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<<Reviewer 1>>

(1) T think the authors have modified the manuscript accordingly and respond to the
comments reasonably. Major concern is still the performance of the models. The authors
have pointed out the NSE above 0.5 could be regarded as satisfactory, However, they used
different models. There are numerous studies showing that the NSE above 0.8 with VIC.
Since the performance for Christina and Firebag is not satisfactory as admitted by the
authors, what are the possible reasons for this? Could it be the possible that the VIC model
is not suitable for the study area? The authors failed to give answers to those questions. If
the model is not reliable, I cannot be persuaded the further results which are based on the
modelling results is reliable. My suggestion is still to improve the performance of the
modelling or use more models to make the results robust.

((Reply)) As commented in the previous reply, the parameters of the VIC model were calibrated
individually for the seven historical gridded climate datasets (i.e., ANUSPLIN, Alberta Township,
PNWNAmet, CaPA, NARR, and two hybrid climate datasets) using an auto- calibration method
(dynamic dimensional search algorithm) under the same optimization constraints (e.g., 100
maximum iteration) for a fair comparison of the performance. For Christina, the performance of
the VIC model was not satisfactory for PNWNAmet and NARR during the calibration period and
for most cases for the validation period. For Firebag, the VIC model’s performance was acceptable
except for NARR during both calibration and validation periods. The poor performance of NARR,
as commented in the previous reply, can be attributed to discontinued assimilation of observed
precipitation data over Canada since 2003, which is evident for the fact that the NSE values during
the validation period were much lower than those for the calibration (1985 to 1997) for all of the
hydrometric stations. In addition, such an underperformance at lower part of the Athabasca River
basin (i.e., lower Athabasca River basin) may be attributed to 1) relatively poor forcing datasets
within the drainage area of each hydrometric station, caused by the lack of observational stations
in the northern part of Alberta (refer to Figure 1) and 2) anthropogenic activities that were not
reflected in the VIC model simulations during the validation period when land cover changes and
water withdrawals mainly induced by Oil-Sand development have occurred. The table below
(Table 7 in the revised manuscript) shows the intercomparison of the performance of hydrologic
models applied for the Athabasca River basin in literature. Only one study (Shrestha et al., 2017)
has conducted hydrologic modeling at a sub-watershed level. The results of the current study were
from the VIC simulation forced by the hybrid climate dataset. The VIC model’s performance was
better or comparable to the literature. In particular, this study significantly improved the
performance of streamflow simulation for the Firebag catchment from 0.28 to 0.56. Comparing to
the NSE values in Table 6, the NSE values of all cases for Firebag and Christina were better (or
comparable) than those of the literature. Both Table 6 and Table 7 also showed clearly that
regardless of climate forcing datasets and hydrologic models (i.e., VIC or SWAT), the hydrologic
performance measured by NSE for Christina and Firebag was not improved above 0.55 and 0.65,

respectively. Based on the intercomparison of performance between this study and the literature,
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the quality of the hydrologic simulations in this study was improved (or comparable) considerably,
in particular at the Firebag station, compared to the results of the literature. Furthermore, the
reviewer needs to note that the main aim of this study is not to improve the performance hydrologic
simulations, but to provide more reliable climate dataset (i.e., hybrid climate dataset) through
REFRES suggested in this study. To validate the applicability of the hybrid climate dataset, a proxy
validation approach was employed by comparing simulated streamflows derived from the
generated hybrid climate data and other available climate datasets to recorded streamflows at the
selected hydrometric stations in the Athabasca River basin.

Table 7. NSE values between the current study and literature for the Athabasca River basin. The
NSE values were obtained for calibration and validation periods. For comparison of the current
study to the literature, the NSE values of the current study were obtained from the VIC simulation
for the hybrid climate dataset (Rind).

Literature/Hydrologic model
Current Leong and
Stations study/ Shrestha et | Faramarzi et | Faramarzi et | Betrie et al. | Donner
VIC! al. (2017b)/ | al. (2017)/ al. (2015)/ (2015)/ (2015)
SWAT? SWAT SWAT SWAT /IBIS-
THMB?
Hinton 0.80 0.87 - - - -
Pembina 0.64 0.69 - - - -
Athabasca 0.78 0.90 - - 0.50
Fort
0.77 0.89 - - 0.41 0.35
McMurray
Christina 0.52 0.49 - - - -
Firebag 0.56 0.28 - - - -
Average
for all 0.58 0.57 0.21 0.11 - -
stations

! Variable Infiltration Capacity
2 Soil and Water Assessment Tool
3 Integrated Blosphere Simulator - Terrestrial Hydrology Model with Biogeochemistry

Betrie, G. D., Deng, B. and Wang, J.: Integrated modeling of the Athabasca River Basin using
SWAT, Proceedings of Science and Technology Innovations, 27-38, 2015.
Faramarzi, M., Srinivasan, R., Iravani, M., Bladon, K. D., Abbaspour, K. C., Zehnder, A. J. B.
and Goss, G. G.: Setting up a hydrological model of Alberta: Data discrimination
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analyses prior to calibration, Environmental Modelling & Software, 74, 48-65,
d0i:10.1016/j.envsoft.2015.09.006, 2015.

Faramarzi, M., Abbaspour, K. C., Adamowicz, W. L. (Vic), Lu, W., Fennell, J., Zehnder, A. J.
B. and Goss, G. G.: Uncertainty based assessment of dynamic freshwater scarcity in
semi-arid watersheds of Alberta, Canada, Journal of Hydrology: Regional Studies, 9, 48—
68, doi:10.1016/j.ejrh.2016.11.003, 2017.

Leong, D. N. S. and Donner, S. D.: Climate change impacts on streamflow availability for the
Athabasca Oil Sands, Climatic Change, 133(4), 651-663, doi:10.1007/s10584-015-1479-
y, 2015.

Shrestha, N. K., Du, X. and Wang, J.: Assessing climate change impacts on fresh water resources
of the Athabasca River Basin, Canada, Science of the Total Environment, 601, 425440,
2017.

The authors also addressed the performance of the VIC model used in this study as below:

“Over the five hydrometric stations, most of the climate datasets performed well with the exception
of NARR in the Pembina catchment. Most of the NSE values in calibration for Christina and
Firebag were above 0.50, which was considered as a threshold of satisfactory performance in
hydrologic models as suggested by Moriasi et al. (2007). However, model performance is not
satisfactory for Christina and Firebag during the validation period. Such an underperformance at
the lower reach of the Athabasca River basin may be attributed to 1) relatively poor forcing
datasets within the drainage area of each hydrometric station, caused by the lack of observational
stations in the northern part of Alberta (refer to Figure 1) and 2) anthropogenic activities that
were not reflected in the VIC model simulations especially during the validation period when land
cover changes and water withdrawals mainly induced by Oil-Sand development have occurred.
Table 7 shows the NSE values of hydrologic models applied for the Athabasca River basin in
literature. All of NSE values were obtained from the simulations for calibration and validation
periods. The NSE values of the current study were obtained from the VIC simulation forced by
Hybrid (Ring) for comparison to the literature. It needs to note that the VIC model was calibrated
for the entire ARB watershed to simulate historical flow over the ARB. The results of the VIC
simulation for the entire Athabasca River basin were included in the discussion section. The VIC
model’s performance in this study was better or comparable to the literature for all stations in
ARB. In particular, this study improved considerably the performance of streamflow simulation for
the Firebag catchment. Comparing to the NSE values presented in Table 6, in addition, the NSE
values of all cases for Firebag and Christina were better (or comparable) than those of the
literature. Overall, the quality of hydrologic simulations in this study was improved (or
comparable) considerably, compared to the results of the literature. Consequently, the VIC model
performance is acceptable at all of hydrometric stations for the proxy validation.” (P221.3-1.23)
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<<Reviewer 2>>

The authors had shown a tremendous effort in addressing the comments made from the
previous round of review. I am satisfied with the revised version. There are two minor
issues to be addressed before publication.

(1) It would be appreciated if the authors could add the results (Table in the response letter
and perhaps a hydrograph as a sub-figure in Figure 12) to support the argument that
hybrid dataset performed better a whole-basin scale in the revised manuscript [P231L.24-
P241.1-2].
((Reply)) The authors added a table (Table 8 in the revised manuscript) and included the
following text in the manuscript to address the added-value of the hybrid climate dataset for the
whole ARB as below;

“To further validate the utility of the hybrid climate dataset, the VIC model was calibrated for
the entire ARB to produce a long-term historical hydrologic simulation for the ARB. Table 8
presents the NSE values of hydrologic simulations forced by ANUSPLIN and Hybrid (Rina) at the
hydrometric stations in the main stream of the ARB. The result shows that as the size of watershed
increases, the hybrid climate dataset starts performing better than ANUSPLIN used in Eum et al.,
(2017). In other words, the hybrid climate dataset improved the historical hydrologic simulation
for the ARB. This is mainly due to the fact that as the watershed area increases, the derived hybrid
climate dataset is no longer dominated by a single gridded climate dataset.” (P251L4 — L11)

(2) A better explanation to the reasons of selecting the five climate datasets (especially NARR)
is needed to fully address the comment made by Fuad Yassin. First of all, Wong et al. (2017)
inter-compared multiple climate datasets at daily time step not monthly scale. Secondly, the
GPCC and CRU data mentioned by Fuad Yassin are actually referring to WFDEI [GPCC]
and WFDEI [CRU] as abbreviated in Wong et al. (2017). He tried to argue that WFDEI
[GPCC] and WFDEI [CRU] had already been shown to perform much better than NARR
across Canada. However, the authors still picked NARR as one of their candidates but not
WEFDEI datasets. I suggest a better justification should be provided and included in the main
text (i.e. Section 2.2).

