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Abstract. The ecological integrity of freshwater ecosystems is intimately linked to natural fluctuations in the river flow regime.

Anthropogenic alterations in flow regimes threaten water security and freshwater biodiversity in many regions of the world.

The impacts of climate change on the hydrological cycle change local flow regimes and thus impact on the ecological sys-

tems. In catchments with little human-induced hydro-morphological changes, existing hydrological models can be used to

predict changes in local flow regime in order to assess whether its rivers remain a suitable living environment for endemic5

species. However, hydrological models are traditionally calibrated to give a good general fit between observed and simulated

hydrographs, e.g., using an optimisation with an objective function such as the Nash-Sutcliffe, or the Kling-Gupta efficiencies.

Much ecological research has shown that aquatic species respond to very specific characteristics of the hydrograph, whether

magnitude, frequency, duration, timing, and rate of change of flow events. Since each community in a river may be particularly

sensitive to a few very specific streamflow characteristics, alternative hydrological model calibration strategies are needed,10

focussing on good performance for those specific characteristics. This study investigates the performance of a set of specially

developed, bespoke, objective functions made of combinations of specific streamflow characteristics relevant for fish and in-

vertebrate communities. These are compared with the more traditional objective functions on a set of 33 Irish catchments with

little human regulation. A split-sample test with a rolling-window procedure is applied to reduce the influence of variations be-

tween the calibration/evaluation periods on the conclusions. These bespoke objective functions are shown to be better suited to15

predict the targetted streamflow characteristics in terms of performance in evaluation; however, traditional objective functions

yield more consistent behavioural parameter sets, indicating a trade-off between model performance and model consistency

when predicting streamflow characteristics, especially when the number of target streamflow characteristics are low.

1 Introduction

River flow is the cornerstone of freshwater ecosystems, the ecological integrity of which relies on the natural fluctuations in20

the river flow regime (Poff et al., 1997). A long history of human alterations of river flow regime for water supply, irrigation,

flood protection, or hydropower threatens water security and freshwater biodiversity in many regions of the world (Vörösmarty

et al., 2010). Richter et al. (1997) raised the overarching research question “How much water does a river need?”. In order to

quantify these needs and assess the effects of altered flow regime on freshwater ecology, many different hydrological indices
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have been used, whether they are referred to as streamflow characteristics (SFC) (Vis et al., 2015; Pool et al., 2017), ecologically

relevant flow statistics (ERFS) (Caldwell et al., 2015), or indicators of hydrological alterations (IHA) (Richter et al., 1996).

Each index describes specific aspects of the response of a catchment that can be extracted from the streamflow hydrograph.

Olden and Poff (2003) listed a range of such hydrological indices used to characterise river flow regime in relation to ecological

species’ preferences. The prediction of these streamflow conditions has historically being done using statistical analyses such5

as regional regression models that relate them to some climatic and physiographic descriptors (e.g., Carlisle et al., 2011; Knight

et al., 2014) as well as by hydrological models that produce streamflow hydrographs from which the streamflow characteristics

can be computed (e.g., Shrestha et al., 2014; Caldwell et al., 2015).

Most rainfall-runoff models used to predict these SFCs relevant for the stream ecology require calibration to determine their

effective model parameter values. The selection of the objective function(s) in the calibration process is of great importance10

for the quality of the predictions of SFCs (Vis et al., 2015; Kiesel et al., 2017; Pool et al., 2017). For example, Vis et al. (2015)

found that even parameter sets performing similarly on the Nash-Sutcliffe efficiency criterion (NSE) (Nash and Sutcliffe,

1970) fitted to flows can yield very different performances when looking at the prediction of SFCs. They found that certain

combinations of objective functions fitted to flows each focussing on specific aspects of the streamflow hydrograph tend to

be more suitable across a range of streamflow characteristics than using a single objective function fitted to flows, e.g., the15

NSE criterion alone. Although there does not seem to be any single overall best combination of objective functions fitted to

flows for predicting all SFCs at once (Vis et al., 2015). This exposes the limitations of models in representing the entirety

of real-world processes in a catchment. Indeed, because of uncertainties in model structure, model forcing, and evaluation

data (Beven, 2016), the identification of a single perfect parameter set is usually unachievable (Beven, 2006), and in practice

trade-offs are required between modelling different aspects of the hydrograph. The choice of the objective function for model20

calibration directly influences which trade-offs are made.

The calibration of a rainfall-runoff model using the Nash-Sutcliffe efficiency is known to give higher importance to fitting

flow peaks because of its quadratic formulation, and this is reflected in the generally better performance of a model calibrated

on such a criterion to predict streamflow characteristics for high flow conditions (Shrestha et al., 2014). Composite objective

functions such as the Kling-Gupta efficiency (KGE) are now often preferred, since KGE explicitly considers linear correlation,25

bias, and variability in a balanced or customisable way (Gupta et al., 2009; Kling et al., 2012). Nonetheless, the quadratic

formulation on flows remains in the linear correlation component of KGE. In order to improve the model calibration for

the predictions of different ranges of flows, the whole or parts of the flow duration curve have also been found useful in

improving the model simulation of the whole hydrograph (e.g., Westerberg et al., 2011; Pfannerstill et al., 2014). However,

the flow duration curve does not embed any information about the timing or duration of flow events, which can be essential30

for ecological species (Arthington et al., 2006). In this situation, a pragmatic approach is to directly use an objective function

fitted to the target SFC(s) in the expectation that this will improve predictions of these same SFCs. Such an approach was

recently explored by Kiesel et al. (2017) and by Pool et al. (2017) using different combinations of SFCs in different regions

(relevant for benthic stream invertebrates in Germany, and for fish communities in the Southeastern United States ) and using

different hydrological models (SWAT-3S, and HBV-light, respectively). These studies found that a combination of multiple35
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SFCs is generally equivalent or better than a single traditional objective function fitted to flows (KGE, and NSE, respectively)

when predicting the chosen SFCs. These results highlight the importance of the choice of the objective function(s) to predict a

bundle of SFCs for ecological applications.

