortium For Small Scale Modelling, Baldauf et al., 2011), the land 112 
surface model CLM (Community Land Model Version 3.5, Oleson et al., 2008), and the distributed 113 
hydrological model ParFlow v693 (Ashby and Falgout, 1996;Kollet et al., 2010). The platform, specially 114 
designed for high-performance computing environments (Gasper et al., 2014), has been extensively 115 
evaluated against observations (Sulis et al., 2015, 2018; Shrestha et al., 2018b) as well as similar regional 116 
terrestrial system models (Sulis et al., 2017). The effect of spatial resolution on simulated soil moisture 117 
and the resulting exchange fluxes between land and atmosphere has been studied with TerrSysMP by 118 
Shrestha et al. (2015, 2018a).  119 

 120 

 

Figure 1: TerrSysMP simulation area at 400 m resolution with the Neckar catchment roughly in the 
center indicated by the black line. Soil sand (left) and clay fractions (right) are displayed in the upper 
row sub-figures, while the Plant Functional Types (PTFs) used by CLM are shown in the lower left sub-
figure, and topography (in m) in the lower right sub-figure. 
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We use for this study available simulation results generated by the research unit FOR2131 (Schalge 121 
et al., 2019; Schalge et al., 2016) over an area containing the Neckar catchment in southwestern Germany 122 
in its center (Figure 1). CLM and ParFlow were run at the horizontal computational grid with 400 m 123 
resolution. ParFlow has 50 vertical soil layers in which the upper ten coincide with the ten soil layers of 124 
CLM. The vertical resolution is variable with smaller steps near the land surface. The atmospheric model 125 
COSMO runs at a 1.1 km horizontal resolution, and COSMO is forced at the lateral boundaries with a 126 
COSMO-DE analysis from the operational weather forecast run by the German national weather service 127 
(Deutscher Wetterdienst, DWD) available at hourly time steps. The main topographic features of the 128 
modeling area are the upper Rhine valley in the west, the Black Forest in the southwest, and the foothills 129 
of the Alps in the south. The heights range from 80 m to 1900 m. The area was selected by the research 130 
unit because of its heterogeneity in topography and land-use typical for midlatitude European river 131 
catchments; thus, it is also well suited for our study. The objective of the research unit is the setup and 132 
test of a strongly coupled data assimilation system with a fully-coupled regional terrestrial model. Their 133 
virtual reality run (VR01), the results of which we are exploiting in this study, is the so-called nature run 134 
from which the research unit draws the virtual observations to be assimilated in a lower-resolved model 135 
version using ensemble methods. The model area can be covered by about 15 x 20 SMOS pixels, which 136 
suffices for the statistical analyses performed to determine required sampling densities. There exist two 137 
soil moisture monitoring networks close to the domain, which are used for soil moisture validation studies 138 
with satellite-based L-band observations (Montzka et al., 2013).  139 

 The topographic data for VR01 is obtained from the European Environment Agency EEA 140 
(http://www.eea.europa.eu/data-and-maps/data/eu-dem), which is also the source for the CORINE land 141 
use data (http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3) used to 142 
characterize vegetation in the model domain. Since CORINE uses many more land-use classes than CLM, 143 
the CORINE classes are aggregated to the five classes discriminated in the CLM in the modeling area: 144 
broadleaf forests which can be found mostly in hilly areas throughout the domain in smaller patches, 145 
needle leaf forests which dominate at higher elevation such as the Black Forest, grassland which is 146 
relatively rare and only appears in small patches, and crops which is the most dominant land use type 147 
throughout the domain and appears almost anywhere. All other classes, such as urban areas, are treated 148 
as bare soil in VR01. 149 

The Leaf Area Index (LAI) for the specific plant classes is taken from MODIS estimates corrected for 150 
known biases (Tian et al., 2004). Instead of the tiling approach implemented in CLM, the dominant land 151 
use type for each grid-cell is used, because the resolution of 400 m is high enough to warrant this approach. 152 
The SAI (Stem Area Index) is estimated from the LAI by formulations slightly modified from those 153 
implemented in the CLM. For crops, SAI is just 10% of the LAI; thus, SAI is larger in summer than in winter.   154 
For all other types, SAI is 10% of LAI plus a "dead leaf" component. The “dead leaf" component is 155 
estimated empirically from the change of the LAI from the previous and current month. The “dead leaf" 156 
component is only a major contributor during fall, but even there the needle leaf trees, for instance, show 157 

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3
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only a small increase of SAI. The VR01 region is mostly covered by deciduous trees that have 1-2 months 158 
of high SAI because the dead-leaf component decays rather quickly.  Details about SAI calculation in VR01 159 
are described in Schalge et al., (2016), Lawrence and Chase, (2007), and Zeng et al., (2002). 160 

