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Nomenclature 
RXCY ² Referee number X comment number Y 
AR ² AXWhRUV· ReSO\ 
 
 
Anonymous Referee #1 
 
R1C1: P1 L2: I aP QRW VXUe if ´IQ caWchPeQWV ZiWh OiWWOe hXPaQ-induces hydro-
PRUShRORgicaO chaQgeVµ iV Qeeded, becaXVe WheUe aUe h\dURORgicaO PRdeO WhaW XVe e.g. 
land use as input and should be able to deal with changes. 
 
AR: We agree that some hydrological models where land cover is used to infer some 
parameter values can be used in those instances (Note: this is not the case with the 
PRdeO XVed iQ WhiV VWXd\). ThiV ZaV UeShUaVed aV ´In catchments with little human-
induced alterations of the flow regime (e.g. abstractions, regulations)µ [P1 L2]. 
 
R1C2: P4 L15-23: To me this paragraph is like a short summary of the methods. I 
preferred the previous version with the hypotheses. Having hypotheses or questions 
helps to guide the readers focus on specific aspects in the results. 
 
AR: This section was restructured using research questions as suggested by the reviewer 
[P4 L8-22]. The conclusions were restructured as well in order to provide answers to 
those questions [P20 L13-20]. 
 
R1C3: P5 L20: Could you add a sentence explaining the principle behind the quality 
check? 
 
AR: The quality of data from each hydrometric station was assessed by considering the 
type of station and the quality of the rating relationship established for it using spot 
gauging measurements. The number of such measurements, the goodness of fit of the 
rating equation to these measurements and their coverage of low and high flow 
extremes were considered in the evaluation. The VeQWeQce UeadV QRZ aV: ´Catchment 
selection was also influenced by the quality of the discharge data, including the goodness 
of fit of the rating equation at the gauge, the number of measurements, and their 
coverage of low flow and high flow extremesµ [P5 L21-22]. 
 
R1C4: P5 L 30 (Rainfall runoff model): Is the model used in a lumped or semi-distributed 
way? I was wondering if you have any snowfall in the 33 catchments and if the model 
has the option to simulate snow accumulation and snowmelt? 
 



AR: The model is used in a lumped manner and does not contain a snow module, as 
snowfall is negligible under Irish conditions. This information was added in section 2.3: 
´The model does not contain any snow component as it is infrequent in Irelandµ [P6 L18-
19], aQd iQ VecWiRQ 3.2: ´The SMART model is used in a lumped manner to predict 
streamflow at the catchment outletµ [P7 L6] . 
 
R1C5: P6 L5: I dRQ·W WhiQN Whe VWaWePeQW ´¬Qeeded fRU aQ EPA fXQded SURjecW 
PaWhZa\V¬µ iV UeOeYaQW fRU Whe UeadeU. 
 
AR: Removed [P6 L4]. 
 
R1C6: P6 L 24-27: I dRQ·W fXOO\ XQdeUVWaQd ZhaW Whe diffeUeQce beWZeeQ Whe VWXdieV Rf de 
Lavenne et al. (2016) and Coron et al. (2012) is. Could you reformate the sentences that 
to make it more clear? 
 
AR: ThiV VecWiRQ ZaV e[SaQded: ´Split-sample tests are commonly used to analyse the 
performance of hydrological models, where the study period is broken down into two 
periods, one for calibration and one for evaluation (Klemes, 1986). Coron et al. (2012) 
proposed a generalised split-sample test using a sliding window of a given duration across 
the study period: calibration is carried out on the given window, and the model 
performance is evaluated for all other independent windows in the study, thus evaluating 
on more than one period. De Lavenne et al. (2016) simplified this approach to evaluate on 
all data not included in the window (i.e. the years before and/or after the sliding window), 
thus evaluating on one period onlyµ [P6 L23-29]. 
 
R1C7: P11 L1: I would suggest to extend to VecWiRQ WiWOe WR ´CRQViVWeQc\ iQ Whe VeOecWiRQ 
Rf PRdeO SaUaPeWeU YaOXeVµ WR PaNe cOeaU WhaW cRQViVWeQc\ iV abRXW Whe SaUaPeWeUV 
whereas stability and robustness are about performance. 
 
AR: SecWiRQ ZaV UeQaPed ´Consistency in the selection of the model parameter valuesµ 
[P10 L15]. 
 
R1C8: P13 L29-30: The statement that tailored objective functions suffer more from 
overfitting than traditional objective function is based on Figure 6. However, to make a 
fair comparison of the robustness, the robustness of the traditional objective functions 
should be calculated by calculating the difference between a traditional objective 
function (and not the ESFCs) in calibration and validation when calibrated on the 
traditional objective function. 
 



AR: We agree that Figure 6 only partially supports the statement. We rephrased this part 
WR VXggeVW RYeUfiWWiQg aV a SRVVibOe e[SOaQaWiRQ Rf WhiV behaYiRXU: ´This difference in 
robustness may be caused by tailored objective functions suffering more from overfitting 
than the traditional objective functionsµ [P13 L12-13].   
 
R1C9: P15 L27: I cRXOdQ·W fiQd Whe eYaOXaWiRQ Rf PRdeO ViPXOaWiRQV RQ 156 SFCV iQ Whe 
methods section. I recommend to add it somewhere to have a complete description of 
the evaluation in the methods section. 
 
AR: Thank you for highlighting this gap in the methodology section, the sub-sub-
secWiRQ 3.4.6 ´Analysis on the performance on a large set of SFCsµ was added [P11 L12-
17]. 
 
 
Anonymous Referee #1 
 
R2C1: My major concern is that the text (in all sections, from abstract to conclusions) 
needs to be re-shaped/shortened in a way that it is more clear. 
In its present form the paper is (unnecessarily) verbose and convoluted. 
I am sure that if the text is reviewed, the paper will be largely improved. 
 
AR: The revised version was revised in view to remove unnecessary sentences in order 
to provide a clearer and more concise text. 
 
R2C2: I also think the title needs some thought. 
The way in which "performance" and "consistency" is in the title might lead to confusion 
for a reader. 
 
AR: We believe that the confusion mentioned here is also related to the issue raised in 
R1C7. We propose the amended title: ´Calibration of hydrological models for 
ecologically-relevant streamflow predictions: a trade-off between fitting well to data and 
estimating consistent parameter sets?µ  
 
R2C3: Also, I miss some updated references in the section 5. 
 
AR: We have checked all references in section 5, and we could not find any missing 
reference. 
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Abstract. The ecological integrity of freshwater ecosystems is intimately linked to natural fluctuations in the river flow

regime. In catchments with little human-induced hydro-morphological changes,
:::::::::
alterations

::
of

:::
the

:::
flow

::::::
regime

::::
(e.g.

:::::::::::
abstractions,

::::::::::
regulations),

:
existing hydrological models can be used to predict changes in local flow regime in order to assess whether its

riversremain a suitable
::
to

:::::
assess

::::
any

::::::
changes

::
in
:::
its

:::::
rivers’

:
living environment for endemic species. However, hydrological mod-

els are traditionally calibrated to give a good general fit between observed and simulated
::
to

:::::::
observed

:
hydrographs, e.g. using5

objective functions
::::::
criteria

:
such as the Nash-Sutcliffe, or the Kling-Gupta efficiencies. Much ecological research has shown that

aquatic species respond to very
:
a

::::
range

:::
of specific characteristics of the hydrograph, whether magnitude, frequency, duration,

timing, and rate of change of flow events. This study investigates the performance of specially developed, tailored, objective

functions made of combinations of such
:::::
crieria

:::::::
formed

::::
from

:::::::::::
combinations

::
of

:::::
those specific streamflow characteristics found to

be ecologically-relevant in previous ecohydrological studies. These are compared with the more traditional objective functions10

based on the Kling-Gupta efficiency on a set of
:::::::
criterion

:::
for

:
33 Irish catchments. A split-sample test with a rolling-window

procedure is applied to reduce the influence of variations
::
on

:::
the

::::::::::
conclusions

::
of

:::::::::
differences

:
between the calibration /evaluation

periodson the conclusions
:::
and

::::::::
evaluation

:::::::
periods. These tailored objective functions

:::::
criteria

:
are shown to be marginally better

suited to predict
::::::::
predicting the targetted streamflow characteristicsin terms of performance in evaluation; however, traditional

objective functions
::::::
criteria

:
are more robustconsidering both calibration and evaluation periods, and produce more consistent be-15

havioural parameter sets, suggesting a trade-off between model performance and model
::::::::
parameter consistency when predicting

::::::
specific

:
streamflow characteristics. Analysis of the objective function performances on a set

:::::
fitting

::
to
:::::
each of 165 streamflow

characteristics revealed a general lack of versatility for objective functions
::::::
criteria with a strong focus on low flow conditions,

especially in predicting high flow conditions. On the other hand, the Kling-Gupta efficiency applied to the square-root of flow

values performs as well as two sets of tailored objective functions
::::::
criteria across the 165 streamflow characteristics. These find-20

ings suggest that traditional composite objective functions
:::::
criteria

:
such as the Kling-Gupta efficiency may still be preferable

over tailored objective functions
::::::
criteria

:
for the prediction of streamflow characteristics, when robustness and consistency are

important.
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1 Introduction

River flow is the cornerstone of freshwater ecosystems, the ecological integrity of which relies on the natural fluctuations in the

river flow regime (Poff et al., 1997). A long history of human alterations of river flow regime for water supply, irrigation, flood

protection, or hydropower threatens water security and freshwater biodiversity in many regions of the world (Vörösmarty et al.,

2010). Richter et al. (1997) raised the overarching research question “How much water does a river need?”. In order to quantify5

these needs and assess the effects of altered flow regime on freshwater ecology, many different hydrological indices have been

used, whether they are referred to as streamflow characteristics (SFC) (Vis et al., 2015; Pool et al., 2017), ecologically relevant

flow statistics (ERFS) (Caldwell et al., 2015), or indicators of hydrological alterations
:::::::
alteration

:
(IHA) (Richter et al., 1996).

These SFCs describe specific aspects of the river flow regime that can be extracted from the streamflow hydrograph, and they

can be categorised on the basis of magnitude, frequency, rate of change, timing, and duration of high, average, and low flow10

events (Poff et al., 1997). Olden and Poff (2003) listed a range of such SFCs used to characterise river flow regime in relation to

ecological species’ preferences. The prediction of these SFCs at ungauged locations has historically being done using statistical

analyses such as regional regression models that relate them to some climatic and physiographic descriptors (e.g. Carlisle et al.,

2011; Knight et al., 2014). However, these regression models are not well-suited for investigating water management or climate

change scenarios because they often rely on long-term , stationary, descriptors
:::::::::
descriptors,

::::::::
assumed

::
to

:::
be

::::::::
stationary. On the15

other hand, hydrological models can allow for such scenario analyses, and they produce simulated streamflow hydrographs

from which the streamflow characteristics can be computed (e.g. Shrestha et al., 2014; Caldwell et al., 2015).

Most rainfall-runoff models used to predict these SFCs relevant for the stream ecology require calibration to determine their

effective model parameter values for the catchment of interest
::::::::
parameter

:::::::::
calibration. The selection of the objective function(s) in

the calibration process
:::::::::
calibration

:::::::
criterion

::
or

::::::::
objective

:::::::
function is of great importance for the quality of the predictions of SFCs20

(Vis et al., 2015; Kiesel et al., 2017; Pool et al., 2017). As demonstrated by Vis et al. (2015), equally performing parameter sets

obtained through the usual calibration methods with the
:::::::
different

::::
sets

::
of

::::::::::
parameters,

::::
each

::::::
equally

:::::::::::::
well-performing

:::::
based

:::
on

:::
the

Nash-Sutcliffe efficiency (NSE) criterion (Nash and Sutcliffe, 1970) fitted to flows can yield very different performances when

looking at the prediction of SFCs. This exposes the limitations of models in representing the entirety of real-world processes

in a catchment. Indeed, because of uncertainties in model structure, model forcing, and evaluation data (Beven, 2016), the25

identification of a single perfect parameter set is usually unachievable (Beven, 2006), and in practice trade-offs are required

between modelling different aspects of the hydrograph. The choice of the objective function for model calibration directly

influences which trade-offs are made. The calibration of a rainfall-runoff model using the Nash-Sutcliffe efficiency is known

to give higher
::::
NSE

::::
gives

:::::
more

:
importance to fitting flow peaks because of its quadratic formulation, and this is reflected in

the
::
its generally better performance of a model calibrated on such a criterion to predict

::
in

:::::::::
predicting streamflow characteristics30

for high flow conditions (Shrestha et al., 2014). Composite objective functions such as the Kling-Gupta efficiency (KGE) are

now often preferred, since KGE explicitly considers linear correlation, bias, and variability in a balanced or customisable way

(Gupta et al., 2009; Kling et al., 2012). Nonetheless, the quadratic formulation
:::::
based on flows remains in the linear correlation

component of KGE, and a prior transformation of flow values is often suggested, for example to put more emphasis on low
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flows (Santos et al., 2018). In order to improve the model calibration for the predictions of different ranges of flows
:::
the

:::::
entire

:::::::::
hydrograph, the whole or parts of the flow duration curve have also been found useful in improving the model simulation of

the whole hydrograph (e.g. Westerberg et al., 2011; Pfannerstill et al., 2014). However, the flow duration curve does not embed

any information about the timing or duration of flow events, which can be essential for ecological
::::
some

:
species (Arthington

et al., 2006).5

In order to improve the prediction of a diverse range of SFCs (e.g.
:::::
related

::
to
:
both high flow and low flow conditions, or both

magnitude , and timing/
:::
and

:
duration of flows), multi-objective calibration methods applied to flows (referred to as traditional

objective functions hereafter) have already been explored .
:::
been

::::::::
explored

:::
by

:::::
others.