((Reply)) The WATCH Forcing Data methodology applied to the ERAInterim (WFDEI) dataset
provides reanalysis data from 1979 to 2016 globally at 0.5° ( ~ 50km), which are bias-corrected
by the Climatic Research Unit (CRU) and the Global Precipitation Climatology Centre (GPCC)
monthly precipitation data (Weedon et al., 2014). Another representative reanalysis data in North
America is the North American Regional Reanalysis (NARR) that provides a long-term set of
dynamically consistent 3-hourly climate data from 1979 to present at a regional scale (0.3°= ~
32km) for the North America domain. Wong et al. (2017) found that WFDEI performed better than
NARR over Canada. However, their study focused on only precipitation at the Canada-wide scale.
In addition, WFDEI is not an operational system but is updated when GPCC and CRU are available
for the bias-correction of monthly values. Furthermore, WFDEI provides rain and snow separately,
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which requires another process to obtain daily total precipitation. On the contrary, the NARR data
provides total precipitation rate and is available from 1979 to present with % month delay as an
operational system. In other words, NARR is regularly updated every ¥2 month. Therefore, this
study selected NARR to provide a more recent climate dataset through the REFRES. The authors
added the justification of why NARR was included in this study to section 2.2.3.
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Abstract

A reliable climate dataset is a backbone for modeling the essential processes of the water cycle and
predicting future conditions. Although a number of gridded climate datasets are available for North
American content, which provides reasonable estimates of climatic conditions in the region, there are
inherent inconsistencies in these available climate datasets (e.g., spatial- and temporal-varying data
accuracies, meteorological parameters, lengths of records, spatial coverage, temporal resolution, etc). These
inconsistencies raise questions as to which datasets are the most suitable for the study area and how to
systematically combine these datasets to produce a reliable climate dataset for climate studies and
hydrological modeling. This study suggested a framework, called the reference reliability evaluation system
(REFRES), that systematically ranks multiple climate datasets to generate a hybrid climate dataset for a
region. To demonstrate the usefulness of the proposed framework, REFRES was applied to produce a
historical hybrid climate dataset for the Athabasca River basin in Alberta, Canada. A proxy validation was
also conducted to prove the applicability of the generated hybrid climate datasets to hydrologic simulations.
This study evaluated five climate datasets, including station-based gridded climate datasets (ANUSPLIN,
Alberta Township, and PNWNAmet), a multi-source gridded dataset (Canadian Precipitation Analysis -
CaPA), and a reanalysis-based dataset (NARR). The results showed that the gridded climate interpolated
from station data performed better than multi-source and reanalysis based climate datasets. For the
Athabasca River basin, Township and ANUSPLIN were ranked first for precipitation and temperature,
respectively. The proxy validation also confirmed the utility of hybrid climate datasets in hydrologic
simulations, compared with the other five individual climate datasets investigated in this study. These
results indicate that the hybrid climate dataset provides the best representation of historical climatic

conditions and thus, enhances the reliability of hydrologic simulations.

Key words: Historical gridded climate data, reference reliability evaluation system, hydrological

simulation, Athabasca River basin, proxy validation
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1. Introduction

A reliable historical climate dataset is essential in understanding the climatic and hydrological
characteristics of a watershed, as it is a crucial forcing input data for simulating key processes of the water
and energy cycles in impact models (Deacu et al., 2012; Essou et al., 2016; Wong et al., 2017). Although
climate monitoring networks have advanced over the last decades, poor network density still exists,
especially in western mountainous and northern parts of Canada. Moreover, climate observations are often
spatially interpolated to cover ungauged regions, which may cause unexpected erroneous model predictions
as a consequence of the sparse measurements network, especially for mountainous areas affected by
orographic effects (Rinke et al., 2004; Wang and Lin, 2015).

As advances in numerical hydrologic and hydrodynamic modeling have increased the capability and
reliability in simulating complex natural processes to detect anthropogenic and natural climate changes, a
need for temporally- and spatially- reliable climate data has also been grown to accommodate the
requirements of input data for numerical models (Shen et al., 2010; Shrestha et al., 2012; Islam and Dery,
2017). For instance, process-based distributed hydrologic models have a grid-based structure that requires
input data for each grid cell. However, a simple spatial interpolation of observational station data to all
model grid cells may not produce a reliable input forcing dataset for hydrologic models, particularly in a
region with a sparse gauging network. A reliable historical climate dataset is also crucial in climate change
studies when used for statistical downscaling techniques that employ the relationships between observations
and outputs of global (or regional) climate models to produce climate forcing at regional or local scales.
Since the resolution of products from a statistical downscaling technique usually corresponds to that of the
historical climate dataset (Werner and Cannon, 2016; Eum and Cannon, 2017), the availability of
temporally- and spatially- reliable historical climate data is essential for climate-related impact studies
(Christensen and Lettenmaier, 2007; Kay et al., 2009; Gutmann et al., 2014; Eum et al., 2016).

A number of high-resolution gridded climate datasets have been developed for various applications

such as inter-comparison studies (Eum et al., 2014a; Wong et al., 2017) and hydrologic modeling (Choi et
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al., 2009; Eum et al., 2016). There are various types of gridded climate datasets available for the North
American region; 1) station-based interpolated, 2) station-based multiple-source, and 3) reanalysis-based
multiple-source (Wong et al., 2017). By interpolation of observational station data, long-term gridded
climate datasets have been produced over various domains defined by stations incorporated such as Canada-
wide Australia National University’s spline (ANUSPLIN, Hutchison et al., 2009), the Alberta Township
data (Shen et al., 2001), and the PCIC NorthWest North America meteorological (PNWNAmet) dataset
(Werner et al., 2019). The Canadian Precipitation Analysis (CaPA) system, a multiple source-based climate
dataset, has been developed to produce near real-time precipitation analyses (6-hr accumulated precipitation)
over North America at 15 km resolution which has been further improved to 10km resolution (Lespinas et
al., 2015). North American Regional Reanalysis (NARR), one of the reanalysis-based datasets derived from
a regional climate model (~32km), has been tested as an alternative climate dataset (Choi et al., 2009;
Praskievicz and Bartlein, 2014; Essou et al., 2016; Islam and Dery, 2017).

In most of the large-scale modelling studies, multiple climate data sets were combined to cover the
entire modelling domain for all the required climate variables, usually without evaluating the performance
of different climate datasets for the modelled regions (Faramarzi et al., 2015; Shrestha et al., 2017a; Wong
et al., 2017). The lack of performance indicators for available climate datasets may cause inappropriate
application of these datasets for various large scale studies, resulting in unreliable outputs, e.g., considerable
bias in statistical downscaling studies. Therefore, selecting reliable gridded climate data for a study area is
crucial for any hydrological or climate-related studies (Werner and Cannon, 2016; Eum et al., 2014a; 2017).
Eum et al. (2014a) intercompared three gridded climate datasets (ANUSPLIN, NARR, and CaPA) for the
Athabasca River Basin (ARB) and found that data accuracy varies spatially and temporally over the basin
mainly due to the heterogeneity of spatial density of the observational climate network in the basin and
limited data assimilation. Wong et al. (2017) also intercompared gridded precipitation datasets derived from
different data sources over Canada. Few studies have attempted to incorporate spatially-varied performance

measures of various climate datasets to produce a complete long-term historical climate dataset for a study
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region (Faramarzi et al., 2015; Shrestha et al., 2017a). In addtion, no systematic framework has been
developed yet that could be employed by climatic and hydrologic studies.

Therefore, this study provides a framework, called REFerence Reliability Evaluation System
(REFRES), to systematically determine the ranking of multiple climate datasets based on their performance
and generate a hybrid climate dataset for a study region by extracting the best candidate (based on the
ranking) from multiple climate datasets available in a repository. Several performance measures were
identified and calculated by comparing to the Adjusted and Homogenized Canadian Climate Data (AHCCD)
over western Canada. Based on the performance measures, the climate datasets were ranked to generate a
hybrid climate dataset for the area of interest (target area). A hybrid dataset for two climate variables -
precipitation and temperature, key forcing for hydrological modeling, was produced for a period of record
that is fully covered by the multiple climate datasets. To validate the applicability of the hybrid climate
dataset, a proxy validation approach was employed by comparing simulated streamflows derived from the
generated hybrid climate data and other available climate datasets to recorded streamflows at various
hydrometric stations in the Athabasca River basin (ARB). Streamflows were simulated using a hydrologic
model (Variable Infiltration Capacity, VIC) calibrated and forced by individual climate datasets and the
generated hybrid climate dataset. Therefore, the aims of this study are 1) to develop a methodology (i.e.,
reference reliability evaluation system, REFRES) to compare and rank multiple gridded climate datasets
based on the proposed performance measures and to generates the hybrid climate dataset, and 2) to validate
the hybrid climate dataset using the proxy validation approach for the Athabasca River basin as a case study

to confirm the applicability of hybrid climate dataset to hydrologic simulations.