Hydrological models are generally less accurate than regional regression models in predicting particular SFCs because sep-

arate regression models can be purposely developed for each target SFC individually (Murphy et al., 2013). Similar behaviour5

has been found for calibrated rainfall-runoff models, where specific calibration focussed on the target SFC is the best perform-

ing calibration option for that SFC (Kiesel et al., 2017; Pool et al., 2017). However, when calibrating on a specific SFC, while

the model’s ability to predict that indicator may improve, the physical representation of the catchment’s overall behaviour, cap-

tured in the effective parameter values of the model could be compromised, preventing the use of the model for predicting other

indicators. For instance, Pool et al. (2017) found that using a combination of SFCs as an objective function does not perform10

as well as the Nash-Sutcliffe efficiency fitted to flows to predict SFCs not included in the combination. Poff and Zimmerman

(2010) showed that each stream species is sensitive to its own combination of SFCs relating to its own preferences for living

conditions, which constitutes the ecological flow regime (Knight et al., 2012). When several species are considered simultane-

ously, the number of SFCs to predict will increase accordingly. In this context, there is a case for traditional objective functions

to remain a more parsimonious strategy to guarantee that all the target aspects of the hydrograph for the entire assemblage of15

species in the river are predicted accurately.

Given the previous research efforts in the field of ecologically-relevant hydrological predictions, specific combinations of the

relevant SFCs are strong contenders as calibration criteria when focussing on one ecological community. However, it remains

unclear which objective function would be more suited to predict preferences for several communities at once, implying a

larger set of target SFCs. Indeed, increasing the number of SFCs exacerbates the number of trade-offs to be made to find20

suitable parameter sets, which raises questions over model equifinality issues (Beven, 2006). It can be hypothesised that there

is an upper limit on the number of SFCs that can be used while maintaining a parsimonious measure of goodness of fit

for the calibration of the model. In such situations, a traditional objective function could remain a better compromise. The

objective of this study is to explore the capabilities of different objective functions, both traditional and bespoke definitions, to

calibrate a rainfall-runoff model intended to simulate ecologically-relevant SFCs. To do so, a fourteen split-sample test using25

the conceptual SMART rainfall-runoff model (Mockler et al., 2016) for 33 Irish catchments is undertaken. Of particular interest

are the model performance stability across split-samples, and the consistency of the behavioural parameter sets identified by

the objective functions. The three hypotheses challenged in this study are:

H1: Using a target vector of SFCs as objective function is a better strategy for simulating those SFCs than using a traditional

objective function no matter the combination of SFCs targetted.30

H2: The use of traditional objective functions for calibration produces more stable predictions across study periods that when

using a small number of SFCs as objective function.

H3: Traditional objective functions are more efficient than a combination of SFCs as objective function for the identification

of consistent behavioural parameter sets across study periods.
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2 Data and model

2.1 Streamflow characteristics

The streamflow characteristics selected for this study have previously been identified as representative of the habitat preferences

of fish communities in the Southeastern US (Knight et al., 2014; Pool et al., 2017), and of invertebrate communities in Germany

(Kakouei et al., 2017; Kiesel et al., 2017). The use of the same set of indices allows for straightforward comparisons with the5

two previous studies on the choice of the objective function for model calibration for ecological applications in a different

region of the world with a different model.

The indices are listed and detailed in Table 2. Only two hydrological indices are common between the two communities’

respective streamflow preferences. Each community’s preferences feature all aspects of the flow regime, i.e., magnitude, fre-

quency, duration, timing, and rate of change, for high flow, average flow, and/or low flow events. Except for Q85 that is directly10

derived from the flow duration curve, all streamflow characteristics are defined in Olden and Poff (2003) and their calculation is

based on computations in the R-package EflowStats (Henriksen et al., 2006; Archfield et al., 2014). However, all computations

for this study were carried out in Python where the calculations were vectorised to allow for reasonable computation time over

large parameter sample sets (Hallouin, 2019a).

2.2 Study catchments15

This study used discharge records with a minimum of 14 hydrological years with complete daily discharge data in the period

from the 1st of October 1986 to the 30th of September 2016. If any daily value was missing, the hydrological year was discarded.

The calculation of some streamflow characteristics requires a strictly continuous daily streamflow time series and it can be

difficult to find time series with no missing discharge measurement at all. The length of 14 years was set as the minimum

requirement in order to have at least seven years for calibration and seven years for evaluation for each catchment. The data20

availability for the gauges meeting these requirements is presented on Figure 2. In most catchments, these 14 hydrological

years were not necessarily consecutive. The daily discharge data used in this study is provided by the Office of Public Works

(2019), and Ireland’s Environmental Protection Agency (2019).

Catchment selection was also influenced by the quality of the discharge data, including the quality of the rating curve at

the gauge as determined by Webster et al. (2017). Heavily regulated rivers were discarded. A total of thirty-three catchments25

featured sufficient data of good quality to be used in this study, some of which are nested catchments Figure 3. The selected

catchments cover 26 % of the Republic of Ireland. They are located throughout the country, hence representing a good sample

of the diversity of Irish soils and geology. Their average annual rainfall ranges from 916 to 1660 mm yr−1, and the average

annual potential evapotranspiration varies from 497 to 578 mm yr−1. The size of the catchments varies from 25 to 2462 km2,

while their average elevation ranges from 5 to 910 m above sea level.30
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2.3 Rainfall-runoff model

The Soil Moisture Accounting and Routing for Transport (SMART) model used here is an enhancement of the SMARG

lumped, conceptual, rainfall-runoff model (Soil Moisture Accounting and Routing with Groundwater) developed in University

College Galway (Kachroo, 1992) and based on the soil layers concept (O’Connell et al., 1970; Nash and Sutcliffe, 1970).