::::
For

:::::::
instance,

:
Vis et al. (2015) found that

certain combinations of objective functions fitted to flows, each focussing on different statistical aspects of the streamflow

hydrograph(e.g. volume error, correlation),
:::::::::
hydrograph,

:
tend to be more suitable for the prediction of the magnitude of average10

flows, and the timing of moderate flows and low flows than using a single objective functionfitted to flows, e. g. NSE alone.

But the authors found that, .
::::
But on average,

::::
they

:::::
found

::::
that NSE calibration produces the smallest errors on

:::
for 12 SFCs,

and they did not find a single best calibration strategy fitted to flows for predicting all SFCs at once. Garcia et al. (2017)

identified that an average sum of KGE and
::
of KGE on

::::::
applied

::
to

:::::
flows

:::
and

:::::
KGE

:::::::
applied

::
to

:
inverted flows has better skill

than
::
at

:::::::::
predicting

:::::
seven

:::::
SFCs

:::::::
relative

::
to

::::
low

::::
flow

::::::::
condtions

:::::
than

:::::
either

::::::
normal

:::::
KGE

:::
or

:
KGE alone, or KGE of

::::::
applied15

::
to inverted flows aloneto predict seven SFCs relative to low flow conditions. Hernandez-Suarez et al. (2018) found that a

three-objective-function
::::::::::
three-criteria

:
calibration strategy with NSE, NSE of the square root transformed flows, and NSE on

the relative deviations is capable of predicting
:::
can

::::::
predict 128 SFCs within a ± 30 % error range in their study catchment, with

larger errors on SFCs for extreme high and low flows conditions. Mizukami et al. (2019) compared objective functions to
:::
that

predict the bias in annual peak flows, and they found that KGE was better suited than NSE because it is better at reproducing the20

flow variability, reducing
::
but

:::
not

:::::::::::
eliminating, the underestimation of high flows, while not fully eliminating it. These studies

suggest that combinations of traditional objective functions (e.g. NSE, KGE) on transformed and untransformed streamflow

series can improve the prediction of SFCs compared to single objective calibration strategies, while the predictions of extreme

flow conditions remain problematic.

To further improve the prediction of a range of SFCs, a pragmatic approach is to directly use an objective function fitted to25

the target SFCs (referred to as tailored objective functions hereafter) in the expectation that this will improve predictions of

these same SFCs. Mizukami et al. (2019) found that the annual peak flow bias was best predicted by using the bias itself as

the objective function (to be minimised), outperforming KGE, and other KGE formulations with
:::
that

:::
had

:
more weight on its

flow variabilitycomponent
::::
flow

::::::::
variability, but they also found that using this single SFC as an objective function resulted in

overfitting, reducing its transferability in time. Pool et al. (2017) also found that a given SFC is the best objective function
::
for

::
a30

:::::
model

:::::::
intended

:
to predict itself, and this ,

:
for 13 different SFCs, outperforming

:::
this

::::::::
approach

:::::::::::
outperformed NSE. The authors

also used a four-SFC metric as the objective function, but they found that the prediction of other SFCs,
:
not included in this

objective function
:
, was not improved compared to NSE. Kiesel et al. (2017) used a seven-SFC metric as objective function to

predict these seven SFCs, and found that this objective function outperformed KGE on almost all seven SFCs. The authors also

found that for two of these seven SFCs used as a single objective function produced better overall performance than KGEtoo.35
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Zhang et al. (2016) found that a 16-SFC metric used as the objective function outperformed the RMSEused as a single objective

function, especially for the prediction of SFCs on low flow
:::::
based

::
on

::::
low and high flow events. On the other hand, Garcia et al.

(2017) reached a different conclusion to predict
::::
when

:::::::::
predicting seven SFCs focussing on low flow conditions, where their

combined seven-SFC metric was not as robust as the composite objective function made of KGE and KGE on inverted flows.

However, unlike the other studies previously mentioned, this multi-SFC metric focussed solely on low flow conditions, which5

could explain its lack of robustness, given the
::
its difficulty in predicting extreme streamflow conditions

::::
flows

:
well.

Hydrological models are generally found to be less accurate than regional regression models in predicting particular SFCs

because separate regression models can be purposely developed for each target SFC individually (Murphy et al., 2013). Similar

behaviour has been found for calibrated rainfall-runoff models, where specific calibration focussed on the target SFC is the

best performing calibration option for
::::::::
predicting

:
that SFC (Kiesel et al., 2017; Pool et al., 2017; Mizukami et al., 2019).10

However, when
:::::
while

:
calibrating on a specific SFC , while

:::
may

::::::::
improve

:
the model’s ability to predict that indicatormay

improve, the physical
:
,
:::
its representation of the catchment’s overall behaviour , captured in the effective parameter values

of the model, could be compromised, preventing the use
::::::
limiting

:::
the

:::::
value

:
of the model for predicting other indicators. For

instance, Pool et al. (2017) found that using a combination of SFCs as an objective function does not perform as well as the

Nash-Sutcliffe efficiency fitted to flows to predict SFCs not included in the combination
:::::::::
calibration, and the authors suggested15

that the use of SFCs in calibration may not produce consistent model parameter sets. Poff and Zimmerman (2010) and Knight

et al. (2014) showed that each stream
::::::
aquatic species is sensitive to its own combination of SFCs relating to its own preferences

for living conditions , which constitutes the ecological flow regime (Knight et al., 2012). When several species are considered

simultaneously, the number of SFCs to predict is likely to increase, even though some stream species may respond to broadly

similar streamflow characteristics. If the number of SFCs to predict were to increase, it could be expected that using traditional20

objective functions would be a more parsimonious calibration strategy and that more targetted characteristics of the hydrograph

would be predicted well. For example, Archfield et al. (2014) found that a set of seven streamflow statistics characterising the

stochastic properties of daily streamflow series, like
::::
based

:::
on

::::
daily

:::::::::::
streamflows,

::::::::
including traditional objective functions fitted

to flows, is more parsimonious than a set of 33 SFCs to classify stream gauges for hydro-ecological purposes.

The objectives of this study are to assess whether
:::::::
compare

:::
the

:::::
skills

::
of

:
tailored objective functions are the best calibration25

strategy to predict the SFCsthey contain by targetting three vectors of SFCs of varying size for the first time on a common set

of 33 Irish catchments, and on
::::
fitted

::
to

:::::
SFCs

::::::
against

:::::
more

:::::::::
traditional

:::::::
objective

::::::::
functions

:::::
fitted

::
to

:::::
flows

::
to

::::::
predict

::::::
SFCs.

::::
This

:::::::::
comparison

::
is
:::::::::
articulated

::::::
around

::::
four

:::::::
research

:::::::::
questions:

(Q1)
:::::
Which

::::::::
objective

:::::::
function

:::::::
provides

:::
the

:::::
most

:::::::
accurate

::::
SFC

::::::::::
predictions?

:

(Q2)
:::::
Which

::::::::
objective

:::::::
function

:::::::
provides

:::
the

:::::
most

:::::
robust

::::
SFC

:::::::::::
predictions?30

(Q3)
:::::
Which

::::::::
objective

:::::::
function

:::::::
provides

:::
the

:::::
most

:::::
stable

::::
SFC

::::::::::
predictions?

:

(Q4)
:::::
Which

::::::::
objective

:::::::
function

:::::
yields

:::
the

:::::
most

::::::::
consistent

::::::::::
behavioural

:::::::::
parameter

::::
sets?

:
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::
In

:::::
order

::
to

:::::::
consider

:::
the

:::::::
notions

::
of

:::::::
stability

::::
and

::::::::::
consistency,

:
14 different calibration-evaluation periods

::
are

::::
used. Moreover,

a fourteen split-sample test is applied to allow for more extensive comparison of the skills of the objective functions for

model calibration. Also, a four-fold analysis of model overall performance, model performance stability, model robustness,

and model consistency is undertaken to assess the parsimonious character of tailored objective functions. In additional
::::
three

:::::::
different

:::
sets

::
of
:::::
SFCs

:::
are

:::::::::
considered

:::
as

::::::::
prediction

::::::
targets

::
in

:::::
order

::
to

::::::::
overcome

:::
the

:::::::::
possibility

::
of

:::
the

::::::::::
conclusions

::
to

::
be

:::::::
specific5

::
to

::
the

::::::::::::
combinations

::
of

:::::
SFCs

:::::::::
considered.

::
In

:::::::
addition, the skill of the objective functions are compared on a set of 156 SFCs and

on nine percentiles of the flow duration curve to extend the comparison beyond the SFCs contained in the tailored objective

functions and explore trends on specific categories of streamflow characteristics. The conceptual SMART rainfall-runoff model

(Mockler et al., 2016) is used to simulate streamflow in the 33 studycatchments and three traditional objective functions fitted

to flows are compared with three tailored objective functionsfitted to SFCs10

:::
The

::::::::::
manuscript

::
is

::::::::
organised

::
as

:::::::
follows:

:::::::
Section

::
2

::::::::
describes

:::
the

::::
data

:::
and

:::::::
models

::::
used

:::
for

:::
the

:::::
study,

:::::::
Section

:
3
:::::::
unveils

:::
the

:::::::::::
methodology

::::::::
employed

::
to

::::::
answer

:::
the

:::::::
research

::::::::
questions

:::::
above,

:::::::
Section

:
4
:::::::
presents

:::
the

::::::
results

::
of

::
the

::::::::::
comparison

::
of

:::
the

::::::::
objective

::::::::
functions,

:::
and

:::::::
Section

:
5
::::::
draws

::
on

:::
the

:::::::
findings

:::
and

::::
their

:::::::::::
implications

:::
for

:::
the

:::::::::
predictions

::
of

:::::
SFCs,

::::
and

::::::::
discusses

:::
the

:::::::::
limitations

::
of

:::
the

::::
study.

2 Data and model15

2.1 Streamflow characteristics

The
:
In

:::
the

:::::::
absence

:::
of

:::::::
adequate

:::::
local

::::
data,

:::
the

:
selection of streamflow characteristics used in the tailored objective functions

relies on previous studies that identified sets of SFCs representative of the habitat preferences of fish communities in the

Southeastern US (Knight et al., 2014; Pool et al., 2017), and of invertebrate communities in Germany (Kakouei et al., 2017;

Kiesel et al., 2017). In addition, a third set of SFCs is formed from the union of the two first
::
by

:::::::::
combining

:::
the

::::
first

:::
two

:
sets of20

SFCs, assuming that invertebrate and fish communities are sensitive to two mainly distinct habitat preferences, so that
::::::::
requiring

a larger set of SFCswould need to be considered in this case. These three sets are assumed to be of some ecological relevance

to the Irish study catchments for the purpose of comparing traditional and plausible tailored objective functions, however,

:::::::
currently

:::::
there

::
is

:
a
:::::::
scarcity

::
of

:
direct empirical evidence is lacking to date to confirm whether they are the optimal indices for

key invertebrate and fish species found in Irish rivers
::
to

::::::
confirm

::::
this.25

The indices are listed and detailed in Table 1. Except for q85 that is directly derived from the flow duration curve, all

streamflow characteristics are defined in Olden and Poff (2003) and their calculation follows the method implemented in the

R-package EflowStats (Henriksen et al., 2006; Archfield et al., 2014). However, all computations for this study were carried out

in Python where the NumPy package was used to vectorise the calculations of the SFCs (i.e. to formulate the calculations as

arithmetic operations between vectors and matrices) . This makes use of algorithms directly coded in C, avoiding the redundant30

interpretation of Python or R statements in loops which is significant for iterations over a very large number of streamflow time

series (i.e. 8.316 ) (Hallouin, 2019a).
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2.2 Study catchments

This study used discharge records with a minimum of 14 hydrological years with complete daily discharge data in the period

from the 1st of October 1986 to the 30th of September 2016. If any daily value was missing, the
::::::
relevant

:
hydrological year

was discarded . The
:
as

:::
the

:
calculation of some streamflow characteristics requires a strictly continuous daily streamflow time

seriesand it can be difficult to find time series with no missing discharge measurement at all. The length of 14 years was set5

as the minimum requirement in order to have seven years for calibration and seven years for evaluation for each catchment. A

minimum calibration period length of five years is recommended by Merz et al. (2009) to capture the temporal hydrological

variability.

