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 24 

ABSTRACT 25 

 26 

The implications of forecast-based reservoir operation have been considered to be innovative 27 

approaches to water management. Despite the advantages of forecast-based operations, 28 

climate-related uncertainty may discourage the utilization of forecast-based reservoir operation 29 

in water resources management. To mitigate this concern, a systematic evaluation proves 30 

helpful. This study presents an evaluation framework for reservoir management under a variety 31 

of potential climate conditions. In particular, this study uses Monte Carlo simulations to 32 

quantify the robustness of the forecast-based operation in a scenario of degraded ability of 33 

forecast skill, and demonstrates a new performance metric for robustness. This framework is 34 

described in a case study for a water supply facility in South Korea. To illustrate the framework, 35 

this study also proposes dynamic reservoir operation rules for our case study, utilizing seasonal 36 

climate information and a real-option instrument from an interconnected water system. Results 37 

provide system robustness evaluated over a wide range of defined uncertainties related to 38 

climate change. Results also suggest that the dynamic operation management adopted in this 39 

study can substantially improve reservoir performance for future climates compared to current 40 

operation management. This analysis may serve as a useful guideline to adopt dynamic 41 

management of reservoir operation for water supply systems in South Korea and other regions. 42 

 43 
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1. Introduction 48 

Population growth, resultant water demand, and recent climate change have increased the 49 

likelihood of water deficits in many regions of the world (Padowski et al., 2015; Schewe et al., 50 

2014). Efficient of hydrologic infrastructure is required to cope with present and future 51 

uncertainty (Ahmad et al., 2014). To meet these demands, considerable improvement in water 52 

resources system operations has been achieved over the last decade, including multi-objective 53 

operations (Tsai et al., 2015; Yang et al., 2015), the use of inflow forecasts (Giuliani et al., 2015; 54 

Sankarasubramanian et al., 2009), conjunctive use with groundwater (Liu et al., 2013; Singh et 55 

al., 2015), and optional transfers from an adjunct system (Jeuland and Whittington, 2014; 56 

Palmer and Characklis, 2009). 57 

 58 

The utility of forecasts in reservoir operations has long been investigated (e.g., Bai et al., 2014; 59 

Giuliani et al., 2015; Yao and Georgakakos, 2001; Zhao et al., 2012). To manage interannual 60 

hydrologic oscillation, seasonal climate forecasts (1-6 months) have been often coupled with 61 

reservoir operations (Block, 2011; Gong et al., 2010; Najibi et al., 2017; Sankarasubramanian 62 

et al., 2009; Steinschneider and Brown, 2012). These forecast-based operations are notably 63 

beneficial to conserve water supplies during low-flow periods (Block, 2011; Golembesky et al., 64 

2009). Despite the advantages of forecast-based operations, the possibility of forecast skill 65 

degradation diminishes their utility in water resources management. Forecast skill degradation 66 

indicates that predictive ability is decreased when an adopted covariate (e.g., climate 67 

teleconnection) is utilized for estimating inflow in a reservoir. To better assess this concern, a 68 

systematic approach is required to assess the impact of the possibility of forecast skill 69 

degradation on the reliability of forecast-based operations, which has received little attention 70 
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in previous studies. This study supports the field of reservoir operations by proposing a 71 

framework to examine how altered forecast skills could influence the behavior of system design. 72 

 73 

To achieve the primary objective, we newly identify a useful seasonal climate pattern, which 74 

can be utilized to develop seasonal climate-based operations for the study’s water supply 75 

facility. Seasonal climate-based operations and their climate covariates are becoming more 76 

widely suggested in many reservoir systems in many regions seeking multiple objectives 77 

(Broad et al., 2007; Gong et al., 2010; Najibi et al., 2017; Steinschneider and Brown, 2012). 78 

Also, seasonal climate-based operations have been considered as improved system operation 79 

rules (Block, 2011; Visser, 2017). Because the impacts and roles of climate covariates are 80 

diverse depending on geographical location (Ashbolt and Perera, 2018), reservoir operations 81 

incorporating teleconnections from large-scale atmospheric oceanic circulation patterns must 82 

pertain specifically to each system. To be tailored for our water supply facility, a forecast-based 83 

operation algorithm is also described to incorporate the large-scale oceanic circulation pattern 84 

identified in this study. Following Gong et al. (2010) and Steinschneider and Brown (2012), 85 

forecast information is used to determine water rationing to circumvent severe shortfalls by 86 

diminishing the normal supply. 87 

 88 

Climate-based operations have further been used as reliable climate change adaptation 89 

strategies (Steinschneider and Brown, 2012; Whateley et al., 2014). However, as noted by 90 

Romsdahl (2011) and Whateley et al. (2014), water resource managers may not be receptive to 91 

the use of forecast-based reservoir operations for their long-term operation plans (i.e., climate 92 

change adaptation plans) for various reasons such as financial constraints, insufficient skill, 93 
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and institutional obstacles. In particular, the possibility of forecast skill degradation may be one 94 

of the main reasons for this reluctance. Global climate change may accelerate unexpected 95 

alterations in the relationship between large-scale synoptic circulation and local hydrology. For 96 

instance, Allan et al. (2014) describe possible changes in future surface hydrology related to 97 

the Pacific-North American (PNA) teleconnection pattern. A similar interpretation can be found 98 

for ENSO with local hydrology (Kohyama et al., 2018). In these cases, a forecast with 99 

unreliable predictions may lead water managers to make inappropriate operation decisions, 100 

resulting in subsequent critical shortages and severe criticism from stakeholders. One possible 101 

way to mitigate this concern is to explicitly evaluate the impacts of changes in forecast skill in 102 

the relationship between large-scale synoptic circulation and local hydrology by 103 

simultaneously considering potential shifts in climate. Such an evaluation may identify 104 

adequate bounds ensuring acceptable performance at a reasonable risk.  105 

 106 

The impact of climate change on water resources management has been widely investigated 107 

(Zhang et al., 2017). Global circulation models (GCMs) are commonly employed for 108 

understanding potential shifts in climate, but due to biases and incomplete sampling of 109 

uncertainties, they are limited for risk assessments exploring potential climate change (Brown 110 

and Wilby, 2012). Poorly understood climate physics and computational complexity further 111 

exacerbate limitations in incorporating information from these scenarios into climate change 112 

assessments (Koutsoyiannis et al., 2009). Alternatively, robustness-based methods have been 113 

proposed without direct use of climate model projections, focusing on analysis that quantifies 114 

the range of climate space over which a water resource system can provide acceptable 115 

performance. Examples include info-gap analysis (Korteling et al., 2013), robust decision 116 

making (Lempert and Groves, 2010; Matrosov et al., 2013) and decision scaling (Brown et al., 117 

https://doi.org/10.5194/hess-2019-175
Preprint. Discussion started: 6 June 2019
c© Author(s) 2019. CC BY 4.0 License.