Separate soil layers were introduced to capture the decline with soil depth in ability of plant roots to extract water for evap-5

otranspiration. SMARG was originally developed for flow modelling and forecasting and was incorporated into the Galway

Real-Time River Flow Forecasting System (GFFS) (Goswami et al., 2005). The SMART model reorganised and extended

SMARG to provide a basis for water quality modelling by separating explicitly the important flow pathways in a catchment,

needed for an EPA funded project “Pathways”, and it has been successfully fitted to over 30 % of Irish catchments (Mockler

et al., 2016).10

The routing component distinguishes between five runoff pathways: overland flow, drain flow, interflow, shallow ground-

water flow, and deep groundwater flow (Figure 1). It usually runs at an hourly or daily time-step, requires inputs of measures

of precipitation and estimates of potential evapotranspiration, and produces estimates of discharge from the catchment. It nor-

mally has ten free parameters (Table 1). During energy-limited periods, the model first estimates effective or excess rainfall by

applying a scaling correction T and subtracting any direct evaporation. A threshold parameter H determines how much (if any)15

of this becomes direct surface runoff through the Horton (infiltration excess) mechanism. Any surplus rainfall is assumed to

infiltrate the top layer of the soil. The soil is modelled as six layers with a total soil moisture capacity of Z. As the capacity of

a layer is exceeded, surplus moisture moves to a deeper layer if it has capacity or else is intercepted by drains or moves to the

shallow or deep groundwater stores. In water-limited periods, the model attempts to meet the evapotranspiration demand by

supplying moisture from the soil layers, starting from the top layer but when this is dry from lower layers but with an increasing20

difficulty expressed by a parameter C. Each of the above pathways is modelled as a single linear reservoir, each with its own

parameter (SK for overland and drain flow, FK for interflow, GK for shallow and deep groundwater flow). The outputs of all of

these are routed through a single linear reservoir representing river routing (RK). Note, a detailed description of the conceptual

model is provided in the Supplement.

3 Method25

3.1 Model setup

The SMART model is forced with daily rainfall and daily potential evapotranspiration provided by the national meteorological

office Met Éireann (2019). A five-hydrological-year warm-up period is used to determine the initial states of the soil layers and

reservoirs in the model. A Python implementation of the SMART model is used to simulate the hydrological response in all

study catchments (Hallouin et al., 2019).30
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3.2 Model calibration

The calibration of the model is done using six different objective functions. The calibration procedure is illustrated in Figure 4,

steps (a) to (d). This methodology is applied for each study catchment individually. First, in step (a), the model parameter space

is explored using a Latin Hypercube Sampling (LHS) strategy (McKay et al., 1979) to generate 105 random parameter sets

well distributed in the parameter space. The feasible parameter ranges used to define the boundaries of the parameter space are5

based on a previous study by Mockler et al. (2016) providing typical ranges for Irish catchments. The model is then used in

step (b) to simulate the catchment response with each of these 105 parameter sets, which produces as many hydrographs. Then,

the best 1% parameter sets are retained on the basis of their performance on the chosen objective function. This is similar to

the GLUE methodology (Beven and Binley, 1992, 2014) without a threshold for acceptability. Instead of defining a threshold

of acceptability, here it is preferred to analyse the statistics of equally sized parameter sets with each of the different objective10

functions.

In step (c) (Figure 4), six different objective functions are used to calculate the model performance by comparing the

simulated and observed catchment responses. Three variants of the Kling-Gupta efficiency (Gupta et al., 2009) are tested.

First, the KGE criterion is computed on the untransformed discharge series, that is Ehi (Equation 1); since the linear correlation

coefficient included in KGE is more sensitive to errors on flow peaks (Krause et al., 2005), it is considered to put more emphasis15

on high flow conditions. Second, the KGE criterion is computed on the inverted discharge series, that is Elo (Equation 2); this

objective function on transformed flows is used to put more emphasis on low flow conditions. Inverted flows are preferred over

log-transformed flows in order to retain the dimensionless character of the objective function allowing for comparison across

catchments, however, any transformation of flows before computing KGE leads to the loss of the physical interpretability of

the three components of KGE (Santos et al., 2018), but it is not required here. Third, an average of both objective functions20

is used, that is Eav (Equation 3); this objective function is used in order to equally consider high flow and low flow conditions

in calibration (Garcia et al., 2017). These variants of KGE, referred to as traditional objective functions hereafter, assess the

suitability of the model parameters by comparing the entirety of the observed and simulated hydrographs. In addition, three

combinations (vectors) of streamflow characteristics (SFCs) are used as bespoke objective functions, and referred as such

hereafter. They assess the model performance by comparing the observed and simulated values of the SFCs extracted from the25

observed and simulated hydrographs, respectively. For each vector of SFCs, the Euclidean distance (Equation 4) separating the

observed and simulated points in the multi-dimensional space formed by each dimension in the vector of SFCs is calculated.

One distance is calculated for the invertebrate community Dinv (vector of 7 SFCs), one is calculated for the fish community

Dfsh (vector of 13 SFCs), and one is calculated for both communities at once Dall (vector of 18 SFCs). Similar to Kiesel et al.

(2017), each SFC is normalised prior the calculation of the Euclidean distance so that its value is bounded between 0 and 1,30
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effectively giving all SFCs the same weight in the computation of the Euclidean distance. Eventually, in step (d), the calibration

with each of these six objective functions yields a set of 103 best performing behavioural parameter sets on the given function.