2. Climate data
2.1 Adjusted and Homogenized Canadian Climate Data (AHCCD)
Climate station observations in Canada are available from the national climate data and information

archive of Environment and Climate Change Canada (ECCC, http://climate.weather.gc.ca/). Besides the
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variable number of observations due to frequent changes in operations including discontinuation of stations,
the observations are also subject to various errors from undercatch of solid precipitation, orographic effects,

and malfunction of measurements (Mekis and Hogg, 1999; Rinke et al., 2004).

Mekis and Vincent (2011) adjusted daily rainfall and snowfall data, considering wind undercatch,
evaporation, and wetting losses corresponding to the types of gauges for 450 stations over Canada. The
most recent version released in 2016 provides the adjusted precipitation observations, expanded to 464
precipitation stations. Vincent et al. (2012) produced the 2™ generation of homogenized daily temperature
by adjusting the time series at 120 synoptic stations to account for a nation-wide change in observing time
and homogenizing discontinuities over 338 temperature (daily minimum and maximum) stations in Canada.
The adjusted and homogenized Canadian Climate Data (AHCCD) are available through Environment and

Climate Change Canada (http://ec.gc.ca/dccha-ahced/default.asp?lang=En&n=B1F8423).

Considering that archived raw station data were used to produce the historical gridded climate datasets
used in our study, the evaluation of performance at the AHCCD stations is more meaningful because the
AHCCD data were adjusted to account for the known measurement issues in the raw station data. For
example, the adjusted precipitation data are higher by 5 % to 20 %, varying with topographic characteristics
(Mekis and Vincent, 2011). Therefore, the AHCCD dataset is recognized as the best estimate of actual
climate variables in Canada, and consequently used in a number of climate-related studies (Asong et al.,
2015; Eumet al., 2014a; Shook and Pomeroy, 2012; Wong et al., 2017). As large-scale watersheds in Alberta
are crossing the province, e.g., the Peace River and Athabasca River basins, this study evaluated the
performance of the historical gridded climate datasets at the AHCCD stations within British Columbia (BC),
Alberta (AB), and Saskatchewan (SK) (190 and 129 stations for precipitation and temperature, respectively,
in Figure 1). The AHCCD stations have different record lengths. For example, the longest record period is
from 1840 to 2016 while the shortest period is from 1967 to 2004. As the data lengths are different at each
AHCCD station, we selected a common period between each AHCCD station and climate dataset to

estimate performance measures.
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Figure 1. AHCCD stations within the British Columbia (BC), Alberta (AB), and Saskatchewan (SK)

provinces

2.2 Historical gridded climate datasets

In general, the available historical gridded climate dataset can be divided into three categories; 1)
station-based, 2) multiple source-based, and 3) reanalysis-based. In this study, five high-resolution gridded
climate datasets available for Alberta were selected (Table 1) to evaluate their performance and include in

the generation of a hybrid climate dataset for Alberta.

Table 1. High-resolution gridded historical climate datasets used in this study

2.2.1 Station-based datasets

Hutchinson et al. (2009) produced a Canada-wide daily climate dataset at 10 km resolution from 1961
to 2003 by the Australia National University’s trivariate thin-plate smoothing spline (ANUSPLIN)
technique to model the complex spatial patterns (e.g., large variations in ground elevation and station
density over Canada) of daily weather data. Hopkinson et al. (2011) updated the existing ANUSPLIN
dataset by reducing residuals and extended the daily weather data from 1950 to 2011. Recently,
ANUSPLIN data were extended until 2015 for three climate variables, i.e., daily precipitation, minimum
and maximum air temperature, which were interpolated with 7,514 surface-based observations (archive
data) of Environment Canada. However, the numbers of stations included in interpolation varied year to
year, ranging from 2,000 to 3,000 for precipitation and from 1,500 to 3,000 for air temperature. The
ANUSPLIN data generated by Natural Resource Canada (NRCan) have been used as the source data to
compare climate products (Eum et al., 2014a; Wong et al., 2017), evaluate the accuracy of regional climate
models (Eum et al., 2012), and to model hydrologic regimes (Islam and Dery, 2017; Eum et al., 2017,

Dibike et al., 2018).
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Similar to the ANUSPLIN dataset, Pacific Climate Impacts Consortium (PCIC) also generated daily
precipitation, minimum and maximum air temperature, and wind speed from 1945 to 2012 at 1/16 degree
(6~7km) resolution using a thin-plate smoothing spline technique over Northwest North America, called
the PCIC North West North America meteorological (PNWNAmet, Werner et al., 2019) dataset
(https://data.pacificclimate.org/portal/gridded observations/map/). While ANUSPLIN utilized a varying
number of gauge stations depending on availability of observations in a given year, PNWNAmet set a
common period from 1945 to 2012 for all stations included in the interpolation over regularly spaced grid
cells within the domain. The PNWNAmet dataset was developed to produce forcing data for an updated
version of the Variable Infiltration Capacity model with glaciers (VIC-GL). In addition to precipitation, and
minimum and maximum temperature, PNWNAmet includes wind speed, which considerably affects vital
hydrologic processes, especially evapotranspiration, sublimation, and snow transport (i.e., snow blowing).
Because the AHCCD dataset provides only daily precipitation and temperature, wind speed was excluded
in this study.

Alberta  Agriculture and Forestry (AF) produced the Alberta Township data

(http://agriculture.alberta.ca/acis/township-data-viewer.jsp) from 1961 to 2016 at approximately 10km

(Alberta Township grid) resolution using a hybrid inverse distance weighting (IDW) process (Shen et al.,
2001) for daily precipitation, minimum and maximum temperature, relative humidity, wind speed, and solar
radiation. The archive (raw) station data collected by ECCC, Alberta Environment and Parks (AEP), and
AF over Alberta were used in producing the Township dataset. The Township data used various effective
radiuses (60 km to 200 km) to ensure a sufficient number of gauge stations in IDW. When there is no station
within 200 km, it is assumed that the nearest station represents the climate conditions of the Township
center. The domain of Township data covers most of Alberta except the mountainous regions while both
ANUSPLIN and PNWNAmet cover all of western Canada (refer to Table 1). Therefore, one of the
limitations of the Township dataset is its application to a large watershed spanning Alberta and other

neighboring provinces.
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2.2.2 Multiple source-based dataset

As an operational system, the Meteorological Service of Canada initiated the Canadian Precipitation
Analysis (CaPA) in 2003 to produce superior gridded precipitation data over North America at 10 km
resolution (Lespinas et al., 2015), especially for regions with poor observational networks (Mahfouf et al.,
2007). CaPA employs an optimum interpolation technique that requires properties of error statistics among
observations and a first guess, i.e., background field (Garand and Grassotti, 1995). A short-term forecast of
6-hr accumulated precipitation from the Canadian Meteorological Centre (CMC) regional Global
Environmental Multiscale (GEM) model (C6té et al., 1998a; 1998b) is used in CaPA as the background
field. The assimilated precipitation from the Canadian weather radar network and 33 US radars near the
border are used as additional observations to generate analysis error among multiple sources of observations
and the background precipitation. Zhao (2013) tested the applicability of CaPA for hydrologic modelling in
the Canadian Prairies and proved its usefulness in data-sparse regions and the winter season. In addition,
CaPA has been widely-used in agricultural and hydrologic applications (Deacu et al., 2012; NIDIS, 2015).
Eum et al. (2014a) further addressed some of the limitations of CaPA, i.e., lack of air temperature which is
one of the primary drivers in hydrologic modeling and shorter data length (only from 2002 to 2017), for
model calibration and validation. Using 6-hr accumulated precipitation CaPA products, in this study, daily
accumulated precipitation was generated over western Canada by adjusting the time zone from Universal

Time Coordinated (UTC) to Mountain Time (MT).

2.2.3 Reanalysis-based dataset
Reanalysis products are another common type of gridded dataset used in climate and hydrologic studies.

The WATCH Forcing Data methodology applied to the ERAInterim (WFEDEI) dataset provides reanalysis

data from 1979 to 2016 globally at 0.5° ( ~ 50km), which are bias-corrected by the Climatic Research Unit

(CRU) and the Global Precipitation Climatology Centre (GPCC) monthly precipitation data (\Weedon et al.,
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2014). Another representative reanalysis data in the North America is the North American Regional

Reanalysis (NARR) that has been developed to create a long-term set of dynamically consistent 3-hourly

climate data from 1979 to 2003 at a regional scale (0.3°= ~ 32km) for the North America domain (Mesinger
et al.,, 2006). By utilizing advanced land-surface modeling and data assimilation through the Eta Data
Assimilation System (EDAS), NARR improved the National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) global reanalysis data. NARR cycled
every 3 hours to produce a climate dataset from 1979 to present. Choi et al. (2009) tested the applicability
of NARR for hydrologic modeling in Manitoba for a region with a poor monitoring network density.
However, the NARR dataset after 2004 is not consistent with that of prior years (i.e., 1979 to 2003) because

assimilation of precipitation observations was discontinued in 2003 (Eum et al., 2014a). Wong et al. (2017)

found that WFDEI performed better than NARR over Canada. However, their study focused on only

precipitation at the Canada-wide scale. In addition, WFDEI is not an operational system but is updated

when GPCC and CRU are available for the bias-correction of monthly values. Furthermore, WFDEI

provides rain and snow separately, which requires another process to obtain total precipitation. On the

contrary, the NARR data provides total precipitation rate and is available from 1979 to the current with %2

month delay as an operating system. In other words, NARR is operationally updated every Y2 month.