The data availability for the gauges meeting these requirements is presented on Figure A1. In most catchments, these 14

:::::::
complete

:
hydrological years were not necessarily consecutive. For catchments featuring more than 14 complete hydrological10

years, the additional available years were not used in order to avoid any positive or negative
:::
the

:::::::::
possibility

::
of

:
bias due to

differences in data series lengthbetween these catchments and other catchments in the set. The daily discharge data used in this

study is provided by the Office of Public Works (2019), and Ireland’s Environmental Protection Agency (2019).

Catchment selection was also influenced by the quality of the discharge data, including the quality of the rating curve

:::::::
goodness

:::
of

::
fit

::
of

:::
the

:::::
rating

:::::::
equation

:
at the gauge,

:::
the

:::::::
number

::
of

::::::::::::
measurements,

::::
and

::::
their

::::::::
coverage

::
of

:::
low

::::
flow

::::
and

::::
high

::::
flow15

::::::::
extremes, as determined by Webster et al. (2017). Heavily regulated rivers were discarded. A total of 33 gauges (displayed on

Figure 1b) featured sufficient data of good quality to be used as study catchments, amongst which 18 are nested within any of

the
:
.
::
Of

:::::
these,

:::::
there

:::
are

:
15 distinct catchments

:::
and

:::
18

::::::
gauges

::::::
nested

::::::
within

::::
these. The 15 distinct catchments (displayed on

Figure 1a) cover 26 % of the Republic of Ireland. They are located
:::::
spread

:
throughout the country, and they represent a diversity

of Irish soils and geology (Figure 1c,d), despite lacking some
:
.
::::::::
However,

:::::
while

::::
their

:::::::
average

::::::::
elevation

:::::
ranges

:::::
from

:
5
::
to

::::
910

::
m20

:::::
above

:::
sea

:::::
level,

::::
they

::
do

:::
not

:::::::
include

:::
any

:
of the most elevated catchments in the Wicklow mountains (relief on the East coast),

and the mountainous edge on the Atlantic coast (Figure 1b). Their average annual rainfall ranges from 916 to 1660 mm yr�1,

and the average annual potential evapotranspiration varies from 497 to 578 mm yr�1. The size of the catchments varies from

25 to 2462 km2, while their average elevation ranges from 5 to 910 m above sea level, and their average slope ranges from 19

to 121 m km�1. Estimated baseflow indices range from 0.31 to 0.79 (see Table A1 for full details).25

2.3 Rainfall-runoff model

The Soil Moisture Accounting and Routing for Transport (SMART) model used here is an enhancement of the SMARG

lumped, conceptual, rainfall-runoff model (Soil Moisture Accounting and Routing with Groundwater) developed in University

College Galway (Kachroo, 1992) and based on the soil layers concept (O’Connell et al., 1970; Nash and Sutcliffe, 1970).

Separate soil layers were introduced to capture the decline with soil depth in ability of plant roots to extract water for evap-30

otranspiration. SMARG was originally developed for flow modelling and forecasting and was incorporated into the Galway

Real-Time River Flow Forecasting System (GFFS) (Goswami et al., 2005). The SMART model reorganised and extended

SMARG to provide a basis for water quality modelling by separating explicitly the important flow pathways in a catchment,
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needed for an EPA funded project “Pathways”, and it has been successfully fitted to over 30 % of Irish catchments (Mockler

et al., 2016).

The routing component distinguishes between five
:::::::
different

:
runoff pathways: overland flow, drain flow, interflow, shallow

groundwater flow, and deep groundwater flow (Figure 2). It usually runs at an hourly or daily time-step, requires inputs of

measures of precipitation and estimates of
::::::::::
precipitation

::::
and potential evapotranspiration, and produces estimates of discharge5

from the catchment. It normally has ten free parameters (Table 2). During energy-limited periods (i.e. when potential evapo-

transpiration is less than incident rainfall), the model first estimates effective or excess rainfall by applying a scaling correction

✓T and subtracting any direct evaporation. A threshold parameter ✓H determines how much (if any) of this becomes direct

surface runoff through the Horton (infiltration excess) mechanism. Any surplus rainfall is assumed to infiltrate
:::
into

:
the top

layer of the soil. The soil is modelled as six layers with a total soil moisture capacity of ✓Z. As the
:::::::
moisture

:::::::
holding capacity10

of a layer is exceeded, surplus moisture moves to a deeper layer if it has capacity or else is intercepted by drains or moves

to the shallow or deep groundwater stores. In water-limited periods (i.e. when potential evapotranspiration exceeds incident

:::
any rainfall), the model attempts to meet the evapotranspiration demand by supplying moisture from the soil layers, starting

from the top layer but when this is dry from lower layers but with an increasing difficulty expressed by a parameter ✓C. Each

of the above pathways is modelled as a single linear reservoir, each with its own parameter (✓SK for overland and drain flow,15

✓FK for interflow, ✓GK for shallow and deep groundwater flow). The outputs of all of these are routed through a single linear

reservoir representing river routing (✓RK).
:::
The

:::::
model

:::::
does

:::
not

::::::
contain

:::
any

:::::
snow

:::::::::
component

::
as

::
it

::
is

::::::::
infrequent

::
in

:::::::
Ireland. Note,

a detailed description of the conceptual model is provided in the Supplement.

3 Method

3.1 Split-sample tests20

Split-sample tests are commonly used to analyse the performance of hydrological models (Klemeš, 1986). Coron et al. (2012)

proposed a generalised split-sample test using a sliding window for calibration , and evaluating
::
of

:
a
:::::
given

:::::::
duration

::::::
across

:::
the

::::
study

::::::
period:

:::::::::
calibration

::
is

::::::
carried

:::
out

::
on

:::
the

:::::
given

:::::::
window,

:::
and

:
the model performance on

:
is

::::::::
evaluated

:::
for all other independent

windows in the
:::::
study,

::::
thus

:::::::::
evaluating

::
on

:::::
more

::::
than

:::
one

:
period. de Lavenne et al. (2016) adapted this strategy to calibrate a

catchment model with a sliding window, and to evaluate the simulations on all other years (
::::::::
simplified

:::
this

::::::::
approach

::
to

:::::::
evaluate25

::
on

::
all

::::
data

:::
not

:::::::
included

::
in
:::
the

:::::::
window

::::
(i.e.

:::
the

::::
years

:
before and/or after the sliding window)in the study period ,

::::
thus

:::::::::
evaluating

::
on

:::
one

::::::
period

::::
only. These approaches have the advantage of reducing any influence of different calibration/evaluation periods,

compared with a single split-sample test that divides the study period into fixed, separate, calibration and evaluation periods.

The split-sampling strategy in this study is adapted from the original approach by de Lavenne et al. (2016) in that it uses each

hydrological year the same number of times in each of the 14 split-sample tests. For each catchment, the 14-hydrological-year30

series of discharge measurements is split into two seven-hydrological-year periods, and the split is repeated 14 times (Figure 3).

It is implicitly assumed that any combination of hydrological years can be used, even if they are not consecutive. Thus, there

are theoretically 3432 different combinations of seven-year periods in a 14-year study period. These combinations would be
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expected to represent all possible climatic combinations represented in the data for the study period; however, given the large

dataset this would generate, it was decided to work only on 14 combinations by using the window of seven consecutive years,

rather than more sophisticated
:::::::
complex boot-strapping strategies.

3.2 Model setup

The SMART model is
::::
used

::
in

::
a

::::::
lumped

:::::::
manner

::
to

::::::
predict

:::::::::
streamflow

::
at

:::
the

:::::::::
catchment

:::::
outlet.

::::
The

::::::
model

:
is
:
forced with daily5

rainfall and daily potential evapotranspiration
:::::::
potential

:::::::::::::::
evapotranspiration

::::
data

:
provided by the national meteorological office

Met Éireann (2019). The potential evapotranspiration is calculated by Met Éireann using the FAO Penman-Monteith formula

(Allen et al., 1998) with coefficients adjusted for Irish conditions and meteorological data at
::::
from their synoptic weather

stations. A five-hydrological-year warm-up period is used to determine the initial states of the soil layers and reservoirs in the

model. The five-year warm-up period is applied prior
:
to
:

the first complete hydrological year used in the split-sample test on10

Figure A1. A Python implementation of the SMART model (Hallouin et al., 2019) is used to simulate the hydrological response

in all study catchments from the first day of the first warm-up year until the last day of the fourteenth complete hydrological

year. The corresponding calibration and evaluation periods are then extracted from these time series as required (see Figure 3).

3.3 Model calibration

The calibration of the model is done using six different objective functions. The calibration procedure is illustrated in Figure 4,15

steps (a) to (d) . This methodology
:::
and

:
is applied for each study catchment individually. First, in step (a), the model parameter

space is explored using a Latin Hypercube Sampling (LHS) strategy (McKay et al., 1979) to generate 105 random parameter

sets well distributed in the parameter space. The feasible parameter ranges used to define the boundaries
::::
limits

:
of the parameter

space
:::::::
explored are based on a previous study by Mockler et al. (2016) providing typical ranges for Irish catchments. The model

is then used in step (b) to simulate the catchment response with each of these 105 parameter sets, which produces as many20

hydrographs.

In step (c) (Figure 4), six different objective functions are used to calculate the model performance by comparing the sim-

ulated and observed catchment responses. Three variants of the Kling-Gupta efficiency (Gupta et al., 2009) are tested. First,

the KGE criterion is computed on the untransformed discharge series, that is EQ

KG
(Equation 1); since the linear correlation

coefficient included in KGE is more sensitive to errors on flow peaks (Krause et al., 2005), it is
:
.
::::
This

::
is

:
considered to put25

more emphasis on high flow conditions
::::::::::::::::
(Krause et al., 2005). Second, the KGE criterion is computed on the inverted discharge

series, that is EQ
�1

KG
(Equation 2); this objective function on transformed flows is used to put

:::
puts

:
more emphasis on low

flow conditions . Inverted flows are preferred over log-transformed flows in order to retain the dimensionless character of the

objective function allowing for comparison across catchments, however, any transformation of flows before computing KGE

leads to the loss of the physical interpretability of the three components of KGE (Santos et al., 2018), but it is not required30

here
::::::::::::::::
(Santos et al., 2018). Third, the KGE criterion is computed from the square root of the discharge series, that is EQ

0.5

KG

(Equation 3); this objective function is used in order to put more emphasis on moderate flow conditions, by reducing the

weighting of low flow or high flow conditions
::::::
reduces

:::
the

::::::::
influence

::
of

::::
high

:::::
flows

:::::::
allowing

::::::::
moderate

::::
flow

:::::::::
conditions

::
to

::::
have

::
a
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:::::
bigger

::::::::
influence (Garcia et al., 2017). These variants of KGE,

::
are

:
referred to as traditional objective functions hereafter, assess

the suitability of the model parameters by comparing the
:::
and

:::
are

::::::
applied

:::
to

:::
the entirety of the observed and simulated hydro-

graphs. In addition, three combinations (vectors) of streamflow characteristics (SFCs) are used
::::::
referred

::
to

:
as tailored objective

functions, and referred as such hereafter. They assess the model performance by comparing the observed and simulated values

of the SFCs extracted from the observed and simulated hydrographs, respectively.
::
are

:::::::::::
constructed. For each vector of SFCs,5

the Euclidean distance (Equation 4) separating the observed and simulated points in the multi-dimensional space formed by

each dimension in the vector of SFCs is calculated, and this distance is subtracted from one so the efficiency measure has an

optimum at one, like KGE. One efficiency is calculated from the set of SFCs identified by Kiesel et al. (2017) (vector of 7 SFCs

as target), one is calculated from the set identified by Pool et al. (2017) (vector of 13 SFCs as target), and one is calculated

from both sets of SFCs at once (vector of 18 SFCs as target). Similar to Kiesel et al. (2017), each SFC is normalised prior10

the calculation of the Euclidean distance (Equations 5, 6) so that its value is bounded between 0 and 1, effectively giving all

SFCs
:
1.
::::
This

::::::
ensure

::::
each

::::
SFC

::::
has the same weight in the computation of the Euclidean distance. Each of these six objectives

functions are used to produce 105 efficiency scores for all the calibration cases.

