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We would like to thank the editor and the two anonymous reviewers, whose constructive
comments have helped improving the manuscript. In the following pages, we will provide de-
tailed answers to each of their comments.

To aid the reading, the original comments by the reviewers are displayed in black, while our
replies are both indented and in blue. Italic texts indicate manuscript alterations and references
to the revised manuscript are given on the form P8.L9-10, with the meaning page 8 and lines
9-10.
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Editor

After assessing the Reviewers’ comments and the Authors’ replies to these, I do think that the
study can benefit from a set of moderate revisions. I am indicating ”major revisions” to provide
the Authors ample time to work on their manuscript.

We thank the Editor for taking time to handle this manuscript and hope that the
alterations done to the manuscript are to his liking!

In summary, these are the three most notable changes implemented in the manuscript
upon revision:

1. Improved description of which samples are used for the post-sampling sensitivity
analysis (Reviewer #1, Comments 6-8)

2. Improved description of the unsaturated zone and the top boundary of the model
(Reviewer #2, Comment 2)

3. Improved motivation with respect to number of subspace dimensions and order
of the gradient-approximation polynomials (Reviewer #1, Comments 2 and 4)
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Anonymous Referee #1

In this paper, the authors used active subspace for global sensitivity analysis and stochastic
sampling of a subsurface-flow model. The topic is interesting and suitable for this journal. The
adopted method also seems to be efficient and effective. However, some improvements are still
required for final publication.

We thank the reviewer for taking the time to review our manuscript, and for his/her
positive view and constructive comments. In the following we address all individual
comments one-by-one.

1. There are many useful methods for global sensitivity analysis as stated by the authors in
the introduction. Why the authors use the activity score (equation (8))? Can this metric provide
more reasonable results for the studied problem than other metrics? Please make an explanation.

As the reviewer points out, there are different global-sensitivity-analysis methods avail-
able, and, despite some existing guidelines, the choice of method is always somewhat
subjective to the user. We do not necessarily believe that the activity score provides a
more (or less) suitable result than any other method. Our choice of the activity score
is primarily based on two reasons.

1. We use the active subspace both for sensitivity analysis and as base for a low-order
meta-model. This is practical, efficient, and consistent. Other global-sensitivity-
analysis methods don’t provide a sorted orthogonal basis of parameter vectors
that can directly be used to construct a meta-model.

2. To comply with the unstructured sampling performed with the meta-model, we
needed a sensitivity analysis which works with random samples, and the activity
score is compliant with that (e.g., in contrast to FAST). The relation between the
activity score and some existing metrics has been discussed by Constantine and
Diaz (2017), but a deeper discussion on that point would be beyond the scope of
our paper.

Manuscript alteration:
After introducing the active subspace sampling scheme, the following paragraph has
been added (P8.L19-23): ”It should be noted that applying the active-subspace sam-
pling does not necessarily restrict the sensitivity analysis to calculating the activity
score (equation 8). As discussed in the introduction, there are many global-sensitivity
methods, all with their own strengths and weaknesses, and any method based on a ran-
dom sample could be applied. In this work, we utilize the fact that we have already
computed the active-subspace decomposition so that the post-sampling calculation of
the activity score is easy and very cost-effective.”

2. The authors use active subspace to construct a meta-model in order to select the be-
havioral samples with a lower computational cost. In this work, only 2 active variables are
used to construct the meta-model. Why do the authors use 2 active variables? As my un-
derstanding, more active variables will make a better meta-model. Do the authors think that
2 active variables are enough to construct an accurate meta-model? Please make an explanation.
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The reviewer is correct that in principle more active variables can improve the accuracy
of the meta-model. We use two active variables for two main reasons:

1. While the improvement by increasing the number of active variables from one
to two was very notable, the improvement by going beyond two active variables
was very small.

2. A benefit of using only two active variables is that the full active subspace can
be easily visualized, as is seen in the paper. For practical usage, which is a large
motivation behind this paper, this is a rather heavy argument.

In summary, we believe that two active dimensions yield enough accuracy in our
application, and that the benefit of providing an intuitive visualization outweighs the
small benefit of adding more active variables to the sampling scheme.

Manuscript alteration:
After the description of the meta-model sampling scheme we have added (P8.L14-19):
”In this work, we have chosen to construct the meta-model using two active variables.
Although more active variables could potentially lead to a higher accuracy of the
meta-model, we saw no major improvement when increasing the number of subspace
dimensions beyond two. Along the same line of thought, model outcomes in two
subspace dimensions can easily be visualized, thus facilitating an intuitive judgment of
the goodness of the meta-model. In this light, we retain from going beyond two active
subspace dimensions in the current work. Other application may require considering
more active dimensions.”

3. The authors use meta-model to select behavioral samples. Since the meta-model only
is an approximation of the real model, an error will arise when using meta-model.To construct
the meta-model within active subspace, the authors first need to construct an active subspace.
This requires the gradients of the model output with respect to the input parameters, which is
a computational-demanding task. The authors fit a polynomial to approximate the real model,
then obtain the gradient based on the polynomial.This approximation will cause another er-
ror. That is to say, there are two kinds of errors caused by approximation (meta-model) in
the whole procedure. Since these two kinds of errors are not independent, the final error may
be amplified. It will be better to analyze how these two errors will affect the final error of results.
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We agree with the reviewer that both approximations introduce errors, and that they
are not fully independent of each other. Unfortunately, we do not fully understand
what the reviewer suggests us to do. The manuscript already contains a section
in which we analyze the error of the gradient approximation (Section 4.3 Gradient
Approximation in the Derivation of the Active Subspaces). To separate the active
subspace error, however, we would need to have access to correct gradients, which
is not possible with the models we work with here. Computing local gradient by
direct numerical differentiation at all sampling points would be by far too costly.
While we state that we most probably would improve the active subspace with better
gradient models (Section 4.3), we cannot distinguish between the error introduced by
the gradient approximation and that introduced by the active subspace decomposition.

Manuscript alteration:
To increase the clarity in the manuscript, we have added the following paragraph after
introducing the active subspace and the gradient approximations (P6.L20-24): ”In
summary, the construction of an active subspace contains two strong approximations
which both give rise to errors. (1) The active subspace decomposition itself (dimension
reduction) and (2) the gradient approximation. As these two errors can be strongly
correlated, it is difficult to show the effect of the dimension reduction when the gradient
approximation is still uncertain. However, in Section 4.3 we attempt to show the
effect on the total error when altering the accuracy of of the gradient approximation.”

4. For the meta-model within active subspace, the authors use third-order polynomial. Why
do the authors use third-order? Is third-order enough for the meta-model? Some explanations
should be given to convince readers.

The reviewer raises a missing point here. So far, we have taken the standpoint that
it is common to use first-order polynomials to estimate the gradients, and hence
considered our approach an improvement. However, as the reviewer points out, we
have not discussed the upper limit of the polynomial orders. The answer, however, is
quite simple, as the number of regression coefficients needed to be estimated grows
with the order of the polynomial, and already a third-order polynomial with 32 model
parameters has 561 coefficients and, hence, requires already a large set of complete
model runs to fit the coefficients. Most flow modeller, who are seen as the main
audience of the manuscript, cannot afford such large number of model runs, and that’s
why we never go beyond a third-order approximation.

Manuscript alteration:
Following the description of the gradient approximation, we have added the following
new paragraph (P5-6.L28-2): ”In theory, also higher-order polynomials could be used.
In practice, however, we are limited by the number of regression coefficients we need
to estimate. With the 32 parameters considered in this work, we require a rather large
ensemble of full model runs to obtain the 561 b-coefficients, and therefore we retain
from considering polynomials above third order.”

5. In page 7(step 2), why do the authors construct an active subspace for each behavioral
target? For a scalar model output, there is only one active subspace. Different behavioral targets
can be defined based on the same model output. And in this situation, it will be not necessary to
construct an active subspace for each behavioral target. I think constructing an active subspace
for each model output will be reasonable.
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We admit that the formulation was a bit clumsy. Among our behavioral targets,
targets 5 and 6 naturally have exactly the same active subspace as they relate to the
same observed quantity.

Manuscript alteration:
We have changed the text of Step 2 (P7.L14-15) to ”For every unique observation
type related to a behavioral target, construct a sufficiently detailed active subspace”

6. In page 7(step 5), the accepted sample based on the meta-model is used for running the
real model and obtain the prediction. Since the meta-model only is an approximation of the real
model, the accepted samples based on the meta-model may not be really accepted by the real
model. These samples should be non-behavioral samples. Do the authors still use these sample
for global sensitivity analysis?

Short answer: no! The only samples used for the sensitivity analysis are those that
are deemed behavioral by the real flow model (so called stage-two accepted). The
meta-model is only used as a gate-keeper, meant to filter out parameter sets that are
highly unlikely to produce behavioral model runs. The final post-sample analysis,
however, is done purely on basis of the stage-two accepted real flow models (therefore
we ran 10,000 real flow model simulations (stage-one accepted), but only used 4533
out of those for the analysis (stage-two accepted)).

Manuscript alteration:
To make this clearer, we have added the following explanations to the manuscript
just after the sampling scheme has been described (P8.L9-13)): ”It is important to
note, that all post-sampling sensitivity analyses performed in this work are done on
the subset of the sampled parameter sets that are deemed behavioral after running the
full HydroGeoSphere flow model (stage-two accepted). Hence, we use the meta-model
only as a pre-selection tool to avoid sampling those regions of the parameter space that
will clearly generate non-behavioral runs. As we aim to sample 10,000 parameter sets
(i.e. stage-one accepted), the analyses will be performed on a notably smaller number
of parameter sets.”

7. In page 8(step7), all the 500 initial samples are accepted. Since the initial samples are
randomly generated without selection, some of them will be non-behavioral samples. Thus, using
these samples for global sensitivity analysis will be unreasonable.

This is a misunderstanding. As stated in the answer to comment #6, only samples
that are behavioral with respect to the flow model are used for the sensitivity analysis.