Therefore, this study selected NARR to provide more recent climate dataset through the REFRES. Using

the 3-hr NARR climate data, daily precipitation and minimum and maximum temperature were calculated

by adjusting the time zone to MT from the original NARR dataset (UTC zone).

3. Methodology
3.1 Reference Reliability Evaluation System (REFRES)

This study suggests a REFference Reliability Evaluation System (REFRES) that consists of three
main modules (refer to Figure 2): 1) a performance measure module (PMM) to evaluate various

performance measures for each climate dataset, 2) a ranking module (RM) to identify the most reliable
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climate data for a target grid cell using a multi-criteria decision-making technique based on the performance
measures provided by PMM, and 3) a data generation module (DGM) to produce a hybrid climate dataset
by selecting the most reliable climate dataset based on the ranking provided by the RM (ranking model).
These three modules are seamlessly integrated and exchange the required data and information to generate

a hybrid climate dataset. The next section provides further details on each module.

Figure 2. Structure of REFRES comprised of three modules; 1) Performance Measure Module (PMM), 2)

Ranking Module (RM), and 3) Data Generation Module (DGM)

3.1.1 Performance Measure Module (PMM)

AHCCD is a point (station) dataset while the other climate datasets used in this study (refer to Table
1) are regularly spaced gridded datasets with varying time period, spatial resolution, and coverage (i.c.,
domain). Therefore, the inverse distance squared weighting method was applied to obtain the values at the
AHCCD stations from all the gridded climate datasets. Then, performance measures were calculated by
comparing the interpolated values with the data collected at AHCCD stations. The choice of the
performance measures is vital in REFRES, as the ranking of climate datasets entirely depends on included
performance measures. In this study, performance measures were selected based on three criteria: 1)
distribution, 2) sequencing, and 3) spatial pattern. Distribution-related performance is assessed by the
Kolmogorov-Smirnov D statistic (Dks) and standard deviation ratio (0 ati0 ). Sequence-related performance
is assessed by the percentage of bias (Pyiss), root mean square error (RMSE), and temporal correlation
coefficient (TCC). Spatial pattern-related performance is evaluated by the pattern correlation coefficient
(PCC) as shown in Eq. (1) to Eq. (5). The equations of TCC and PCC are identical but TCC is calculated
with the daily time series of climate variables and PCC is obtained by the mean annual precipitation and
temperature of the AHCCD stations over a target domain. Therefore, PCC varies with the user specified

target domain.

Dks = sup |Fg(x) — Fo(x)] (1
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where o; and opare the standard deviation of gridded and observed climate datasets, G;and O; represent
gridded and observed climate datasets at ith time step, respectively; F is the empirical distribution function
of a climate dataset; o is standard deviation; G and O represent the mean of gridded and observed
climate datasets, respectively and N is a total number of data points. These six performance measures were
calculated for all the selected climate datasets and variables at each AHCCD station. Figure 2 (blue box in
PMM) shows an example of 6 PMs calculated for the precipitation variable using the ANUSPLIN gridded

data. Thus, 15 tables (5 climate datasets x 3 variables) were generated by PMM and transferred to the RM.

3.1.2 Ranking Module (RM)

The function of the ranking module is to select the appropriate AHCCD stations for a given target grid
cell and to rank all the gridded data sets based on the six performance measures calculated in the previous
module. For a given target cell, AHCCD stations are selected based on two criteria: distance and elevation.
Firstly, 20% (of all AHCCD) stations are selected based on the nearest distance criteria, which were then
again reduced by the five nearest stations based on the minimum elevation difference criteria. Then the
performance measures are averaged over the selected AHCCD stations to represent the skill of each climate

dataset for the given target grid cell.

As multiple performance measures are employed in this study, there are situations when a climate

dataset may perform well for some measures but not for others. Therefore, a multi-criteria decision-making
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(MCDM) technique is required to systematically rank all of the climate datasets while considering multiple
performance measures. This study applied a multi-criteria decision-making technique called the Technique
for Order of Preference by Similarity to Ideal Solution (TOPSIS, Hwang and Yoon 1981) to systematically
determine the order of preference for all climate datasets at each target grid cell. TOPSIS calculates the
geometric distance between alternatives and an ideal solution defined by the best performance on each
criterion from the alternatives, and then determines the best and worst alternatives based on the distance.
TOPSIS has been successfully applied to watershed management for multi-criteria problems (Jun et al.,
2013; Lee et al., 2013). TOPSIS starts with the averaged performance measures, (x;)m~ for the i alternative
(climate dataset in this study) and ;" criterion (i.e., a performance measure). A weighted normalized decision

matrix, (¢;)mx, s given by

(tij)an = (anij)mxn i=12,--m; j= 1,2,--,n (6)
xii
nij = ;gijxizj (7)

where, m and n are the total number of alternatives and criteria, respectively, n; is normalized matrix by Eq.
(7), and w; represents weighting on the j™ criterion. Under the assumption that all performance measures
are important, this study used an equal weighting. Then, Euclidean distances (d;» and d») of climate datasets

from the best (45) and worst (4,,) conditions were calculated respectively by Eq. (8) to Eq. (11)
Ay = {{max(t;;|i = 1,2,--,m) |j € J_), (min(t;;|i = 1,2,--,m) |j € J4)} = {tw;lj = 1.2,-,n}(8)

Ap = {(min(t;;|i = 1,2,-,m) |j € J_), (max(t;;]i = 1,2,--,m) |j € J4)} = {tp;j = 1L.2,--,n} (9)

diW = \/Z?:l(tij — twj)z i = 1,2,---,m (10)

dib = \/Z?:l(tlj - tbj)z i= 1,2,---,m (11)
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Where, #,; and ¢,, are the best and worst decision matrices determined by Eq. (8) and (9), respectively, and
J+ and J. represent criteria that have a positive and a negative impact on performance. For example, TCC
and PCC are in J+ while Dgs, Oyatio, Poias, and RMSE are in J.. Using the Euclidean distances, the order of

preference for all climate datasets was determined by the similarity (Siv) to the worst condition in Eq. (15).

diw
Si, =
W dyytdip’

0<sy <1, i=12-,m (15)

siw = 1 when the alternative is equal to the best condition (4,) and s, = 0 if the alternative is equal to the
worst condition (4,). In other words, a higher s;, represents higher preference among alternatives. As we
evaluate the performance measures (criteria) for individual climate variables, TOPSIS can be applied to
decide the preference of climate datasets considering the performance measures for either individual or
multiple variables. In this study, TOPSIS provides two types of ranking information by using performance
measures from i) individual climate variable and ii) all climate variables. That is, one is the ranking for
precipitation and temperature separately (Rina) and the other is the ranking for multiple variables (Rmu). For
example, in this study, Rina was determined by a 5x6 decision matrix (5 climate datasets and 6 performance
measures) for precipitation and temperature individually, while R, was determined by a 4x18 decision
matrix (4 climate datasets excluding CaPA that provides only precipitation by 18 performance measures
from three variables). To alleviate the erroneous output that minimum temperature is higher than maximum
temperature on a certain day when producing the hybrid climate dataset by the ranking of temperature
values individually, the performance measures of both minimum and maximum temperature are employed

together to rank the climate datasets for temperature.

3.1.3 Data Generation Module (DGM)
DGM extracts the most reliable climate data for a user-specified target region based on the ranking
information obtained from the RM. The tool is flexible enough to provide output in various common

formats, i.e., NetCDF, ASCII (text) or in the specific format of a numerical model. As all of the historical
14
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gridded climate datasets have been tested and employed in numerous climatic and hydrologic studies, an
assumption was made in generating the hybrid climate dataset that all of the climate datasets are equally
qualified for inclusion but the final selection can be determined by the proven superiority evaluated through
the performance measures. Under this assumption, the available datasets can be combined systematically
based on the rank (performance) of each dataset at target grid cells. As each climate dataset has different
data periods shown in Table 1, the first ranked dataset cannot fully cover a whole target period to be
extracted from a set of climate data candidates. DGM provides a systematic procedure to identify the most
reliable dataset for a target region and extracts the data from the inventory of climate datasets considering
the ranking and availability of each dataset for a desired period. For instance, if CaPA and ANUSPLIN
ranked first and second for precipitation and the desired period is 1950 to 2016, DGM starts searching for
the availability of precipitation in 1950. As CaPA is only available between 2002 to 2016, DGM reorders
the rank to select ANUSPLIN as the best climate dataset available in 1950. In this way, a hybrid dataset
over the period 1950 to 2016 is generated by extracting from ANUSPLIN from 1950 to 2001 and CaPA
from 2002 to 2016 in this particular case. Once the best climate datasets are extracted over all the target
grid cells (study domain), the hybrid climate dataset is produced in a user-defined format. This study
generated the hybrid climate datasets in the form of the VIC forcing input format to be directly employed

into the hydrologic model.