Ehi = EKG

(
qobs, qsim

)
= 1−

√(
cov(qobs, qsim)
σqobs

·σqsim

− 1
)2

+
(
σqsim

σqobs

− 1
)2

+
(
µqsim

µqobs

− 1
)2

(1)

Elo = EKG

(
1

qobs + 0.01 ·µqobs

,
1

qsim + 0.01 ·µqsim

)
(2)5

Eav =
Ehi +Elo

2
(3)

where cov, σ, and µ correspond to the covariance, the standard deviation, and the arithmetic mean, respectively; qobs, and

qsim correspond to the time series of observed discharge, and simulated discharge, respectively. Noteworthy, a constant is added

to the inverted discharge values in Equation 2 in order to avoid zero flows issues, and a hundredth of the arithmetic mean of10

the corresponding discharge series is used as recommended by Pushpalatha et al. (2012).

Dtarget =

√√√√
Ntarget∑

i=1

(
Cobs,i −Csim,i

)2
(4)

where Ntarget corresponds to the number of SFCs contained in the targetted combination of SFCs (the specific SFCs contained

in each targetted combination can be found in Table 2), and where Cobs, i, Csim, i correspond to the ith observed SFC value in the

combination, and the ith simulated SFC value in the combination, respectively.15

3.3 Model evaluation

The method used to evaluate the performance of the predictions with a model calibrated with each of the six different objective

functions is described in steps (e) to (h) of Figure 4. Again, this methodology is applied for each study catchment individually.

First, in step (e), the model is run separately with each of the behavioural (103) model parameter sets to simulate its catchment

response in the evaluation period, which produces 103 hydrographs. From each hydrograph, in step (f) the vectors of SFCs20

are calculated for each of the three combinations of SFCs (fish, invertebrates, and both), which yields 103 vectors of SFCs for

each target community. The model prediction is then evaluated in step (g) by calculating the Euclidean distance between the

observed and simulated vectors of SFCs, producing 103 Euclidean distances (Equation 4) for each community (Dinv, Dfsh, and

Dall). Finally, in order to compare the predictive performance in each catchment, in step (h) a measure of central tendency, the

median, is used to summarise the performance of the best behavioural parameter sets identified with each of the six objective25

functions.
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3.4 Split-sample tests

Split-sample tests are commonly used in the evaluation of hydrological predictions (Klemeš, 1986). Coron et al. (2012) pro-

posed a generalised split-sample test using a sliding window for calibration, and evaluating the model performance on all

other independent windows in the period. de Lavenne et al. (2016) adapted this strategy to calibrate a catchment model with a

sliding window, and to evaluate the simulations on all other years (before and/or after the sliding window) in the study period.5

These approaches have the advantage of reducing the influence of the calibration/evaluation periods, compared with a single

split-sample test that divides the study period into fixed calibration and validation periods.

The split-sampling strategy adopted for this study is adapted from the original approach by de Lavenne et al. (2016) in that

it uses each hydrological year the same number of times in each of the 14 split-sample tests. For each catchment, the 14-

hydrological-year series of discharge measurements is split into two seven-hydrological-year periods, and the split is repeated10

14 times (Figure 5). It is implicitly assumed that any combination of hydrological years can be used, even if they are not

consecutive years. Given this assumption, there are theoretically 3432 different combinations of seven-year periods in a 14-

year study period. These combinations would represent all possible climatic combinations represented in the data for the study

period; however, given the large dataset it would represent, it was decided to work only on 14 combinations.

It is to be noted that, in order to be able to assess the model consistency, a single Latin Hypercube sampling of the 10515

parameter sets per catchment is used. That is to say that the Latin Hypercube is generated once and it is used on the 14 different

calibration-evaluation periods in order to be able to determine whether a behavioural parameter set identified as behavioural

remains behavioural on a different test.

4 Results

The analysis of the median (and inter-quartile range) performance of the behavioural parameter sets constitutes the first level20

of analysis, i.e., at the catchment level for each split-sample test taken individually. The split-sampling strategy is then used

as a second level of analysis, in order to reach conclusions in each catchment that can be generalised for different calibration

periods. To do so, the mean of the medians is used as a summary statistic across the split-sample tests. Finally, the performances

of the six objective functions is assessed by comparing the average and standard deviation of these mean values across the 33

catchments, in order to reach conclusions that can be generalised for different catchments (Figure 4).25

4.1 Are the candidate objective functions capable of reproducing the catchment hydrograph?

Prior to the comparison of the different objective functions for calibration in view to predict SFCs, the performance of each

objective function for calibration in view to predict the overall hydrograph is analysed (Figure 6). Because a hydrological

model is used to make the streamflow predictions, it is important to check whether the different objective functions are capable

of finding parameter values that are able to reproduce the catchment hydrological response relatively well. Moreover, this30
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gives more confidence in the model structure as being a plausible approximation of the hydrological processes in the study

catchments.

To do so, the original definition of the Kling-Gupta efficiency Ehi is used, and the performances are compared in calibration

and in evaluation. On average, all six objective functions score highly in calibration, with scores ranging from 0.69 to 0.83 (Fig-

ure 6a); they also score highly in model evaluation, with only a marginal drop compared to calibration with, on average, scores5

from 0.69 to 0.81 (Figure 6b). Note that Dfsh and Dall perform almost as well as Ehi itself, indicating that these combinations

of SFCs are good candidates for general purpose hydrological studies.

4.2 Which objective function provides the most accurate predictions?

The performances of the six objective functions under scrutiny to predict SFCs is first analysed on average across the 14 split-

sample tests, and across the 33 study catchments. The comparison reveals that the differences in performance between most10

objective functions are small (Figure 7). Nonetheless, the best performance in predicting all SFCs, i.e., the shortest Euclidean

distance, for each of the three set of SFCs targetted in this study is always obtained using this same combination of SFCs as the

objective function. Furthermore, the largest combination featuring 18 SFCs Dall is a competitive option, even when the focus

is on smaller subsets of SFCs, and it outperforms any of the three formulation of the KGE criterion.