6 

 

2012; Turner et al., 2014). The robustness-based method has been increasingly used to assess 118 

system vulnerability and to propose alternative policy decisions (Brown et al., 2011; Ghile et 119 

al., 2014; Hassanzadeh et al., 2016). Based on the robustness-based method (decision scaling 120 

is adopted in this study), we develop an evaluation framework to systematically account for 121 

uncertainties related to internal climate variability when determining if altered forecast skills 122 

are reliable.  123 

 124 

In South Korea, drought risk has not been an explicit concern as an increase in precipitation 125 

over South Korea has been documented in various studies (Ho et al., 2003; Kim and Jain, 2011; 126 

Lee et al., 2012). However, many regions of Korea have recently been experiencing water 127 

deficit (Kwon et al., 2016). To be specific, the Korean peninsula experienced severe droughts 128 

in 2002 and 2014-2016 (Kim et al., 2018). During the 2014-2016 drought, local water managers 129 

executed water supply restrictions for many areas of the west coast of South Korea, thereby 130 

adversely affecting the environment and living conditions for people (Ihm et al., 2019). This 131 

multi-year drought drew water managers’ attention in South Korea because it was an 132 

exceptional event considering the regularly recurring flood season (June to August) every year. 133 

Multi-year drought poses a new and substantial challenge to water managers deciding current 134 

strategies to ensure prudent future reservoir operations. 135 

 136 

Cognizant of the risk of a multi-year drought, local water managers in South Korea have 137 

constructed real-option water transfers enabling offsetting local water shortfalls by drawing 138 

water from distant water resource systems. For example, the Korean Water Resources 139 

Corporation (K-water) recently constructed a water transfer pipe from the Baekje Weir to the 140 
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Boryeong Reservoir in anticipation of water shortages (Kim et al., 2017). Although many 141 

studies have advocated the use of option instruments for mitigating water resource system 142 

failures (Palmer and Characklis, 2009; Zeff et al., 2016; Zhu et al., 2015), many scientists in 143 

South Korea question whether water transfer options are valuable (Jang et al., 2017). However, 144 

even if water transfers may not be worthwhile for the present, they could prove promising in 145 

the face of unexpected future climate conditions. Accordingly, we utilize the proposed 146 

framework to investigate the utility of water transfer options for both the present and a future 147 

with climate change. We also examine if more effective water management would result during 148 

critical drawdowns when water transfer is utilized concurrently with our new climate-based 149 

operation curve. 150 

 151 

In summary, this study seeks to answer the following questions in a case study of daily 152 

streamflow for water supply facilities (the Boryeong Reservoir and Baekje Weir) in South 153 

Korea. The water supply facilities recently experienced the worst drought in the historical 154 

record, highlighting that reliable and effective operation rules are urgently required for both the 155 

present and the future. 156 

 157 

1. Can a forecast-based operation rule improve performance for the Boryeong Reservoir 158 

compared to the status quo operation rule? 159 

2. Will the real-option water transfer installed between the Baekje Weir and the Boryeong 160 

Reservoir prove useful to curtail water shortages? What are the potential contributions 161 

of real-option water transfer when utilized concurrently with our operation rule? 162 
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3. If the dynamic operation rule was adopted, how responsive would our improved 163 

reservoir system be under long-term climate change as well as changes in seasonal 164 

forecast skill? 165 

 166 

The rest of this paper is described as follows. Section 2 delineates a theoretical background of 167 

the dynamic reservoir operation and the proposed framework. Section 3 introduces a specific 168 

application to the Boryeong Reservoir system, the primary water supply system for Boryeong 169 

in South Korea. Results are presented in section 4. The paper concludes with a discussion of 170 

some limitations of our approach as well as potential research needs in section 5. 171 

 172 

2. Methodologies 173 

In this study, the methodology is comprised of three major components. The first follows 174 

Steinschneider and Brown (2012) to develop dynamic reservoir management incorporating 175 

forecast-based operations and real-option water transfer from an interconnected water system 176 

(Section 2.1). We then present how to generate future streamflow scenarios using a stochastic 177 

weather generator and a hydrologic model (Section 2.2). Finally, we introduce a new 178 

framework using Monte Carlo methods to explore whether different operation rules provide 179 

appropriate performance over a wide array of uncertainties (Section 2.3). To be specific, three 180 

reservoir operation rules are evaluated. The first rule   presents a baseline and status 181 

quo operation, comparable to that currently used in our study case. The second rule   182 

employs forecast-based operations without the ability to hedge risk with a real-option. The real-183 

option from an interconnected water system is then added to bolster the dynamic operation in 184 
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the third rule  . Following Field et al. (2012), robustness is defined when an operation 185 

plan performs well across many feasible scenarios. Accordingly, the operation rule options can 186 

be robust to a specific type of long-term alterations if they produce an acceptable performance 187 

for overall simulations associated with that long-term alteration. A detailed explanation of each 188 

step is provided in the following sections. 189 

 190 

2.1 Dynamic reservoir management 191 

The operation rule curve   can be formalized as  = () , where   is a set of daily 192 

reservoir storage levels,  is a set of daily inflow sequences, and (∙) represents the function 193 