3.2 Proxy validation

Although the AHCCD dataset has been adjusted to provide better estimates of actual precipitation and
temperature, it contains statistical artifacts that include inevitable errors from sequential data processes that
can be propagated in the derived hybrid climate dataset. Given that the AHCCD stations, the reference
dataset for the performance measures, are not regularly distributed and have especially poor density in the
northern parts of the study area (refer to Figure 1), it is questionable if the hybrid climate dataset can
represent a historical climate better than the individual gridded climate dataset. Utilizing a proxy validation
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approach (Klyszejko, 2007), this study applied streamflow records to validate the utility of the derived
hybrid climate dataset over other existing climate datasets in hydrologic simulations. In this study, the proxy
validation was conducted using an existing hydrologic model (Eum et al., 2017), Variable Infiltration
Capacity (VIC, Liang et al., 1994), for the Athabasca River basin (ARB). The VIC model was further
refined at 1/32° (2~3 km) for a finer spatial resolution and to better simulate the complex river network in
the Lower Athabasca River basin. Five of the catchment areas listed in Table 2 were selected for the proxy
validation based on three criteria: i) hydrometric record length, ii) location defined by upper, middle and
lower reaches (Northern River Basin Study, 2002), and iii) the number of gridded climate datasets used to
generate a hybrid climate dataset for the catchment area of the selected hydrometric station. In other words,
a higher number of gridded climate datasets contributing to the hybrid climate dataset within a catchment
was selected to evaluate the utility of the hybrid climate data relative to the existing gridded climate datasets.
Hinton is located near the headwaters of ARB, which are characterized by mountainous topography and
snow- and glacier-ice melt dominated hydrologic regimes. Pembina is one of the major rivers in the middle
reach. The other three stations (Christina, Clearwater above Christina and Firebag) are located in the lower
reach, which is a water-limited (dry) region due to a higher amount of evapotranspiration (Eum et al.,
2014b). The sub-basins of Hinton, Firebag, and Clearwater include a partial area outside of the Township
data domain, thus inducing a higher or lower number of climate datasets in the derived hybrid dataset.

A total of seven climate datasets (five individual and two hybrid climate datasets from the Ringand Rmu) are
available to calibrate the VIC hydrologic model parameter set related to soil properties and routing. The
calibration period is 1985-1997 as in Eum et al., (2017), except for CaPA that uses the period of 2003-2009
for calibration, as CaPA covers the period from 2002 to 2016. The remaining period of total record length
for each climate dataset is used for validation. More details on calibration can be found in Eum et al. (2017).
Under the assumption of REFRES that all of the existing climate datasets are of equal quality for hydrologic
simulations, all of the calibrated parameter sets can be considered as mostly plausible parameter sets for
the selected sub-basins. However, as mentioned above, intrinsic biases exist temporally and spatially in all
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of the gridded climate datasets, e.g., discrepancies in the amount and spatial distribution of precipitation
between the gridded climate datasets and observations. Therefore, the similarity of the gridded climate
datasets in terms of magnitude, sequence, and spatial distribution of climate events relative to observations
is crucial to reproduce historically observed streamflows. In addition to climate forcings, streamflows are
mainly affected by geographic characteristics and physical land surface processes (e.g., infiltration and
evapotranspiration), which are represented by model parametrization related to infiltration and soil
properties (Demaria et al., 2007). In a hydrologic simulation, the biases in climate datasets can be
compromised by model parameters that adjust hydrologic processes to observations (Harpold et al., 2017,
Kirchner, 2006). That is, a calibrated parameter set may imply biases in a climate dataset. Under the
assumption that the calibrated parameter sets are suitable for hydrologic simulations in each sub-basin, this
study applied a multiset-parameter hydrologic simulation approach that employs all parameter sets
calibrated by the seven climate datasets and the same climate dataset as a forcing input data to assess the
sensitivity of the climate dataset to all feasible parameter sets. From the multiset-parameter hydrologic
simulations, the bias in a climate dataset can be estimated indirectly by quantifying the variability in
hydrologic simulations derived from the feasible calibrated parameter sets under a climate forcing dataset.
In other words, lower variability in the hydrologic simulations indicates higher reliability in the climate
forcing dataset. The suitability of the hybrid climate dataset for improving historical hydrologic simulations
was also tested by directly comparing the performances of calibration and validation for each climate
dataset. Proxy validations were carried out by conducting 49 hydrologic simulations (7 climate forcing x 7
parameter sets) for the Pembina and Christina catchment areas, whereas only 36 simulation runs were
possible for Hinton, Firebag, and Clearwater sub-basins, as one of the gridded data sets (i.e., Township) did

not cover the entire catchment areas of these three hydrometric stations.

4. Results
4.1 Precipitation performance measures in Alberta
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Although the performance measures were calculated for 190 AHCCD stations in western Canada, the
target area of this study is in Alberta, where only 45 stations are located. Therefore, the results for the 45
AHCCD stations are given in this study. Table 3 shows spatially-averaged performance measures for
precipitation. The Township data outperformed other climate datasets for all performance measures except
Poias. ANUSPLIN is the second best climate dataset for Alberta. All climate datasets underestimate the
standard deviation of observed daily precipitation (i.e., negative Graio), especially PNWNAmet and CaPA
which underestimated by 34 % and 39 %, respectively. Interestingly, two station-based gridded climate
datasets, ANUSPLIN and Township, show negative Pyiis while PNWNAmet, CaPA, and NARR datasets
have positive Ppias. This indicates that ANUSPLIN and Township may underestimate extreme precipitation,
as they employed the raw station data instead of the adjusted precipitation data which is higher than the raw
station data by 5%-20%. In contrast, other climate datasets (especially multiple sources and reanalysis data)
overestimate extreme precipitation. These results are consistent with findings in Eum et al. (2014a) that
CaPA and NARR overestimate extreme precipitation events by overly reflecting the orographic effects on
precipitation in western Alberta.

Figure 4 shows the temporal correlation coefficient (TCC) data averaged over the AHCCD stations in
Alberta to investigate the similarity between historical precipitation datasets employed in this study. As
expected, station-based climate datasets (i.e., ANUSPLIN, PNWNAmet, and Township) showed better
TCCs than CaPA and NARR. The TCC between ANUSPLIN and Township was the highest among climate
datasets except for the observations (i.e., OBS), even though they incorporated different interpolation
techniques. PNWNAmet showed the highest TCC with ANUSPLIN because they both are based on thin
plate spline interpolation. TCCs between CaPA and other climate datasets are similar, as CaPA is produced
from multiple sources such as GEM’s outputs and weather radar networks of Canada and US. NARR, the
reanalysis-based climate dataset, showed higher TCC with CaPA than with other datasets, as it is assimilated

with multiple sources of observations.
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Maps of each performance measure are shown in Figure 5. It is evident from the spatial variability that
the ANUSPLIN and Township datasets outperformed the other datasets in Dks throughout Alberta. In the
mountainous region of southwest Alberta, most of the climate datasets performed poorly in Pyias, Gratio,
RMSE, and PCC, resulting mainly from the sparse observation network and inconsistent observations near
the Canada-US border. PNWNAmet highly overestimates the mean annual precipitation in the mountainous
area (e.g., 300 mm/year higher than that observed at station ID 3050519), which may considerably affect

simulated streamflows originating in mountainous headwaters and further downstream.

4.2 Air temperature performance measures in Alberta

The performance measures for air temperature averaged over 37 AHCCD stations in Alberta are
presented in Table 4. As CaPA provides only precipitation, it was excluded in the assessment for temperature.
All of the performance measures for temperature are better than those for precipitation except Ppias. NARR
is highly biased as it underestimates minimum and maximum temperatures, which might be an attribute of
discontinuation of observation assimilation since 2003 (Eum et al., 2014a). ANUSPLIN and Township
showed an almost perfect linear relationship (TCC) with the observations (i.e., > 0.97 for all of the climate
datasets). The performance measures for maximum temperature are better than those for minimum
temperature as maximum temperature is dominated by mainly large-scale heat waves while minimum
temperature is affected by local physical processes, e.g., topography and surface conditions (Eum et al.,
2012). NARR showed less skill in capturing these local effects due to the coarse spatial resolution (~32km)
compared to other station-based climate datasets. As with precipitation, the maps of performance measures
for minimum and maximum temperature presented in Figure 6 and Figure 7 showed that data from the
mountainous areas performed poorly in most of the performance measures. NARR showed positive and
negative Pyiss for minimum and maximum temperature, respectively, in the mountainous region, indicating

that NARR has a warm bias in extreme cold temperatures and a cold bias in extreme warm temperatures.
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4.3 Ranking of climate datasets in the ARB

The geospatial information (i.e., latitude, longitude, and elevation) of 22,372 grid cells within the ARB
was extracted from the Canadian digital elevation data provided by Natural Resources Canada (refer to
https://open.canada.ca/data/dataset/7f245e¢4d-76¢c2-4caa-951a-45d1d2051333). Using this information, the
RM in REFRES ranked the five climate datasets by TOPSIS for each grid cell. Table 5 presents the first-
ranked number of grid cells and their percentage for each climate dataset according to the performance
measures of individual variables (Case A and Case B) and multi-variables (Case C), i.e., precipitation and
(minimum and maximum) temperature in this study.