The formulation of KGE on low flows Elo is the worst objective function to predict any of the three combinations of SFCs.15

Ehi is the best traditional objective function for the two largest combinations of SFCs, while Eav performs better for the smallest

combination Dinv. This can be explained by the fact that a majority of SFCs in the Dinv set focus on low flow conditions, while

a majority of SFCs in the Dfsh and and Dall sets focus on high flow conditions (Table 2). Thus, it is surprising to find that

Eav clearly outperforms Elo even on Dinv, however, Garcia et al. (2017) also found Eav to be better suited than Elo to predict

low-flow indices.20

In addition, the dispersion of the performance across the 33 study catchments, measured by means of the standard deviation

(Figure 7), is smaller for the better performing objective functions, which indicates that in addition to be predict well on

average, they produce less variability in performance across the different study catchments.

4.3 Which objective function provides the most stable predictions?

The 14 split-sample tests strategy offers the opportunity to explore the stability of the performance obtained with the various25

objective functions, and hence the independence of the performance from the specificities of the period used in calibration.

First, examining the average performance across the split-sample tests shows that the differences in performance between the

objective functions are small (Figure 8). The best bespoke objective function on the targetted combination of SFCs is compared

with the best traditional objective function on the same combination in order to investigate whether the more holistic definition

that traditional objective functions represent brings an advantage when it comes to performance stability, while yielding poorer30

performances, as found above.

The comparison of Eav and Dinv to predict the SFCs contained in Dinv reveals that some catchments, e.g., 24003 and 16009

(Figure 8a), showcase the hypothesised behaviour with more stable predictions with the traditional objective function. However,
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this appears as a marginal behaviour amongst the set of 33 study catchments, and stability for most of the catchments are

comparable between the traditional and bespoke objective functions, excluding any underlying bias in performance. As a matter

of fact, the opposite behaviour is found when targetting the larger combinations of SFCs, e.g., 16003 (Figure 8b,c) or 27002

(Figure 8c). In these catchments, the bespoke objective functions yield more stable performances than the traditional objective

function Ehi, in both cases. These are again outliers compared to the rest of the study catchments that do not exhibit significant5

differences in performance stability. Nonetheless, these results suggest that, if not equivalent, the stability in performance can

be better with bespoke objective functions when they feature larger numbers of SFCs.

4.4 Which objective function yields the most consistent behavioural sets?

The concept of consistency has been previously used as a guide in the selection from competing model structures (Euser et al.,

2013). Originally used as the capacity of a model structure to predict a range of hydrological signatures with the same parameter10

set, the idea of consistency is applied to objective functions in this study. It is used to compare different objective functions

according to their ability to identify the same parameter sets as behavioural across the 14 split-sample tests, described above.

This objective function consistency is defined as the ratio of parameter sets identified as behavioural in all 14 split-sample tests,

with an optimal value of 1. Consistency establishes whether similar performance results were obtained with largely different

parameter sets.15

Unlike the measures of average model performance and performance stability, the objective function consistency measure

reveals more significant differences between the six candidate objective functions (Figure 9). Indeed, on average, Ehi clearly

outperforms all other five objective functions with a consistency of 51 %. This means that more than half of the behavioural

parameter sets remain selected as behavioural across all 14 split-sample tests. The largest combination of SFCs Dall comes

second best in terms of consistency with 33 %, closely followed by Eav, third with 32 %. The two least consistent objective20

functions are Elo and Dfsh, with consistency ratios of 19 %, and 13 %, respectively.

Remarkably, the consistency ratios for the bespoke objective functions are related to the number of SFCs they contain. For

example, Dinv containing only seven SFCs comes last, while Dall containing all 18 SFCs is third and very close to the ratio

for the traditional objective function Eav. However, this may be related to the range of flow events the SFCs represent, and

their relative difficulty in predicting them, since Dinv contains a majority of SFCs for low flow conditions, while the two other25

bespoke objective functions contain a majority of SFCs for high flow conditions.

Some catchments show close to zero consistency no matter what the objective function used, e.g., 15005 or 34024. This

suggests that the model structure is not adequate for these catchments. Overall, the ranking of the objective functions is in

accordance with the average behaviour described above.

10

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-161
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 6 May 2019
c© Author(s) 2019. CC BY 4.0 License.



5 Discussion

5.1 On the definition of SFC-based objective functions for ecologically-relevant streamflow predictions

The choice of the objective function for ecological applications is known to influence the predictive performance of the hy-

drological model for specific streamflow characteristics (Vis et al., 2015; Kiesel et al., 2017; Pool et al., 2017). In particular,

specially chosen composite objective functions containing the target SFCs have improved the prediction of these SFCs (e.g.,5

Kiesel et al., 2017). This study confirmed these separate findings on three different set of SFCs using the same catchment model

for all three sets. However, the consistency analysis revealed that the sample of parameter sets found suitable in calibration

are less consistent across different split-sample tests with this type of objective function. The difference between traditional

and bespoke objective functions in this regard is amplified by the reduction in the number of SFCs used to define the objective

function (cf. section 4.4).10

This result highlights that, because streamflow characteristics are found to be ecologically-relevant, this does not imply

that they are necessarily hydrologically-relevant. Indeed, while some indicators originally used as ecologically-relevant SFCs

(Olden and Poff, 2003) are also used as hydrological signatures (e.g., Yadav et al., 2007; Zhang et al., 2008), their selection as a

relevant characteristic for the catchment of interest is driven by different needs in terms of the indicator skills. These indicators

are selected as ecologically-relevant SFCs according to their influence on the stream ecology (Poff and Zimmerman, 2010),15

while they are selected as hydrological signatures to represent the hydrological behaviour of catchments (McMillan et al.,

2017), i.e., they are “hydrologically-relevant” SFCs that can be used for catchment classification, or the regionalisation of

hydrological information, for example. Hence, ecologically-relevant SFCs are not necessarily very informative when it comes

to eliciting suitable parameter values in calibration, because they may not be key descriptors of the emergent hydrological

processes at the catchment scale. For example, Pool et al. (2017) defined a composite objective function made of the most20

informative SFCs at hand, and yet, they were unable to accurately predict SFCs not included in the objective function. Also,

their bespoke objective function was not able to capture the catchment hydrological behaviour accurately. The use of a consis-

tency analysis in this study confirms that the bespoke objective functions tested are not skilled in selecting parameter values

stable across split-sample tests. Nonetheless, some SFCs can be found useful in calibration. Yadav et al. (2007) suggest that a

carefully selected subset of SFCs has the potential to constrain well a model parameter space. Kiesel et al. (2017) even found25

that the use of single SFCs may be almost as powerful as their complete set of seven SFCs to predict all seven SFCs, suggesting

that these individual ecologically-relevant SFCs also have potential to be hydrologically-relevant SFCs in their German study

catchment.