The soil map (Figure 1, upper row) is derived from a product of the German Federal Institute for 161 
Geosciences and Natural Resources BGR (http://www.bgr.bund.de/DE/Themen/Boden/ 162 
Informationsgrundlagen/Bodenkundliche_Karten_Datenbanken/BUEK1000/buek1000_node.html). Soil 163 
values for regions near the edge of the modeling domain in France and Switzerland are extrapolated. 164 
Variability was added to the relatively large polygons of constant soil parameters to represent better what 165 
would be found in reality at higher resolutions following (Baroni et al., 2017). The soil color is derived from 166 
the carbon content of the soil with carbon-rich soils being darker, except for the bare soil areas, which all 167 
use the same relatively light color class. There is deep soil geology included in ParFlow as well as alluvial 168 
channels below rivers to account for deeper subsurface flow, but these features will not directly impact 169 
the results shown here as they only appear below the soil layers. 170 

2.2 Generation of L-Band passive microwave observations 171 

The radiative transfer model CMEM (Rosnay et al., 2009) computes the land emissivity based on a 172 
dielectric mixture model for soil moisture, soil sand and clay fractions, soil surface roughness, vegetation 173 
optical thickness, single scattering albedo, and land surface orientation relative to the satellite viewing 174 
perspective. Depending on the sand and clay fractions, brightness temperatures may vary by tens of 175 
Kelvins given the same near-surface soil moisture. Vegetation optical thickness depends on LAI, which 176 
varies in the VR01 with time depending on PFT type. Depending on the particular Plant Functional Type 177 
(PFT), CMEM uses different parameters to calculate the vegetation optical thickness from the respective 178 
LAI. Soil effective temperature is computed with a new scheme introduced by (Lv et al., 2014).  The new 179 
scheme is a discretization of the integral formulation and takes advantage of multi-layer soil 180 
temperature/moisture profile information with a wider range of soil properties. This allows to better 181 
adapt CMEM to the available land surface model data. Also, soil temperature and snow depth impact the 182 
simulated brightness temperatures. More details can be found in the SMOS global surface emission model 183 
handbook (Rosnay et al., 2009).   184 

From the 400 m resolution brightness temperatures, virtual satellite observations are generated 185 
with CMEM taking the satellite antenna function into account. Figure 2 shows the centers of the about 186 
320 footprints corresponding to the SMOS L1 TB data product at 41˚ incidence angle for a potential 187 
satellite overpass and - on the same scale - the satellite antenna function for one footprint, which changes 188 
shape depending on the elevation of the individual 400 m model grid areas, orbit altitude and declination, 189 
and satellite scanning and incidence angle.  190 

Not each SMOS overflight will cover the whole area in reality. But in our study, we assume for 191 
simplicity that all footprints indicated in Figure 2 are observed once a day at 6 a.m. local time, which 192 
corresponds to the approximate ascending and descending overpass time of SMOS and SMAP, 193 

http://www.bgr.bund.de/DE/Themen/Boden/
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respectively. The satellite footprint is much larger than the nominal satellite spatial resolution of 40 km 194 
that is defined by 3 dB contour of the main lobe; thus areas much larger in diameter contribute to one 195 
satellite-observed brightness temperature (i.e., 50% of one satellite-observed brightness temperature 196 
originates from an area roughly ten times larger than the nominal satellite footprint).  197 

 198 

The virtual reality employed in this study is a physically consistent state of the terrestrial system in 199 
space and time because it has been produced by a numerical model based on the conservations equations 200 
for mass, energy, and momentum. When applying the satellite observation operator to this model state, 201 
we assume that the model state is correct, as well as the simulated brightness temperature. Thus, our 202 
study only quantifies the impact of the sampling density of a surface network on the comparison between 203 
area-averaged values and their estimates from the surface network, i.e., we ignore errors of the dynamic 204 
model (TerrSysMP) and of the forward operator (CMEM). Based on the modeling results, we analyze a 205 
range of ground-based network configurations with sampling points at least 400 m apart, and we assume 206 
that all quantities (state of the terrestrial system and brightness temperature) do not vary within 400 m. 207 
While this is an approximation, we believe that our results and their outcome can be generalized. We will 208 
come back to this point in the discussion section. 209 

 

Figure 2: Dots in the left sub-figure indicate the centers of SMOS footprints for one hypothetical 
satellite overpass. The right sub-figure shows the antenna pattern of one satellite footprint at nadir on 
the same scale as the map on the left sub-figure.  
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Since one SMOS/SMAP footprint covers approximately 106x106 model grid columns in the VR01, 210 
the respective area can be sampled by one up to a maximum of 106x106 (virtual) sites. If the footprint 211 

area is sampled with n sites, there are 106 106
n

xC  sampling combinations (SC, hereafter) possible, with 212 

 = =
−

2

106 106 2

106 !
!(106 )!