used to derive the rule curve. Each inflow sequence  covers one calendar year with total  194 

years. The dynamic operation rule is designed for   different phases of a climate 195 

teleconnection utilized for forecast use. To be specific, the historical record is divided by year 196 

into  mutually exclusive sets, , … ,  such that for all years in a given set, the climate 197 

index is in one particular phase. 198 

 199 

  = {| ∈ }          (Eq. 1) 200 

  = {| ∈ (́, ̀),  ∈ [1, 2, … , ]}       (Eq. 2) 201 

 202 

where,    is an index measuring climate teleconnection for the   calendar years in the 203 

historic record, ́ and ̀ indicate minimum and maximum values, respectively, to delimitate 204 

the  phase of the climate conditions, and  is a set of inflow that occurred during years 205 
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for the   phase of the climate conditions. To drive the dynamic operation rule, inflow 206 

sequences are limited to  associated with that particular phase of climate variability  =207 (). 208 

 209 

During real-time operations, forecast-based operations are maintained for one calendar year. 210 

The month following the release of climate information, reservoir operations are altered 211 

corresponding to the rule curve obtained by the current phase of the climate information. After 212 

one calendar year, the reservoir operation is changed by the new forecast. Note that the forecast-213 

based operation applied in this study is relatively straightforward. Perhaps monthly updating 214 

of the rule curve could be more promising as noted in Aboutalebi et al. (2015). 215 

 216 

The specific dynamic operation rule associated with that particular phase of climate variability 217 

( ) is determined by a stochastic analysis. The methodology of a stochastic analysis is 218 

described in detail elsewhere (Steinschneider and Brown, 2012; Westphal et al., 2007) so is 219 

only briefly reviewed here. At its core,  is defined such that it has a certain chance that a 220 

reservoir system is drawn down below the critical storage level ∗∗∗  over a period given 221 

different initial reservoir conditions and time of year.  is designed across time by month so 222 

is constant for all period in a given calendar month. To consider the multi-year drought, 223 

resampled two year sequences of inflow, drawn from a set of yearly inflow sequences, are 224 

utilized. After identifying the minimum-maximum storage levels for the certain chance, 225 

linearly interpolation is employed between the two minimum-maximum storage levels for each 226 

month. 227 
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 228 

In addition, water transfer (TR) from an interconnected water system is operated during specific 229 

periods when the storage level of the target reservoir falls below a certain storage level (∗∗ 230 

used in this study). The decision rule to facilitate the option is formulated as 231 

 232 

  = min(∗∗ − ,  )         ∀ < ∗∗0                            ∀ ≥ ∗∗      (Eq. 3) 233 

 234 

where  is the reservoir storage at t-1 and   is the maximum volume of water which 235 

can be transferred from the interconnect water system. Here, the amount of water transferred 236 

in the option is designed as a function of how far the current storage falls below the predefined 237 

storage ∗∗ and is limited by physical constraints (e.g., maximum pipe volume). 238 

 239 

2.2 Future inflow realization under climate alternatives  240 

The operation rule curve is evaluated though an exhaustive sampling of changes in climate 241 

variables, such as mean precipitation and temperature changes. A weather generator developed 242 

by Cordano and Eccel (2016) is used to provide climate sequences that exhibit similar climate 243 

statistics. To be specific, daily precipitation, maximum, and minimum temperatures are 244 

generated for each specified mean climate future in this study. The weather generator utilizes 245 

a vector autoregressive (VAR) model (Pfaff, 2008) to preserve temporal and spatial correlations 246 

among generated daily precipitation and temperatures. The auto-regression order must be 247 
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determined prior to scenario generation, and is decided based on the AIC (Akaike, 1981) 248 

calculated from the observed data. Then the VAR model is calibrated on the transformed time 249 

series which is transformed into Gaussian-distributed random variables through 250 

deseasonalization and Principal Component Analysis (PCA). Details on the methodologies 251 

about the weather generator can be found in Cordano and Eccel (2016). 252 

 253 

Climate sequences can be developed over any range of potential climate change. While the 254 

selection of this range remains still an open question, the range can specify a large sufficient 255 

range that can cover the climate space that is explored by GCM projections and ensure that the 256 

endpoints of the range do not emerge in a meaningful implication (Whateley et al., 2014). Also, 257 

a number of climate simulations (e.g., 100-1000) are needed to adequately explore possible 258 

climate fluctuations (Guimarães and Santos, 2011). Following these two logical strategies, 40-259 

year daily simulations of climate are generated 200 times with different climate changes 260 

imposed on the mean of precipitation and maximum/minimum temperatures in this study. 261 

Climate changes include percent changes in mean precipitation (−25%  to 30%  in 5% 262 

increments) and absolute changes in mean maximum and minimum temperatures (−2.0°C to 263 2.0° C in 0.5° C increments) from baseline values. Therefore, 21600 = 200 ×  12 ×  9 264 

different 40-year climate sequences are developed in this study. 265 

 266 

A conceptual, lumped parameter hydrologic model, the Sacramento Soil Moisture Accounting 267 

(SAC-SMA) model (Burnash, 1995; Burnash et al., 1973) is used to simulate future daily 268 

streamflow from the generated climate sequences. The SAC-SMA divides the basin into two 269 

soil zones, an upper zone and a lower zone, which is its most representative feature compared 270 
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to other typical hydrologic models (e.g., PRMS, VIC, and HBV). The upper zone simulates the 271 

short-term storage of the basin; the lower zone represents the underground soil in the long-term 272 

storage. Each zone is affected by evapotranspiration and free water, thereby representing the 273 

water that evaporates and the water that flows or percolates downward (Najafi et al., 2011). 274 

The generation processes are delineated by a total of 16 unknown parameters, but 3 parameters 275 

(SIDE, RIVA, RSERV) are set to their default values as in other studies (e.g., Chu et al. (2010)), 276 

leaving 13 parameters for calibration. In addition, effective rainfall and snowmelt input to 277 