In this context, the definition of a good objective function for ecologically-relevant streamflow predictions must be based

on SFCs that are key descriptors of the ecological response, while also key descriptors of the hydrological behaviour in the30

catchment. Otherwise, model consistency will be compromised and the model predictions might not be robust outside its

calibration conditions. Nevertheless, a composite traditional objective function such as the Kling-Gupta efficiency remains a

strong contender for the prediction of these SFCs. In particular, a non-parametric version of the KGE criterion could prove

useful, namely to reduce the emphasis on high flow conditions and to provide a more balanced criterion across various flow
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conditions (Pool et al., 2018). Alternatively, segments of the flow duration curve have been used to calibrate hydrological

models, which also offers opportunities to balance low, average, and high flow conditions (e.g. Yilmaz et al., 2008; Pfannerstill

et al., 2014). However, the flow duration curve does not contain information on the timing (or duration) of individual flow

events, which is important for aquatic species (Arthington et al., 2006). A combination of different objective functions fitted

to flows (Vis et al., 2015), or a combination of objective functions fitted to flows and objective functions fitted to SFCs (Pool5

et al., 2017) can also be competitive options. In particular, the latter has the potential to overcome the consistency issue found

with bespoke objective functions by including traditional objective functions.

5.2 Implications for the study of the impacts of climate change on the stream ecology

Hydrological models are usually preferred over statistical regression models when the impacts of a changing climate on the

flow regime and the associated ecologically-relevant SFCs is of interest. Even though regression models may fit historical data10

better (Murphy et al., 2013), hydrological models have the potential to be run with alternative climate data in order to predict

future changes in the catchment hydrograph. The identification of the most suitable objective function is therefore valuable

for climate change scenario analysis. Here, we have already established the superiority of bespoke objective functions over a

range of fourteen different split-sample tests in which the ranking between the objective functions is relatively stable. However

a limitation of the study is that the flow data period from 1986 to 2016 is relatively short in climatological terms and does15

not contain a severe drought period, although some have been identified in long-term (250-year) precipitation records (Noone

et al., 2017), but a corresponding flow record does not exist.

Assuming a suitable set of SFCs has been found, as described in the previous section, the use of a composite definition for

the objective function based on absolute error between observed and simulated SFCs, such as in this study, or the recent studies

by Kiesel et al. (2017), and by Pool et al. (2017) may not be realistic for practical applications. Indeed, the effects of a deviation20

in a given SFC value due to climate change might not be as critical for the stream ecology whether it is a positive or a negative

one. By defining the objective function based on absolute error, this is not taken into account. Moreover, while SFCs are often

normalised to avoid artificially weighing them based on their amplitude, they are not weighed according to the impact a given

percentage deviation has on the stream ecology. The use of such weighted Euclidean distance may therefore prove useful to

include such consideration in the calibration procedure.25

5.3 Implications for ecologically-relevant streamflow predictions in ungauged basins

Understanding the ecological response to altered flow regimes is hindered by the lack of hydrological data where ecological

data is available (Poff et al., 2010) because hydrometric gauges may not be in locations where ecological surveys have been car-

ried out. As a result, the usual calibration of a hydrological model is not possible, and a direct method of predicting streamflow

characteristics in ungauged locations is required.30

One approach to regionalisation is the transfer of optimised parameter values from gauged to ungauged locations (Parajka

et al., 2005). Given their higher consistency demonstrated in this study, the original KGE-based criteria appear better suited for

regionalisation, rather than the bespoke objective functions tested in this study. Indeed, the optimised parameter values need
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to be strongly related to catchment behaviour in order for hydrological knowledge to be related to physical features and thus

transferred to ungauged locations. While consistency could be improved through the change in model structure (Euser et al.,

2013), Caldwell et al. (2015) and Garcia et al. (2017) found the choice of the calibration procedure more decisive than the

model used for the prediction of SFCs.

Alternatively, ecologically-relevant streamflow characteristics can be directly transferred from gauged to ungauged locations5

(e.g., Yadav et al., 2007; Westerberg et al., 2014) and used as calibration information in the ungauged catchment. However,

these SFCs are used as hydrological signatures to constrain the model parameter space, and as a result, their potential was

assessed in order to predict the hydrograph in ungauged catchments. It remains to be explored whether these regionalised

ensemble predictions can prove useful in predicting other SFCs relevant for ecological communities in ungauged catchments.