Eventually, in step (d), the best 1% parameter sets (i.e. those with the highest efficiency scores
::
on

:::
the

:::::::
chosen

::::::::
objective

:::::::
function) are retained as “behavioural” on the basis of their performance on the chosen objective function, which yields

:::::::
yielding15

a set of 103 parameter sets. This calibration approach is similar to the GLUE methodology (Beven and Binley, 1992, 2014)
:::
but

without a threshold for acceptability to characterise the behavioural character of a parameter set. Instead of defining a threshold

of acceptability, as in the GLUE method, here it is preferred to analyse the statistics of equally sized parameter sets (i.e. 1 %

best) with each of the different objective functions.

In order to give some perspective on
::
To

:::::::
examine

:
the absolute performance of each of the six objective functionsbeyond the20

relative comparison, a benchmark is defined by randomly sampling 103 parameter sets in the generated
:::::::::
previously

:::::::::
mentioned

Latin Hypercube. This benchmark corresponds to an uninformative calibration, and will be referred to as R in the Results

section. This follows the recommendations made by Seibert et al. (2018) to define a lower benchmark when assessing the

performance of a hydrological model, because any model should be expected to reproduce some of the streamflow variability

simply due to the use of observed forcing data specific to the catchment of interest. If the performance of the calibrated model25

does not exceed the performance of the benchmark, then the suitability of the model and/or its calibration is questionable.

EQ
KG = EKG

�
qobs, qsim

�

= 1�
p

(r� 1)2 +(↵� 1)2 +(�� 1)2

= 1�

s✓
cov(qobs, qsim)

�qobs ·�qsim

� 1

◆2

+

✓
�qsim

�qobs

� 1

◆2

+

✓
µqsim

µqobs

� 1

◆2

(1)

EQ�1

KG = EKG

✓
1

qobs +0.01 ·µqobs

,
1

qsim +0.01 ·µqsim

◆
(2)
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EQ0.5

KG = EKG

�p
qobs,

p
qsim

�
(3)

where cov, �, and µ correspond to the covariance, the standard deviation, and the arithmetic mean, respectively; qobs, and

qsim correspond to the time series of observed discharge, and simulated discharge, respectively. Noteworthy, a constant is added

to the inverted discharge values in Equation 2 in order to avoid zero flows issues, and a hundredth of the arithmetic mean of5

the corresponding discharge series is used as recommended by Pushpalatha et al. (2012).

Etarget
SFC = 1�

vuut
NtargetX

j=1

�
c⇤obs,j � c⇤sim,j

�2 (4)

where Ntarget corresponds to the number of SFCs contained in the targetted combination of SFCs (the specific SFCs contained

in each targetted combination can be found in Table 1), and where c⇤
obs,j, c

⇤
sim,j correspond to the jth observed SFC value in

the combination, and the jth simulated SFC value in the combination, respectively, which were normalised as described in10

Equation 5, and in Equation 6, respectively.

c⇤obs,j =
cobs,j �min

�
cobs,j ;

�
csimi,j

 10
5

i=1

�

max
�
cobs,j ;

�
csimi,j

 105

i=1

�
�min

�
cobs,j ;

�
csimi,j

 105

i=1

� (5)

c⇤simi,j =
csimi,j �min

�
cobs,j ;

�
csimi,j

 10
5

i=1

�

max
�
cobs,j ;

�
csimi,j

 105

i=1

�
�min

�
cobs,j ;

�
csimi,j

 105

i=1

� (6)

where cobs,j, csimi,j correspond to the jth observed SFC value in the combination, and the jth simulated SFC value in the15

combination for the ith streamflow simulation amongst the Latin Hypercube sample, respectively.

3.4 Model evaluation

The method used to evaluate the performance of the
:::::
assess

:::
the

:
predictions with a model calibrated with each of the six different

objective functions is described in steps (e) to (h) of Figure 4. Again, this
:::
This

:
methodology is applied for each study catchment

individually. First, in step (e), the model is run separately with each of the behavioural (103)
:::::::::
behavioural

:
model parameter sets20

to simulate its catchment response in the evaluation period, which produces 103 hydrographs. From each hydrograph, in step (f),

the performance of the model prediction in evaluation is assessed with any
:::
each

:
of the six objective function

::::::::
functions described

in subsection 3.3, which yields 103 efficiency scores on
:::
for the evaluation period. Finally, in order

::::
First,

:
to compare the

::::::
general

predictive performance in each catchment, in step (g) a measure of central tendency, the median, is used to summarise the

performance of the behavioural parameter sets identified with
:::
for each of the six objective functions. From there, different25

::::::
Further

:
analyses are carried out to explore the comparative skills of the six objective functions considered, and they are

::
as

detailed below.
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3.4.1 Overall performance

First, the overall performance in evaluation
::
for

:::
the

::::::::
evaluation

::::::
period of the model calibrated with each of the six objective func-

tions is assessed by averaging across the 14 split-sample tests the
:::
the median efficiency scores obtained in step (g) (Figure 4)

:::::
across

:::
the

:::
14

::::::::::
split-sample

::::
tests, and then averaging again across the 33 study catchmentsin order to compare the calibration

skills of the various objective functions. Since all six objective functions are defined as Euclidean distances subtracted from5

one, the overall performance ranges from �1 to one, with an optimal value at one.

The skills of the six objective functions to calibrate the model are first compared using the traditional objective functions

as efficiency scores for the evaluation period in subsection 4.1 in order to assess whether they are capable of reproducing the

shapeand timing, the
::
to

:::::
assess

::::
their

::::::
ability

::
to

:::::::::
reproduce

::
the

::::::
shape,

::::::
timing,

:
variability, and the average volume of the observed

hydrograph. Because a hydrological model is used to make the streamflow predictions, it is important to check whether the10

different objective functions, especially the tailored ones, are capable of finding parameter values that are able to reproduce

the catchment hydrological response relatively well. Moreover, this gives more confidence in the model structure as being
::::
This

::::
gives

:::
an

::::::::
indication

:::
of

:::::::
whether

:::
the

:::::
model

::::::::
structure

:::::
gives a plausible approximation of the relevant hydrological processes in

the study catchments.

The skills of the six objective functions to calibrate the model are then
:::::
Next,

:::
the

::::::::
calibrated

::::::
models

:::
are

:
compared using the15

tailored objective functions as efficiency scores
:::::
(SFC)

:::::::
objective

::::::::
functions

:
for the evaluation period in subsection 4.2 in order

to assess their suitability to be used as calibration targets for the prediction of sets of streamflow characteristics, which is the

primary .
::::
This

::
is
:::
an

::::::::
important focus of this study.

3.4.2 Performance stability

The use of fourteen split-sample tests allows for the assessment of the model performance on evaluation periodsthat are20

different (either completely different or at least partially
::::::::::
comparison

::
of

:::
the

::::::::
calibrated

:::::::
models

:::
for

:::::::
different

:::::::::
evaluation

::::::
periods,

see Figure 3). As a result, the stability of the performance in evaluation can be explored, which is important to have confidence

that
:::
This

:::::
gives

:::
an

::::::::
indication

:::
of

:::
the

:::::
model

:::::::
stability

:::
in

:::::::::
calibration

:::
and

:::::::
whether

:
the model performance is independent of the

study period.

The stability is calculated from the standard deviation of the median efficiency scores across the 14 split-sample tests, and25

is then averaged across the 33 study catchments in subsection 4.3to obtain a measure of the overall stability of the model

performance. This is done for all the models calibrated with each of the six objective functions. The stability ranges from zero

to , with an optimal value at zero
:::
can

::::
range

:::::
from

:::
the

::::::
optimal

:::::
value

::
of

::::
zero

:::::::
without

::
an

:::::
upper

::::::
bound.

3.4.3 Performance robustness

Additionally, the objective functions are compared in relation to
:::
The

:::::::::
robustness

::
of

:::
the

:::::::
models

::::::::
measures their ability to retain30

their fitting skill found in calibration, where observed data is available to the optimising process, with the
:::::
match

::::
their

:::::::::
calibration

:::::
fitting

::::
skill

::::
with

::::
their performance in the evaluation period, in order to assess the temporal robustness of the model performance.
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Robustness analysis is important to check for model
:
.
::::
Poor

:::::::::
robustness

:::
can

:::::::
indicate

::::::
model

:
overfitting to the calibration data,

which could reduce the predictive power of the model.

The robustness is calculated from the difference between the median efficiency in calibration and the median efficiency in

evaluation, then averaging the difference across the 14 split-sample tests, and finally averaging across the 33 study catchments

in subsection 4.4 to obtain the robustness with
:::
for each of the six objective functions. The stability ranges from to , with an5

optimal value at zero . Stability is typically expected to be
::::::
optimal

:::::
value

::
is

::::
zero

:::
and

::
it

:::
can

:::
be

::::::
positive

::
or

::::::::
negative.

::::::::::
Robustness

:
is
:::::::
usually positive because the performance in calibration , where observed data is used, is expected to exceed

:
is
:::::::
usually

:::::
better

:::
than

:
the performance in evaluation, where the model is unaware of the observed data.

3.4.4 Model consistency
::::::::::
Consistency

::
in

:::
the

::::::::
selection

::
of

:::
the

::::::
model

::::::::::
parameter

:::::
values

Finally, the model consistency obtained with each of the six objective functions is explored. The concept of consistency has10

been previously used as a guide in the selection
:
in
::::::::

selecting
:
from competing model structures (Euser et al., 2013). Originally

used as the capacity of a model structure to predict a range of hydrological signatures with the same parameter set,
::
in

:::
this

:::::
study

the idea of consistency is applied to the objective functionsin this study. It is used to compare
:
.
:::
The

::::::
ability

::
of different objective

functions according to their ability to
::
to identify the same parameter sets as behavioural

:
is
:::::::
assessed

:
across the 14 split-sample

tests, described above. Consistency establishes whether similar performance results were obtained
::::::
results

:::
can

::
be

:::::::
obtained

:::::
from15

:
a
:::::
model

:
with largely different parameter sets.

The consistency is calculated from the ratio of the number of model parameter sets identified as behavioural
:::
the

:::::::
fraction

::
of

:::
the 103

:::::::::
behavioural

:::::::::
parameter

:::
sets

:
that are common to all 14 split-sample testsdivided by the total number of behavioural

parameter sets (i. e. ), and then the average ratio
:
.
:::
The

:::::::
average

::
of

::::
this

:::::::
fraction across the 33 study catchments is calculated in

subsection 4.5 to obtain the model consistency with
:::
for a given objective function used to identify the behavioural parameter20

sets. The consistency ranges from zero to one, with an optimal value at 1.

It is to be noted that, in order to be able to assess the model consistency, a single
::
In

::::
this,

::
the

:::::
same Latin Hypercube sampling

of the 105 parameter sets per catchment is used. That is to say that the Latin Hypercube is generated once and it is used on the

14 different calibration-evaluation periods in order to be able to determine whether a behavioural parameter set identified as

behavioural on one test remains behavioural on a different test.25

3.4.5 Analysis on
::
of

:
the components of the objective functions

In order to investigate
::
To

:::::::
explore the reasons for the trends identified in model performance, stability, robustness, and consis-

tency, an analysis of the performance
::
the

::::::
ability of the six objective functions to predict the shape and timing, the variability,

and the bias of the observed hydrograph is carried out by using
::::::::
examined

::
by

::::::::
assessing

:
the three components, r, ↵, and � of

EQ

KG
, respectively

::::::::::
individually Equation 1. Because of the transformation applied to the discharge series in EQ

0.5

KG
and EQ

�1

KG
,30

the direct physical interpretation of their three components is lost (Santos et al., 2018), so they are not analysed further.

12



In addition, an analysis of the performance
::
the

::::::
ability of the six objective functions to predict each individual SFC is carried

out
:::::::
assessed by calculating the absolute normalised error between the simulated and the observed SFC values (Equation 7).

e⇤simi,j =

�����
csimi,j � cobs,j

max
�
cobs,j ;

�
csimi,j

 105

i=1

�
�min

�
cobs,j ;

�
csimi,j

 105

i=1

�

����� (7)

where,
:
cobs,j, csimi,j correspond to the jth observed SFC value in the combination, and the jth simulated SFC value in the

combination for the ith streamflow simulation amongst the Latin Hypercube sample, respectively.5

For each component analysed, the same approach as the one
:::::::
approach

::
is

:::
the

:::::
same

::
as used for assessing the overall model

performance in subsubsection 3.4.1is chosen, i.e. the median value of a given component for the behavioural parameter set

is calculated, it is then averaged across the 14 split-sample tests, and it is finally averaged across the 33 study catchments to

obtain an overall skill of each objective function in predicting these individual components.