Manuscript alteration:
Apart from the text to be added mentioned above, we have added the following to
step 7 in the description of the sampling scheme (P8.L7-8, addition starts after the
comma): ”plus 500 initial samples, which are per-se stage-one accepted”. We hope
this makes it clear that the initial 500 samples are only stage-one accepted before the
flow model is run.

8. In page 13, the meta-model selects 4533 samples from 10000 samples. In comparison,
only 588 samples from 10000 samples are selected based on the real model. Does this mean the
meta-model is not accurate to approximate the real model? Or, do the authors use different
criteria to select the behavioral samples for different cases? In addition, the results are based
on the behavioral samples obtained by the meta-model. Since there is a significant difference

6



between the obtained behavioral sample by meta-model and the real model, can we really trust
the results based on the meta-model? Therefore, a reference result obtained only based on the
real model can be provided for comparison.

There seems to be a misunderstanding here. The 10,000 parameter sets drawn
by using the active subspace are assumed to be behavioral by the active subspace
meta-model (stage-one accepted). Out of those, 4,533 are actually behavioral after
running the real flow model (stage-two accepted), and only those 4,533 parameter
sets are used for the analysis. Hence, all results presented in this manuscript are
based on the real model and not the meta-model. The comparison with the 588
samples was done to show the effect of using a pure Monte Carlo sampling directly
in the full 32-dimensional parameter space (an attempt we did prior to applying the
active subspace sampling). We see that this was not clearly enough explained and the
manuscript has been be updated to improve this.

Manuscript alteration:
Apart from the answer to comments #6 and #7, as well as adding throughout
the result-section the terminology stage-one and stage-two acceptance (please see
the track-change document), we have altered the description of sampling the 588
comparison samples to (P14.L23-26): ”In a comparable setup, we sampled 10,000
parameter-sets using a pure Monte Carlo sampling scheme (i.e. without any kind of
meta-model or pre-selection), and out of those, only 588 were acceptable with the strict
criteria used here (i.e. stage-two accepted, although in the case of a pure Monte-Carlo
sampling, no stage-one acceptance is tested). Hence, the improvement when using the
active subspace sampler is clearly notable.”

In summary, we hope that the changes provided as responses to comments #6-
8 makes it clear how both the sampling and the subsequent sensitivity analysis is done
in our work.
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Anonymous Referee #2

General Comments

Overall this paper provides a really nice extension of the active subspaces method to hydro-
logic modeling. Previous applications of active subspaces to hydrologic models have not used site
specific model domains, nor used the active subspaces method in the context of a meta-model.
For computationally expensive hydrologic models, the approach presented in this paper may
prove to be very valuable to select parameter values but also evaluate sensitvities. The paper is
interesting, well-written, and appropriate for this journal.

We would like to thank the reviewer for his/her positive summary of our manuscript.

Specific Comments

1. In order for readers to better understand plots like the ones shown in Figure 4, a descrip-
tion of the active variable needs to be added to the text. Specifically, how the active variable is
computed and what the sign (- or +) and magnitude of the active variable means.

We admit that the description of the active variable was rather short. An active
variable is a linear combination of several flow-model parameters. Because the active
variables are linear combinations, the absolute values and signs of the active variables
don’t have an immediate intuitive meaning. In order to relate values of active
dimensions to physical parameters, one needs to look up the exact eigenvectors used
to construct the active variable (available in the supplementary material), or, as we
have done in this manuscript, look at the activity score.

Manuscript alteration:
We have clarified this in the revised manuscript by the following new paragraph
(P14.L29-33, in the results section related to Figure 4): ”Each of the two active
variables (equation 12) is a linear combination of flow-model parameters, weighted by
their respective influence on the specific subspace dimension. Due to its construction,
the active variable itself is hard to interpret. However, the activity score (equation 8),
used in this work to judge the importance of the physical parameters, effectively shows
the components of the active variable, and is therefore the preferred way to interpret
the parameter-related results.”

2. (Reference Page 8, Line 32) The unsaturated zone (assumed to be between 0 and 1 meter
below the land surface in this model) serves as an important link between precipitation falling
on the land surface and precipitation reaching the groundwater, and water flowing through this
zone can and does contribute to stream discharge. In this model, what is happening to water
between 0 and 1 meter below the land surface? How does groundwater recharge occur (Page 12
states that much water is loss to subsurface)? A brief explanation would help especially given
that all of the behavioral targets reference stream discharge or recharge.
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We see that this part was not so well explained in the original submission, and we
thank the reviewer for pointing this out. First of all, it is only the first subsurface
meter that is missing in the model, not the full unsaturated zone. On the contrary,
the largest area of the domain has a notable unsaturated zone. The missing top
meter is where intricate plant-soil-atmosphere feedbacks occur. We do not wish to
model this explicitly for the sake of simplicity. Instead, we use simulation results from
independent one-dimensional crop models that consider the mentioned feedbacks to
obtain the mean and standard deviation of the volume flux at one-meter depth, de-
pending on the land-use type. These fluxes are then assigned as Neumann boundaries,
which corresponds to the local groundwater recharge (thus neglecting any potential
interflow). Water can leave the domain through the land surface, when the pressure
head in the upper-most nodes of the model domain is higher than a reference pres-
sure head of 1.2 meter (i.e. 1 meter to ”reach the surface” and 20 cm of actual ponding).

Manuscript alteration:
To make this clearer, the description of the upper boundary conditions has been
updated as follows (P10.L12-20): ”To avoid long run times and complications of
complex top soils (including plant-atmosphere interactions), which are unimportant
once steady state is reached, the top of the HydroGeoSphere model is 1 meter below
the land surface. Flow across the top boundary is only incoming and modelled
as a Neumann-boundary, corresponding to the steady-state groundwater recharge.
The recharge varies with land-use, split into three categories: cropland, grassland,
and forest, in which urban areas are treated as grassland. It should be noted that
starting the model at 1 meter below surface still allows for a notable unsaturated zone
to develop in the model domain; only the upper-most meter is missing. Also, the
outgoing drain-fluxes described above are applied to this one-meter-below-surface top
boundary, hence requiring that the exit pressure head is one meter larger than the
ponding pressure-head described above. Technically, this does not apply to to stream
nodes, which are considered to be the real top of the porous medium (that is, there is
no unsaturated zone on top of a stream).”

3. Why does the shape of the Lettenkeuper layer in Figure 1 not match the shapes in Figure 2?

In our work, the shape of the Lettenkeuper layer (like that of all other layers) is
controlled by a combination of stochastic input parameters. Figures 1 and 2 show
examples of random realizations, and it happens that the 6 realizations shown in
Figure 2 do not include the realization shown in Figure 1.

Manuscript alteration:
At the point where Figure 2 is introduced, we have added the following sentence
(P11.L15-16): ”Please note that Figure 2 shows different realizations than Figure 1.”

4. Do the magnitude ranges of the output values align with any measured data? For example,
and assuming measured data is available, is there some region of the active subspace in Figure
6 that more accurately captures actual watershed behavior?

9



The reviewer raises an important point. Indeed, the output values used as targets
for the sampling scheme are already setup to reflect realistic catchment behavior.
Although not based on hard data, the targets specifies ranges that most hydrol-
ogists familiar with the catchment would find very reasonable. Hence, all results
shown in active subspaces, e.g. in Figure 6, are in line with measured data. Of
course, if better data were available, it would be possible to identify sub-regions
in the active subspace that matches those data. However, it should be noted that
although it is easy to find the region in active subspace, the back-transform to parame-
ter space is non-unique, and we hence need the sampling to infer real parameter ranges.

Manuscript alteration:
To clarify this, we have added the following paragraph just after the targets are intro-
duced (P13.L4-9)): ”As all targets are based on knowledge about the real catchment on
which the current model is based, all model outputs produced by a stage-two accepted
model will be in line with what we would expect to be realistic in the catchment.
However, it is important to note that even though it would be possible to point out
a location in the active subspace which corresponds to a real observation, the active
variables themselves are non-unique with respect to the flow parameters, so that a
simple back-transformation from active subspace to flow-model parameter space is not
possible.”

Technical Corrections

1. Page 8, Line 27 – for clarity, should the word “exit” be replaced with “flow out of the
model domain”

Altered as suggested (P10.L6)
2. Figure 1 – main plot should identify the location of Stream A, Stream B, and GaugeC

This information disappeared in the revision of the figure, we thank the reviewer for
catching this error!

3. Figure 1 – add acronyms for each geologic layer referenced in Table 1 to Figure 1;for
example, Muchelkalk (mo), Lettenkeuper (ku), etc.

This is a good suggestion and has been included
4. Figure 1 – Zones 0.5-5.5 are not referenced anywhere in the text of the paper; either add

reference or remove legend from Figure 1
Altered as suggested

5. Page 11, Line 6 – should be flooding not flodding
Typo corrected

6. Page 12, Line 5 – for clarity, should “incoming water” be “incoming groundwater”, or
does incoming water include precipitation and groundwater?

Altered as suggested (P12.L12)
7. Figure 4 – does the behavioral target label “top drain” mean the same thing as “limited

flooding” (Section 3.4)? Clarify in the figure description.
Altered as suggested for both Figure 4 and Figure 5 (see page 16 in revised manuscript)

8. Figure 4 – the x- and y-axis should be the same for each behavioral target column;this
will help the reader compare between differences in the sampling number.