6 Conclusions10

Desirable qualities for a useful objective function are that it performs well in evaluation, i.e., outside calibration, that its

performance is independent of the calibration period, and that it consistently identifies the same parameter sets regardless of

the study period, i.e., that it describes a consistent catchment hydrological behaviour. This study explored all three aspects

for six different objective functions intended to predict three combinations of streamflow characteristics relevant for stream

ecology. In relation to the three hypotheses formulated in the introduction, the study reveals that: bespoke objective functions15

perform marginally better than traditional objective functions to predict all three combinations of SFCs in evaluation periods

on average, which provides evidence to confirm the first hypothesis; there was no evidence of any difference in performance

stability in simulating the SFCs between the two types of objective functions across the split-sample tests, so that the second

hypothesis cannot be confirmed; traditional objectives functions select more consistently the same parameter sets as behavioural

across the split-sample tests, which provides evidence to support the third hypothesis.20

This study unveils that a gain in fitting performance on the SFCs may hide a loss in consistency in the behavioural parameter

sets across the split-sample tests. This highlights that ecologically-relevant SFCs are not necessarily hydrologically-relevant

SFCs, and a combination of ecologically-relevant streamflow characteristics is not guaranteed to be a good definition of the

key hydrological processes defining the catchment response. Unless, streamflow characteristics are proven to be both at once,

carefully selected traditional objective functions fitted to flows are likely to remain preferable to predict ecologically-relevant25

streamflow predictions.

Code and data availability. The rainfall and potential evapotranspiration daily datasets are available online from Met Éireann (2019). The

streamflow observations are available online from Ireland’s Environmental Protection Agency (2019), and from the Office of Public Works

(2019). The source code of the SMART model is open source and accessible online (Hallouin et al., 2019). The source code for the tools

used to calculate the streamflow characteristics and the traditional objective functions are also open source and accessible online (Hallouin,30

2019a, b).
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Figure 1. Conceptual representation of the SMART model structure. P and EP, precipitation and potential evapotransporation, respectively,

are the model inputs; Q and EA, discharge and actual evapotranspiration, respectively, are the model outputs. For full description of the

parameters, states, and fluxes presented on the figure, as well as the conceptual model equations, the reader is referred to the documentation

provided in the Supplement.
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Figure 2. Discharge data availability for the 33 study catchments. The 14 complete hydrological years selected are represented in dark blue

and annotated from 1 to 14. Years in light blue are other complete hydrological years not retained. Discontinuous grey years contain missing

data represented as a discontinuity in the bar.
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Figure 3. Location of the 33 hydrometric gauges forming the 33 nested study catchments on the elevation map of the Republic of Ireland

(source: Ireland’s EPA). Each number corresponds to the code of a hydrometric gauge.
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Figure 4. Model calibration and evaluation strategy for the prediction of SFCs with different objective functions. Steps (a) to (d) correspond

to model calibration, while steps (e) to (h) correspond to model evaluation. These steps are replicated for each study catchment, and for each

split-sample test.
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Figure 5. Split-sampling strategy using a seven-year rolling window, adapted from de Lavenne et al. (2016). Each period of 14 hydrological

years enumerated in Figure 2 are represented on the x-axis and split into two seven-year periods, one for model calibration (in purple), and

one for model evaluation (in pink).
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Figure 6. Comparison of the performance for general purpose hydrological predictions (a) in calibration and (b) in evaluation using six

different objective functions for calibration. The top and bottom panels correspond to the performance on Ehi in calibration, and in evaluation,

respectively. Each bar in a panel corresponds to the average performance across the 33 catchments as detailed in Figure 4. The standard

deviation across the 33 catchments is represented by error bars on each bar.
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Figure 7. Comparison of the predictive performance in evaluation of three combinations of streamflow characteristics using six different

objective functions for calibration. Each panel corresponds to a different combination specified on the y-axis ((a) Dinv, (b) Dfsh, and (c) Dall),

while each bar in the panel corresponds to the average performance across the 33 catchments as detailed in Figure 4. The standard deviation

across the 33 catchments is represented by error bars on each bar.
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Figure 8. Performance stability in predicting the three combinations of SFCs (a) Dinv, (b) Dfsh, and (c) Dall. For each, two objective functions

are compared across the 14 split-sample tests for each study catchment taken individually. On each panel, the 14 split-sample tests are

displayed along the x-axis, while the y-axis corresponds to the performance expressed as a Euclidean distance. For each objective function,

the bold line corresponds to the median as detailed in Figure 4 while the shaded band around it corresponds to its associated inter-quartile

range.
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Figure 9. Heatmap of the consistency of the behavioural sets identified in calibration with the six different objective functions. Catchments

are displayed on the y-axis while the six objective functions used for calibration are displayed on the x-axis. Each cell of the heatmap contains

the mean ratio of behavioural parameter sets that remain behavioural across the 14 split-sample tests. An average across the 33 catchments

is also provided at the bottom of the figure.
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Table 1. List and Description of the ten parameters of the SMART model.

Parameter Description Unit

T Rainfall aerial correction factor −
C Evaporation decay coefficient −
H Quick runoff ratio −
D Drain flow ratio −
S Soil outflow coefficient −
Z Effective soil depth mm

SK Surface reservoir residence time time step

FK Interflow reservoir residence time time step

GK Groundwater reservoir residence time time step

RK Channel reservoir residence time time step
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Table 2. List and description of the 18 selected streamflow characteristics. Detailed calculations for each SFC in available in Table A1. The

three last columns indicate whether a given SFC is included (∈) or not included (/∈) in Equation 4 for the definition of each of the three

Euclidean distances used as bespoke objective functions.

Category Indicator Description Unit Target species Dinv Dfsh Dall

Magnitude

Average flows MA26 Variability in March mean flow % Fish /∈ ∈ ∈
MA41 Annual mean daily flow m3 s−1 Fish /∈ ∈ ∈

Low flows ML17 Base flow ratio 1 − Invertebrates ∈ /∈ ∈
ML20 Base flow ratio 3 − Fish /∈ ∈ ∈
Q85 Flow exceeded 85% of the time m3 s−1 Fish /∈ ∈ ∈

High flows MH10 Mean October highest flood m3 s−1 Fish /∈ ∈ ∈
Frequency

Low flows FL2 Variability in low flow pulse count % Both ∈ ∈ ∈
High flows FH6 Frequency of moderate floods yr−1 Fish /∈ ∈ ∈

FH7 Frequency of large floods 1 yr−1 Fish /∈ ∈ ∈
FH9 Frequency of large floods 2 yr−1 Invertebrates ∈ /∈ ∈