3.4.6
:::::::
Analysis

:::
on

:::
the

:::::::::::
performance

:::
on

::
a

::::
large

:::
set

::
of

:::::
SFCs10

::::::
Finally,

:::
the

::::::::::
comparative

:::::::::::
performance

::
of

:::
the

:::::::
objective

::::::::
functions

::
to

::::::::
calibrate

:::
the

::::::::::
hydrological

::::::
model

:
is
::::::::
assessed

::
on

:::
156

::::::::
different

::::
SFCs

::::
and

:::
the

::::
nine

:::::::::
percentiles

:::
of

:::
the

::::
flow

:::::::
duration

::::::
curve

:::::
where

:
Equation 7

::
is

::::
used

::
to

:::::::::
determine

:::
the

:::::::::
predictive

:::::
errors.

:::::
This

::::::
analysis

::
is
::::::::
intended

::
to

:::::::
provide

:
a
:::::
more

::::::
holistic

:::::::
picture

::
of

:::
the

:::::
skills

::
of

:::
the

:::::::
different

::::::::
objective

::::::::
functions

:::
in

::::::::
predicting

::::::::
different

::::
flow

::::::::
conditions

::::
(i.e.

::::
low,

::::::::
moderate,

::::
high

::::::
flows),

::::
and

:::::::
different

::::
flow

::::::::::::
characteristics

::::
(i.e.

:::::::::
magnitude,

::::::::
duration,

::::::::
frequency,

:::::::
timing,

:::
and

:::
rate

:::
of

:::::::
change).15

4 Results

4.1 Are the candidate objective functions capable of reproducing the catchment hydrograph?

The SMART model calibrated on EQ

KG
is found to be able to

::::
does

:
reproduce the observed catchment hydrographs reasonably

well in all 33 study catchments, with average EQ

KG
scores in calibration across the 14 split-sample tests ranging from 0.58 to

0.94 with a median of 0.86.20

On average, all six objective functions perform well in reproducing
::::::::
reproduce

:
the observed hydrograph

::::
well

:
when more

weight is given to predicting high flowswell, with EQ

KG
scores in evaluation between 0.69 and 0.82 in evaluation (Figure 5a).

They largely outperform the average benchmark score of 0.40, indicating that all six objective functions are useful to
::
do

:
find

parameter sets representative of the hydrological behaviour of our catchments. Using EQ

KG
for calibration is found to be the

best objective function when measured using EQ

KG
with a score of 0.82, followed by EQ

0.5

KG
with a score of 0.80. However, EQ

�1

KG
25

is outperformed by any of the three tailored objective functions. EKP

SFC
is the best tailored objective function when measured

on EQ

KG
, followed by EP

SFC
, and EK

SFC
. This can be explained by the fact that

:
is
:::::::
because

:
EKP

SFC
and EP

SFC
contain a majority of

SFCs for high flow conditions (Table 1), while EK

SFC
contains a majority of SFCs for low flow conditions.
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When more importance is given to predicting average flow conditions, i.e. using EQ
0.5

KG
(Figure 5b), this is EQ

0.5

KG
that is the

best performing objective function with 0.87, followed by EQ

KG
with 0.86, and the three tailored objective functions with very

comparable performances (between 0.84 and 0.85). Since the three tailored objective functions contain comparable proportions

of SFCs for average flow conditions (i.e. around 30%, see Table 1), it can explain why their values of EQ
0.5

KG
are close.

While EQ
�1

KG
is the worst objective function when assessed on EQ

KG
or EQ

�1

KG
, when more emphasis is put on low flows, i.e.5

assessed using EQ
�1

KG
(Figure 5c), it performs the best out of the six objective functions with a score of 0.67, followed by EK

SFC

with a score of 0.59. EQ
0.5

KG
and EKP

SFC
perform similarly

::::::
equally with a score of 0.56, while EP

SFC
has a score of 0.55. EQ

KG
is the

worst objective function to choose out of the six to predict the hydrograph with more emphasis on predicting low flows well.

Nonetheless, it remains largely
::
is better than the lower benchmark and its score at

:::
with

:::
its

::::
score

::
of
:
0.07. Again, the proportion

of SFCs for low flow conditions can explain
:::
low

::::
flow

:::::
SFCs

:::::::
explains the ranking of the three tailored objective functions, where10

EK

SFC
features a majority of

:
3 SFCs for low flow conditions (3 out of

::
out

::
of

:::
the

:
7 SFCs, see Table 1), while EP

SFC
features the

lowest proportion of SFCs for low flow conditions (i.e. 4 out of 13, Table 1).

4.2 Which objective function provides the most accurate SFC predictions?

The comparison reveals that the differences in performance between most
::::::::
differences

::::::::
between

::::
most

:::
of

:::
the

:
objective func-

tions are small (Figure 6a-c). However, their performances are largely exceeding those of
::::
They

::::::
greatly

::::::
exceed

:
the bench-15

mark on all three tailored objective functions, indicating that all six objective functions are similarly informative for model

calibration
::::
useful. The best predictive performance in evaluation

::::::::
evaluation

::::::
scores

:
for a given set of SFCs targetted in this

study is always obtained using this
::
the

:
same combination of SFCs as the objective function

:
in

:::::::::
evaluation

::
as

::::
was

::::
used

:
in cal-

ibration, e.g. the best EK

SFC
score in evaluation (0.74) is obtained with EK

SFC
as the objective function for calibration. (EP

SFC

scores 0.56 on EP

SFC
, EKP

SFC
scores 0.50 on EKP

SFC
). Furthermore, the largest combination featuring

::::::::::
combination

::::
with

:::
the

::::::
largest20

::::::
number

:
(18

:
)
::
of

:
SFCs EKP

SFC
is a competitive option, even when the focus is on smaller subsets of SFCs (i.e. scores 0.73 on

EK

SFC
, or scores 0.56 on EP

SFC
), and it outperforms any of the three formulation of EKG.

The best performing traditional objective function to predict any of the three sets of SFCs is consistently found to be EQ
0.5

KG
,

with scores of 0.72 on EK

SFC
, 0.54 on EP

SFC
, and 0.48 on EKP

SFC
. On the other hand

:::::
While, EQ

�1

KG
is found to be the worst

performing traditional objective function, with scores of 0.67 on EK

SFC
, 0.41 on EP

SFC
, and 0.34 on EKP

SFC
. Given that EK

SFC
25

contains a majority of SFCs for low flow conditions
:::
the

::::::
highest

:::::::
fraction

::
of

::::
low

::::
flow

:::::
SFCs (3 out of 7), this

:
it
:
is surprising to

find the traditional function with the strongest focus on predicting low flow conditions is the worst performing one. However,

Garcia et al. (2017) also found that EQ
�1

KG
is not the best to predict low-flow indices, and the authors recommend an arithmetic

mean of EQ

KG
and EQ

�1

KG
as a better alternative to predict them.

In addition, the dispersion of the performance across the 33 study catchments, measured by standard deviation (represented30

as error bars on Figure 6a-c), is smaller for the better performing objective functions, which indicates that in addition to

predict
::::::::
predicting

:
well on average, they produce less variability in performance

::::
have

:::
less

:::::::::
variability

:
across the different study

catchments.
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4.3 Which objective function provides the most stable SFC predictions?

The average stability of the performance across the 14 split-sample tests also shows only small differences between the different

objective functions (Figure 6d-f). Moreover, the absolute stability scores, measured by the standard deviation across the 14

split-samples (see subsubsection 3.4.2), are also relatively small, i.e. never exceeding 0.05. It is also important to note that the

benchmark shows comparable performance stability with
::::
Here,

:::
the

:::::::::
benchmark

::
is
::
as

::::::
stable

::
as the six objective functions used5

for calibration. This suggests that stability is not very useful here to compare
::::::
separate

:
the objective functions, given that an

uninformative calibration yields similar stability. This also
::::
Their

:::::
small

::::::
values implies that the differences observed in terms of

overall performance
::::::::
previously are not dependent on the study period considered, since stability values are small.

4.4 Which objective function provides the most robust SFC predictions?

The analysis of the robustness of the different objective functions to predict each of
::
on the three sets of SFCs uncovers a general10

trend whereby traditional objective functions are more robust than tailored objective functions, i.e. the drop in performance

from the calibration period to the evaluation period is smaller for the traditional objective functions (Figure 6g-i).

The average drop in performance is consistently below 0.01 for EQ

KG
, EQ

0.5

KG
, and EQ

�1

KG
, on all three tailored objective

functions used as efficiency scores in evaluation
:::
sets

:::
of

::::
SFCs. On the other hand, the largest drop in performance on any of the

three tailored objective functions used as evaluation targets
:::
sets

:::
of

::::
SFCs

:
is always obtained with this same tailored objective15

function
::
set

:
used in calibration. For instance, EK

SFC
shows an average drop of 0.045 on EK

SFC
, while the drop is only 0.016 with

EP

SFC
, and 0.022 with EKP

SFC
. These results suggest that the

::::
This

::::::::
difference

::
in

:::::::::
robustness

::::
may

:::
be

::::::
caused

::
by

:
tailored objective

functions suffer from more overfitting issues in calibration that
:::::::
suffering

:::::
more

::::
from

:::::::::
overfitting

::::
than

:
the traditional objective

functionsto predict the three set of SFCs. Nonetheless, the tailored objective functions remain the best performing options

when considering results in the evaluation period, so that although they reach better fitting in calibration but
:
it
::
is at the cost of20

larger performance drops from calibration to evaluation. These results are consistent with Garcia et al. (2017) who
::::
also found

that their tailored objective function made of 7 SFCs was not robusteither.

4.5 Which objective function yields the most consistent behavioural parameter sets?

Unlike the measures of average model performance and performance stability, the consistency measures reveal more significant

differences between the six objective functions compared here (Figure 7). On average, EQ
0.5

KG
and EQ

KG
clearly outperform all25

other objective functions with a consistency exceeding 0.5 (
::::::::::
consistencies

:::
of 0.52 and 0.51, respectively). This means that

more than half of the behavioural parameter sets identified with these two objective functions remain selected as behavioural

across all 14 split-sample tests. comes second last with a consistency of 0.19. The two objective functions yielding the lowest

consistencies are
::
for

:
EQ

�1

KG
and EQ

�1

KG ::::
both

::::::
scoring

::::
0.19

::::
and

:
EK

SFC
, with 0.19 and 0.13, respectively. The main similarity

between these two objective functions is that they focus more
:
.
:::::
These

:::::
focus

::::::
mostly on low flow conditions than average or high30

flow conditions. This may be the reason for
:::
and

::::
this

:::
may

:::::::::
contribute

::
to

:
their lack of consistency.
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The consistency ratios for the tailored objective functions appear to be related to the number of SFCs they contain. Indeed
:::
For

:::::::
instance, EK

SFC
containing only seven SFCs comes last with a consistency of 0.13, EP

SFC
with 13 SFCs has a consistency of

0.31, and EKP

SFC
containing all 18 SFCs has a consistency of 0.34. However, given that only three set

:::
sets

:
of SFCs are tested, this

could only be a coincidence, and additional research on the impact of the number of components contained
::::
SFC

::::::::::
components

in the tailored objective functions on the model consistency is required
:::::::::
consistency

::
is

::::::::
indicated.5

4.6 Are there specific components of the objective functions limiting their performances?

4.6.1 Shape and timing, variability, bias

First, comparing the six objective functions on the three components of EQ

KG
(Figure 8) reveals that the shape and timing (r) is

the most difficult aspect of the hydrograph to predict, while the total volume (�) is the least difficult. The flow variability (↵)

is consistently underestimated, while the total volume is overestimated with all but one objective function (i.e. EQ
�1

KG
).10

EQ
�1

KG
performs the worst on two of the three components, with a score of 0.836 on the linear correlation r, and 0.882 on the

variability ↵ which indicates that it is the objective function struggling
:::::::
struggles

:
the most to reproduce the shape and timing

of the observed hydrograph, and also
:
is
:
the one that most underestimates the observed spread of flows. On the other hand, it is

the best objective function to use in calibration to estimate the volume of water at the catchment outlet (score of 0.997 on �)

and, in fact, the only one to underestimate this volume. On the other hand, EQ

KG
and EQ

0.5

KG
perform well on ↵ and �, while it15

is
:::
they

:::
are

:
not as good on the correlation coefficient r. Nevertheless, they are better than most other objective functions on r,

with amongst the highest scores on r (0.894 and 0.888, respectively).

The low
:::
bad performance of EK

SFC
found in subsection 4.1 can be mainly attributed

::::::::
attributed

::::::
mainly

:
to a lower correlation

component of EQ

KG
, with a value of 0.863, and to a lesser extent to failure in

:
a
:::::
failure

::
to

:
capturing the flow variability (↵ value of

0.927). Even though EK

SFC
is the worst objective function for the bias (�

:::
has

:
a
:
value of 1.038), this is its best component

::::
score20

:::::::
amongst

:::
the

::::
three

::::::::::
components

:
of EQ

KG
. EP

SFC
and EKP

SFC
show strong skills in

::
are

:::::
good

::
at capturing the flow variability, with ↵

values close to one (0.953 and 0.951, respectively), they show comparable skills as .
:::::
They

:::
are

::::::::::
comparable

::
to EQ

KG
and EQ

0.5

KG

on the correlation coefficient, while they overestimate the total volume the most (1.018 and 1.022 for the bias, respectively).