n
xSC C

n n
  (1) 213 

which is an unordered, non-overlapping collection of distinct elements of a prescribed size taken from a 214 
given set. For example, with a 10 km distance between sampling sites, about 6x6 sampling sites are 215 

possible within one footprint, which can be spatially distributed in ≈ ×6 6 104
106 106 1.69 10x

xC  ways. It is 216 

computationally not feasible to consider all those combinations. When, however, we first divide each 217 
footprint into equally-sized sub-areas each containing exactly one sampling site (this assumes a certain 218 
degree of homogeneity within the network (which would in reality also be strived for), the number of 219 
potential sampling networks is drastically reduced. If we set the sampling distance within a 43 x 43 km2 220 

area to i km, we divide the footprint into  
 
 

243
i

 sub-areas each containing  × ≈ × 
 

2
243106 106 6.08 i

i
 221 

400m-resolution model columns. When we further select within each of the equally-sized sub-areas of a 222 
satellite footprint the same model column (i.e., the one with row number k and column number l both, 223 
e.g., starting at 1 in the upper left column of each subarea), a regular equidistant observation network 224 
within the SMOS/SMAP footprints is enforced similar to the one used in the study by (Famiglietti et al., 225 
2008). For each footprint (subscript f) at a particular time (subscript t) of a certain sampling distance (i km, 226 
subscript d), the number of network configurations SCftd is  227 

   = × ≈   
   

2243106 106
0.406ftd

iSC
i

  (2) 228 

This results for a certain sampling distance (i km) for all 320 footprints and all 365 days of a year to a 229 
sample size of 230 

 
  = × × ×  

   

243106 106 365 320ftSC
i

 (3) 231 

from which we will compute the PDF of the resulting sampling errors. For each day given one observation 232 
per day for all 320 footprints and summed over all sampling distances, we get samples of size  233 

 
=

  = × ×  
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∑
218

0.8

43106 106 320td
i

SC
i

 , (4) 234 

from which we will compute PDFs of the maximum allowed sampling distances. For each grid-cell with 235 
one observation per day taken over one year and summed over all sampling distances, we get  236 
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=

  = × ×  
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∑
218

0.8
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  (5) 237 

samples, from which we determine the spatial distribution of the maximum allowed sampling distances. 238 

E.g., for 800 m sampling distance, we determine the maximum from   × × = 
 

20.8 365 320 467200
0.4

 239 

samples, the number of which increases with the square of the sampling distance.  240 

The sampling described above is applied to soil moisture (brightness temperature) with (without) 241 
considering the satellite weighting function (Figure 2b). Since SMAP Cal/Val requires that the nominal 242 
accuracy of 0.04 cm3/cm3 for retrievals should be met with a probability of 70%, we take the error at the 243 
70th percentile, if not specified otherwise. In the following, we mostly use the more intuitive sampling 244 
distance (km), but also the sampling density (sites per km2) when we are qualifying tendencies. The 245 
relationship between the sampling distance and the sampling density is simply 246 

 = 2

1samplingdensity
samplingdistance

  (6) 247 

E.g., the 15/5/3 sites for grid-cells with diameters of 36/9/3 km recommended by SMAP Cal/Val would be 248 
around 0.0116/0.0617/0.3333 sites per km2 and correspond to a sampling distance of 9.295/4.025/1.732 249 
km. We note here that the grid size of the SMAP passive soil moisture product is 36 km x 36 km per pixel, 250 
which is the ISEA-4H9 discrete global grid for SMOS (43 km x 43 km). The 43 km in all equations shall be 251 
exchanged by 36 km when computing the number of sampling networks by equations (1) to (3).   252 

3. Results 253 

We first discuss in detail the results for soil moisture sampling. Then we extend the same methodology to 254 
brightness temperature and compare both results. We also evaluate the potential sampling error for 255 
“footprints” with grid sizes of 3 km and 9 km, because the SMAP products also include combined active-256 
passive soil moisture retrievals at higher spatial resolutions (e.g., EASE-grid 9 km) and a product only based 257 
on the active sensor (EASE-grid 3 km). Two kinds of percentages are used in this study. One is the 258 
confidence level, which is related to the number of potential network configurations for one footprint as 259 
given by Equation (2). The other percentage is related to the PDF of the maximum allowed sampling 260 
distance with a confidence level of 70% (we also use 100% for comparison), which is based on Equation 261 
(3)/(4)/(5). The site numbers defined by  SMAP are equivalent to the latter. 262 