SAC-SMA is considered to simulate snow accumulation/melting processes using a snow model 278 

similar to those of Ahn et al., (2016a) and Martinez and Gupta (2010) based on daily mean 279 

temperature, with an additional 3 parameters. Lastly, to account for biases in climate variables, 280 

an input data error model is employed based on two formulations, a multiplier form (Li and 281 

Xu, 2014) and an additive form (Huard and Mailhot, 2006), which have been widely applied 282 

(Jin et al., 2010; Zhang et al., 2016). Errors in temperature (precipitation and evapotranspiration) 283 

is assumed to be additive (multiple) which can be formulated as follows: 284 

 285 

 =   +        286 

 =            Eq. (4) 287 

        =      288 

 289 

where   represents the bias correction term for temperature () , precipitation  () , and 290 

evapotranspiration (). The Hargreaves method (Hargreaves and Samani, 1982) is used for 291 

estimating PET from maximum and minimum temperatures. Radiation values for the 292 
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Hargreaves method are estimated by the method proposed by (Allen et al., 1998). 293 

 294 

In total, the 19 parameters of the model (presented in Table 1) are calibrated by maximizing 295 

Kling-Gupta efficiency (KGE; Gupta et al., 2009) using the differential evolution optimization 296 

algorithm (Mullen et al., 2009). KGE (ranging between −∞  and 1) is composed of three 297 

independent error components, including terms for mean bias, variability bias, and correlation 298 

between the simulated and observed flows. This performance metric has advantages over 299 

traditional skill measures like Nash-Sutcliffe efficiency (NSE) because it removes interactions 300 

between error components and reduces negative variability bias in simulation results (Revilla-301 

Romero et al., 2015). 302 

 303 

2.3 Framework to evaluate robustness of diverse alternatives  304 

The framework focuses on demonstrating how robust the alternatives of forecast skills function 305 

under various potential climate conditions. To be specific, we evaluate a reservoir plan under 306 

three alterations in climate (changes in precipitation, temperatures and seasonal forecast skills 307 

related to teleconnection). A plan is considered robust to a set of alterations if it offers satisfying 308 

performance for overall Monte Carlo simulations related to the three alterations. Although three 309 

climate-related alterations are considered here, the framework can be easily expanded to 310 

consider other feasible alterations such as changes in water supply demands. 311 

 312 

The following procedure is used to define robustness in this study.  313 
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[1] For a reservoir operation plan,  = 1, … ,  future precipitation, maximum and minimum 314 

temperatures are generated under each long-term climate change scenario under ℎ = 1, … , . 315 

In this study,  = 200 climate sequences are produced under  = 117 change scenarios (as 316 

stated in Section 2.2). Thereby,   streamflow simulations are obtained for each long-term 317 

change scenario. 318 

[2] For each of  = 1, … ,   conditions of forecast skills, a future teleconnection index is 319 

developed by a bivariate conditional expectation with the generated streamflows. Here, the 320 

forecast skill ability is defined by the correlation (̃) between the seasonal index value (̃) and 321 

the generated seasonal streamflows ( ). Therefore, future seasonal values of the forecast-322 

informed index are generated by (̃ +  ̃ ( − ̃), (1 − ̃ )̃). In this study,  = 5 323 

future forecast skills are generated to examine the impacts of forecast skill degradation, along 324 

with  streamflow simulations for each long-term change (illustrated in Section 4.1). 325 

[3] After a reservoir plan is operated with future streamflow simulations, a binary performance 326 

score, (ℎ, , ), is developed to characterize system performance. The binary performance 327 

score returns a value of 1 if the reservoir operation shows acceptable performance; otherwise 328 

it obtains a value of 0. In this study, performance is considered acceptable if simulated storages 329   are maintained above a predefined threshold (the critical storage ∗∗∗  used here is 330 

described in Section 3.1). Instead, acceptable performance can be defined by comparing any 331 

performance variable (e.g., deficit in water supply) with a predefined threshold. 332 

[4] For ℎ  long-term climate change scenario and   condition of forecast skill, the 333 

robustness index (RI) of the specific reservoir operation, similar to (Steinschneider et al., 2015), 334 

is developed by integrating the binary performance scores (Eq. 5).  335 
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 336 

, =  ∑ (ℎ, , )        Eq. (5) 337 

 338 

In this study, averaging binary scores is used to summarize a sufficiently large number of future 339 

scenarios ( = 200). We note that an additional process (e.g., providing a different weight to 340 

each scenario) may be considered to develop the RI if limited sets of scenarios are used. Then, 341 

assigning normalized weights for each scenario can be used. 342 

Although other performance metrics are available (e.g., reliability, resilience, and vulnerability 343 

described in Fowler et al. (2003) and Hashimoto et al. (1982)), the RI is preferred in this study 344 

because the three metrics may be more appropriate under conditions where the single time 345 

series is believed to fully represent the uncertainty of future inflows but is less appropriated in 346 

the analysis with many possible future scenarios (Whateley et al., 2014). 347 

[5] The RI offers a mapping, which can be used to determine whether a reservoir plan is robust 348 

under potential climate conditions considered. If the RI for the defined climate condition is 349 

greater than the adequate threshold (∧ = 0.9 in this study), we consider the reservoir plan 350 

robust for the climate condition. In addition, an ensemble of GCM projections is superimposed 351 

on these surfaces to provide the likelihood of different climate changes. 352 

[6] Finally, the degradation robustness index (DRI) of the forecast-based reservoir operation is 353 

developed under  forecast skill change as follows: 354 

 355 
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 = × ∑ ∑ (ℎ, , )       Eq. (6) 356 

 357 

Similar to the RI, an adequate threshold is defined for the DRI (∧ = 0.7 in this study). 358 

Although this threshold is arbitrary, it is quite useful in a decision-making process. Also, the 359 

lower threshold is acceptable because it must consider a plan under a sufficiently large range 360 

of long-term climate change scenarios. Alternatively, system planners can decide the value of 361 

the threshold based on their expertise after reviewing the robustness. 362 

 363 

3. Case Study Description 364 

3.1 Overview of water supply system and its rule curve 365 

This study focuses on the water supply systems in two adjacent basins including the Geum 366 