For precipitation, the Alberta township dataset was ranked first in most of the grid cells within the
basin (78%) for the whole ARB, followed by ANUSPLIN (13%), PNWNAmet (3%), CaPA (3%), and
NARR (2%). However, the Township data domain covers only 83% of the ARB within Alberta; the
remaining 17% of the watershed area that lies on the outside the province is not covered (Figure 8). The
Township dataset was ranked first for almost 95% of grid cells within its domain, indicating that the
Township dataset overwhelmingly outperformed other climate datasets for precipitation. Township was
dominantly ranked first for the subbasins (Pembina and Christina) within the Township domain.

For temperature, ANUSPLIN was ranked first (in 62% grid cells) for the whole ARB, followed by
Township (31%) and PNWNAmet (7%). In the upper and middle reaches, i.e., Hinton and Pembina,
PNWNAmet and Township were mostly ranked first, respectively, while ANUPLIN outperformed other
climate datasets for the subbasins in the lower reach. When considering the performance measures for
multiple variables simultaneously, the Township dataset was ranked first, followed by ANUSPLIN for 64%
and 36% of the grid cells for the whole ARB. Figure 9 shows maps of the first-ranked climate datasets for
each case in Table 5, i.e., individual variable (Case A and B) and multi-variables (Case C). Due to the
limited spatial coverage of the Township dataset, other climate datasets were ranked first in the headwaters
of the ARB and the area of the river basin in Saskatchewan. For instance, ANUSPLIN and PNWNAmet

were ranked first in the headwaters, while no specific climate dataset dominated in Saskatchewan for
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precipitation (refer to Figure 9A). For temperature, ANUSPLIN outperformed in the northern part (middle
and lower reaches of the ARB) due to outstanding performance of the Py performance measure for
minimum temperature as shown in Table 4 and Figure 6(b). For multi-variables, Township was mostly
ranked first within its domain and ANUSPLIN was ranked first outside the Township dataset domain and
also for a small part of lower reach area in the ARB.

Figure 10 shows the percentage of each climate dataset at each rank for the three cases (e.g. A, B, and
C in Table 5). For precipitation (Case A), Township overwhelmed other climate datasets. The second
alternative was ANUSPLIN in the majority of grid cells in the ARB. PNWNAmet, NARR and CaPA were
mostly ranked 3™, 4™ and 5™, respectively. For temperature (Case B), ANUSPLIN was ranked mostly first
and Township was a distinct second choice in the majority of grid cells, followed by PNWNAmet and
NARR. For multi-variables (Case C), Township and ANUSPLIN were the first and second choices in the
majority of grid cells in the ARB, respectively.

As two different hybrid climate datasets were generated using the ranking information from single-
and multi-variable approaches, i.e., Hybrid (Rind) and Hybrid (Rmu), further investigation is required to
identify which hybrid climate dataset may provide better performance and consequently will be
recommended for future climate-related studies. A proxy validation approach was applied using both

generated hybrid climate datasets to validate the utility of one dataset over the other.

4.4 Proxy validation of generated hybrid climate datasets

In addition to the five gridded climate datasets, the two hybrid climate datasets were implemented for
proxy validation using the VIC model. In contrast to the station-based climate datasets, both CaPA and
NARR were produced from climate models and multiple sources of observations, consequently showing a
higher correlation with each other as shown in Figure 4. Since CaPA also provides only precipitation, this
study combined precipitation of CaPA with the NARR temperature to prepare the CaPA climate forcing

dataset for the proxy validation. Table 6 presents the Nash-Sutcliffe Efficiency (NSE) for the calibration
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and validation periods at the selected hydrometric stations (Hinton, Pembina, Christina, Clearwater, and
Firebag) in the ARB to assess the suitability of each climate dataset as a climate forcing input data for
hydrologic simulations. Over the five hydrometric stations, most of the climate datasets performed well
with the exception of NARR in the Pembina catchment. Most of the NSE values in calibration for Christina

and Firebag were above 0.50, which was considered as a threshold of satisfactory performance in

hydrologic models as suggested by Moriasi et al. (2007). However, model performance is not satisfactory

for Christina and Firebag during the validation period. Such an underperformance at the lower reach of the

Athabasca River basin may be attributed to 1) relatively poor forcing datasets within the drainage area of

each hydrometric station, caused by the lack of observational stations in the northern part of Alberta (refer

to Figure 1) and 2) anthropogenic activities that were not reflected in the VIC model simulations especially

during the validation period when land cover changes and water withdrawals mainly induced by Oil-Sand

development have occurred. Table 7 shows the NSE values of hydrologic models applied for the Athabasca

River basin in literature. All of NSE values were obtained from the simulations for calibration and validation

periods. The NSE values of the current study were obtained from the VIC simulation forced by Hybrid (Ring)

for comparison to the literature. It needs to note that the VIC model was calibrated for the entire ARB

watershed to simulate historical flow over the ARB. The results of the VIC simulation for the entire

Athabasca River basin were included in the discussion section. The VIC model’s performance in this study

was better or comparable to the literature for all stations in ARB. In particular, this study improved

considerably the performance of streamflow simulation for the Firebag catchment. Comparing to the NSE

values presented in Table 6, in addition, the NSE values of all cases for Firebag and Christina were better

(or comparable) than those of the literature. Overall, the quality of hydrologic simulations in this study was

improved (or comparable) considerably, compared to the results of the literature. Consequently, the VIC

model performance is acceptable at all of hydrometric stations for the proxy validation. The two hybrid

climate datasets performed well, with comparably good and better NSE values than other climate datasets,
especially at Pembina, Clearwater, and Firebag, located in the middle and lower reaches.
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Figure 11 presents the boxplots of NSEs obtained through the multiset-parameter VIC simulations.
The NSE ranges were obtained from multiple VIC simulations, with each climate dataset used as climate
forcing for all the plausible model parameter sets, which were calibrated with seven climate datasets,
individually. The values above each boxplot represent the averaged value of the NSEs over the multiset-
parameter hydrologic simulations. A narrower range of NSE values represents a higher precision for a
climate dataset and a higher averaged NSE value means higher accuracy. Therefore, a climate dataset
showing both a higher averaged NSE and a narrow range of NSEs indicates that it is a relatively more
appropriate and reliable climate forcing dataset for hydrologic simulations.

At Hinton, all of the climate datasets showed satisfactory NSE values for accuracy, while ANUSPLIN,
Hybrid(Rind), and Hybrid(Rmu) showed better precision. The validation period of CaPA is only six years
from 2010 to 2016, as CaPA data are only available between 2002 to 2016. This might be a reason why
CaPA produced the highest NSE (accuracy) among the climate datasets used in this study. Therefore, the
results of CaPA need to be considered carefully otherwise they might be misleading. In this context, the
CaPA dataset was excluded from further assessment of the precision and accuracy even though all of the
results of CaPA were included in Figure 11 for reference only. Hybrid(Rmu) and ANUSPLIN showed the
highest accuracy as forcing data, followed by Hybrid(Rind), PNWNAmet, and NARR. In the Pembina and
Christina catchments, the Hybrid(Rind), Hybrid(Rmu), and Township datasets had the highest precision and
accuracy. NARR produced negative NSEs at Pembina, indicating it is not reliable or suitable as a forcing
dataset. For Clearwater, Hybrid(Rina) is the top performer, followed by Hybrid(Rmu), ANUSPLIN,
PNWNAmet, and NARR. Clearwater had the highest number of climate datasets combined in the hybrid
climate dataset within the basin for precipitation as shown in Figure 9. Interestingly, the precision of NARR
is similar to that of CaPA because they shared the temperature data from NARR. For Firebag, Hybrid(Rind)
also showed top performance in both precision and accuracy, followed by Hybrid(Rmu), ANUSPLIN,

PNWNAmet, and NARR. Overall, Hybrid(Rind) showed the best accuracy and precision at all hydrometric
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stations, indicating that it has the potential not only to improve historical hydrologic simulations but also

to be used as reference data for statistical downscaling of climate change projections in the province.

5. Discussion

Among the station-based gridded climate datasets, the Township dataset outperformed other station-
based gridded climate datasets. As PNWNAmet set a common period from 1945 to 2012 for all stations
included in the interpolation, many stations might be left out in the data generation processes. While
ANUSPLIN used the Canada-wide archive (raw) station data collected by only ECCC, the Alberta
Township data has been produced on the basis of the archive (raw) station data collected by ECCC, AEP,
and AF over Alberta. Therefore, one of the possible reason for outperformance of Township dataset might
be the difference in the numbers of stations (i.e. station density) employed to produce the gridded climate
datasets. In addition, PNWNAmet showed a positive Ppiss for precipitation, especially in the mountainous
areas, while ANUSPLIN, which employs similar thin plate spline interpolation, generated negative Phpias.
PNWNAmet overestimated precipitation over the mountainous area, which considerably affects simulated
low flows at Hinton in the ARB. Figure 12 shows the observed and simulated hydrographs from gridded
climate datasets at (a) Hinton and (b) Pembina. It clearly shows that PNWNAmet highly overestimated the
low and high, which is caused by overestimated precipitation in the drainage area of the sub-basins. As with
PNWNAmet, NARR also overestimated the low and high flows, which is induced by the combined effects
of overestimating precipitation and warm biases in cold temperature. The temperature bias of NARR is thus
further confirmed and is consistent with the earlier finding of Eum et al., (2014) and Islam and Dery (2016).