3.1 Soil moisture 263 

We compare the true (but virtual) spatial arithmetic average of soil moisture at the SMOS/SMAP 264 
resolution with the arithmetic average of soil moisture at 0.05 m depth computed from the sampling 265 
points taken at distances ranging from 400 m (i.e., each VR01 grid column, no sampling error) to 18 km 266 
(about half the radius of a SMAP or SMOS pixel. First, we analyze the probability density function of the 267 
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sampling error as it varies with the sampling distance, taking the SCft samples for one whole year of all 268 
footprints in the whole model area into account (Equation (3), Figures 3 and 6). Then we analyze the 269 
evolution over the year of the daily PDF of the maximum allowed sampling distance (for keeping the 270 
sampling error below the nominal value of 0.04 cm3/cm3 with 70% confidence) from SCtd samples 271 
(Equation (4), Figures 4 and 7). Finally, we look at the spatial variability of the maximum allowed sampling 272 
distance (for keeping the sampling error below the nominal value of 0.04 cm3/cm3 with 70% confidence)  273 
based on all samples of one SMOS/SMAP pixel over the year SCfd (Equation (5), Figures 5 and 8). When we 274 
analyze the sampling errors for brightness temperatures, we use footprint averages weighted by the 275 
antenna function; using the weighting function according to the dB pattern for soil moisture leads to 276 
differences below 0.01 cm3/cm3; thus, the averaging procedure does not impact our conclusions for soil 277 
moisture. 278 

We compute the maximum sampling error for each sampling distance and each footprint from the 279 
daily observations over one year of all network configurations. The distributions of the corresponding 320 280 
values are displayed in the box-whisker plots in Figure 3 (top). Thus each value entering the distribution 281 
at a given sampling distance (individual box-whisker plot in Figure 3) stems from that sampling network 282 
for one of the 320 SMOS footprints, which leads to the largest sampling error taking all daily observations 283 
over a year into account (Equation (3)). With a sampling distance of 400m, we exactly reproduce the true 284 
(but virtual) arithmetic soil moisture average, i.e., the maximum error is zero. Maximum errors naturally 285 
increase with sampling distance, as demonstrated by the widening of the maximum error distribution. 286 
The median of the maximum sampling error increases almost linearly, with about 0.022 cm3/cm3 per 287 
kilometer increase in sampling distance. The spread of the maximum error increases from less than 0.01 288 
cm3/cm3 at 0.8 km to approximately 0.4 cm3/cm3 at 18 km, with quite some variability between the 289 
sampling steps. To guarantee a sampling error below 0.04 cm3/cm3 (the assumed accuracy of SMOS/SMAP 290 
retrievals) with 100% confidence everywhere in the region at any time of the year (Figure 3, top), the 291 
maximum sampling distance should not exceed 2.8 km. With a 4.8 km sampling distance, for 50% of the 292 
area and/or days of the year, we get sampling errors above 0.04 cm3/cm3.  At a sampling distance of 4.4 293 
km (about 18 sites within a 43 km x 43 km pixel), the same would hold for only 25% of the satellite pixels.  294 

Figure 3 (bottom) displays the PDF of the maximum sampling error corresponding to the 70th 295 
percentile of the sampling error PDF computed for each satellite pixel over the year. Thus, to guarantee a 296 
sampling error below 0.04 cm3/cm3 for all network configurations for only up to 70% of all pixels and all 297 
days of the year, a minimum sampling distance of 6 km is required. At a sampling distance of 12 km, 298 
already only 50% of the pixels fulfill this requirement. Overall, about one-quarter of the stations required 299 
for 100% confidence is needed, when the requirement to stay within the 0.04 cm3/cm3 error margin is 300 
relaxed to 70%. 301 
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 302 

As outlined above, we can also quantify from the simulations the allowed maximum sampling 303 
distance on a daily basis from the samples with the size given by Equation (4). According to Figure 4 304 
(bottom), for 80 % of the SMOS/SMAP pixels, the maximum allowed sampling distance is between 8.4 km 305 
and 16 km, which is 7 - 26 stations for SMOS (43 km) and 5 - 18 stations for SMAP passive (36 km) to keep 306 
the sampling error below 0.04 cm3/cm3 with 70% confidence. A seasonal variation is not obvious, but 307 
rainfall events (Figure 4, top) affect the distributions by increasing the maximum allowed sampling 308 
distances because the surface soil moisture becomes more homogeneously distributed in space due to 309 
the typically quite widespread precipitation in that region. The opposite occurs during dry periods because 310 
evaporation, draining, and runoff over various soil and land cover types tend to create spatially 311 

 