River Basin and the western Geum River Basin, located in midwest of South Korea (Figure 1). 367 

The basins receive an annual average of 1,250 mm precipitation. Similar to other regions in 368 

South Korea, the basins are affected by a monsoon climate that often generates extraordinarily 369 

heavy rainfall and corresponding floods in the summer (Yan et al., 2015). Accordingly, two-370 

third of annual precipitation is concentrated in the summer spanning from June to early 371 

September (flood season) while only one-thirds of annual precipitation falls during the 372 

remaining months (drawdown season). The drawdown season is generally dry, contributing to 373 

periodic droughts to the basins (Ahn and Kim, 2019). These distinct seasonal climate 374 

fluctuations pose significant water management challenges including requiring deliberate 375 

operation of the local reservoirs (Sohn et al., 2013). 376 
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 377 

This study uses the Boryeong Reservoir in the western Geum River Basin, and the Baekje Weir 378 

in the Geum River Basin (Figure 1). The Boryeong Reservoir with a storage capacity of 116.9 379 

MCM (1 MCM is equal to 106 m3) was constructed in 1998 to serve four main purposes: (1) 380 

flood control, (2) water supply, (3) water quality, and (4) hydropower generation, and is 381 

operated by the Korean water resources corporation (K-water). The reservoir serves as the 382 

principal municipal and industrial water supply (WSMI) source for eight cities such as Boryeong, 383 

Dangjin, and Seosan, and is also operated for hydropower generation (WSHP), environmental 384 

demand (WSEN), and supply of seasonal irrigation demand (WSIR). Therefore, total controlled 385 

releases for water supply at time t are expressed as  =    +   +   +  . 386 

While the reservoir has a flood control storage capacity (106.3 MCM) for the flood season, the 387 

dead storage capacity is limited to 8.1 MCM for the drawdown season.  388 

 389 

Our study basin experienced severe droughts in 2002 and 2014-2016. In particular, during the 390 

2014-2016 drought, the Boryeong Reservoir failed to satisfy the designed demands including 391 

municipal, agricultural, and environmental water supplies, adversely affecting the environment 392 

and inadvertently harming people. During the multi-year drought, storage of the reservoir was 393 

depleted to just 18.9% of its capacity—which is the minimum percentage in the historical 394 

record (Hong et al., 2016). To protect the system against other extreme droughts and changes 395 

in climate, two alternatives have been suggested. First, a new operation rule, comprised of three 396 

storage levels, was developed for the Boryeong Reservoir (Figure 2; Ministry of Land, 397 

Infrastructure and Transpor, 2015). If the reservoir level drops below the mild storage level ∗, 398 

water allocation for WSEN is terminated the water level rises above ∗. Then, if the reservoir 399 

level falls below than the severe level ∗∗ , three water demands (WSEN, WSIR, WSMI) are 400 
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restricted by 100%, 30% and 10%, respectively. Here, additional water restriction of 10% is 401 

conducted for WSMI if the reservoir level drops below the critical storage level ∗∗∗. In the 402 

analysis, we adopt the water restriction policies across the three operation rules ( , 403   ,   ). Also, the current critical level ∗∗∗  is employed to make a fair 404 

comparison between strategies whereas ∗  and ∗∗  of the forecast-based operations are 405 

determined by a stochastic model (see Section 2.1). 406 

 407 

Next, K-water recently constructed a 21 km, 110 cm water transfer pipe connecting the Baekje 408 

Weir (storage capacity: 28.7 MCM) to the Boryeong Reservoir in preparation for water 409 

shortages. The Baekje Weir was completed in 2013 to mainly support agricultural demand with 410 

the flood control storage capacity (28.6 MCM) and dead storage capacity (5.7 MCM). The new 411 

pipe can draw water from the Baekje Weir with a maximum of 115,000 m3 per day before 412 

depleting storage of the Boryeong Reservoir. For this strategy, the water transfer option is 413 

triggered when storage of the Boryeong Reservoir falls below the severe level ∗∗  and 414 

continues until the Boryeong Reservoir rises above ∗∗. 415 

 416 

Finally, the storage (S) of the Boryeong Reservoir can be formulated as follows: 417 

 418 

  =   +  +  −  −       Eq. (7) 419 

 420 

where  indicates any water that spills out from the reservoir. We define that  occurs 421 

only when  >   .  422 

 423 

3.2 Data 424 
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Historic daily climate data, including precipitation, maximum and minimum temperatures were 425 

gathered from 60 of the Korea Meteorological Administration’s Automated Surface Observing 426 

System (ASOS) gauges. The climate data was interpolated onto a 1/8 degree resolution (~140 427 

km2) by using the Thiessen polygons (Thiessen, 1911). The final historic data set was obtained 428 

over the period of 1 January 1973 to 31 December 2018 by averaging the values within the grid 429 

cells overlapping our study basin areas. In addition, monthly sea surface temperatures (SSTs) 430 

were obtained from the Extended Reconstructed Sea Surface Temperature version 5 431 

dataset (Huang et al., 2017). 432 

 433 

Daily historical inflow data for the Boryeong Reservoir was gathered online from the “Water 434 

Resources Management Information System” webpage (http://www.wamis.go.kr/) for the 435 

period of 1 January 1998 to 31 December 2018. The same hydrologic dataset for the Baekje 436 

Weir was collected from the “My water” webpage (http://www.water.or.kr/) over the period 437 

between 1 January 2013 and 31 December 2018. Note that both sets of hydrologic data were 438 

available only upon completion of their construction, respectively. Current demand data for all 439 

water use were obtained from our partners in K-water.  440 

 441 

Mean changes in precipitation and maximum/minimum temperatures were collected from the 442 

World Climate Research Programme’s Coupled Model Intercomparison Project Phase 5 (CMIP 443 