EK

SFC
and EQ

�1

KG
share in common a stronger weight for

::
an

::::::::
emphasis

::
on

:
low flow periods compared with moderate and high

flow periods, which
:::
that is likely the reason compromising their performance on the linear correlation coefficient r which is25

known to give
::::
gives more weight to high flow periods, that .

::::
The

::::
latter

:
typically exhibit larger errors, that are amplified by the

quadratic formulation of the correlation coefficient (Krause et al., 2005). Moreover, EP

SFC
and EKP

SFC
contain higher proportions

(and larger numbers) of SFCs relating to flow magnitude than EK

SFC
(Table 1), which can explain why EK

SFC
is worst on the

bias component. Finally, EP

SFC
and EKP

SFC
contain two SFCs for the timing of flows, while EK

SFC
contains only one, which can

explain why EK

SFC
is not as good as the two others for the correlation coefficient.30
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4.6.2 Individual streamflow characteristics

The normalised errors for the 18 SFCs that are contained in the three tailored objective functions (Figure 8) shows that, overall,

all six objective functions tend to produce the largest errors on
:::
for the same SFCs, for example on fh7 (frequency of large

floods), fh6 (frequency of moderate floods), or tl1 (timing of annual minimum flow); and
::::
also the smallest errors on

:::
for the

same SFCs, for example dh13 (variability in annual minimum 30-day mean flow) or ra2 (variability in flow rise rate). The5

prediction of the SFCs considering the frequency of flow events (fh6, fh7, fh9, fl2) is the most difficult with all six objective

functions, while
:::::
SFCs

::::::
related

::
to their duration (dh4, dh13, dh16, dl9) are amongst the least difficult

::::::
easiest to predict. For the

magnitude of flow events, low flow events seem to be relatively easy to predict while
::::::::
compared

::
to the magnitude of average

and high flow eventsis more difficult.

However, EK

SFC
and EQ

�1

KG
tend to show more variability than the other four objective functions in the ranking of the errors10

across the 18 SFCs. For example, EQ
�1

KG
shows clearly larger errors on SFCs related to high flow conditions (mh10, fh6, fh7,

fh9, dh4) which can be related to
:::::::
because

::
of

:
the focus on low flows of the objective function, but also on some average flow

conditions (ma26, ma41, ra7), and even on low flow SFCs (ml20 – baseflow ratio). This is also the case for mostly the same

SFCs with EK

SFC
. Again, these two objective functions place more emphasis on low flows, and this seems to make them less

suitable objective functions across a
:::::
across

::
a

:::::
wider range of flow conditions. On the other hand, the emphasis on high flows in15

EK

SFC
seems less detrimental to its performance on low flow conditions. It does perform the worst

:::::::
Although

::
it
::
is

:::::
worst

::
of

:::
all

on ml17 (baseflow ratio) and q85 (flow exceeded 85 % of the time), but
:::
still with relative errors below 10 %.

Moreover, unlike
:::::
Unlike

:
the overall performance results found

::::::::
described in subsubsection 3.4.1, a tailored objective function

does not necessarily perform the best on all of the
::::::::
individual

:
SFCs it contains. For example, EQ

KG
outperforms EP

SFC
on ma41

(annual mean daily flow) which was already noticed with the bias. Also, EQ
�
1

KG
outperforms EP

SFC
on q85, which can be20

explained by the strong emphasis EQ
�
1

KG
on low flows. Interestingly, a tailored objective function can outperform another one

on SFCs it does not contain. Indeed, EP

SFC
outperforms EK

SFC
on ra2, even though it

::
the

:::::
latter is only contained in EK

SFC
.

4.7 Trends on a large range of flow regime characteristics

Extending the number of SFCs characteristics examined, shows that EQ
0.5

KG
, EK

SFC
, and EP

SFC
perform very similarly across

the 156 SFCs and the nine percentiles of the flow duration curve (Figure 9), and are somewhat similar with
::
to

:
EQ

KG
, except25

for the magnitude and duration of low flow events, where EQ

KG
produces larger errors. This implies that EQ

0.5

KG
is a strong

option
::::
good

:::::
choice

:
for model calibration when the purpose is to predict a wide range of streamflow characteristics , i.e. across

various aspects (magnitude, frequency, timing, etc.) and across various flow conditions(high, moderate, and low flows), ,
:
since

it performs almost as well as the best tailored objective functions. In contrast, EQ
�1

KG
produces noticeably larger errors than any

other objective function on the maximum daily flow in each month (i.e. mh1 to mh12), on the mean annual maximum of a30

moving mean of a 1-, 3-, 7-, 30- and 90-day window (dh1 to dh5), or on the frequency of flood events of various intensities

(fh1, fh5, fh6, fh8). At the same time, this objective function produces noticeably smaller errors on the mean annual minimum

of a moving mean of a 1-, 3-, 7-, 30- and 90-day window (dl1 to dl5). Overall, EQ
�1

KG
’s stronger weight on low flow conditions
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does improve the predictions of SFCs for low flow events, to the detriment of the prediction for high flow events. This is also

noticeable in the percentiles of the flow duration curve, with a close to
::
an

::::::
almost

:
monotonic increase in the error amplitude

from the 99th percentile to the 1st percentile. However, EQ
�1

KG
is the worst objective function for predicting the minimum daily

flow in each month for the period October-February (ml10, ml11, mh12, ml1, ml2). This is because the magnitude of low flows

during this wet period are higher than during the dry period, so that errors for low flows for the dry period are given higher5

weight than the ones for the wet period in EQ
�1

KG
. Also, it has a larger error for predicting the frequency of low flow spells

::::::
periods (fl1), that can be explained by the fact that the threshold to define low flow spells

:::
this

::
is

::::::
because

:::
the

::::::::
threshold

:::
for

::::
low

::::
flow

::::::
periods is set as the 25th percentile, which is not the magnitude of flows that is the most emphasised by EQ

�1

KG
(i.e. not on

the low
:::::
lower tail of the flow distribution).

Amongst the tailored objective functions, EK

SFC
performs differently across the 156 SFCs and the nine percentiles than its10

two counterparts, which perform very similarly across these SFCs. Indeed, EK

SFC
shows absolute normalised errors somewhat

half way between EQ
�1

KG
and the two other tailored objective functions. EK

SFC
tends to show larger errors on the characteristics

where EQ
�1

KG
is outperformed by the other traditional objective functions, typically on characteristics for low flow conditions.

This pattern was already observed on the smaller set of SFCs in the subsubsection 4.6.2.

The relative agreement between the six objective functions in the largest and smallest SFC errors (apart from the patterns15

identified above), subsubsection 3.4.1 provides some insight on the most easy and most difficult
::::::
easiest

:::
and

:::::::
hardest SFCs to

predictin the study catchments. It is clear that the average number of flow reversals from one day to the next (ra8) is the most

difficult to predictcorrectly, and so are
:
,
::
to

:
a
:::::
lesser

::::::
extent,

:
the average slope of the rising limbs and the

:::
and

:
recession limbs (ra1

and ra3)but to a lesser extent. Overall, high flow events are trickier to get right
:::::
predict, whether it is their magnitude (mh1-mh12

– mean daily maximum for each month, mh19 – skewness in annual maximum daily flow, mh20 – mean annual maximum daily20

flow), their duration (dh1-dh10 – mean and variability in annual maximum of a moving mean of a 1-, 3-, 7-, 30- and 90-day

window), their timing (th1 – timing of annual maximum flow), or their frequency, except for the variability in high flood events

(fh2) and the average number of days exceeding seven times the median flow (fh4). On the other hand, some SFCs based on the

magnitude of flows seem
:::
are easier to predict:

:::
e.g.

:
variability in the percentiles of the log-transformed discharge record (ma4),

the skewness in daily flows (ma5), various ratios of flow percentiles (ma6-ma8) and various spreads between flow percentiles25

(m9-m11). The volume of floods exceeding the median, twice the median, and three times the median (mh21, mh22, and

mh23) are also well predicted, alongside the 90th and 75th percentiles normalised by the median flow (mh16, mh17). Finally,

the mean annual maximum of a moving mean of a 7-, and 30-day window normalised by the median flow (dh12, dh13) are

the best predicted SFCs relating to the duration of flows. For the percentiles of the flow duration curve, it appears that all six

objective functions are better suited to predicting its low tail, which is consistent with the lower relative errors for the SFCs on30

the magnitude of low flows compared with those of high flows.
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5 Discussion

5.1 On the definition of SFC-based objective functions for ecologically-relevant streamflow predictions

The choice of the objective function for ecological applications is known to influence
::::::::
influences

:
the predictive performance

of the hydrological model for specific streamflow characteristics (Vis et al., 2015; Kiesel et al., 2017; Pool et al., 2017). In

particular, specially chosen composite objective functions containing the target SFCs have improved the prediction of these5

SFCs (e.g. Kiesel et al., 2017). This study confirmed these separate findings using the same set of SFCs in Irish study catch-

ments. However, the consistency analysisrevealed that the sample of parameter sets found suitable ,
:::::
done

::::
here,

::::::
reveals

::::
that

:::
the

::::::::
parameter

:::
sets

::::::::
identified

:
in calibration are less consistent across different split-sample tests with this type of objective function

than with two of the traditional objective functions (i.e. EQ

KG
and EQ

0.5

KG
).

As might be expected, because
:::
The

:::::::
selection

:::
of particular streamflow characteristics are selected for their ecological rele-10

vance does not imply that they are necessarily representative signatures of
::
can

::::::::
represent

:
the overall hydrograph. Indeed, while

some indicators originally used as ecologically-relevant SFCs (Olden and Poff, 2003) are also used as hydrological signatures

(e.g. Yadav et al., 2007; Zhang et al., 2008), their selection as a relevant characteristic for the catchment of interest
:
a
:::::::::
catchment

is driven by different needs in terms of the indicator skills
:::
the

::::::::::
requirement

::
to
::::::
model

:::::::
specific

::::::::
indicators. These indicators are

selected as
:::
can

::
be

:
ecologically-relevant SFCs according to their influence on the stream ecology (Poff and Zimmerman, 2010),15

while they are
:::
also selected as hydrological signatures to represent the hydrological behaviour of catchments (McMillan et al.,

2017), i. e.
:
.
::
In

::::
such

::::::
cases, they are SFCs that can be used for catchment classification, or the regionalisation of hydrological

information, for example. Hence, ecologically-relevant
:::::::::::::::::
Ecologically-relevant SFCs are not necessarily very informative when

it comes to eliciting
::::::::
estimating

:
suitable parameter values in the calibration of hydrological models, because they may not be

key descriptors of the emergent
:::
key

:
hydrological processes at the catchment scale: this

:
.
::::
This may be symptomatic of the prob-20

lem of getting the right answer with a model for the wrong reasons (Kirchner, 2006). For example, Pool et al. (2017) defined a

composite objective function made of the most informative SFCs at hand (i.e. the ones that, used alone, were the most useful

to predict the other SFCs well too), and yet, they were unable to accurately predict SFCs not included in the objective func-

tionwith their multi-SFC objective function. The use of a consistency analysis in this study confirms that the tailored objective

functions tested are not skilled in selecting parameter values stable across split-sample tests. Nonetheless, some SFCs can be25

found
:::
are useful in calibration. Yadav et al. (2007) suggest that a carefully selected subset of SFCs has the potential to constrain

well a model parameter space. Kiesel et al. (2017) even found that the use of single SFCs may be almost as powerful as their

complete set of seven SFCs to predict all seven SFCs, suggesting that these individual
:::::
some ecologically-relevant SFCs also

have potential to be indicative signatures of the hydrograph of their German catchment.

In this context, the definition of a good tailored objective function for ecologically-relevant streamflow predictions must be30

based on SFCs that are key descriptors of the ecological response, while also key descriptors of the hydrological behaviour in

the catchment. Otherwise, model consistency may be compromised, and the model predictions will not be as robust outside

its calibration conditions. Moreover, the
::::
best number of SFCs contained in the tailored objective function is another aspect

that may need
::::
needs

:
to be considered, given that the consistency seems to improve with the number of SFCs

::
in the objective
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functioncontains. However, only three set
:
as

:::::
only

::::
three

::::::::
different

:::
sets

:
of SFCs were tested in this study, and more research

would be required to confirm this hypothesis.