Figure 3: Box-whisker-plots (median in red, 25th- and 75th-percentiles as bounds of the box, whiskers 
encompass all values of the maximum sampling errors for the 320 satellite footprints of the arithmetic 
mean soil moisture estimated for all network configurations observing twice-a-day over one year at 
the given sampling distances (abscissa). The top subfigure shows the absolute maximum error, while 
the bottom subfigure displays the results for the 70th percentile of the sampling error distribution at 
each satellite footprint. The horizontal dashed line is the 0.04 cm3/cm3

 retrieval error anticipated for 
SMOS and SMAP. 
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heterogeneous soil moisture distributions, which typically reaches its maximum at intermediate soil 312 
moisture levels (Brocca et al., 2010). 313 

 314 

The spatial distribution of the annual maximum sampling distance allowed to guarantee a sampling 315 
error below 0.04 cm3/cm3 with 70% confidence computed from the samples given by Equation (5) and its 316 
RMS for the year 2015 (Figure 5) indicates that the southeastern region requires sampling distances of 317 

 

Figure 4: Precipitation in VR01 (upper panel), and time series of the distribution of the maximum 
allowed soil moisture sampling distance for each SMOS/SMAP pixel to assure a sampling error below 
0.04 cm3/cm3 (70% confidence) for the year 2015 (bottom panel),. The colored intensity is proportional 
to the probability of occurrence. The 10th and 90th-percentiles are indicated as blue and read lines, 
respectively. Every precipitation event makes soil moisture field more homogenous regarding high PDF 
and larger maximum spatial sampling distance, which means fewer stations required.  
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only below 16 km; thus only nine sites are required within a SMOS/SMAP pixel to estimate the footprint-318 
averaged soil moisture with a sampling error below 0.04 cm3/cm3. Also, the annual variation is particularly 319 
small (blue). For the rest of the region, maximum allowed sampling distances range from 7 km to 10 km 320 
(radius); thus, more than nine sites are required within one footprint. The annual variation of the 321 
maximum sampling distances for those footprints is larger than in the southeast. The mean allowed 322 
sampling distances and their day-to-day variations are only weakly correlated (correlation coefficient 323 
0.40), but show larger-scale common patterns.  324 

 325 

3.2 Brightness temperature 326 

We now determine the maximum sampling distances for networks of ground-based microwave 327 
radiometer allowed to estimate SMOS/SMAP footprint brightness temperatures. To this goal, we 328 
transform the target accuracy of SMOS/SMAP soil moisture retrievals of 0.04 cm3/cm3 to the accuracy of 329 
the corresponding brightness temperature, which is approximately 10 K for H polarization and 5 K for V 330 
polarization according to CMEM forward simulations (Sabater et al., 2011; Monerris Belda, 2009). We 331 
note that this brightness temperature accuracy is not the instrument observing error of the (virtual) 332 
microwave radiometer, but the sensitivity of the microwave forward transfer model to soil moisture. We 333 

 

Figure 5: Spatial distribution of the mean of the maximum allowed soil moisture sampling distance in 
the model area required for keeping the maximum sampling error below 0.04 m3/m3 over the whole 
year. The circle radius indicates the maximum allowed sampling distance in the scale shown in the 
map, while its color (see color bar) gives the RMS of the maximum allowed sampling distance over 
time for the year 2015. 
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are aware, that the radiometric accuracies of ground-based and satellite-borne sensors are much better, 334 
and that the accuracy of the soil moisture-brightness temperature relation is mainly responsible for the 335 
retrieval accuracy; thus, we use the 10K/5K uncertainty only as a proxy for the overall error.  336 

 337 

By comparing the high-res TB for certain sampling distances with the antenna pattern TB from the 338 
satellite operator (Pablo & Clemens, 2017), Figure 6 shows different patterns to the soil moisture. Even at 339 
a sampling distance of 800 m, the sampling error might exceed the 10K (5K) limit in certain regions and 340 

 

Figure 6: Same as Figure 3 but for the sampling error of the brightness temperature. The respective 
brightness temperature errors equivalent to a soil moisture accuracy of 0.04 cm3/cm3 of 10 K for H 
polarization and 5 K for V polarization are indicated as dashed horizontal lines. 
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times. If we want to keep the limit with a probability of only 75 percentiles  (the upper boundary of the 341 
boxes in Figure 6, 100% confidence panels), the maximum sampling distance must stay below 4.4 km. For 342 
a sampling distance of 5.2 km, the error may go beyond the nominal 10 K (5 K) with a probability of 50% 343 
For 9.2 km sampling distance, and the maximum sampling error is always above the nominal values for 344 
some region and/or a day in the year. Even if we require that the nominal error is undercut only with a 345 
probability of 70% for all pixels and days, a sampling distance of 800 m is not enough. If only 50% of all 346 
networks are required to fulfill the 10K/(5K) bound, a sampling distance of 10 km is sufficient.  347 