5) multimodel data sets. The climate model projections were bias corrected using the detrended 444 

quantile mapping (DQM; Bürger et al., 2013; Eum and Cannon, 2017) method. These projected 445 

changes in precipitation and temperatures were calculated across the entire Boryeong Basin 446 

using 30-year windows between 1976 and 2005 (baseline) and 2051 and 2080 (future). Two 447 

emission scenarios (Representative Concentration Pathways 4.5 and 8.5) and initial condition 448 
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members of 26 models (presented in Table S1) were employed in the analysis. 449 

 450 

4. Results 451 

4.1 Climate teleconnections for Boryeong Reservoir  452 

Many studies have well documented the global impacts of the El Nio-Southern Oscillation 453 

(ENSO), a large-scale oceanic circulation pattern in the tropical Pacific Ocean (Kug et al., 2009; 454 

Sharma et al., 2016; Ward et al., 2014) whereas further examination is necessary to investigate 455 

its effects on the Korean Peninsula (Yoon and Lee, 2016). We identify that ENSO exhibits a 456 

lagged influence over hydroclimate in the western Geum River Basin and is used to construct 457 

hydrologic forecasts for the region during early spring, the most crucial period for reservoir 458 

operation in drawdown season. Figure 3a shows the Pearson correlation coefficients between 459 

June-August (JJA) SST at each ocean grid cell and average February-April (FMA) streamflow 460 

in the coming year for the Boryeong Basin over the period of 1998-2018 (21 years). Similar 461 

analysis is conducted for seasonal low flows defined here by seasonal 20 day low flows (Figure 462 

3b). These correlation patterns reveal that the FMA inflows are significantly and positively 463 

related with lagged ENSO, implying that summer ENSO provides some predictability. Wang 464 

and Fu (2000) reported that during El nino , an anticyclonic flow over the Philippine Sea 465 

develops, intensifying during the previous seasons and can affect climate in the following 466 

winter, bringing warm and moist air to East Asia. Following this pattern, hydrologic conditions 467 

are wetter (dryer) than usual with lagged effect during El nino (La Nio) events in our study 468 

area. For simplicity, we use Nio 3.4 (Gergis and Fowler, 2005) to represent the magnitude of 469 

ENSO (Figures 3c and 3d). The correlation () between Nio 3.4 and seasonal average flows 470 

(seasonal low flows) is 0.72 (0.58), indicating that the relationship is fairly significant. For 471 
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developing forecast-based operations, the binary forecasts of Nio 3.4) are issued based on the 472 

state of the Nio 3.4 indices being greater than or less than median values (Nio 3.4+ and 473 Nio 3.4− ) in this study. Also, seasonal low flows are utilized to investigate the potential 474 

impacts of forecast skill change from the relationships with Nio 3.4 because seasonal low 475 

flows are more directly associated with drought conditions than average flows. Accordingly, 476 

future forecast skills ( = 5) of Nio 3.4 are defined by absolute changes in the correlation 477 

with seasonal low flows (ranges between 0.15 and 0.75).  478 

 479 

4.2 Performances of weather generator and hydrologic modeling  480 

Figure 4 shows a brief evaluation to demonstrate the ability of the weather generator to simulate 481 

historical climate conditions for the Boryeong and Beakje Basins. Here, 400 simulations with 482 

no changes imposed are compared against observed statistics for each calendar month. The 483 

average, standard deviation, skew of daily precipitation, and kurtosis of daily precipitation are 484 

displayed in Figure 4a-d. Similarly, the average and standard deviation of maximum/minimum 485 

temperatures are presented in Figure 4e-f. Overall, the results suggest good performance for all 486 

variables and statistics with observation values falling within the range of the simulations. Note 487 

that the simulations are slightly biased in regard to standard deviations of maximum/minimum 488 

temperatures for some months (e.g., maximum temperatures are underestimated in August 489 

while overestimated in September). We also confirm that the cross-correlations of all three 490 

variables for calendar months are fairly preserved in the simulations (not shown). The 491 

performance confirms that the weather generator used in this study is appropriate to reproduce 492 

climate scenarios for our study basins. 493 

 494 
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Figure 5 shows observed daily streamflow for the last three years of calibration and two years 495 

in the validation period. Note that different calibration and validation periods are selected for 496 

each basin due to the imbalance in the records of hydrologic data (see Section 3.2). For the 497 

Boryeong Basin, augmented SAC-SMA is calibrated (validated) by using the observed daily 498 

data from January 1999 to December 2013 (January 2014 to December 2018). The KGE, NSE, 499 

and percent bias (PB) are 0.79, 0.58, and 0.2% for the calibration period and 0.77, 0.61, and 500 

0.8% for the validation period, respectively. The PB is expressed as a percentage of observed 501 

values. For the Beakje Basin, SAC-SMA is calibrated (validated) by using the data from 502 

January 2013 to December 2016 (January 2017 to December 2018). The KGE, NSE, and PB 503 

equal 0.83, 0.66, and 0.5% for the calibration period and 0.75, 0.55, and -8.3% for the validation 504 

period. Based on performance criterion suggested by Martinez and Gupta (2010) and Moriasi 505 

et al. (2007), these performances are considered either “good” or “efficient” for daily 506 

simulation. Note that because the NSE is not adopted for the objective of calibration, it is not 507 

significantly decreased from the calibration to the validation period. The parameters calibrated 508 

for the two basins are also presented in Table 1. 509 

 510 

4.3 Rule curve comparison in historical period 511 

Figure 6 shows a time-series of Boryeong Reservoir storage operated by three rule curves 512 

(  ,   , and   ) as well as three rule curves themselves for the most 513 

recent seven years (2012-2018). This period is selected since it reflects the worst drought on 514 

record (see Section 3.1). Note that simulated inflow for the Beakje Weir is utilized for 515   based on the assumption that the water transfer option is available from the initial 516 

date of the Boryeong Reservoir. Figure 6a presents the status quo operation curves exhibiting 517 
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a pronounced and seasonal pattern whereas Figures 6b and 6c also show the forecast-based rule 518 

curves which are changed year to year on the basis of a hydrologic forecast associated with 519 

lagged ENSO events. Here, Nio 3.4+     is shifted downward especially for the 520 

severe storage level (C**) compared to Nio 3.4−     which is consistent with the 521 