We actually find this suggestion a bit misleading, as the composition, and hence the
values, of the active variables can change with increasing data volume (see answer
to comment #1 and the differences seen in Figure 4 where the middle columns two
upper plots are differently oriented). Using the same axis would give the misleading
impression that the active variables are always the same and only stabilize with more
data. Hence, we have made no changes following this comment.
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Global Sensitivity Analysis and Adaptive Stochastic Sampling of a
Subsurface-Flow Model Using Active Subspaces
Daniel Erdal1 and Olaf A. Cirpka1

1University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany

Correspondence: Daniel Erdal (daniel.erdal@uni-tuebingen.de)

Abstract. Integrated hydrological modelling of domains with complex subsurface features requires many highly uncertain

parameters. Performing a global uncertainty analysis using an ensemble of model runs can help bring clarity which of these

parameters really influence system behavior, and for which high parameter uncertainty does not result in similarly high un-

certainty of model predictions. However, already creating a sufficiently large ensemble of model simulation for the global

sensitivity analysis can be challenging, as many combinations of model parameters can lead to unrealistic model behavior. In5

this work we use the method of active subspaces to perform a global sensitivity analysis. While building-up the ensemble,

we use the already existing ensemble members to construct low-order meta-models based on the first two active subspace

dimensions. The meta-models are used to pre-determine whether a random parameter combination in the stochastic sampling

is likely to result in unrealistic behavior, so that such a parameter combination is excluded without running the computationally

expensive full model. An important reason for choosing the active subspace method is that both the activity score of the global10

sensitivity analysis and the meta-models can easily be understood and visualized. We test the approach on a subsurface flow

model including uncertain hydraulic parameter
::::::::
parameters, uncertain boundary conditions, and uncertain geological structure.

We show that sufficiently detailed active subspaces exist for most observations of interest. The pre-selection by the meta-model

significantly reduces the number of full model runs that must be rejected due to unrealistic behavior. An essential but difficult

part in active subspace sampling using complex models is approximating the gradient of the simulated observation with respect15

to all parameters. We show that this can effectively and meaningful be done with second-order polynomials.

1 Introduction

Water flow in the subsurface is an integral part of the water cycle. In recent years, partial-differential-equation (pde) based

integrated hydrological modelling, coupling flow in the subsurface and on the land surface, have become a rather standard tool

(Maxwell et al., 2015; Kollet et al., 2017). With the increasing computational power also the size of the models have increased20

(Kollet et al., 2010). However, increasing the size and/or complexity of a model usually also increases the number of (spa-

tially variable) parameters of to the model. Identifying suitable parameter values from a limited number of observed data (i.e.

calibration, inverse modelling, parameter estimation) is, and has been,
:::
and

::::::::
continues

::
to

:::
be,

:
a large topic in hydro(geo)logical

modeling (Vrugt et al., 2008; Shuttleworth et al., 2012; Yeh, 2015). Related to the topic of model calibration, is the question

how sensitive certain parameters actually are to the observed data, and, hence, which parameters can and cannot be inferred25
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from this data. The latter is explored by sensitivity analysis (e.g., Saltelli et al., 2004, 2008). A clear separation in the sensitivity

analysis literature is between local methods, in which parameters are varied about a fixed point, and global methods, which aim

to explore sensitivities of the parameters across the full parameter space. The two approaches lead to identical results only when

the dependence of the model outcome on the parameter values is linear. For hydrological purposes, the recent reviews of Mishra

et al. (2009), Song et al. (2015), and Pianosi et al. (2016) provide structured overviews and selection suggestions for the choice5

of an appropriate sensitivity-analysis method. There exists a large collection of different global sensitivity-analysis methods.

Song et al. (2015) divides them into screening methods, regression methods, variance-based methods, meta-modeling methods,

regionalized sensitivity analysis, and entropy-based methods, each of which contains multiple implementation variants. The

popular method of Sobol (1993) indices is a typical example of a variance-based method.

A global sensitivity approach, that does not directly fit into any of the categories listed above but has recently gained10

increased attention, is the active subspace
::::::::::::
active-subspace

:
method (e.g., Constantine et al., 2014; Constantine and Diaz, 2017).

The aim of the subspace method is to find the most influential directions in parameter space. An active subspace is defined

by active variables, which are linear combinations of the investigated parameters. Along the active variables, the observation

changes more, on average, than along any other direction in the parameter space. The method has mainly been applied to

engineering-related models (e.g., Constantine et al., 2015a, b; Hu et al., 2016; Glaws et al., 2017; Constantine and Doostan,15

2017; Hu et al., 2017; Grey and Constantine, 2018; Li et al., 2019), however, recently it has also successfully been applied to

coupled surface-subsurface flow simulations. Jefferson et al. (2015) used the coupled subsurface-land surface model ParFlow-

CLM to study the sensitivity of energy fluxes on vegetation and land-surface parameters. Apart from deriving sensitivities, they

showed that an active subspace for a model including subsurface flow existed. Jefferson et al. (2017) applied the active subspace

:::::::::::::
active-subspace method to the same model (ParFlow-CLM) to study the sensitivity of transpiration and stomatal resistance on20

photosynthesis-related parameters. Actively considering the deeper subsurface (i.e. groundwater flow), Gilbert et al. (2016)

used ParFlow in combination with active subspaces to study the effect of three-dimensional hydraulic-conductivity variations

on cumulative runoff. They showed that the method of active subspaces can successfully be applied to complex subsurface-

flow models. However, they also showed that an active subspace may not be well defined under unsaturated conditions and

Hortonian flow.25

A general problem when performing any type of global sensitivity analysis is the choice of how to sample the parameters.

Apart from defining ranges and distributions of single parameters, which are unique to the problem at hand and can often be

addressed by experts in the field, questions related to unfavorable parameter combinations are harder to deal with a-priori. Un-

favorable parameter combinations may lead to a model behavior that is not observed in reality, such as severe floodings or strong

droughts. In regionalized (a.k.a. generalized) sensitivity analysis, such parameter sets are classified as non-behavioral, and sta-30

tistical differences between the behavior and non-behavioral parameter sets are sought (Spear and Hornberger, 1980; Beven

and Binley, 1992; Saltelli et al., 2004). Another way of approaching the problem consists in discarding the non-behavioral

parameter sets as unrealistic (or unphysical or model failures), hence performing some type of rejection sampling. The contin-

uing analysis is then done on the remaining sets, i.e. using samples from a constrained joint parameter distribution. The clear

drawback of this approach is that many, potentially expensive, model simulations may be performed and then discarded.35
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Recognizing that a sufficiently large set of model runs is needed for a reliable stochastic analysis, Song et al. (2015) discussed

the use of meta-models in hydrological sciences. The underlying basic idea is to calibrate a computationally inexpensive model,

denoted meta-, surrogate-, emulator-, or proxy-model, to the input and output data from a small set of complete model runs.

The sensitivity analysis is then performed using the meta-model rather then the original model (Ratto et al., 2012). Razavi et al.

(2012) have reviewed different types of meta-models, among others,
:::
such

:::
as polynomials, multivariate adaptive regression,5

artificial neural networks, support vector regression, and , Gaussian processes
:::::::
Gaussian

:::::::::
processes,

::::::
among

:::::
others. When using

the active subspace
:::::::::::::
active-subspace

:
method, a benefit is that a low-dimensional response surface (i.e. a meta-model)can be

fitted between ,
:::::::
relating

:::
the

::::::::
simulated

:::::
target

:::::::
quantity

::
to
:
the derived active variablesand

:
,
:::
can

::
be

:::::
fitted

::
to the data (see Li et al.,

2019). The better such a surface fits, the better the decomposition was
::
A

:::::
good

::
fit

::
of

:::
the

::::::::
response

::::::
surface

::
to
::::

the
::::
data

:
a
:::::
good

:::::::::::::
active-subspace

::::::::::::
decomposition

::::
and

:
a
:::::
good

::::::::::::::
parameterization

::
of

:::
the

::::::::
response

::::::
surface. Apart from being easy to visualize (in10

case of 1 or 2
:::
one

::
or

::::
two dimensions), the surface is also trivial to fit if, e.g., simple polynomials are considered. However,

a problem of meta-modeling is that any analysis done with the meta-model is only as good as the meta-model itself, and

parameter sensitivities derived with the meta-model may be biased by the simplified input-output relationship.

In this paper, we use a meta-model, derived by the active subspace
::::::::::::
active-subspace

:
method, to pre-determine assumably

:::::::::
presumably

:
behavioral parameter sets and perform the global sensitivity analysis with the full model using the pre-selected15

parameter sets. By this we aim at reducing the number of discarded simulations with
::::
using

:
the full model. We use two-

dimensional active subspaces to derive both multiple meta-models and sensitivity patterns for an integrated surface-subsurface

flow model. The rest of the paper is structured as follows: Section 2 gives a general description of the methods applied in this

study, Section 3 introduces the test case to which the methods are applied, Section 4 presents and discusses the result of both

adaptive sampling and sensitivity analysis. The paper closes with general discussions and conclusions in Section 5.20

2 Methods

2.1 Governing Equations and Simulation Code Used

Flow in the subsurface is computed using the software HydroGeoSphere (Aquanty Inc., 2015). Although HydroGeoSphere

can simulate the entire terrestrial portion of the water cycle, we focus in this work on subsurface features. HydroGeoSphere

provides a finite element solution of the 3-D Richards equation, here presented in a general form without explicit consideration25

of boundary conditions, with the purpose of facilitating the discussion of parameters later on.
:
:

SsSw(h)
∂h

∂t
+Sw(h)θS

∂Sw(h)

∂t
=∇ · (Kskr(h)∇(h+ z))+Q (1)

in which h [L] is the pressure head (i.e. the hydraulic head minus the geodetic height z [L]), Sw [-] is the water saturation,

θS [-] is the effective porosity, Ss [1/L] is the specific storativity, Ks [L/T] is the saturated hydraulic-conductivity tensor, kr

[-] is the relative permeability, and Q [1/T] represents sources and sinks. The retention and relative-permeability functions are30

computed using the standard Mualem van-Genuchten model (Mualem, 1976; Van Genuchten, 1980):
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Se =

[1+ (α[h|)n]−m if h < 0

1 otherwise
(2)

kr = [1− (1−S1/m
e )m]2S0.5

e (3)

in which Se [-] is the effective saturation, which relates to water saturation by Se = (Sw −Sr)/(1−Sr), where Sr [-] is the

residual saturation. Further, α [1/L], n [-], and m= 1− 1/n [-] are shape parameters. In terms of parameter values, this work

focuses mainly on the two shape parameters, the saturated hydraulic conductivity,
:
and specific storativity.5

2.2 Derivation of the Active Subspace
:::::::::
Subspaces

In this section we consider a general function f generating a scalar output and requiring an input parameter vector x. In this

paper, computing f involves running HydroGeoSphere and extracting a wanted (scalar) output.