 348 

The time series of the distribution of the maximum sampling distances for brightness temperature 349 
(Figure 7) is quite similar to the one for the maximum sampling distances for soil moisture. Figure 7 only 350 
illustrates the periods without freeze/thaw state transformations, and liquid water in the soil dominates 351 
the brightness temperature signal. Values range from 6.8 km to 16.4 km for most cases. The spread of the 352 

 

Figure 7: Time series of the distribution of maximum sampling distances (70% confidence in 10K/5K 
for H/V polorization) for brightness temperature at every sites in 2015. The color indicates the 
probability of occurrence.   
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sampling error has, however, a distinct seasonal variation; e.g., the maximum sampling distance for 90 353 
percent of the footprints is 11.6 km from DOY 100 to 275 and 8.8 km for the rest of the year.  354 

The spatial distribution of the annual maximum sampling distance allowed to guarantee a sampling 355 
error less than 10K/5K for H/V polarized brightness temperatures and its RMS for the year 2015 (Figure 8) 356 
are similar for H and V polarizations, but shows a substantial spatial contrast compared to the results for 357 
soil moisture (Figure 5). Again, the southeast corner of the model region allows for larger maximum 358 
sampling distances, but there are now also other distinct regions with larger allowed maximum sampling 359 
distances. Additional input parameters required - especially LAI - and internal parameters in CMEM 360 
additionally impact the representativeness of sites for brightness temperatures. LAI dominates the 361 
variation of the representativeness of ground-based observations and also its temporal variation, as can 362 
be inferred from the correlation between large maximum sampling distances with its variability over the 363 
year (correlation coefficient is 0.84/0.83 for H/V polarization), which is not observed for soil moisture.  LAI 364 
is the only input in CMEM, which can lead to such a temporal variation because other parameters such as 365 
air temperature, soil moisture, soil properties, etc. are either fixed or do not impact as strongly the 366 
brightness temperature.  367 

 368 

3.3 Maximum sampling distance differences between soil moisture and brightness 369 
temperature 370 

 

Figure 8: Spatial distribution of the maximum distances of stations (diameter of circles, see scale) for 
surface-based brightness temperature observations required to keep the sampling error below 10 K 
for H polarization (left panel) and 5 K for V polarization (right panel). The color of the circles (see color 
bar) gives the RMS of the maximum sampling distance over time for the year 2015. 
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The differences in the variability of the maximum allowed sampling distance for soil moisture and 371 
brightness temperature can be explained by using the microwave transfer model CMEM. The relationship 372 
between soil moisture and brightness temperature is complex and non-unique (Figure 9a, b). For example, 373 
a soil moisture value of 0.4 cm3/cm3 relates to brightness temperatures from 180 K to 250 K for H 374 
polarization and 225 K to 265 K for V polarization due to the variation of vegetation cover, soil properties, 375 
and terrain.   376 

 377 

As already mentioned in the introduction, the spatial resolution for the SMAP active product is 3 378 
km and for the passive-active merged soil moisture product 9 km. SMAP CAL/VAL requires three stations 379 
for the evaluation of the prior and five stations for the latter product (Colliander et al., 2017b). We 380 
computed the station distance required to keep the sampling error below the nominal 0.04 cm3/cm3 for 381 
both products by using the same methodology used above. Due to limited computation capacity, only the 382 
higher-resolution pixels in the center of the 43-km SMOS footprints are evaluated. According to the results 383 
(Figure 10), the probability that 3 km and 9 km pixels sampled with 3 and 5 stations, respectively, have 384 
sampling errors below the nominal value of 0.04 cm3/cm3 is below 40% and thus much lower than the 385 
required 70%.  The temporal variation of the confidence level is larger for the 3 km than for the 9 km grid 386 
size. 387 

 

Figure 9: Scatter plots of the joint PDF between brightness temperature at H (left) and V (right) 
polarization against soil moisture computed from the 400 m resolution virtual reality for one year. 
Both the temporal and spatial variation is included.  
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 388 

3.4 The impact of land surface inhomogeneity 389 

Areas with vegetation water content above 5 kg/m2 (mostly forests) are flagged in SMAP retrievals. The 390 
networks used in the studies (Colliander et al., 2017b; Famiglietti et al., 2008) were selected because of 391 
their relative homogeneity; thus, forested patches, open water, permanent ice and snow, urban areas, 392 
and wetlands are excluded. Soil moisture maps from SMAP/SMOS are, however, global. Thus estimates 393 
are provided everywhere; hence, signals from open water surfaces on sub-grid scales may influence the 394 
products.  We used our simulated observations to study the impact of sub-pixel contributions of forested 395 
areas on the sampling errors.  396 

In total, only 16 of the 320 footprints covering the model area have forest fractions below 15% 397 
and negligible surface water contributions; such footprints are usually considered ideal for soil moisture 398 
Cal/Val.  In terms of both soil moisture and brightness temperature, their maximum sampling errors are 399 
considerably lower compared to all sites for all sampling distances (Figure 11). Thus, excluding sites with 400 
larger forest fractions leads to lower sampling errors.  401 