ENSO forecasting signal identified in Section 4.1. 522 

 523 

Several insights emerge from Figure 6. In Figures 6a,    experiences critical 524 

drawdowns during the 2016-2017 drought event with storage falling below ∗∗∗ for 272 days. 525 

Under  , critical drawdowns are somewhat moderated with storage falling below ∗∗∗ 526 

for 243 days albeit with little benefit. The marginal improvement is from a potential drawback 527 

of the forecast-based operation. In 2017 when the drought was most severe, the risk of water 528 

shortage is incorrectly predicted by the summer ENSO, leading to the storage level falling 529 

below the critical level. That highlights that the risk associated with seasonal forecasts in an 530 

individual year can increase even if average performance is better from reliable forecast 531 

information. A potential drawback is alleviated when the real-option water transfer is adopted 532 

(  ). The real-option from the Beakje Weir eliminates critical drawdowns even in 2016-533 

2017 which are the driest periods on record. This indicates that the real-option is beneficial in 534 

preventing the Boryeong Reservoir from falling below critical storage levels even for a multi-535 

year drought event. 536 

 537 

4.4 Robustness in climate uncertainties 538 

Figure 7 shows the RI of three operation rule curves ( ,  , and  ) for 539 
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changes in mean precipitation and temperature with the teleconnection forecast skill held at 540 

baseline level (=0.55).   provides robust performance for all temperature changes 541 

when mean precipitations exceed 110% of historical means but when mean precipitations drop, 542 

the operation is fairly vulnerable. In addition, the operation rule is not robust for current 543 

precipitation and temperature conditions (RI = 0.71). On the other hand,   shows 544 

improved performance for current conditions (RI  =  0.83). In comparison,   545 

improves overall system performance compared to   , suggesting that improved 546 

operation performance is expected when the forecast-based operation is applied as described 547 

in previous studies (Block, 2011; Visser, 2017). When   is utilized, we may expect 548 

more reliable performance, which is confirmed in the analysis using historical records. Even 549 

though mean precipitation is reduced by 10% of the historic value, a high level of robustness 550 

(RI= 0.90) could be expected by  , supporting the use of option instruments for the 551 

Boryeong reservoir.  552 

 553 

In the results, we also confirm nonlinear results by changes in mean temperature whereas 554 

changes in mean precipitation lead to consistently dominant changes. The nonlinear 555 

performance in warmer conditions may be due to a shift in the hydrograph that accompanies 556 

changes in temperature due to changes in the timing and magnitude of snow accumulation and 557 

melting. Figure 7 also includes pdfs developed by an ensemble of GCM projections. 558 

Projections are centered on an increase of 11% mean precipitation and 1.78 ° C. For the 559 

centered projections, three operation rules achieve a similarly reliable performance. However, 560 

approximately 38% (25%) of the GCM projections are located in the relatively risky climate 561 

surfaces for   ( ). The portion of the GCM (11%) is further decreased for 562 
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  . Taken together, an improved operation rule may be urgently needed and can be 563 

achieved by our dynamic operation rule if teleconnection forecast skills are preserved. 564 

 565 

Next, Figure 8 summarizes the results for all of the combinations of climate change considered 566 

in this study. Also, the DRI is calculated for each forecast skill (see Section 2.3) and is 567 

presented in Table 1. Note that the status quo operation is not shown here because it is not 568 

affected by degradation of the forecast skill therefore the results of Figure 7a are equally 569 

obtained for each forecast skill. Several insights emerge from these results. First, the robustness 570 

of two dynamic operations,    and  , are decreased when the forecast skill 571 

abilities decline. Second,   provides adequate performance across a wide range of the 572 

forecast skill degradation when compared to    (DRI =  0.632). This also includes 573 

very low forecast ability (ρ = 0.15) although the results may be caused by the higher reservoir 574 

levels used in    than in    (see Figure 6). However, improved   575 

does not still satisfy our predefined threshold (∧) in all forecast skills. Third,   is 576 

very effective when the forecast-based operation is incorporated with the real-option water 577 

transfer.    shows the reliable robustness (DRI =  0.706) even with lower forecast 578 

ability (ρ = 0.35) for the forecast-based operation. It suggests that the real-option can manage 579 

both the downside risk of faulty seasonal forecasts and severe changes in climate. These results 580 

advocate the use of the real-option for the Boryeong Reservoir as a powerful instrument in the 581 

future. We note that the economic analysis to maintain infrastructure to facilitate water transfers 582 

is not conducted in this study. However, the cost may be significantly less than those required 583 

to install a new impoundment to expand system storage, which is another advantage for the 584 
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real option. Lastly, we may conclude that   is quite robust even though the forecast 585 

skill ability is significantly reduced by 40% of the current skill. 586 

 587 

5. Summary and Conclusions  588 

Dynamic reservoir operations have received widespread interest in the field of reservoir 589 

operations and climate change adaptation strategy, but little attention to quantifying their 590 

robustness to a variety of climate uncertainties. Using a robustness-based method, we develop 591 

an evaluation framework that can be applied based on a range of defined climate change space 592 

over which acceptable performance can be achieved. In particular, a new metric, the 593 

degradation robustness index (DRI), is proposed to scrutinize the robustness of a forecast-based 594 

operation rule under the possibility of forecast skill degradation and climate variable alterations. 595 

 596 

The novel contribution is also achieved by proposing new dynamic reservoir operation rules 597 

for our case study, the Boryeong Reservoir, which has recently experienced the worst drought 598 

in its historical record. For developing forecast-based operations, we newly identify lagged 599 

ENSO effects on inflows during early spring the most crucial period for the Boryeong operation. 600 