The basic idea of an active subspace
::
the

:::::::::::::
active-subspace

:
decomposition is to find primary directions in the original parameter

space, composed of linear combinations of the parameters, along which the solution f(x) changes on average more than in10

other directions. To avoid effects related to different dimensions and magnitudes of parameters, all parameters are shifted and

scaled to the range [−1,1] prior to the following calculations:

x̃i = 2
xi−xi,min

xi,max−xi,min
− 1 (4)

in which xi,min and xi,max are the lower and upper bounds of parameter xi, and x̃i is the scaled parameter.

An active subspace for
:
of

:
f is then defined by the eigenvectors of the following matrix (Constantine et al., 2014):15

C =

∫
∇f(x̃)⊗∇f(x̃)ρ(x̃)d (5)

with its eigen-decomposition:

C = WΛW−1 (6)

in which ⊗ denotes the matrix product, ρ is the probability density function of the scaled parameters x̃, the integration is

performed over the entire parameter space, W is the matrix of eigenvectors, and Λ is the
:::::::
diagonal

:
matrix of the corresponding20

eigenvalues. Because C is symmetric and real, the eigenvectors contained in W are orthogonal to each other, W can be

interpreted as a rotation matrix in parameter space, and the inverse W−1 is identical to the transpose WT . We perform the

integration in Eq. (5) by the Monte Carlo method (Constantine et al., 2016; Constantine and Diaz, 2017):

C≈ 1

M

M∑
i=1

∇f(x̃i)⊗∇f(x̃i) (7)
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in which M is the number of samples used and x̃i are independently drawn samples of x̃. Now the aim is to find a subset

of n eigenvectors that sufficiently describe the relation between x̃ and f to create a decent low-order approximation f(x̃)≈
g(WT

n x̃). Here, Wn is the m×n matrix containing the eigenvectors with the n largest eigenvalues. In our application, we

choose n= 2.

For assessing the global sensitivity of each parameter in x, we use the metric of Constantine and Diaz (2017), denoted the5

activity score ai:

ai =

n∑
j=1

λjw
2
i,j . (8)

in which i is the parameter index, λj is the j-th eigenvalue and wi,j the value for parameter i in the j-th eigenvector. Since the

unit of the eigenvalues, and hence also of the activity score, is the square of the unit of the observation, we present in this work

the square root of the activity score rather than the activity score itself.10

A major issue with computing an active subspace for a subsurface flow model, is that it requires the gradient of the target

quantity f with respect to all scaled parameters x̃i at all parameter values accessed, which is not readily available. A common

workaround is to derive the gradients from a simple polynomial model between the model parameters and output. As our

standard approach, similar to Grey and Constantine (2018), we fit a second-order polynomial to the data (gradient fit 1), but

we also test a second-order polynomial without cross-terms (gradient fit 2), and a linear model (gradient fit 3):15

gradient fit 1: f̂(x̃) = b0 +

m∑
i=1

bix̃i +

m∑
i=1

m∑
j=i

bij x̃ix̃j (9)

gradient fit 2: f̂(x̃) = b0 +

m∑
i=1

bix̃i +

m∑
i=1

biix̃
2
i (10)

gradient fit 3: f̂(x̃) = b0 +

m∑
i=1

bix̃i (11)

in which m is the number of parameters. We determine the b-coefficients by standard multiple regression from an ensemble of

model runs. The gradient fit 1 requires m2/2+3m/2+1 b-coefficients, the gradient fit 2 requires 2m+1 coefficients, and the20

gradient fit 3 only m+1.

Our standard fit is the second-order polynomial with cross-terms. If the set of model runs is smaller than about twice the

number of required b-coefficients
:::::::::
coefficients, we use the gradient fit 2,

:
excluding the second-order cross terms. The linear

fit 3 implies that the gradient ∇f(x̃) is independent of the parameter values and the summation in Eq. (7) would become

unnecessary. It can be shown, that under these conditions the number of active subspace
::::::::::::
active-subspace

:
dimensions reduces25

to one, and the associated eigenvector is the gradient itself. A benefit of using higher-order polynomial expressions to obtain

the gradients, is that multiple subspace dimensions can be calculated, which we utilize and show to be beneficial in the present

work.
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::
In

::::::
theory,

::::
also

::::::::::
higher-order

:::::::::::
polynomials

:::::
could

::
be

::::
used

::
to
:::::::::::
approximate

:::
the

::::
local

::::::::
gradient

::::::
vectors.

:::
In

:::::::
practice,

::::::::
however,

:::
we

::
are

:::::::
limited

::
by

:::
the

:::::::
number

::
of

:::::::::
regression

::::::::::
coefficients

::
we

:::::
need

::
to

::::::::
estimate.

::::
With

:::
the

:::
32

:::::::::
parameters

:::::::::
considered

::
in

::::
this

:::::
work,

:::
we

::::::
require

:
a
:::::
rather

:::::
large

::::::::
ensemble

::
of
::::

full
:::::
model

:::::
runs

::
to

:::::
obtain

:::
the

::::
561

::::::::::::
b-coefficients,

:::
and

::::::::
therefore

:::
we

:::::
retain

:::::
from

::::::::::
considering

::::::::::
polynomials

:::::
above

::::
third

:::::
order.

:

2.3 Definition of a Meta-Model Using Active Subspaces5

With a functional active subspace
::::::::::::
active-subspace

:
decomposition, we may construct a low order

::::::::
low-order

:
approximation of

the observation (f(x)≈ g(WT
n x̃)). In this work we consider a third-order polynomial surface fitted to our two active variables.

This surface is later used a
:
as

:
a meta-model in the adaptive sampling scheme presented in the next section.

Towards this end, we construct the vector ξ of reduced parameters (active variables) from the matrix of eigenvectors Wn

associated to the n largest eigenvalues of C:10

ξ = WT
n x̃ (12)

and fit the full solution to a third-order polynomial:

g(ξ) = β0 +

n∑
i=1

βiξi +

n∑
i=1

n∑
j=i

βijξiξj +

n∑
i=1

n∑
j=i

n∑
k=j

βijkξiξjξk (13)

which involves 10 β coefficients for n= 2. We judge the quality of the third-order polynomial meta-model by the Nash-

Sutcliffe Efficiency:15

NSE = 1−
∑M

i=1(g(ξi)− f(xi))
2∑M

i=1(f(xi)− f(x))2
(14)

where
::
in

:::::
whichM is the number of samples, f(x) is the result of the HydroGeoSphere simulation and f(x) =M−1

∑M
j=1 f(xj)

is the ensemble mean. In principle, the NSE ranges from minus infinity to 1
:::
one, with values close to 1 marking better behaving

::::
unity

::::::::
marking

:::::
better

:::::
fitting

:
models. An NSE-value smaller than zero would imply that taking the mean of the full model

::::::::
full-model

:
calculations performs better than the meta model; such behavior is excluded when performing a polynomial fit to20

the data. A variety of other quantification metrics can be found in the supplementary material.

::
In

::::::::
summary,

:::
the

:::::::::::
construction

::
of

::
an

::::::
active

:::::::
subspace

::::::::
contains

:::
two

::::::
strong

:::::::::::::
approximations

:::::
which

::::
both

::::
give

::::
rise

::
to

::::::
errors.

:::
(1)

:::
The

:::::
active

::::::::
subspace

:::::::::::::
decomposition

::::
itself

::::::::::
(dimension

:::::::::
reduction)

:::
and

:::
(2)

:::
the

:::::::
gradient

:::::::::::::
approximation.

:::
As

:::::
these

:::
two

:::::
errors

::::
can

::
be

:::::::
strongly

:::::::::
correlated,

::
it
::
is

:::::::
difficult

::
to

:::::
show

:::
the

::::::
effect

::
of

:::
the

:::::::::
dimension

::::::::
reduction

:::::
when

:::
the

::::::::
gradient

::::::::::::
approximation

::
is

::::
still

::::::::
uncertain.

::::::::
However,

::
in

::::::
Section

:::
4.3

:::
we

:::::::
attempt

::
to

::::
show

:::
the

:::::
effect

:::
on

::
the

::::
total

:::::
error

:::::
when

::::::
altering

:::
the

::::::::
accuracy

::
of

::
of

:::
the

:::::::
gradient25

::::::::::::
approximation.

:

2.4 Adaptive Sampling Using Active Subspaces

A key difficulty in running complex models with random parameters drawn from wide prior distributions, is that a significant

number of the resulting model simulations may show a behavior that is contradictory to the prior knowledge of the modelled
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:::::::
modeled system. Such non-behavioral runs should be discarded in subsequent analyses, which implies that running them was

a waste of computational resources.

An approach to limit the number of non-behavioral model runs could be adaptive sampling, in which a meta-model (i.e.

a simplified, fast running, low-order approximation of the true model) is used first to predict whether a parameter-set is be-

havioral. In this study we utilize the ability of an active subspace to construct low-order meta-models between our unknown5

parameters, represented as active variables, and the chosen observations whose behavior we wish to control. In our application,

we use the third-order polynomials of the active subspaces, explicated in Eq. (13), as meta-models and judge the goodness of

the meta-model by the NSE in Eq. (14). Part of the reason for choosing to work with a polynomial meta-model based on the

active subspace, rather than a more complex meta-model based directly on the parameters, is its ease of use. The derivations are

simple, the meta-model and its fitting are standard procedures, and, above all, visualization, and, hence, intuitive understanding10

of the result, is trivial. This makes it an attractive approach, also for practitioners and others less interested in meta-modelling

::::::::::::
meta-modeling

:
theory.

The setup of an adaptive sampler using active subspaces consists of the following seven steps:

1. Run a first set of flow models with random parameters drawn from a wide distribution of plausible values. In this work

we use 500 as our initial sample size and apply Latin Hypercube sampling.15

2. For each of the behavioral targets
:::::
every

::::::
unique

::::::::::
observation

::::
type

::::::
related

::
to

::
a
:::::::::
behavioral

:::::
target, construct a sufficiently

detailed active subspace. If the gradient computation allows it, several subspace dimensions would be better than one.