Duration

Low flows DL9 Variability in annual minimum 30-day mean flow % Invertebrates ∈ /∈ ∈
High flows DH4 Annual maximum of 30-day moving mean flow m3 s−1 Invertebrates ∈ /∈ ∈

DH13 Variability in annual maximum 30-day mean flow − Fish /∈ ∈ ∈
DH16 Variability in high flow pulse duration % Fish /∈ ∈ ∈

Timing

Average flows TA1 Flow constancy − Both ∈ ∈ ∈
Low flows TL1 Timing of annual minimum flow Julian day Fish /∈ ∈ ∈

Rate of change

All flows RA2 Variability in flow rise rate % Invertebrates ∈ /∈ ∈
RA7 Flow recession rate m3 s−1 Fish /∈ ∈ ∈
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Table A1. Detailed computations for the 18 selected streamflow characteristics.

SFC Description

Detailed calculations

MA26 Variability in March mean flow

Compute the mean and standard deviation in daily flows in March for each hydrological year. Divide the standard deviations

by the means. Calculate the mean of these ratios to get MA26.

MA41 Annual mean daily flow

Compute the mean daily flow for each hydrological year. Divide the means by the drainage area in square kilometers. Calculate

the mean of these ratios to get MA41.

ML17 Base flow ratio 1

Compute the 7-day rolling mean for each hydrological year. Calculate the minimum rolling mean and divide by the mean daily

flow for each hydrological year. Calculate the mean of these ratios to get ML17.

ML20 Base flow ratio 3

Break down the entire record of daily flows into 5-day blocks. Calculate the minimum flow in each block. This minimum is set

as the baseflow for the block if 90% of its value is less than the minimum flow of its preceding and following blocks. Otherwise

baseflow for this block is unassigned. Replace all unassigned baseflow values using linear interpolation on the already assigned

baseflow values. Calculate the total baseflow by summing up the baseflow values in each 5-day block, and the total flow for the

entire record. Calculate the ratio of these two totals to get ML20.

Q85 Flow exceeded 85% of the time

Calculate the 15th percentile for the entire record to get Q85.

MH10 Mean October highest flood

Compute the maximum daily flow In October for each hydrological year. Calculate the mean of these values to get MH10.

FL2 Variability in low flow pulse count

Calculate the 25th percentile for the entire record. Calculate the number of flow events that are below this percentile for each

hydrological year. Calculate the coefficient of variation (i.e., standard deviation divided by mean) of these values and multiply

by 100 to get FL2.

FH6 Frequency of moderate floods

Calculate the median for the entire record. Calculate the number of flow events that are above 3 times this median for each

hydrological year. Calculate the mean of these values to get FH6.

FH7 Frequency of large floods 1

Calculate the median for the entire record. Calculate the number of flow events that are above 7 times this median for each

hydrological year. Calculate the mean of these values to get FH7.

FH9 Frequency of large floods 2

Calculate the 25th percentile for the entire record. Calculate the number of flow events that are above this percentile for each

hydrological year. Calculate the mean of these values to get FH9.

continued on next page
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continued from previous page

SFC Description

Detailed calculations

DL9 Variability in annual minimum 30-day mean flow

Compute the 30-day rolling mean for the entire record. Calculate the minimum of this rolling mean for each hydrological year.

Calculate the coefficient of variation (i.e., standard deviation divided by mean) of these values and multiply by 100 to get DL9.

DH4 Annual maximum of 30-day moving mean flow

Compute the 30-day rolling mean for the entire record. Calculate the maximum of this rolling mean for each hydrological year.

Calculate the mean of these values to get DH4.

DH13 Variability in annual maximum 30-day mean flow

Compute the 30-day rolling mean for the entire record. Calculate the maximum of this rolling mean for each hydrological year.

Calculate the mean of these values and divide by the median daily flow for the entire record to get DH13.

DH16 Variability in high flow pulse duration

Calculate the 75th percentile for the entire record. Calculate the average duration of flow events above this percentile for each

hydrological year. Calculate the coefficient of variation of these values and multiply by 100 to get DH16.

TA1 Flow constancy

Decimal log-transform the entire record of daily flows. Calculate the decimal log of the mean daily flow for the entire record.

Compute the Colwell (1974) matrix featuring 365 rows for 365 days in a year (ignoring last day of February for leap years)

and 11 columns for 11 flow states (break points are 0.10, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, and 2.25 times the log

mean daily flow calculated previously) for each hydrological year, incrementally adding to the tally in each cell from year to

year. Calculate the sum of each column Y (vector), and the sum of the whole matrix Z (scalar). Divide the elements of vector

Y by scalar Z. Multiply the elements of the new vector by their respective decimal log-transformed value, sum the elements of

the vectors to obtain a scalar and multiply by minus one to obtain the uncertainty with respect to the states H(Y). Divide H(Y)

by the decimal log of the number of states (11), and subtract this ratio from one to get TA1.

TL1 Timing of annual minimum flow Julian day

Determine the date of the annual minimum daily flow in the Julian calendar for each hydrological year. Convert these values

into an angle in the unit circle. Compute their coordinates (i.e., cosine and sine). Calculate the mean of these two values

separately. Calculate the ratio of this mean sine divided by this mean cosine. Calculate the arc tangent of this ratio to get the

angle corresponding to these mean coordinates. Convert this angle back to a Julian date to get TL1.

RA2 Variability in flow rise rate

Compute the difference in daily flows between each consecutive days for the entire record. Calculate the coefficient of variation

(i.e., standard deviation divided by mean) for the positive differences (i.e., rising limbs) and multiply by 100 to get RA2.

RA7 Flow recession rate

Natural log-transform the entire record of daily flows. Compute the difference in this log-transformed daily flows between each

consecutive days for the entire record. Calculate the median of the negative differences (i.e., recession limbs) to get RA7.
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