The comparative results suggest that a forecast-based operation may be favorable compared to 601 

the status quo operation currently utilized in the reservoir system. In addition, we also examine 602 

the effects of a water transfer option that recently questioned whether a real-option water 603 

transfer from the Baekje Weir is useful. Using such an option would bolster system 604 

performance by enabling the reallocation of water when the Boryeong Reservoir is in a 605 

precarious condition. Furthermore, we confirm the real-option can support a forecast-based 606 

operation for our reservoir system when ill-informed operation adjustments would be happened 607 

by misguided climate information. 608 
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 609 

There are opportunities to further extend our evaluation. To simplify the analysis, we assume 610 

that current water demand scenarios will persist under future climate changes. While this 611 

simple assumption is acceptable for this study, future work needs to explore the impacts of 612 

various water demand scenarios (e.g., expansion of irrigation). Also, hydrologic uncertainty is 613 

not considered here even if the uncertainty may be significant for reservoir operations focusing 614 

on water supply objectives (Marton and Paseka, 2017; Steinschneider et al., 2015). A forecast-615 

based operation could be designed to better utilize seasonal forecast information by using a 616 

specific optimization algorithm (e.g., Denaro et al. (2017)). However, the optimized operation 617 

policies should be re-evaluated in a cross-validation framework to ensure the calibration sets 618 

are robust. Given that only the relatively limited hydrologic data is available in our case study 619 

(21 years), the optimized policies is not considered. 620 

 621 

Our framework is rather computationally intensive because a large set of future ensemble 622 

scenarios is employed to represent natural fluctuations in climate uncertainties. The limitation 623 

may be acceptable since the mandatory simulation time could be prohibitive for multi-reservoir 624 

systems, and thus high performance computing may be required (Kasprzyk et al., 2013). 625 

However, local water managers may prefer simple and concise techniques for their practical 626 

management. Future work could address devising concise approaches, which could effectively 627 

reduce computational burden. 628 

 629 

In addition to the urgent need for effective reservoir operations, the western Geum River Basin 630 

has also faced many water-related issues including controlling water quality and combatting 631 

eutrophication from rising water temperature (Ahn and Kim, 2019). Perhaps, the most essential 632 
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research is to estimate local streamflow after taking into account the impacts of water 633 

withdrawal networks. Although our study basin, the Boryeong Basin, is relatively free from 634 

human adjustments, most parts of the western Geum River Basin are regulated, indicating that 635 

relying on traditional hydrological models without accounting for human activity modules may 636 

not accurately represent the regional hydrology. Therefore, a network of hydrological models 637 

with feedback in coupled local reservoirs (e.g., Lv et al. (2016)) is required for hydrologic 638 

analysis. We believe that such large-scale coupled hydrologic and system models will be an 639 

attractive avenue for future research.    640 
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operation with the real-option water transfer from the Beakje Weir. The critical storage level 1125 
(C***) is commonly employed in three strategies.  1126 
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 1159 

 1160 
Figure 7 Robustness of three operation rules (  ,   , and   ) under 1161 

future changes in precipitation and temperature with historical forecast skill ability (ρ=0.55). 1162 
The green color indicates that the operation rule is robust for the defined changes. PDFs from 1163 
GCM projections are superimposed over climate space to present the likelihood of different 1164 
climate changes. 1165 
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 1195 

 1196 
Figure 8 Robustness of two dynamic operation rules for changes in mean precipitation, mean 1197 
temperature, and forecast skill ability. Here, the green color indicates that the operation rule is 1198 
robust for the defined changes. 1199 
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Table 1 The parameters of the augmented Sacramento Soil Moisture Accounting (SAC-SMA) 1225 
model used in this study 1226 
 1227 

Parameter Description Range 
Calibrated value 

Boryeong Beakje 

UZTWM Upper zone tension water capacity 
(mm) (1 - 150) 5.80 3.30 

UZFWM Upper zone free water capacity 
(mm) (1 - 150) 92.71 137.96 

LZTWM Lower zone tension water capacity 
(mm) (1 - 500) 10.41 75.16 

LZFPM Lower zone primary free water 
capacity (mm) (1 - 1000) 29.28 75.15 

LZFSM Lower zone supplementary free 
water capacity (mm) (1 - 1000) 9.09 48.66 

UZK Upper zone free water lateral 
depletion rate (1/day) (0.1 - 0.5) 0.50 0.31 

LZPK Lower zone primary free water 
depletion rate (1/day) (0.0001-0.25) 0.00 0.10 

LZSK Lower zone supplementary free 
water depletion rate (1/day) (0.01 - 0.25) 0.24 0.12 

ZPERC Percolation demand scale parameter (1 - 250) 249.08 69.93 

REXP Percolation demand shape 
parameter (0.0 – 5) 0.00 4.52 

PFREE Percolating water split parameter (0.0 - 0.6) 0.03 0.23 

PCTIM Impervious fraction of the 
watershed area (0.0 - 0.1) 0.10 0.00 

ADIMP Additional impervious areas (0.0 - 0.4) 0.07 0.00 

MLT Snow melting parameter (0.0 - 1.0) 0.66 0.36 

TRAN 
Temperature above which all 
precipitation falls as rain (°C) (-3.0 - 3.0) -2.93 -2.88 

TDIF 
Nonnegative temperature difference 
from the TRAN for water stored as 
snow (°C) 

(0 - 3.0) 0.83 0.64 

 Error term for temperate (-1.0 - 1.0) 0.97 0.98  Error term for precipitation (0.95 - 1.05) 1.03 0.98   Error term for evapotranspiration (0.95 - 1.05) 1.04 1.03 
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 1228 
Table 2 Results of the degradation robustness index (DRI) under three operation rules 1229 
( ,  , and  ). Acceptable values for the DRI are italicized and bolded. 1230 

Operations 
 

Forecast skill ability (ρ) 

      

DRI 

0.15 0.632 0.634 0.693 

0.35 0.632 0.647 0.706 

0.45 0.632 0.655 0.718 

0.55 0.632 0.660 0.725 

0.75 0.632 0.675 0.739 

 1231 
 1232 
 1233 

 1234 

https://doi.org/10.5194/hess-2019-175
Preprint. Discussion started: 6 June 2019
c© Author(s) 2019. CC BY 4.0 License.