5.2 On the strengths of traditional objective functions

Composite traditional objective functions such as the Kling-Gupta efficiency remain
::
are

:
strong contenders for the prediction

of these SFCs. In particular, the use of the KGE on square-rooted flows (i.e. EQ
0.5

KG
) was as competitive as tailored objective5

functionsconsisting of specific SFCs to predict a set of 156 SFCs, while providing more robust predictions and a more consistent

set of behavioural parameter sets than its tailored counterparts. On the other hand, EQ
�1

KG
’s stronger focus on low flow errors

reduces its ability to predict SFCs for high flow events, which is a disadvantage, unless the ecological species of interest are

only sensitive to low flow conditions. Even then, Garcia et al. (2017) found an arithmetic mean of EQ
�1

KG
and EQ

KG :::
was better

than EQ
�1

KG
alone to predict low flow SFCs. Conversely, EQ

KG
’s heavier emphasis on high flow errors is not as detrimental for10

its predictive capabilities
:::::::::
prediction of low flow events, and is is only found marginally worse than EQ

0.5

KG
.

In future research on the skills of objective functions to predict SFCs, a recently formulated non-parametric version of

the KGE criterion could prove useful to predict various SFCs at once, namely because it
:
.
::
It

:
reduces the emphasis on high

flow conditions and it provides a more balanced criterion across various flow conditions, while avoiding the original KGE’s

assumptions on the nature of the errors not necessarily justified for streamflow records (Pool et al., 2018). Alternatively,15

segments of the flow duration curve have been used to calibrate hydrological models, which also offers opportunities to balance

low, average, and high flow conditions (e.g. Yilmaz et al., 2008; Pfannerstill et al., 2014). However, the flow duration curve

does not contain information on the timing (or duration) of individual flow events, which is important for aquatic species

(Arthington et al., 2006). A combination of different objective functions fitted to flows (Vis et al., 2015), or a combination of

objective functions fitted to flows and objective functions fitted to SFCs (Pool et al., 2017) can also be competitive options. In20

particular, the latter has the potential to overcome the consistency issue found with tailored objective functions by including

traditional objective functions.

5.3 Limitations of this study

The lack of long continuous time series of observed streamflow is known to be a limiting factor for ecohydrological studies,

and, in this case study, the use of 14 years, i.e. 7 each for calibration and evaluation periods is a prime example of this issue.25

Previous research suggests that a five year period is enough to capture the temporal hydrological variability (Merz et al., 2009).

However, Kennard et al. (2009) found that at least a 15-year period was required to estimate accurately
::::::::
accurately

:::::::
estimate

:
a

set of 120 SFCs, where the true SFC values were taken from their full record of 75 years. This suggests that the SFC values

targetted in calibration in this study may not be fully representative of the long-term hydrological regime, and they are likely to

be more variable than if 15-year (or more) periods were used in calibration and in evaluation, and hence
:::
and

:
more difficult to30

predict than more long-term values. Indeed, Vigiak et al. (2018) found that the uncertainty of the prediction of SFCs is sensitive

to the length of the period considered, and the shorter the period is, the more uncertain the estimation is. Moreover, shorter

time series reduce the likelihood of encompassing
:::
the

::::
most

:
extreme flow events (droughts and floods).
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Moreover, in
::
In order to overcome the lack of long time series of streamflow data, we included non-continuous (i.e. inter-

rupted) data periods to increase the number of study catchments (see Figure A1). Given that missing discharge data tend to

be more frequent for high flows, because of flood events damaging the gauge, there is a risk that the natural flow variability

is underestimated, and as a consequence the observed SFC values for extreme flow conditions may be less representative of

the long-term flow regime than the SFC valuesfor more moderate flow conditions
::::
than

:::::
other

::::
SFC

:::::
values. In our study, some5

hydrological years were discarded even if only one day of observation was missing. In future research, this requirement could

be relaxed and imputation
::::::
infilling

:
methods could be used on gaps of short length to infer the values for the missing days in

the streamflow series (see, e.g. Gao et al., 2018, for a recent review of such imputation methods).

Given forcing and evaluation data uncertainty, and model structural uncertainties, the small differences in model performance

calibrated with the different objective functions could be deemed
:::::::::
considered insignificant. However, in order to reduce the10

influence of data uncertainty, this comparison of objective functions was carried out on a set of 33 study catchments and on

14 split-sample tests. Moreover, the use of the median performance across a set of behavioural parameter sets was chosen to

reduce
::::::
reduces

:
the influence of equifinality problems (Beven and Freer, 2001). Given that summary statistics across the split-

sample tests and across the study catchments are used, this may explain why differences in performance are small. Regardless,

the differences in terms of model robustness and consistency are more significant , and given the experimental set-up described15

above, this
:::
and gives some confidence in the general applicability of these findings.

The findings in this study could also be somewhat model-specific and region-specific. However, Caldwell et al. (2015) found

that the choice of the hydrological model to predict SFCs is not as important as the choices on
::
of

:
the calibration strategy,

and this study confirms the results of two other similar studies (Kiesel et al., 2017; Pool et al., 2017) that tailored objective

functions perform better than traditional ones. In addition, the model suitability for the study catchments could be further20

explored following the covariance approach recently suggested by Visser-Quinn et al. (2019), and potentially improve on the

model consistency.

Finally, the analysis of the consistency was based on the number of times the exact same parameter set was identified as

behavioural across the 14 split-sample tests. However, it is possible that in some split-sample tests, a parameter set identified as

behavioural is in the vicinity of
:::
near

:
another parameter set

::::
also identified as behavioural in another test. This is one limitation25

of the consistency approach selected here, and it is suggested that future research efforts on the topic could use clustering

analysis techniques in order to overcome this limitation by comparing the spread of the cluster(s) formed by the behavioural

parameter sets instead.

5.4 Implications for the study of the impacts of climate change on the stream ecology

Hydrological models are usually preferred over statistical regression models when the impacts of a changing climate on the30

flow regime and the associated ecologically-relevant SFCs is of interest. Even though regression models may fit historical data

better (Murphy et al., 2013), hydrological models have the potential to be run with alternative climate data in order to predict

future changes in the catchment hydrograph. The identification of the most suitable objective function is therefore valuable for

climate change scenario analysis. Here, we have already established the marginal superiority of tailored objective functions
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over a range of fourteen different split-sample tests in which the ranking between the objective functions is relatively stable.

However, a limitation of the study is that the flow data period from 1986 to 2016 is relatively short in climatological terms and

does not contain a severe drought period , although
::::::
drought

::::::
period

::
as

::::::
severe

::
as

:
some have been identified in

::::
from

:
long-term

(250-year) precipitation records (Noone et al., 2017), but
::::
since

:
a corresponding flow record does not exist.

Assuming a suitable set of SFCs has been found, as described in subsection 5.1, the use of a composite definition for the5

objective function based on normalised absolute error between observed and simulated SFCs , such as in this study, or the

recent studies by Kiesel et al. (2017), and by Pool et al. (2017) may not be realistic for practical applications. Indeed, while

SFCs are often normalised to avoid artificially weighing them based on their amplitude, they are not weighed according to

the impact a given percentage deviation has on the stream ecology. The use of an objective function whose components are

weighted according to their significance to the target species may therefore prove useful to includesuch consideration in the10

calibration procedure. For example, Visser-Quinn et al. (2019) used variable limits of acceptability for the identification of the

plausible model parameter sets based on a weighing scheme considering the importance of each of their SFCs on the ecological

response, using macro-invertebrates as a surrogate (Visser et al., 2018).

5.5 Implications for ecologically-relevant streamflow predictions in ungauged basins

Understanding the ecological response to altered flow regimes is hindered
::::::::
prevented by the lack of hydrological data where15

ecological data is available
::::::::::::
corresponding

:::::::::::
hydrological

::::
data

:
(Poff et al., 2010) because hydrometric gauges may not be

in locations where ecological surveyshave been carried out
::
the

:::::
same

::::::::
locations

::
as

:::::::::
ecological

:::::::
surveys. As a result, the usual

:::::::::
data-based calibration of a hydrological model

:::
for

:::
the

::::::::
ecological

::::::
survey

::::
sites

:
is not possible, and a direct

:
an

:::::::
indirect

:
method

of predicting streamflow characteristics in ungauged locations is required.

One approach to regionalisation is the transfer of optimised parameter values from gauged to ungauged locations (Parajka20

et al., 2005). Given their higher consistency demonstrated in this study, the original KGE-based criteria appear better suited for

regionalisation, rather than the tailored objective functions tested in this study. Indeed, the optimised parameter values need to

be strongly related to catchment behaviour in order for hydrological knowledge to be related to
::
and

:
physical features and thus

transferred
::::::::::
transferrable

:
to ungauged locations. While consistency could be improved through the change in model structure

(Euser et al., 2013), Caldwell et al. (2015) and Garcia et al. (2017) found the choice of the calibration procedure more decisive25

than the model used for the prediction of SFCs.

Alternatively, streamflow characteristics can be directly transferred from gauged to ungauged locations (e.g. Yadav et al.,

2007; Westerberg et al., 2014) and used as calibration information in the ungauged catchment. However, these SFCs are used as

hydrological signatures to constrain the model parameter space, and as a result, their potential was assessed in order to predict

the hydrograph in ungauged catchments. It remains to be explored whether these regionalised ensemble predictions can prove30

useful in predicting other SFCs relevant for ecological communities in ungauged catchments.
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6 Conclusions

Desirable qualities for a useful objective function are that it performs
::::::::
identifies

:::::
model

:::::::::
parameter

::::::
values

:::::::::
performing

:
well in

evaluation, i.e. outside calibration, that its performance is independent of the calibration period
::::::::::::
independently

::
of

:::
the

::::::
period

:::::::::
considered, and that it consistently identifies the same parameter sets regardless of the study period, i.e. that it describes a

consistent catchment hydrological behaviour. This study explored all these aspects for six different objective functions intended5

to predict three combinations of streamflow characteristics that are assumed to be relevant for stream ecology. The
::
In

:::::::
relation

::
to

:::
the

:::::::
research

::::::::
questions

::::::::
presented

::
in

:::
the

:::::::::::
Introduction,

:::
the

:
study showed that: (i) tailored objective functions

:::::
(fitted

::
to

::::::
SFCs)

perform marginally better than traditional objective functions to
:::::
(fitted

::
to

::::::
flows)

::
to

:
predict all three combinations of SFCs

on average
::::
(Q1), while proving to be less robust outside calibration

:::
than

::::
their

:::::::::
traditional

::::::::::
counterpart

::::
(Q2)

:
;
:::
no

::::::
general

:::::
trend

::::
could

:::
be

:::::
found

::
to

::::::
support

:::
the

:::::
claim

::::
that

:::
any

::::::::
objective

:::::::
function

:::::
yields

:::::
more

:::::
stable

::::
SFC

:::::::::
predictions

::::::
across

::
the

:::::::::::
split-sample

::::
tests10

::::
(Q3); (ii) traditional objectives functions based on flows and

::::
fitted

::
to

::::::::::::
untransformed

:::::
flows

::::
and

::
to

:
square-rooted flows select

more consistently the same parameter sets as behavioural across the split-sample tests than
:::
any

::
of the three tailored objective

functions made of SFCs ; and (iii)
::::
(Q4).

:::
In

:::::::
addition,

::
it

::::
was

:::::
found

:::
that

:
the ranking of the six objective functions is not altered

when considering their performance on a very large and diverse set of SFCs.

This study unveils
::::::
reveals that a gain in fitting performance for the SFCs may hide a loss in

::
be

::
at

:::
the

:::::::
expense

::
of consistency15

in the behavioural parameter sets across the split-sample tests. This highlights that fitting ecologically-relevant SFCs well is not

necessarily a guarantee of representing all the key hydrological processes (i.e. informative signature) defining the catchment

response. Unless streamflow characteristics are proven to be both ecologically-relevant and an informative signature at once,

carefully selected traditional objective functions fitted to flows are likely to remain preferable to predict ecologically-relevant

streamflow predictions to avoid consistency issues.20
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Figure 1. Spatial location and information on the study catchments: (a) map of the average annual rainfall for the Republic of Ireland

for the period 1981-2010 (source: Met Éireann) overlaid with the 15 distinct river basins containing the 33 study catchments - each name

corresponds to a river basin; (b) map of the topography for the Republic of Ireland (source: Ireland’s EPA) overlaid with the location of the 33

hydrometric gauges forming the 33 study catchments - each number corresponds to the code of a hydrometric gauge; (c) map of the pedology

for the Republic of Ireland (source: Teagasc) overlaid with the outlines of the 15 river basins; (d) map of the geology for the Republic of

Ireland (source: Geological Survey Ireland) overlaid with the outlines of the 15 river basins.
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Figure 2. Conceptual representation of the SMART model structure. P and EP, precipitation and potential evapotransporation, respectively,

are the model inputs; Q and EA, discharge and actual evapotranspiration, respectively, are the model outputs. For full description of the

parameters, states, and fluxes presented on the figure, as well as the conceptual model equations, the reader is referred to the documentation

provided in the Supplement.