Here we use two active subspace dimensions (i.e. two active variables), and, hence, our meta-model is a surface in

the two-dimensional space of active variables. For each meta-model, an NSE-value larger than 0.7 is required to be

considered for pre-assessing the behavior of new parameter sets in the following.20

3. A new candidate of the full parameter vector is now drawn from the same initial distribution as used in step 1. This

parameter vector is projected onto the active subspace(s), and the meta-model is used to approximate the behavior of all

target predictions.

4. The new candidate will be accepted at stage one if any of the following criteria are met:

(a) All approximated behavioral targets are on the permitted side of their limits.25

(b) While a target is on the non-behavioral side of the limit, it is within a reasonable distance of the limits. In practice,

this is implemented as a linear decay function from 1 at the limit to 0 at an outer (user specified) point. If the decay

function value is larger than a random number drawn from a uniform distribution, the candidate is accepted
::
at

::::
stage

:::
one. This criterion is implemented to construct a soft region around the limits that accounts for the imperfection of

the meta-model. The outlined approach is similar to the classical Metropolis-Hastings sampling (Metropolis et al.,30

1953; Hastings, 1970).

7



(c) With a 10% probability, a candidate is accepted at stage one independent of its predicted performance. This criterion

is included to make sure that we maintain a sufficiently good sample of the full parameter space, so that the re-

calculation of the active subspace (see below) still sees the unwanted regions.

If the candidate is stage-one rejected, repeat points 3-4 until a successful candidate is drawn.

5. For each stage-one accepted candidate, we run the full flow model to obtain the prediction of the real model (stage two).5

6. After performing a predefined number (in our case 100) of flow simulations, re-calculate the active subspaces using all

flow-simulation outputs obtained so far.

7. Repeat steps 3-6 until the sample size is large enough for the purpose of the stochastic modelling
:::::::
modeling. This is a

model-purpose specific choice, and can be done both on hard limits to the (stage-two) simulated data or on the number

of flow model runs. Here, we require 10,000 runs of the flow model (i.e. 9,500 stage-one acceptances plus 500 initial10

samples
:
,
:::::
which

:::
are

::::::
per-se

::::::::
stage-one

:::::::
accepted).

While the active subspace(s)and
:
It

::
is

::::::::
important

::
to
:::::

note,
::::
that

::
all

::::::::::::
post-sampling

:::::::::
sensitivity

:::::::
analyses

:::::::::
performed

:::
in

:::
this

:::::
work

::
are

:::::
done

:::
on

:::
the

::::::
subset

::
of

::::
the

:::::::
sampled

:::::::::
parameter

::::
sets

:::
that

::::
are

:::::::
deemed

:::::::::
behavioral

::::
after

:::::::
running

:::
the

::::
full

:::::::::::::::
HydroGeoSphere

::::
flow

:::::
model

:::::::::
(stage-two

:::::::::
accepted).

::::::
Hence,

:::
we

:::
use

:
the meta-model are deliberately constructed with an ensemble that includes

non-behavior model runs
::::
only

::
as

::
a

::::::::::
pre-selection

::::
tool

::
to

:::::
avoid

::::::::
sampling

:::::
those

::::::
regions

:::
of

:::
the

::::::::
parameter

:::::
space

::::
that

::::
will

::::::
clearly15

:::::::
generate

:::::::::::::
non-behavioral

::::
runs.

:::
As

:::
we

::::
aim

::
to
:::::::

sample
:::
10,the stochastic analyses of the final ensemble is constrained to the

behavioral runs. Also note that we use
:::
000

:::::::::
parameter

:::
sets

::::::
(which

:::
are

::::::::
stage-one

:::::::::
accepted),

:::
the

:::::::
analyses

::::
will

::
be

:::::::::
performed

::
on

::
a

::::::
notably

:::::::
smaller

:::::::
number

::
of

:::::::::
parameter

::::
sets.

::
In

:::
this

:::::
work,

:::
we

::::
have

::::::
chosen

::
to
::::::::
construct

:::
the

::::::::::
meta-model

:::::
using

::::
two

:::::
active

::::::::
variables.

::::::::
Although

:::::
more

:::::
active

::::::::
variables

:::::
could

:::::::::
potentially

:::
lead

::
to

:
a
::::::
higher

:::::::
accuracy

:::
of

::
the

:::::::::::
meta-model,

:::
we

:::
saw

::
no

:::::
major

:::::::::::
improvement

:::::
when

:::::::::
increasing

:::
the

::::::
number

::
of

::::::::
subspace20

:::::::::
dimensions

::::::
beyond

::::
two.

::::::
Along

:::
the

::::
same

::::
line

::
of

:::::::
thought,

:::::
model

::::::::
outcomes

::
in
::::
two

:::::::
subspace

::::::::::
dimensions

:::
can

:::::
easily

:::
be

:::::::::
visualized,

:::
thus

::::::::::
facilitating

::
an

:::::::
intuitive

:::::::::
judgment

::
of

:::
the

::::::::
goodness

::
of

:
the meta-modelonly as a pre-selection tool

:
.
::
In

::::
this

:::::
light,

:::
we

:::::
retain

::::
from

:::::
going

::::::
beyond

::::
two

:::::::::::::
active-subspace

:::::::::
dimensions

::
in

:::
the

::::::
current

:::::
work.

:::::
Other

:::::::::
application

::::
may

::::::
require

::::::::::
considering

:::::
more

:::::
active

::::::::::
dimensions.

:
It
::::::
should

::
be

:::::
noted

:::
that

::::::::
applying

:::
the

:::::::::::::
active-subspace

:::::::
sampling

::::
does

:::
not

::::::::::
necessarily

:::::
restrict

:::
the

:::::::::
sensitivity

:::::::
analysis

::
to

:::::::::
calculating25

::
the

:::::::
activity

:::::
score

::::::::
(equation

::
8).

:::
As

::::::::
discussed

:::
in

:::
the

::::::::::
introduction,

:::::
there

:::
are

:::::
many

::::::::::::::
global-sensitivity

::::::::
methods,

:::
all

::::
with

::::
their

::::
own

:::::::
strengths

::::
and

::::::::::
weaknesses,

::::
and

:::
any

:::::::
method

:::::
based

::
on

::
a
::::::
random

:::::::
sample

:::::
could

::
be

:::::::
applied.

::
In

::::
this

:::::
work,

:::
we

::::::
utilize

:::
the

:::
fact

::::
that

::
we

::::
have

:::::::
already

::::::::
computed

:::
the

:::::::::::::
active-subspace

::::::::::::
decomposition

:::
so

:::
that

:::
the

::::::::::::
post-sampling

:::::::::
calculation

::
of

:::
the

::::::
activity

:::::
score

::
is

::::
easy

:::
and

::::
very

:::::::::::
cost-effective.
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3 Application to a Virtual Test Case

3.1 Description of the Domain

The test bed used in this paper is a steady-state flow model setup and run in HydroGeoSphere. It draws its main features from

the catchment of the stream Käsbach in the Ammer-valley in southwestern Germany (Selle et al., 2013) with some simplified

features. That is, the simulated domain is not meant as exact representation of the Käsbach catchment but contains enough5

details to be considered a realistic test for the proposed global sensitivity analysis method.

Figure 1. Illustration of the modelled catchment, including important features and surrounded by an explicit view on the different geological

features.
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As illustrated in Figure 1, the subsurface model consist of 5 geological layers, representing the major lithostratigraphic units

in the region. From the bottom to the top, these are: (1) the middle-Triassic Upper Muschelkalk formation, made of fractured-

karstified limestone, (2) the lower upper-Triassic Lettenkeuper (Erfurt formation), made of clay-rich mudstones and carbonate-

rock layers, (3) the unweathered middle upper-Triassic Gipskeuper (Grabfeld formation), made of mudstones and gypsum-

bearing layers, (4) a weathering zone of the latter formation, and (5) Quaternary valley fills of unconsolidated sediments. A5

fault passes through the domain in the North-South direction, leading to offsets in the geological units. The geological base

model resembles the regional model of D’Affonseca et al. (2018). Each layer is modeled as homogeneous unit.

The model domain measures about 4 km × 6 km at the widest places. It is discretized by 1,001,760 prism elements using

523,083 nodes and features a single main stream with four possible tributaries. The model is setup and run in transient mode

with constant forcings until steady state is reached. Only the final time step (here after simulating 1010 seconds) is considered10

in the analysis.

The boundary conditions, setup to allow water to leave the domain both through the surface and the subsurface, are as

follows: The bottom of the model features a Dirichlet-boundary with values read in from a larger-scale model of the region

(D’Affonseca et al., 2018), but limited such that no hydraulic head at the bottom face can be higher than 5 meters below the

model top. Streams in the model are modelled as drains, meaning that water can exit there
::::
flow

:::
out

::
of

:::
the

:::::::
domain when the15

hydraulic head at the assigned stream nodes exceeds a value 1 cm above the surface elevation. This implies that all streams are

either inactive or gaining, whereas losing conditions are excluded. A similar drain boundary, but with much higher exit head

(fixed at 0.2 meters above land surface for all simulations) is also considered on all non-stream nodes in the upper most layer,

to allow water to leave the domain in case of flooding. The last outflow boundary in the model is a Cauchy-boundary at the

southern vertical wall of the model.20

To avoid long run times and complications of complex top soils
:::::::::
(including

::::::::::::::
plant-atmosphere

:::::::::::
interactions), which are unim-

portant once steady state is reached, the top of the HydroGeoSphere model is 1 meter below
:::
the land surface. Flow across the

top boundary is only incoming and modelled as a Neumann-boundary
:
, corresponding to the steady-state groundwater recharge.

The recharge varies with land-use, split into three categories: cropland, grassland, and forest, in which urban areas are treated

as grassland.
:
It
::::::
should

:::
be

:::::
noted

::::
that

::::::
starting

:::
the

::::::
model

::
at

::
1

:::::
meter

:::::
below

:::::::
surface

::::
still

:::::
allows

:::
for

::
a
::::::
notable

::::::::::
unsaturated

:::::
zone25

::
to

::::::
develop

:::
in

:::
the

:::::
model

::::::::
domain;

::::
only

:::
the

::::::::::
upper-most

:::::
meter

::
is

:::::::
missing.