 

Figure 10: The spatial distribution of the soil moisture sampling confidence to achieve the 0.04 
cm3/cm3 accuracy requirement by sampling 3 km (left) and 9 km footprints (right) with 3 and 5 sites, 
respectively (see the scale below the color bar). The colors show the minimum confidence level 
throughout the year 2015 for every footprint. The scale is soil moisture accuracy that can be achieved.  
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 402 

The results shown in Figure 11 do not mean that forest sites always have higher soil moisture errors than 403 
non-forest sites, but by picking Cal/Val sites with favorable conditions reduces the required sampling 404 
density, which may, however, affect their representativeness. Moreover, the required sampling density 405 
inferred from non-forest sites cannot be extended to forest sites.  406 

4. Conclusion and discussion 407 

We used a virtual reality generated with a fully coupled subsurface-vegetation-atmosphere model 408 
platform over southwestern Germany with a spatial resolution of 400 m for the land components to 409 
quantify the sampling error for the arithmetic averaged soil moisture and the weighted average brightness 410 
temperatures estimated from in-situ ground-based observation networks covering SMOS/SMAP-like 411 
footprints of  43 km diameter for a wide range of potential sampling distances. By using a virtual reality 412 

 

Figure 11: The maximum sampling errors of the arithmetic mean of soil moisture (top) and brightness 
temperature (bottom) estimated from all sites and from sites with forest cover below 15 % against 
average sampling distance.  
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at such high resolution, we have a physically consistent three-dimensional evolution of the terrestrial 413 
system at our disposition from which we can take virtual soil moisture observations and – via the radiative 414 
transfer model CMEM and a satellite antenna function – microwave brightness temperature observations 415 
from the highest resolution at 400 m to any larger resolution.   416 

We adopted as an upper threshold for the sampling error of ground-based sensor networks when 417 
estimating averages over SMOS/SMAP pixels the target SMOS/SMAP soil moisture retrieval accuracy of 418 
0.04 cm3/cm3. We quantified the maximum sampling distance, which still keeps the sampling error below 419 
that accuracy either for all or for 70% of all SMOS/SMAP pixels in the modeling region over one year for 420 
all network configurations possible. A major assumption in our study is that the estimation of soil moisture 421 
for an area with a diameter of about 400 m is possible, or in other words that a single station within a 400-422 
m area is representative for its spatial average, an assumption also discussed in Famiglietti et al. (2008). 423 
Compared to the region analyzed in Famiglietti et al. (2008), our study uses a much more realistic terrain 424 
and excludes subjective factors in selecting suitable Cal/Val sites. Because of this, the soil moisture error 425 
in our study grows much faster with increasing sampling distance. We also find that the estimation of 426 
area-averaged brightness temperatures from a network of ground-based stations has a different error 427 
growth with increasing sampling distance compared to soil moisture despite an initial linear growth for 428 
both of them (compare Figures 3 and 6). Thus, a representative soil moisture network does not guarantee 429 
a representative radiometer network for the estimation of area-averaged brightness temperature, or that 430 
brightness temperatures computed for the soil moisture stations can be used for that estimate. But 431 
Figures 3 and 6 also show that sampling distances below 6 km still fulfill the 70th percentage requirement 432 
for keeping the sampling error below the nominal error.  433 

Besides plant types, there is no clear pattern similarity between clay/sand/elevation (Figure 1) and 434 
spatial sampling distance (Figure 5). Soil properties may be related to the regional climate (annual 435 
precipitation, radiation flux balance, etc.). For instance, arid regions usually contain higher sand fractions, 436 
but such regions are seldom the focus of soil moisture studies because of its low variation. Transition 437 
zones like our model area usually encompass various soil properties, which are often correlated with 438 
landuse and vegetation and thus the plant function type used in the CLM. Topography also affects the soil 439 
moisture and TB distribution, but it is difficult to infer the impact of landuse and vegetation because soil 440 
properties determine both the water holding capacity and the plant cover. In practice, soil moisture 441 
monitoring networks avoid complex terrain. Homogenous terrain and landscape lead to an 442 
overestimation of satellite soil moisture product accuracies.  443 