31



i ii iii iv v 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Hydrological years

N
M
L
K
J
I
H
G
F
E
D
C
B
A

Sp
lit

-s
am

pl
es

CalibrationWarm-up Evaluation

Figure 3. Split-sampling strategy using a seven-year rolling window, adapted from de Lavenne et al. (2016). Each period of 14 hydrological

years enumerated as decimal numerals in Figure A1 are represented on the x-axis and split into two seven-year periods, one for model

calibration (in purple), and one for model evaluation (in pink). Each period of 5 hydrological years identified as roman numerals on the

x-axis corresponds to the 5-consecutive-year warm-up period immediately preceding the hydrological year number 1.

32



105 parameter sets

105 hydrographs

105 calib. scores

103 parameter sets

103 hydrographs

103 eval. scores

1 median score

Split-sample A ● ● ●

‘’

‘’

‘’

‘’

‘’

‘’

N

Statistics across 14 split-samples

Study catchment 1

B

‘’

‘’

‘’

‘’

‘’

‘’

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●2

‘’‘’ ● ● ●

33

● ● ● ‘’‘’

Statistics across 33 study catchments

Efficiency calculation with objective function

Selection of 1% best scoring parameter sets

Simulation on calibration period

Latin hypercube sampling

Simulation on evaluation period

Efficiency calculation with objective function

Calculation of prediction central tendency

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Ca
lib

ra
tio

n
Ev

al
ua

tio
n
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to model calibration, while steps (e) to (g) correspond to model evaluation. These steps are replicated for each study catchment, and for each

split-sample test.
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Figure 5. Comparison of the overall performance in evaluation of the model calibrated with the six objective functions. The three traditional

objective functions used as evaluation efficiencies. EQ
KG corresponds to the original Kling-Gupta efficiency (Gupta et al., 2009).
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Figure 6. Comparison of the skills in evaluation of the model calibrated with the six objective functions. The first column of panels compares

them on the overall performance on the three tailored objective functions used as evaluation efficiencies (described in subsubsection 3.4.1. The

second column compares them on the stability of these efficiencies across the 14 split-sample tests (described in subsubsection 3.4.2. The third

column compares them on the robustness of these efficiencies between calibration and evaluation periods (described in subsubsection 3.4.3).
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Figure 8. Comparison of performance in evaluation of the model calibrated with the six objective functions on individual components of the

objective functions. The left panel compares them on the three component of the Kling-Gupta efficiency. The right panel compares them on

the individual SFCs that are contained in the three tailored objective functions. The top panels correspond to performances on the calibration

period, while the bottom panels correspond to the performances on the evaluation period. A diamond and an asterisk are used to display the

SFCs belonging to EK
SFC and to EP

SFC, respectively. Note, all SFCs belong to EKP
SFC.
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Figure 9. Comparison of performance in evaluation of the model calibrated with the six objective functions on 156 streamflow characteristics

and 9 percentiles of the flow duration curve.
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Table 1. List and description of the 18 selected streamflow characteristics. Detailed calculations for each SFC in available in Table A2. The

three last columns indicate whether a given SFC is included (2) or not included (/2) in Equation 4 for the definition of each of the three

tailored objective functions.

Category SFC Description Unit EK
SFC EP

SFC EKP
SFC

Magnitude

Average flows ma26 Variability in March mean flow % /2 2 2
ma41 Annual mean daily flow m3 s�1 /2 2 2

Low flows ml17 Base flow ratio 1 � 2 /2 2
ml20 Base flow ratio 3 � /2 2 2
q85 Flow exceeded 85% of the time m3 s�1 /2 2 2

High flows mh10 Mean October highest flood m3 s�1 /2 2 2
Frequency

Low flows fl2 Variability in low flow pulse count % 2 2 2
High flows fh6 Frequency of moderate floods yr�1 /2 2 2

fh7 Frequency of large floods 1 yr�1 /2 2 2
fh9 Frequency of large floods 2 yr�1 2 /2 2

Duration

Low flows dl9 Variability in annual minimum 30-day mean flow % 2 /2 2
High flows dh4 Annual maximum of 30-day moving mean flow m3 s�1 2 /2 2

dh13 Variability in annual maximum 30-day mean flow � /2 2 2
dh16 Variability in high flow pulse duration % /2 2 2

Timing

Average flows ta1 Flow constancy � 2 2 2
Low flows tl1 Timing of annual minimum flow Julian day /2 2 2

Rate of change

All flows ra2 Variability in flow rise rate % 2 /2 2
ra7 Flow recession rate m3 s�1 /2 2 2
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Table 2. List and Description of the ten parameters of the SMART model.

Parameter Description Unit

T Rainfall aerial correction factor �
C Evaporation decay coefficient �
H Quick runoff ratio �
D Drain flow ratio �
S Soil outflow coefficient �
Z Effective soil depth mm

SK Surface reservoir residence time time step

FK Interflow reservoir residence time time step

GK Groundwater reservoir residence time time step

RK Channel reservoir residence time time step
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Table A1. List and main characteristics of the 33 study catchments.

Hydrometric

gauge

River basin Drainage areaa Average rainfallb Average potential

evapotranspirationb

Baseflow

indexc

Mean elevationd Mean sloped

– – km2 mm year�1 mm year�1 – m m km�1

34031 Moy 25 1349 526 0.36 115 38.7

15021 Nore 70 1167 497 0.65 267 121.2

07017 Boyne 73 1016 501 0.55 147 68.9

18016 Blackwater 119 1660 526 0.35 211 54.2

34024 Moy 128 1217 526 0.52 82 34.8

25002 Mulkear 218 1342 572 0.54 192 97.5

16003 Suir 258 1485 568 0.57 154 65.9

25030 Graney 273 1301 570 0.55 135 74.7

07002 Boyne 286 981 503 0.78 96 23.0

26008 Rinn 297 1182 498 0.61 75 46.6

15003 Nore 299 1029 537 0.55 208 56.4

18009 Blackwater 311 1286 574 0.42 199 66.6

24012 Deel 366 1109 569 0.43 116 41.4

15005 Nore 380 916 499 0.71 127 28.6

25003 Mulkear 399 1183 568 0.50 140 64.9

20002 Bandon 422 1654 528 0.53 124 89.4

30007 Clare 476 1121 504 0.65 75 23.8

27002 Fergus 485 1497 574 0.67 74 53.3

16002 Suir 492 972 568 0.63 128 19.3

23002 Feale 647 1409 567 0.31 196 76.2

25001 Mulkear 648 1235 578 0.52 153 73.7

36010 Erne 762 1041 498 0.63 124 82.6

16008 Suir 1090 1145 572 0.64 138 41.6

18003 Blackwater 1255 1389 524 0.46 181 68.2

36019 Erne 1491 1048 498 0.79 107 73.4

16009 Suir 1586 1213 575 0.63 139 51.4

15002 Nore 1647 980 502 0.63 149 43.9

34003 Moy 1782 1406 527 0.79 82 48.4

34001 Moy 1961 1396 520 0.78 81 49.7

15011 Nore 2222 973 501 0.62 139 42.7

18002 Blackwater 2331 1308 526 0.62 166 70.3

14018 Barrow 2438 919 536 0.67 99 27.0

07012 Boyne 2462 930 502 0.68 91 26.5

Data sources: aEPA river sub-basins map, bMet Éireann weather stations, cOPW Flood Studies Update, dEPA digital terrain model
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Table A2. Detailed computations for the 18 selected streamflow characteristics.

SFC Description

Detailed calculations

ma26 Variability in March mean flow

Compute the mean and standard deviation in daily flows in March for each hydrological year. Divide the standard deviations

by the means. Calculate the mean of these ratios to get ma26.

ma41 Annual mean daily flow

Compute the mean daily flow for each hydrological year. Divide the means by the drainage area in square kilometers. Calculate

the mean of these ratios to get ma41.

ml17 Base flow ratio 1

Compute the 7-day rolling mean for each hydrological year. Calculate the minimum rolling mean and divide by the mean daily

flow for each hydrological year. Calculate the mean of these ratios to get ml17.

ml20 Base flow ratio 3

Break down the entire record of daily flows into 5-day blocks. Calculate the minimum flow in each block. This minimum is set

as the baseflow for the block if 90% of its value is less than the minimum flow of its preceding and following blocks. Otherwise

baseflow for this block is unassigned. Replace all unassigned baseflow values using linear interpolation on the already assigned

baseflow values. Calculate the total baseflow by summing up the baseflow values in each 5-day block, and the total flow for the

entire record. Calculate the ratio of these two totals to get ml20.

q85 Flow exceeded 85% of the time

Calculate the 15th percentile for the entire record to get q85.

mh10 Mean October highest flood

Compute the maximum daily flow In October for each hydrological year. Calculate the mean of these values to get mh10.

fl2 Variability in low flow pulse count

Calculate the 25th percentile for the entire record. Calculate the number of flow events that are below this percentile for each

hydrological year. Calculate the coefficient of variation (i.e. standard deviation divided by mean) of these values and multiply

by 100 to get fl2.

fh6 Frequency of moderate floods

Calculate the median for the entire record. Calculate the number of flow events that are above 3 times this median for each

hydrological year. Calculate the mean of these values to get fh6.

fh7 Frequency of large floods 1

Calculate the median for the entire record. Calculate the number of flow events that are above 7 times this median for each

hydrological year. Calculate the mean of these values to get fh7.

fh9 Frequency of large floods 2

Calculate the 25th percentile for the entire record. Calculate the number of flow events that are above this percentile for each

hydrological year. Calculate the mean of these values to get fh9.

continued on next page
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continued from previous page

SFC Description

Detailed calculations

dl9 Variability in annual minimum 30-day mean flow

Compute the 30-day rolling mean for the entire record. Calculate the minimum of this rolling mean for each hydrological year.

Calculate the coefficient of variation (i.e. standard deviation divided by mean) of these values and multiply by 100 to get dl9.

dh4 Annual maximum of 30-day moving mean flow

Compute the 30-day rolling mean for the entire record. Calculate the maximum of this rolling mean for each hydrological year.

Calculate the mean of these values to get dh4.

dh13 Variability in annual maximum 30-day mean flow

Compute the 30-day rolling mean for the entire record. Calculate the maximum of this rolling mean for each hydrological year.

Calculate the mean of these values and divide by the median daily flow for the entire record to get dh13.

dh16 Variability in high flow pulse duration

Calculate the 75th percentile for the entire record. Calculate the average duration of flow events above this percentile for each

hydrological year. Calculate the coefficient of variation of these values and multiply by 100 to get dh16.

ta1 Flow constancy

Decimal log-transform the entire record of daily flows. Calculate the decimal log of the mean daily flow for the entire record.

Compute the Colwell (1974) matrix featuring 365 rows for 365 days in a year (ignoring last day of February for leap years)

and 11 columns for 11 flow states (break points are 0.10, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, and 2.25 times the log

mean daily flow calculated previously) for each hydrological year, incrementally adding to the tally in each cell from year to

year. Calculate the sum of each column Y (vector), and the sum of the whole matrix Z (scalar). Divide the elements of vector

Y by scalar Z. Multiply the elements of the new vector by their respective decimal log-transformed value, sum the elements of

the vectors to obtain a scalar and multiply by minus one to obtain the uncertainty with respect to the states H(Y). Divide H(Y)

by the decimal log of the number of states (11), and subtract this ratio from one to get ta1.

tl1 Timing of annual minimum flow Julian day

Determine the date of the annual minimum daily flow in the Julian calendar for each hydrological year. Convert these values

into an angle in the unit circle. Compute their coordinates (i.e. cosine and sine). Calculate the mean of these two values

separately. Calculate the ratio of this mean sine divided by this mean cosine. Calculate the arc tangent of this ratio to get the

angle corresponding to these mean coordinates. Convert this angle back to a Julian date to get tl1.

ra2 Variability in flow rise rate

Compute the difference in daily flows between each consecutive days for the entire record. Calculate the coefficient of variation

(i.e. standard deviation divided by mean) for the positive differences (i.e. rising limbs) and multiply by 100 to get ra2.

ra7 Flow recession rate

Natural log-transform the entire record of daily flows. Compute the difference in this log-transformed daily flows between each

consecutive days for the entire record. Calculate the median of the negative differences (i.e. recession limbs) to get ra7.
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Figure A1. Discharge data availability for the 33 study catchments. The 14 complete hydrological years selected are represented in dark blue

and annotated from 1 to 14. Years in light blue are other complete hydrological years not retained. Discontinuous grey years contain missing

data represented as a discontinuity in the bar.
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