:::::
Also,

:::
the

::::::::
outgoing

::::::::::
drain-fluxes

::::::::
described

::::::
above

:::
are

::::::
applied

::
to

:::
this

:::::::::::::::::::::
one-meter-below-surface

:::
top

:::::::::
boundary,

:::::
hence

::::::::
requiring

:::
that

:::
the

::::
exit

:::::::
pressure

::::
head

::
is

:::
one

::::::
meter

:::::
larger

::::
than

:::
the

:::::::
ponding

:::::::::::
pressure-head

::::::::
described

::::::
above.

::::::::::
Technically,

:::
this

::::
does

:::
not

:::::
apply

::
to

::
to

::::::
stream

::::::
nodes,

:::::
which

:::
are

:::::::::
considered

::
to

::
be

:::
the

::::
real

:::
top

::
of

:::
the

::::::
porous

:::::::
medium

::::
(that

::
is,

:::::
there

:
is
:::
no

::::::::::
unsaturated

::::
zone

::
on

::::
top

::
of

:
a
:::::::
stream).

:

3.2 Virtual Observations30

For the evaluation of the model sensitivities, we consider four observation quantities: (1) the discharge almost at the outlet

of the catchment (gauge C in Figure 1), (2) the net sum of the fluxes across the bottom and side subsurface boundaries, (3)

the groundwater table of the uppermost aquifer, measured in 199 observation wells throughout the catchment, and (4) the

groundwater residence time in the major geological layers. The latter is representative for transport and differs in its sensitivity
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from hydraulic heads (e.g., Cirpka and Kitanidis, 2000). The time that a solute parcel stays in a particular geological formations

may be indicative for reactive transport (e.g., Sanz-Prat et al., 2016; Loschko et al., 2016; Kolbe et al., 2019).

We computed the geological-unit specific residence time using the visualization software TecPlot360, considering 199 par-

ticles that each start in an observation well, 5 meters below the groundwater table. We separate
:::::::
separated

:
the discrete particle

tracks into the segment spent in each geological layer and compute
::::::::
computed the total residence time per layer as the mean over5

all 199 particles. It should be noted that this way of computing travel times is slightly imprecise, as the velocity-field output of

HydroGeoSphere is non-conforming and TecPlot particle tracking is not primarily designed for quantitative outputs. However,

the purpose of the residence-time calculation is not an exact prediction of exposure times in the real Käsbach catchment but

rather a qualitative transport indicator. As we use
:::
used

:
the same method with the same numerical parameters on the same grid

in all model runs of our stochastic ensemble, we believe that the associated variability of computed residence times is good10

enough for the inter-comparison between different stochastic runs.

3.3 Stochastic Treatment of the Geological and Hydraulic Parameters

In the setup used in this paper, 32 parameters related directly to the flow model are randomized. All parameters are sampled

from a uniform distribution. Table 1 list
:::
lists

:
the corresponding parameter bounds. For each of the geological layers, the uncer-

tain parameters are: the horizontal saturated hydraulic conductivity, the anisotropy ratio of horizontal to vertical conductivity15

(except for the Muschelkalk limestone and the Quaternary fillings), the two van-Genuchten parameters α and n, and the spe-

cific storativity. Further, the bottom Dirichlet-boundary, the reference head at the Cauchy boundary, and the head at the stream

drain boundaries are drawn from uniform distributions.

Besides these material properties of the lithostratigraphic units and boundary conditions, also the exact subsurface structure

is uncertain. To address this uncertainty, we drew three parameters controlling the size of the main geological layers from20

uniform distributions: the vertical offset of the fault running north-south through the domain (see Figure 1), the thickness of

the Lettenkeuper (expressed as a difference to the base value in Table 1), and the thickness of the weathering zone in the

Gipskeuper, in which the latter has the thickness of the Gipskeuper itself as upper bound. An example of the variability in the

subsurface can be seen in Figure 2, where six realizations of the Lettenkeuper layer are shown.
:::::
Please

::::
note

:::
that

::::::
Figure

:
2
::::::
shows

:::::::
different

::::::::::
realizations

::::
than

::::::
Figure

::
1. Finally, also the recharge fluxes are randomized. For each of the three different land-use25

types discussed above, we draw random values of groundwater recharge in each sample, based on a large collection of 1-D

simulations of the missing first meter of the subsurface, using different soil structures, plants parameters, and top boundaries.

The resulting ranges are shown in Table 1.

The stochastic engine for HydroGeoSphere is setup in and controlled by Matlab. The full stochastic suite is run on a mid-

range cluster with 20 nodes, each featuring 2 Intel Xeon L5530, 8 core, 2.4GHz processors with 72Gb RAM. The 10,00030

samples discussed later took on this setup about 96,000 CPU-hrs (~11 CPU-years), corresponding to 300 wall-clock hours

(~12 days).
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Table 1. Sampling ranges for of stochastic parameters considered.

Parameter→ Conductivity Anisotrophy ratio α n Ss

(m/s) (-) (1/m) (-) (1/m)

Layer Min Max Min Max Min Max Min Max Min Max

mo 10−7 10−5 1 1 0.5 5 1.5 9 10−6 10−4

ku 10−8 10−5 1 50 0.5 5 1.5 9 10−6 10−4

km1 10−9 10−7 1 50 0.5 5 1.5 9 10−6 10−4

km1-w 10−7 5× 10−5 1 50 0.5 5 1.5 9 10−6 10−4

Q 10−7 10−5 1 1 0.5 5 1.5 9 10−6 10−4

Parameter Min Max Parameter Min Max

Bottom Head Offset (m) -5 5 River Bed Thickness (m) 0.005 0.2

Fault Offset (m) 0 100 Recharge Grass (mm/year) 80 13ß

Contact Offset ku-km1 (m) -20 20 Recharge Crop (mm/year) 100 150

km1-w Thickness (m) 5 50 Recharge Forest (mm/year) 100 150

Cauchy Boundary Head (m) 335 355

mo: Upper Muschelkalk, ku: Lettenkeuper, km1: Gipskeuper, km1-w: weathered Gipskeuper, Q: Quarternary fillings.

3.4 Definition of Behavioral Targets

In the present work, we define five behavioral targets that are all based on expert knowledge about the modelled
:::::::
modeled

catchment. In the following, we specify the behavioral target values and the point of maximum deviation from that target for

which we may probabilistically accept a simulation run, denoted "outer point":

Limited flooding Flooding, here viewed as water leaving the domain through the top drain at the surface at places outside of5

the streams, occurs in the model at a hydraulic head of 0.2 m above the land surface. The total flodding
:::::::
flooding in the

domain should not exceed 2× 10−3 m3/s (outer point 4× 10−3 m3/s). Some flooding is seen as acceptable, as it may

occur in low-land areas next to the streams, which we don’t model in great detail.

Minimum flow in the main stream At measurement gauge C (Figure 1), the stream should be fully developed, which we

define as a discharge larger than 5× 10−3 m3/s (outer point 3× 10−3 m3/s). This reference value is picked based on10

experience with the model domain and the known range of annual mean recharge.

Minimum flow in stream B Knowing that stream B produces flow, a minimum flow is set to 1.0× 10−6 m3/s (outer point

5.0× 10−7 m3/s ).

Maximum flow in stream A The stream residing on the steep eastern side of the hill is known to only produce flow under

extreme conditions. Hence, at steady state the flow in stream A should be minimal. The maximum accepted flow is15
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Figure 2. Six examples of distinctively different realizations of the geological layer Lettenkeuper. Color shows the natural logarithm of the

saturated hydraulic conductivity.

therefore set to 1× 10−3 m3/s (outer point 2× 10−3 m3/s). A small flow is considered acceptable, since it may occur in

the regions close to the main stream and hence be a reflection of model discretization rather than subsurface setup.

Ratio of total stream discharge to total incoming recharge It is known that the catchment in question loses a notable amount

of its water to the subsurface. A rough estimate is that, in the real catchment, the stream flow amounts to ≈40% of the

incoming water
::::::::::
groundwater. Based on this, we require that an acceptable model should have between 25% and 60%5

(outer points 20% and 75%) of its net recharge reaching the streams.

In a preliminary test of a model very similar to the one used here, and with the same randomized parameters, we performed

Monte Carlo
::::::::::
Monte-Carlo

:
simulations of the full model without preselecting

::::::::::
pre-selecting

:
presumably behavioral parameter

sets. Here about 75% of a total of 10,000 runs had to be discarded only due to severe flooding. This highlights that it is highly

beneficial if the sampling is targeted only to simulations that show a response that is, within reason, representative for the10

modelled
:::::::
modeled domain. In the case of flooding in the domain, it is not a single parameter that controls this behavior, but a

complex relation between many parameters, deeming a-priori decisions about behavioral parameter ranges unfeasible.
::
As

:::
all

:::::
targets

:::
are

:::::
based

:::
on

:::::::::
knowledge

:::::
about

:::
the

:::
real

:::::::::
catchment

::
on

::::::
which

:::
the

::::::
current

:::::
model

::
is

::::::
based,

::
all

::::::
model

::::::
outputs

::::::::
produced

::
by

::
a

::::::::
stage-two

:::::::
accepted

::::::
model

:::
will

::
be

::
in
::::
line

::::
with

::::
what

:::
we

:::::
would

::::::
expect

::
to

::
be

:::::::
realistic

::
in

:::
the

:::::::::
catchment.