The statistical results in our study differ from those in Famiglietti et al. (2008) because our focus is 444 
on the satellite footprint scale and not the representativeness of one station within a network. For 445 
example, a particular sensor may not represent the true 400 m average, but one such sensor every 400 m 446 
may statistically sufficiently represent a much larger footprint. A similar concept is adapted in ensemble 447 
forecasts using members, e.g., with different physics packages, none of which is expected to be the truth 448 
(Lewis, 2005; Leutbecher and Palmer, 2008). The space detected by a soil moisture sensor, which is 449 
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measuring the dielectric constant of the soil or other media using capacitance/frequency domain 450 
technology, is about a ten-centimeter sphere. Thus, the study by Famiglietti et al. (2008) assumes soil 451 
moisture homogeneity on the scale of meters. We believe that the 400-m soil moisture homogenous 452 
assumption does not interfere with our conclusions and that our study can be considered as a 453 
complement to the study by Famiglietti et al. (2008). 454 

The calibration and validation of passive satellite-based L-band soil moisture estimates are difficult 455 
due to the large sub-pixel variability (Lv et al., 2019; Lv et al., 2016b). Even with a perfect microwave 456 
transfer model and perfect sensors, we can hardly find an appropriate in-situ observation to compare 457 
with. While soil moisture also varies in the vertical, sensors are usually mounted at a fixed depth; thus, 458 
comparisons with satellite observations require the knowledge of the microwave penetration depth, 459 
which is, however, unknown in general. (Lv et al., 2018) developed a model based on the soil effective 460 
temperature, which sheds light on this fundamental problem. This study isolates the sampling density 461 
issue from other factors and is a test of the current Cal/Val network standard without pre-knowledge of 462 
the site. The SMAP team suggests 15 sites for a 36 km by 36 km grid-size (Colliander et al., 2017b), and 463 
this study agrees with this configuration for typical mid-latitude European regions from the sampling error 464 
perspective. For a 36 km by 36 km grid-size, the required sampling sites would range from about 36 (6 km) 465 
to 4 (17 km). However, five sites for 9 km by 9 km and three sites for 3 km by 3 km will miss the 70 % 466 
confidence level requirements over this area. Since SMAP’s 9-km and 3-km soil moisture products are 467 
from a combination of passive and active microwave signals, which have lower accuracy than the passive 468 
one(Entekhabi et al., 2010), their Cal/Val campaigns shall determine sampling distances with less 469 
confidence level.   470 

Our virtual reality contains extensive land cover variability (Figure 1), thus it would be helpful to 471 
adopt our approach for less complex regions with variabilities closer to the typical Cal/Val station 472 
networks. Overall, we find that a soil moisture sampling distance roughly below 3 km is necessary to keep 473 
the sampling errors always below the nominal value. The allowance for a failure probability of 30 % 474 
extends this distance to 10 km. For brightness temperatures, the sampling requirements are much more 475 
strict; already at 800 m sampling distance, it cannot be guaranteed that the sampling error remains below 476 
the equivalent threshold of 10K/5K for H and V-polarization, respectively, even when allowing for a 30% 477 
probability of failure. The error sources in retrieving soil moisture from TB data is also large in reality but 478 
not concerned in this study because VR01 and the TB produced by CMEM exclude the uncertainty except 479 
the sampling distance.  480 

Our results are not only useful for the planning of ground-based soil moisture networks, they also 481 
contribute to a better understanding of the relation between brightness temperatures observed at the 482 
ground – or simulated at high resolution - and the ones observed from satellites apart from non-linearity 483 
effects of radiative transfer (e.g., Drusch et al., 1999). The study allows, e.g., to quantify to what extent a 484 
bias between satellites brightness temperature and forward simulation could be explained by the spatial 485 
sampling (e.g., Figures 5, 8, and 11), and to understand the similarities and dissimilarities between 486 
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observed soil moisture and brightness temperature time-series (Figures 4 and 7). Since ground-based soil 487 
moisture networks will always cover only certain parts of a satellite pixel, a bias must be expected 488 
between both. Biases in satellite and ground-based estimates of soil moisture can also be caused by the 489 
different representativeness of the latter for soil moisture and brightness temperatures.  490 

While the allowed maximum sampling distances do not change much over the year for soil moisture 491 
- except after large-scale precipitation events which allow for larger sampling distances - it's equivalent 492 
for brightness temperature has a strong seasonal variation because of the blurring effect of vegetation 493 
during the growing season when brightness temperatures become more homogeneous. The spatial 494 
distribution of the maximum sampling distances and their local variances behave quite differently 495 
between soil moisture and brightness temperature. The spatial patterns are different, and while the 496 
maximum allowed sampling distance and its variance are strongly related to brightness temperature, they 497 
are barely related to soil moisture; this different behavior is caused by the complexity of other factors 498 
influencing microwave radiative transfer.  499 

Our study strongly suggests that the sampling density of current SMOS/SMAP ground-based Cal/Val 500 
networks and the resulting potential sampling error of estimated pixel-mean soil moisture and brightness 501 
temperatures considered in such studies should be reviewed carefully. We expect this study will help to 502 
understand the errors of satellite-derived soil moisture better.  503 

 504 
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