In Figure 12, the hybrid climate datasets underestimated the peak flows (in 2009, 2010, 2014, and
2015) at Hinton, and hydrograph is similar to the hydrograph produced by ANUSPLIN data set that
dominantly ranked first in this watershed. On the contrary, the hydrograph of the hybrid climate datasets at
Pembina is similar to that of Township that is dominantly ranked first in Pembina (refer to Table 5). These

results indicate that the hybrid climate dataset has the intrinsic limitation that the performance of the hybrid
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dataset for a basin may closely resemble that of the climate dataset that is dominantly ranked first for the
basin. However, the utility of the hybrid climate dataset can be clearly found at a whole-basin scale for a
large watershed, as the added values of the hybrid climate dataset in sub-basins can be cumulated to the

main stem at the downstream in the watershed. To further validate the utility of the hybrid climate dataset

the VIC model was calibrated for the entire ARB to produce a long-term historical hydrologic simulation

for the ARB. Table 8 presents the NSE values of hydrologic simulations forced by ANUSPLIN and Hybrid

(Rind) at the hydrometric stations in the main stream of the ARB. The result shows that as the size of

watershed increases, the hybrid climate dataset starts performing better than ANUSPLIN used in Eum et

al.. (2017). In other words, the hybrid climate dataset improved the historical hydrologic simulation for the

ARB. This is mainly due to the fact that as the watershed area increases, the derived hybrid climate dataset

is no longer dominated by a single eridded climate dataset.

Among the station-based gridded climate datasets, ANUSPLIN and Township employed a different
number of stations depending on their periods of record. Therefore, there is an inconsistency in these climate
datasets over time. For example, the Township dataset employed only 300~400 stations in the 1960s, but
has increased to 400~500 since 1970. A change-point analysis of these datasets may provide some useful
information to end-users with respect to when and where changes occurred, which will help in establishing
spatial and temporal accuracies of these datasets (Eum et al. 2014a). Further, PNWNAmet employed the
same number of stations over time to avoid the above mentioned inconsistency, but this study found that it
induced overestimation of precipitation in data-poor regions such as mountainous regions in Alberta. As
the hybrid climate datasets are generated from the multiple historical gridded datasets, they may also have
the same inconsistencies identified in other datasets. The proxy validation, however, demonstrated that the
generated hybrid climate datasets can improve the performance of hydrologic simulations.

This study identified the preference order of all gridded climate datasets based on the performance
measures evaluated at the AHCCD stations, therefore the ranking somewhat relies on the spatial distribution

of the AHCCD stations. As shown in Figure 1, the density of AHCCD stations varies across western Canada,
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and is low in the cold climates of mountainous and northern areas. Therefore, the ranking could further be
improved with a more uniform density of AHCCD stations over western Canada.

Literature has demonstrated that NARR, a reanalysis-based climate dataset, can be an alternative as a
climate forcing dataset for hydrologic simulations in data sparse regions (Choi et al., 2009; Praskievicz and
Bartlein, 2014; Islam and Dery, 2016). In this study, the NARR dataset performed quite well in high-
elevation regions (Hinton in this study) while it did not perform so well in the middle and lower reaches,
i.e., lower-elevation watersheds. NARR performed especially poorly in the Pembina sub-basin, a region
where hydrologic simulations are highly sensitive to model parameters (Eum et al., 2014b). In Figure 11
(b), however, the NARR parameter set produced fair NSE values in hydrologic simulations forced by the
other climate datasets except for CaPA and PNWNAmet. Such result indicates that 1) all of parameter sets
used in this study were calibrated reasonably and 2) climate forcing input data plays a more crucial role in
hydrologic simulations as any parameter sets did not produce a fair NSE value from NARR in Pembina.
CaPA was more suitable than NARR for the selected sub-basins in this study, which indicates that CaPA
might be a better alternative in low station-density regions such as the ARB. However, since the validation
period in this study is only 7 years from 2010 to 2016, a longer data period is necessary to validate the
suitability of CaPA as indicated in Eum et al. (2014a) and Wong et al. (2017).

In the proxy validation, Hybrid(Ring) performed well in the Clearwater sub-basin where the highest
number of climate datasets were combined in the generated hybrid climate datasets. The Township dataset,
which mostly ranked first within its spatial domain, partially covers the drainage area of Clearwater, so that
the generated hybrid climate dataset, Hybrid(Ring), is composed of many climate datasets in this sub-basin.
In a traditional approach to hydrological modelling for Clearwater, either the Township dataset might be
completely excluded (as it does not cover the entire Clearwater watershed), or potentially combined with
other gridded climate datasets to cover the entire watershed. However, combining different climate datasets
to construct the climate forcing for a larger region requires an evaluation of the datasets to identify the order

of preference for such aggregation when multiple choices are available. Therefore, this study suggested the
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REFRES methodology to systematically compare all-available climate datasets for a region to produce a
hybrid climate dataset that covers a desired period of record and spatial domain by considering the order of
preference for combining various climate datasets at each grid cell. The proxy validation approach also
confirmed the utility of a generated hybrid climate dataset over other data sets, especially in hydrologic

simulations.

6. Summary and concluding remarks

This study suggested a framework called reference reliability evaluation system (REFRES) to
systematically generate a performance-based hybrid climate dataset from multiple climate datasets for a
region. The hybrid dataset was found to more reliable for hydrological modelling. The REFRES is
composed of three modules; 1) performance measures, 2) ranking, and 3) data generation. The suggested
framework was applied to the ARB as a test-bed and generated two hybrid climate datasets from single-
(Ring) and multi-variable (Rmu) approaches by evaluating the performance of five available gridded climate
datasets: station-based gridded climate datasets (i.e. ANUSPLIN, Alberta Township, and PNWNAmet), a
multi-source dataset (CaPA), and a reanalysis-based dataset (NARR). A hydrologic modelling-based proxy
validation approach was applied to demonstrate the applicability of the hybrid climate dataset generated for
the five sub-basins in the ARB. The results showed that

- Among the five climate datasets, the station-based climate datasets performed better than multi-
source- and reanalysis-based datasets. The Township dataset, in particular, outperformed other
climate datasets in the selected performance measures over northern Alberta.

- Most of the climate datasets performed poorly in the mountainous areas of southwest Alberta, due
to a sparse observation network, orographic effects, topographic complexity, and inconsistencies in
observation between Canada and the US.

- Asaresult of REFRES’ application for the ARB, the Township and ANUSPLIN datasets are mostly

ranked the highest among the five climate datasets for precipitation and temperature, respectively.
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- In the proxy validation, two hybrid climate datasets, Hybrid(Rind) and Hybrid(Rmu), performed
better in terms of precision and accuracy as forcing data for hydrologic simulations.

- Hybrid(Rin) especially outperformed other climate datasets in the Clearwater sub-basin where the
highest number of climate datasets were combined in generating Hybrid(Rina) for precipitation. This
indicates that the hybrid climate dataset generated by REFRES may lead to more reliable
hydrologic simulations, resulting in improved hydrologic predictions.

This study provided the preference order of climate datasets available in Alberta, which may be useful
for modelers and decision-makers as to which climate dataset is the most suitable for their studies and
projects. Furthermore, this study demonstrated that the hybrid climate dataset produced by REFRES is more
representative of historical climatic conditions. Therefore, the hybrid climate dataset is recommended to be
used as a reference dataset for statistical downscaling and hydrologic model forcing, resulting in more

reliable high-resolution climatic and hydrologic projections.

Code availability. A package of REFRES is available by contacting at hyung.eum@gov.ab.ca when

requested. Variable Infiltration Capacity (VIC) is also freely downloaded at https:/github.com/UW-

Hydro/VIC.

Data availability. ANUSPLIN can be access via ftp:/ftp.nrcan.gc.ca/pub/outgoing/canada_daily_grids and

PNWNAmet is downloaed at https://data.pacificclimate.org/portal/gridded observations/map/. The Alberta

Township data can be downloaded at http://agriculture.alberta.ca/acis/township-data-viewer.jsp. The

archives of CaPA can be access via http://collaboration.cmc.ec.gc.ca/science/outgoing/capa.grib/ and

http://collaboration.cmc. ec.gc.ca/science/outgoing/capa.grib/hindcast/ and the last 30 days of CaPA data is

available at http://dd.weather.gc.ca/analysis/precip/rdpa/grib2/polar_stereographic. The NARR dataset is

available at https://www.esrl.noaa.gov/psd/data/gridded/data.narr.monolevel.html. The hybrid climate

dataset for Alberta is also available by contacting at hyung.eum@gov.ab.ca when requested.
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Table 1. High-resolution gridded historical climate datasets used in this study

Dataset Full name  Variable Type Period Resolution Domain Institution
Australi Natural
N:liio?la? PRCP, Station-  1950- 10 km ReesloL:che
ANUSPLIN L TMX, . Canada
University T™MN based 2015 Daily Canada
Spline (NRCan)
PRCP,
TMX,