::::::::
However,

::
it

::
is

::::::::
important

::
to

:::
note

::::
that

::::
even

::::::
though

:
it
::::::
would

::
be

:::::::
possible

::
to

:::::
point

:::
out

:
a
:::::::
location

::
in

:::
the

:::::
active

:::::::
subspace

::::::
which

::::::::::
corresponds

::
to

:
a
::::
real

::::::::::
observation,15
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::
the

::::::
active

:::::::
variables

::::::::::
themselves

:::
are

:::::::::
non-unique

::::
with

:::::::
respect

::
to

:::
the

::::
flow

:::::::::
parameters,

:::
so

:::
that

::
a
::::::
simple

::::::::::::::::
back-transformation

:::::
from

:::::
active

:::::::
subspace

::
to
::::::::::
flow-model

:::::::::
parameter

:::::
space

:
is
:::
not

::::::::
possible.

:

4 Results

To allow the reader to better see the 3-D structures
:::::::
structure

:
in the results presented here, the main results can be viewed in a

plug-and-play app designed for Matlab, denoted "Active Subspace Pilot", which is available as supplementary information to5

this publication.

4.1 Adaptive Sampling

The effect of using the active subspaces as a sampling strategy for the flow simulations can be seen in Figure 3, showing the

marginal distributions of the nine parameters that were most influenced by the sampling strategy. The blue bars are histograms

of all parameter sets selected for full model runs, whereas the red bars are histograms of the behavioral parameter sets.10

The blue bars of Figure 3 clearly show that already the pre-selection using the meta-model avoids certain regions of the

parameter space. In particular, the two parameters related to the weathering zone of the Gipskeuper (conductivity and thickness

of km1-w in Figure 3) show a preferential sampling for a thick and highly conductive layer. Similar preferences are seen in

the Lettenkeuper and the Gipskeuper (ku and km1). This is contrasted by the deeper subsurface, where the Muschelkalk (mo)

shows a preference towards low conductivity and the offset of the fault is preferably sampled at smaller values (which decreases15

the size and connectivity of the Muschelkalk layer). By selecting high conductivity values in the Quaternary and weathered

Gipskeuper layers, chances of floodings are reduced. Further, the high conductive near-surface and middle-deep layers serve

to transport water towards the streams. The smaller and less conductive deep subsurface in combination with higher bottom

pressures, on the other hand, serves to inhibit exiting water through the bottom. Hence, the posterior sample shows exactly the

behaviors required by the targets. This suggests that the sampling strategy has been successful.20

The red bars in Figure 3 show the marginal posterior distribution of parameters used for the sensitivity analysis
:::::::::
(stage-two

:::::::
accepted

:::::::::
parameter

::::
sets). This corresponds to a selection of simulations that are strictly better than the mean of the targets

and their outer point (see above). Hence, this selection is deterministic with a hard limit. It is obvious that the pre-selection

::::::::
(stage-one

::::::::::
acceptance)

:
and final selection

::::::::
(stage-two

::::::::::
acceptance) of parameters are similar, but the stricter sample used in the

sensitivity analysis has fewer members. The blue bars in Figure 3 comprises 10,000 samples
::::::::
(stage-one

::::::::::
acceptance), while25

the red bars comprises a subset of 4,533 samples
::::::::
(stage-two

::::::::::
acceptance). Part of the reason for this rather larger difference, is

that the active subspace sampler is only an approximation. More so, we have deliberately relaxed the criterion for accepting a

parameter set by including a range around the target, and, for the full run to include a 10% acceptance
::::::::::::
pre-acceptance

:
indepen-

dent of the meta-model prediction. In a comparable setup, we sampled 10,000 parameter-sets without
:::::
using

:
a
::::
pure

:::::::::::
Monte-Carlo

:::::::
sampling

:::::::
scheme

::::
(i.e.

::::::
without

::::
any

::::
kind

::
of

::::::::::
meta-model

::
or

:
pre-selection

:
), and out of those, only 588 were acceptable with the30

strict criteria used here
:::
(i.e.

::::::::
stage-two

::::::::
accepted,

:::::::
although

::
in
:::
the

::::
case

::
of

::
a
::::
pure

:::::::::::
Monte-Carlo

::::::::
sampling,

::
no

::::::::
stage-one

::::::::::
acceptance

:
is
::::::
tested). Hence, the improvement when using the active subspace sampler is clearly notable.
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Figure 3. Marginal posterior distributions of the parameters influenced by the adaptive sampling. Blue bars show the sampled posterior and

red bars the constrained posterior sample used in the sensitivity analysis.

Figure 4 shows the performance and development of the active subspaces for three representative targets. Here, the x- and

y-positions
::
x-

::::
and

:::::::::
y-positions

:
of the markers are the values of the two active variables, respectively, while the color indicates

the magnitude of the corresponding observation.
::::
Each

::
of

:::
the

:::
two

::::::
active

:::::::
variables

::::::::
(equation

::::
12)

:
is
::
a
:::::
linear

:::::::::::
combination

::
of

:::
the

:::::::::
flow-model

::::::::::
parameters,

::::::::
weighted

::
by

::::
their

:::::::::
respective

::::::::
influence

::
on

:::
the

:::::::
specific

:::::::
subspace

::::::::::
dimension.

::::
Due

::
to

::
its

:::::::::::
construction,

:::
the

:::::
active

::::::
variable

:::::
itself

::
is

::::
hard

::
to

:::::::
interpret.

::::::::
However,

:::
the

::::::
activity

:::::
score

::::::::
(equation

::
8)

::::
used

::
in

:::
this

:::::
work

::
to

:::::
judge

::
the

::::::::::
importance

::
of

:::
the5

:::::::
physical

:::::::::
parameters,

:::::::::
effectively

::::::
shows

:::
the

::::::::::
components

::
of

:::
the

:::::
active

:::::::
variable,

::::
and

:
is
::::::::
therefore

:::
the

::::::::
preferred

::::
way

::
to

:::::::
interpret

:::
the

::::::::::::::
parameter-related

::::::
results.The first row of sub-plots shows the initial sample of 500 model runs, the second row the first 1,000

runs, and the third row the final ensemble of 10,000 runs. In all scatter-plots the target observation varies significantly along the

first active variable (x-axis
:::::
x-axis), but that there is also notable dependence on the second active variable (y-axis

:::::
y-axis). The

latter suggests that it is appropriate to consider more than one active variable in the sampling procedure. Further, as indicated10

in the title of the subplots, the Nash-Sutcliffe Efficiency (NSE) for fitting the meta-models (Section 2.3) between
::::::
relating

the active variables and the data, are high, indicating that the active subspace decomposition has worked well. This is also

exemplified in Figure 5, which shows the flooding observation and the fitted meta-model together with the corresponding error.

Figure 4 also shows notable differences between the active subspace constructed on the initial 500 runs (first row) and

that after adding 500 actively sampled runs (second row). For example, for the ratio target (middle column in Figure 4), the15

orientation of the subspace changes, which is indicative of changes of weights within the active variable. We also see that the

third-order meta-model used for the active subspace sampler fits the data better after extending the ensemble to 1000
:::::
1,000

members, as indicated by the NSE-values. By contrast, extending 1,000 to 10,000 pre-selected runs (second and third row in

Figure 4), does neither change the subspaces nor the surfaces of the meta-models in a significant manner, implying that the

ensemble with 1,000 runs (500 initial plus 500 based on active-subspace sampling) already does a good job.20
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Figure 4. Two-dimensional active subspaces for 3 of the behavioral targets
:::
(Top

:::::
Drain

:::::::
(Limited

:::::::
Flooding,

:::::
target

::
1),

:::::
Ratio

:::::
(target

:::
5),

::::
Flow

:
in
::::::
Stream

::
A

:::::
(target

::
4)). The observed values are illustrated by the color. The first row shows the initial 500 samples, the second row the first

1,000 samples and the third row the full 10,000 samples. NSE values in the titles correspond to fitting the third-order meta model according

to Eq. (13) to the data.

Figure 5. An example of the performance of the adaptive sampler for the flooding
:::
Top

::::
Drain

:
observation

::::::
(Limited

:::::::
Flooding

:::::
target). The first

plot show the data, the second plot the third-order polynomial meta-model fitted to the 10,000 observations in the first plot. The third plot

shows the error between the true observations and the meta-model fit.
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4.2 Global Sensitivity Analysis Using Active Subspaces

In this section, we use the active subspace
:::::::::::::
active-subspace method to analyze parameter sensitivities. In this analysis we only

consider the behavioral parameter sets. That is, the red bars in Figure 3 define the probability density ρ considered in Eq. (5).

The aim of a sensitivity analysis is to identify how influential individual parameters of a model are on (a set of) observations.

In global sensitivity analysis, this is evaluated over the entire parameter space. We start the discussion with the least influential5

parameters in our application. None of the observations considered depend on the two van-Genuchten parameters α and n

or the specific storativity of any lithostratigraphic unit to a significant extent. The specific storativity is known not to affect

steady-state flow at all. Also the van-Genuchten parameters are most important in transient flow in the unsaturated zone, or

when there is a significant lateral flow component therein. Neither is the case in our application. That is, these result were to

be expected. Similarly, the sensitivity to the horizontal-to-vertical anisotropy ratio in all formations was small throughout the10

tests.

Figure 6. Active subspaces and square root of activity scores for the observations "Stream discharge at Gauge C" and "Net flow across

subsurface boundaries". Please note that the plot is limited to the 7 most important parameters.

We now consider the significant parameters. Figure 6 shows the dependence of the targets on the two subspaces considered

and the activity scores of all parameters for the discharge observation at Gauge C and the net flow across the subsurface

boundaries. As can be seen from the NSE-value in the titles, the active subspace decomposition works well for two active

variables. We can also see that the sensitivity patterns for the two observations are rather similar: The hydraulic-conductivity15

values of the upper most and lowest geological units (km1-w and mo, respectively) are the most influential parameters. This

is likely so because they decide the partitioning of the water between the surface streams and the subsurface boundaries.

Interesting to note is that the applied strength of recharge does not show a high importance for the discharge in the streams,

implying that the partitioning of the water is more important than the actual net input when it comes to determining steady-state

flow in this model.20

Figure 7 shows the activity scores for the hydraulic head in the upper most aquifer in the 199 observation wells. Here we see

that the sensitivity patterns differ among the different wells. However, we can classify the observation wells into three clusters:

1) those with a high sensitivity for the fault offset and the hydraulic conductivities in the Lettenkeuper (ku) and Muschelkalk
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Figure 7. Square root of activity score for 199 wells (left) and their placement in the catchment (right). Please note that the activity score

plot is limited to the 12 most important parameters.