Alberta  TMN,  Station- 1961-  10km, b

T hi i . Al Agricul
ownship Township Tave, based 2016 Daily berta angrllicour::trre
WS, RH, y
SR
PCIC Western
NorthWest PRCP, 1/16 Canada Pacific
North TMX, Station-  1945- degree (BC, Climate
PNWNA .
met America TMN, based 2012  (6~7 km), AB, SK) Impacts
meteorological WS Daily and Consortium
dataset Alaska
Ca_na_dla_n Multiple 2002- 10 km, 6- North CanadlarT
CaPA Precipitation =~ PRCP source- . Meteorological
. 2017 hr America
Analysis based Centre
Nown 0 oceic and
N T I
ReZilzﬁnZis SR, GH, Administration
Y etc* (NOAA)

PRCP: precipitation, TMX: maximum temperature, TMN: minimum temperature, Tave: average
temperature, Tair: air temperature, WS: wind speed, RH: relative humidity, SR: solar radiation, GH:

Geopotential Height

*: Refer to https://www.esrl.noaa.gov/psd/data/gridded/data.narr.monolevel.html for details

36


https://www.esrl.noaa.gov/psd/data/gridded/data.narr.monolevel.html

Table 2. Characteristics of hydrometric stations selected in this study

Station name Station ID Record length Drainage (km?) Reach
Hinton 07ADO002 1961-2016 9,760 Upper
Pembina 07BC002 1957-2016 13,100 Middle
S29
Christina 1982-2016 4,836 Lower
(07CE002)
Clearwater above S42
1966-2016 18,061 Lower
Christina (07CD005)
S27
Firebag 1971-2016 5,980 Lower
(07DC001)

Table 3. Performance measures averaged over AHCCD stations in Alberta for precipitation

Performance Climate Dataset

measure ANUSPLIN PNWNAmMmet CaPA NARR Township
Dks 0.09 0.62 0.60 0.42 0.09
Oratio -0.17 -0.34 -0.39 -0.28 -0.03
Phias -7.05 5.80 3.02 243 -6.73

RMSE 2.02 2.50 2.59 3.53 1.07
TCC 0.87 0.81 0.77 0.53 0.95
PCC 0.87 0.80 0.73 0.74 0.93
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Table 4. Performance measures averaged over the AHCCD stations in Alberta for minimum and

maximum temperature

Climate Dataset

Performance ANUSPLIN PNWNAmMmet NARR Township
measure
Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax
Dks 0.03 0.02 0.05 0.04 0.12 0.08 0.03 0.02
Gratio -0.01 -0.01 -0.03 -0.03 -0.03 -0.03 -0.01 -0.02
Phias -0.43 -0.28 22.90 -3.89 -306.52 -14.09 7.33 -0.86
RMSE 1.48 1.25 1.97 1.82 4.40 3.47 131 0.97
TCC 0.99 0.99 0.98 0.99 0.96 0.97 0.99 0.99
PCC 0.91 0.98 0.87 0.95 0.71 0.78 0.93 0.98
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Table 5. First ranked number of grid cells in the five sub-basins and the whole Athabasca River Basin
(ARB) and their percentages for each climate dataset, considering the performance measures of individual
(Case A and Case B) and multi-variables (Case C, i.e., precipitation and temperature in this study). Total

number of grid cells is 22,372 at 1/32° (2~3 km)

Climate dataset

Criteria Basin
ANUSPLIN  Township PNWNAmet NARR  CaPA
ARB 2985 17515 691 499 682
(13%) (78%) (3%) (2%) (3%)
Hinton 1271 126 0 0 0
(91%) (9%) (0%) (0%) (0%)
Pembina 0 1791 0 0 0
(A) (0%) (100%) (0%) (0%) (0%)
Precipitation Christina 0 658 3 0 0
(0%) (99.5%) (0.5%) (0%) (0%)
Clearwater 1474 252 10 682 215
(56%) (9.6%) (0.4%) (26%) (8%)
Fircbag 129 750 9 0 64
(14%) (79%) (1%) (0%) (6%)
13809 6924 1639 0
ARB (62%) (31%) (7%) (0%) -
(B) : 63 77 1257 0
Hinton (5%) (6%) (89%) (0%) -
Temperature Pembina 486 1305 0 0
(27%) (73%) (0%) (0%)
(Min & Max Christina 492 169 0 0 i
(74%) (26%) (0%) (0%)
Temp.) Clearwater 2593 40 0 0 -
(98%) (2%) (0%) (0%)
Firebag 924 28 0 0 i
(97%) (3%) (0%) (0%)
8049 14323 0 0
ARB (36%) (64%) (0%) (0%) -
Hinton 1271 126 0 0 ]
©) (91%) (9%) (0%) (0%)
Pembina 0 1791 0 0 -
Multi- (0%) (100%) (0%) (0%)
. Christina 109 352 0 0 -
variables (16%) (84%) (0%) (0%)
Clearwater 2574 >9 0 0 -
(98%) (2%) (0%) (0%)
Firebag 536 416 0 0 i
(56%) (44%) (0%) (0%)
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Table 6. Nash-Sutcliffe Efficiency (NSE) for the calibration and validation periods at five sub-basins in
ARB for the climate datasets investigated in this study

. Hinton Pembina Christina Clearwater Firebag
Climate
forcing
Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val.
ANU
0.88 0.83 0.61 0.64 0.52 0.46 0.76 0.54 0.61 0.49
SPLIN
Town
- - 0.62 0.66 0.54 0.49 - - - -
ship
PNWNA
0.82 0.81 0.53 0.54 0.40 0.35 0.73 0.59 0.65 0.48
met
CaPA 0.89 0.90 0.53 0.61 0.55 0.44 0.74 0.74 0.51 0.53
NARR 0.84 0.79 0.50 -0.14 0.39 0.34 0.75 0.42 0.44 0.32
Hybrid
0.82 0.78 0.61 0.66 0.55 0.49 0.78 0.67 0.60 0.52
(Rind)
Hybrid
0.89 0.83 0.61 0.65 0.54 0.48 0.77 0.53 0.59 0.47
(Rmul)
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Table 7. NSE values between the current study and literature for the Athabasca River basin. The NSE values

were obtained for calibration and validation periods. For comparison of the current study to the literature,

the NSE values of the current study were obtained from the VIC simulation for the hybrid climate dataset

(Rind).
Literature/Hydrologic model
Current Leong and
Stations study/ Shrestha et | Faramarzi et | Faramarzi et | Betrie et al. | Donner
VIC! al. (2017b)/ | al. (2017)/ al. (2015)/ (2015)/ (2015)
SWAT? SWAT SWAT SWAT /IBIS-
THMB?
Hinton 0.80 0.87 - - - -
Pembina 0.64 0.69 - - - -
Athabasca 0.78 0.90 - - 0.50
Fort
Ol 0.77 0.89 - - 0.41 0.35
McMurray
Christina 0.52 0.49 - - - -
Firebag 0.56 0.28 - - - -
Average
for all 0.58 0.57 0.21 0.11 - -
stations

! Variable Infiltration Capacity

2 Soil and Water Assessment Tool

3 Integrated Blosphere Simulator - Terrestrial Hydrology Model with Biogeochemistry
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Table 8. Comparison of NSE values for hydrologic simulations forced by ANUSPLIN and the

hybrid climate datasets at the main stream of the ARB.

Drainage area ANUSPLIN Hybrid
No  Station name/ID

(mz) Calibration Validation Calibration Validation

Hinton /
1 9,760 0.85 0.82 0.83 0.76
07AD002
Windfall /
2 19,600 0.80 0.72 0.80 0.76
07AE001
Athabasca /
3 74,600 0.78 0.69 0.77 0.78
07BE001
Fort McMurray
4 133,000 0.77 0.66 0.78 0.75
[ MO7DAO001
Eymundson /
5 147,086 0.77 0.67 0.79 0.75

S24

(651
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* Preciptation + Temperature

Figure 1. AHCCD stations within the BC, AB, and SK provinces
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Performance Measures
Module (PMM)

Ranking Module
(RM)

Data Generation
Module (DGM)

Interpolation of datasets
to AHCCD* stations

Target grid cells
‘ (Lat, Lon, Ele)

Calculation of 6 PMs for
individual climate data
and variable at AHCCD
stations

Select the nearest AHCCD
neighbors by 1) distance
and 2) elevation

Ranking by the Technique for
Order of Preference by
Similarity to Ideal Solution
(TOPSIS)

Climate
Dataset

Data
Format

Interpolation to the target
grid cells

Generation of a hybrid
climate dataset in a

selected file format
(VIC forcing, ASCII, NC, etc)

Figure 2. Structure of REFRES comprised of three modules; 1) Performance Measure Module (PMM), 2)

Ranking Module (RM), and 3) Data Generation Module (DGM)
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Figure 3. Geographical information on the five sub-basins (red line) selected in the Athabasca River basin

for the proxy validation
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Figure 5. Maps of performance measures for AHCCD precipitation stations in Alberta
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Figure 5. Continued
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Figure 7. Maps of performance measures for maximum temperature over the AHCCD stations in Alberta
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Figure 9. Maps of the first-ranked climate datasets in ARB for the individual variable (A and B) and multi-variables (C)
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Figure 11. Boxplots of the NSEs of the proxy validation at the five sub-basins in ARB. The values above

each boxplot represent the average over NSEs of the proxy validation.
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Figure 12. Monthly observed and simulated hydrographs from the gridded climate datasets at (a) Hinton

and (b) Pembina
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