(mo) (marked in black); 2) those with high sensitivities to parameters related to the Gipskeuper and its weathering zone (marked

in blue); and 3) those for which no particular sensitivities were found (marked in red). While the separation is not perfect, Figure

7 shows that there are only few overlaps. When plotting the spatial location of the different wells and their respective category

(right plot in Figure 7), a clear pattern emerges. Almost all blue wells with high sensitivity to Gipskeuper-related parameters

are placed in regions with Gipskeuper being present (north and east in the catchment), and, similarly, the black wells sensitive5

to Lettenkeuper are located where we would expect the groundwater table to be found in this geological formation (western

part of the catchment). The non-sensitive red wells are all placed close to the stream where
::
the

:
hydraulic head is controlled by

the stream stage rather than the properties of the geological layers. All in all, we can state that the method of active subspaces

generates plausible results for groundwater observations in a complex geological setting.

As a last observation, we consider the total residence time in the geological layers of the aquifer, which may be a relevant10

proxy for applications to reactive transport. Figure 8 shows the associated dependence of the targets on the two subspaces

considered and the activity scores of all parameters. For the total residence time in the Lettenkeuper (ku) and Gipskeuper

(km1), the corresponding meta-models using two active subspaces performed fairly well, as
:::
can

:::
be seen in the NSE-metric.

This is not the case for the total residence time in the weathering zone, where the cubic meta-model with two active variables

achieved a very low NSE of 0.3 (Figure 8, third column). Because of the bad fit of this observation, we don’t show the associated15

activity-score plot. For the travel time through the other two layers, it is not so surprising that the hydraulic conductivity of the

actual layer together with the parameters controlling the thickness of the layers, i.e. the fault offset for the Lettenkeuper and

the thickness of the weathering zone for the Gipskeuper, are the controlling parameters. More interesting is that the hydraulic

conductivity of the weathering zone also plays a major role for the travel time through the non-weathered Gipskeuper (Figure

8, second row, second column). Hence, a good prediction of how long a water parcel stays within the unweathered Gipskeuper20

requires a good understanding of its weathered layer. The latter may be understood by the partitioning of water through the

18



Figure 8. Two-dimensional active subspaces (top row) and square root of activity scores (bottom row) for residence time (years) in three

geological units. Please note that the activity score plots are limited to the 4 most important parameters, and that due to the poor active

subspace decomposition, this plot is not shown for the last column.

weathered and unweathered parts of the Gipskeuper. Increasing the hydraulic conductivity of the weathering zone leads to

smaller volumetric fluxes through the unweathered Gipskeuper and thus lower velocities and larger residence times within this

unit.

4.3 Gradient Approximation in the Derivation of the Active Subspaces

In difference to previous works with active subspaces in subsurface flow, we approximate the gradient ∇f(x̃) from a second-5

order polynomial fit of f(x̃) rather than a linear one. To test the effect of this approach, we compare the activity scores as

well as Nash-Sutcliffe Efficiency (NSE) of the associated meta-models using the three different polynomial fits to obtain the

gradients discussed in section 2.2: (1) the full second-order model, (2) second-order approximation without cross-terms, and

(3) a linear approximation.

To test the consistency of the results, we drew 2,500 samples in 1,000 repetitions using classic bootstrap-sampling without10

replacement from the original sample (4,533 members). In each repetition, we computed the activity scores and NSE of the

meta-models based on the three gradient approximations. Figure 9 (left) shows the activity scores of the parameters applying

the gradient approximations for the discharge at Gauge C. Clear differences in the rankings among the different gradient

approaches are obvious. The differences are the strongest between the linear approximation (which also reduces the number

of possible active subspaces to one) and the two second-order approximations. Including the cross-terms in the second-order15

approximation increases all relevant scores with the biggest relative effect on the relevance of the hydraulic conductivity of the

Lettenkeuper (ku).
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To evaluate the goodness of each approximation, Figure 9 (right) shows the NSE resulting from fitting a third-order polyno-

mial between the active variable(s) and the original data. It is obvious that the higher-order polynomial gradient-approximations

are doing much better. It is important to keep in mind that we use the gradient fit only to approximate the gradients in Eq. (5),

while the actual meta-model requires a second polynomial fit. The higher NSE-values of the more complex gradient fits thus

indicate that they lead to active subspaces that are more indicative. As the linear gradient fit allows only the computation of a5

single active subspace, the meta-model is indeed simpler. Including the second-order cross-terms seems to enrich the variability

of the gradients over the parameter space, causing a separation of active subspaces that cover a wider range of parameter values.

The results shown in Figure 9 give confidence that more complex gradient models are better if the data set is large enough to

constrain all coefficients of such a model. Very similar results are found for all other behavioral targets, and the corresponding

figures can be found in Appendix A.10

Figure 9. Square root of activity score and corresponding NSE for flow at gauge C using different approximations to compute the gradients.

Each approximation is used to compute 1,000 active subspaces based on a bootstrap-resampling with 2,500 samples from the original 4,533.

Only the 7 most important parameter are shown in the activity score plot.

5 Discussion and Conclusions

In this work we have applied the method of active subspace
::::::::
subspaces

:
to an integrated hydrological model of a small catchment

with focus on subsurface flow. We used active subspaces to construct meta-models with two active subspaces rather than 32

uncertain parameters. The meta-model was used to constrain the stochastic sampling of the parameter space to five behavioral

conditions. The active subspaces of the accepted full model runs were used to compute the global sensitivity of four modeled15

observations to the parameters. The sensitivity analysis showed that hydraulic-conductivity values of the major layers are im-

portant, but also their physical extent. However, depending on the location and type of observations, different sensitivities were

found. This highlights the well-known fact that multiple, dissimilar observations are needed to constrain uncertain variables of

a catchment model. In the adaptive sampling we learned that certain combinations of unfavorable parameter values where
::::
were

clearly avoided. Most of the non-behavioral parameter combinations were not obvious beforehand, but could be identified by20

applying the meta-model, which significantly improved the sampling efficiency.
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The choice of meta-model used in this work (third-order polynomial of the first two active subspace dimensions) was

somewhat arbitrary. The number of different meta-models applied to hydrological problems is large (Razavi et al., 2012). Our

guiding principles in selecting the meta-model were the good fit to the data, the ease in application, and the comprehensibility

for more practice-oriented users. While many state-of-the-art meta-models can be rather complicated, a surface depending on

two dimensions is easy to understand, trivial to visualize and, hence, also allows a qualitative judgments by the user. We also5

performed preliminary tests using support-vector machines (results not shown), leading to results very similar to those of the

active subspaces, but the method is more complicated to comprehend.

Choosing a low-order polynomial as meta-model implies smoothness and, hence, the meta-model does not exactly fit all

model runs. Razavi et al. (2012) argued that meta-models for computer simulations should always be exact because the com-

puter simulations themselves are deterministic. We prefer the inexact model nonetheless because our meta-model is based10

on a limited number of active subspace dimensions. We explicitly ignore the other dimensions. If the considered subspace is

well determined, the ignored dimensions will still be present, but their effect can then be interpreted as noise. Hence, a smooth

meta-model depending on a reduced-dimensional parameter set is applicable even though the computer simulations themselves

are deterministic.

Even though the efficiency of the active subspace
::::::::::::
active-subspace

:
sampler is higher than a rejection sampler without pre-15

selection, the rejection rate of ≈ 55% is still rather high. This could of course be strongly decreased by setting the allowed soft

targets to become harder. Such an approach would be appropriate if the main aim is to obtain as many behavioral parameter sets

with the least effort, but we deliberately wanted to explore the behavioral boundaries of the parameter space, which requires

stepping across that boundary. The choice of tuning parameters made in this work was made ad hoc and based on experience

with the model domain and a qualitative assessment of the resulting surfaces. Better heuristic statistics could be implemented,20

which could possibly further increase the efficiency of the sampler.

Overall, we draw the following conclusions from this work:

1. The method of active subspace
::::::::
subspaces can be applied with little effort and good results to complex subsurface flow and

transport problems. This holds not only when subsurface properties are uncertain, but also the geometries of geological

units and boundary conditions.25

2. The two-stage rejection sampling using a meta-model based on the active subspaces can drastically decrease the number

of simulations needed to obtain a certain number of behavioral simulations. An additional positive aspect for the applica-

tion by practitioners is the ease of visualization and intuitive understanding when using a one- or two-dimensional active

subspace.

3. Using a quadratic rather than linear fit to estimate the gradients in the construction of the active subspace resulted in a30

much improved subspace decomposition. It is also a prerequisite to construct more than one subspace dimension.
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Code and data availability. The supplement includes the Matlab R2019a code "Active Subspace Pilot" to visualize the active subspaces and

scores for all model runs. This code is written as Matlab App and includes also the data.

Appendix A: Performance of Different Gradient Approximations

This appendix contains additional plots showing the performance of the different gradient approximations for the four be-

havioral targets not presented in the main article. Each approximation is used to compute 1,000 active subspaces based on a5

bootstrap-resampling with 2,500 samples from the original 4,533 ensemble members. This is true
::::
holds

:
for all observations

apart from for the flow across the top boundary, where the full ensemble is used to draw samples from. Only the 7 most

important parameters are shown in each activity-score plot.

Figure A1. Square root of activity score and corresponding NSE for flooding flow across the top boundary using different approximations to

compute the gradients. In this case, the bootstrap sample is drawn from the full sample population of 10,000.

Figure A2. Square root of activity score and corresponding NSE for flow in Stream A (see Figure 1) using different approximations to

compute the gradients.
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Figure A3. Square root of activity score and corresponding NSE for unwanted flow in Stream B (see Figure 1) using different approximations

to compute the gradients.

Figure A4. Square root of activity score and corresponding NSE for the ratio of stream discharge to incoming recharge using different

approximations to compute the gradients.
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