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Abstract 25 

Interception is the storage and subsequent evaporation of rainfall by above-ground 26 

structures, including canopy and groundcover vegetation and surface litter. Accurately 27 

quantifying interception is critical for understanding how ecosystems partition incoming 28 

precipitation, but it is difficult and costly to measure, leading most studies to rely on modeled 29 

interception estimates. Moreover, forest interception estimates typically focus only on canopy 30 

storage, despite the potential for substantial interception by groundcover vegetation and surface 31 

litter. In this study, we developed an approach to quantify “total” interception (i.e., including 32 

forest canopy, understory, and surface litter layers) using measurements of shallow soil moisture 33 

dynamics during rainfall events. Across 34 pine and mixed forest stands in Florida (USA), we 34 

used soil moisture and precipitation (P) data to estimate interception storage capacity (βs), a 35 

parameter required to estimate total annual interception (Ia) relative to P. Estimated values for βs 36 

(mean βs = 0.30 cm; 0.01 ≤ βs ≤ 0.62 cm) and Ia/P (mean Ia/P = 0.14; 0.06 ≤ Ia/P ≤ 0.21) were 37 

broadly consistent with reported literature values for these ecosystems and were significantly 38 

predicted by forest structural attributes (leaf area index and percent groundcover), as well as 39 

other site variables (e.g., water table depth). The best-fit model was dominated by LAI and 40 

explained nearly 80% of observed βs variation. These results suggest that whole-forest 41 

interception can be estimated using near-surface soil moisture time series, though additional 42 

direct comparisons would further support this assertion. Additionally, variability in interception 43 

across a single forest type underscores the need for expanded empirical measurement. Potential 44 

cost savings and logistical advantages of this proposed method relative to conventional, labor-45 

intensive interception measurements may improve empirical estimation of this critical water 46 

budget element.  47 
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Introduction 48 

Rainfall interception (I) is the fraction of incident rainfall stored by above-ground 49 

ecosystem structures (i.e., vegetation and litter layers) and subsequently returned to the 50 

atmosphere via evaporation (E), never reaching the soil surface and thus never directly 51 

supporting transpiration (T) [Savenije, 2004]. Interception depends on climate and vegetation 52 

characteristics and can be as high as 50% of gross rainfall [Gerrits et al., 2007; 2010; Calder, 53 

1990]. Despite being critical for accurate water budget enumeration [David et al., 2006], 54 

interception is often disregarded or lumped with evapotranspiration (ET) in hydrological models 55 

[Savenije, 2004]. Recent work suggests interception uncertainty constrains efforts to partition ET 56 

into T and E, impairing representation of water use and yield in terrestrial ecosystems [Wei et al., 57 

2017]. 58 

When interception is explicitly considered, it is typically empirically estimated or 59 

modeled solely for the tree canopy. For example, direct measurements are often obtained from 60 

differences between total rainfall and water that passes through the canopy to elevated above-61 

ground collectors (throughfall) plus water that runs down tree trunks (stemflow) during natural 62 

[e.g., Bryant et al., 2005, Ghimire et al., 2012, 2016] or simulated [e.g., Guevara-Escobar et al., 63 

2007; Putuhena and Cordery, 1996] rainfall events. This method yields the rainfall fraction held 64 

by and subsequently evaporated from the canopy but ignores interception by understory 65 

vegetation and litter. Alternatively, numerous empirical [e.g., Merriam, 1960], process-based 66 

[e.g., Rutter et al., 1971, 1975; Gash, 1979, 1995, Liu, 1998], and stochastic [Calder, 1986] 67 

models are available for estimating interception. As with direct measurements, most model 68 

applications consider only canopy storage despite groundcover (both understory vegetation and 69 

litter layers) interception that can exceed canopy values in some settings [Gerrits and Savenije, 70 
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2011; Putuhena and Cordery, 1996]. As such, it seems likely that conventional measures and 71 

typical model applications underestimate actual (i.e., “total”) interception.  72 

New field approaches are needed to improve quantification of total interception and 73 

refine the calibration and application of available models. A detailed review of available 74 

interception models [Muzylo et al., 2009] stresses the need for direct interception measurements 75 

across forest types and hydroclimatic regions, but meeting this need will require substantial 76 

methodological advances. Throughfall measurements yield direct and site-specific interception 77 

estimates [e.g., Ghimire et al., 2017; Bryant et al., 2005], but they are difficult and costly to 78 

implement even at the stand scale because of high spatial and temporal variability in vegetation 79 

structure [Zimmerman et al., 2010; Zimmerman and Zimmerman, 2014]. Moreover, 80 

comprehensive measurements also require enumeration of spatially heterogeneous stemflow, as 81 

well as interception storage by the understory and litter layers, greatly exacerbating sampling 82 

complexity and cost [Lundberg et al.,1997]. Empirical techniques that estimate total interception, 83 

integrate across local spatial and temporal variation, and minimize field installation complexity 84 

are clearly desirable.  85 

Here we present a novel approach for estimating total (i.e., canopy, understory and litter) 86 

interception using continuously logged, near-surface soil moisture. Prior to runoff generation, 87 

infiltration is equivalent to rainfall minus total interception, and the response of near-surface soil 88 

moisture during and directly following rain events can be used to inform interception parameters 89 

and thus interception. Since soil moisture is relatively easy and economical to measure 90 

continuously for extended periods, successful inference of interception from soil moisture time 91 

series may greatly expand the temporal and spatial domains of empirical interception 92 

measurements. As a proof-of-concept, we tested this simple interception estimation method in 34 93 
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forest plots spanning a wide range of conditions (e.g., tree density, composition, groundcover, 94 

understory management, age, and hydrogeologic setting) across Florida (USA).  95 

 96 

Methods 97 

Estimating Interception Storage Capacity from Soil Moisture Data 98 

During every rainfall event, a portion of the total precipitation (P) is temporarily stored in 99 

the forest canopy and groundcover (hereafter referring to both live understory vegetation and 100 

forest floor litter). We assume that infiltration (and thus any increase in soil moisture) begins 101 

only after total interception storage, defined as the sum of canopy and groundcover storage, is 102 

full. We further assume this stored water subsequently evaporates to meet atmospheric demand. 103 

Calculating dynamic interception storage requires first determining the total storage capacity 104 

(βs), which is comprised of the storage capacities for the forest canopy (βc) and groundcover (βg) 105 

(Fig. 1a).  106 

To estimate βs, we consider a population of individual rainfall events of varying depth 107 

over a forest for which high frequency (i.e., 4 hr-1) soil-moisture measurements are available 108 

from near the soil surface. To ensure that canopy and groundcover layers are dry, and thus 109 

interception storage is zero prior to rainfall onset (i.e., antecedent interception storage capacity = 110 

βs), we further filter the rainfall data to only include the events that are separated by at least 72 111 

hours. Volumetric soil water content () at the sensor changes only after rainfall fills βs, 112 

evaporative demands since rainfall onset are met, and there is sufficient infiltration for the 113 

wetting-front to arrive at the sensor. Rainfall events large enough to induce a soil moisture 114 

change () are evident as a rainfall threshold in the relationship between P and Δ. An example 115 

time series of P and  (Fig. 1b) yields a P versus Δ relationship (Fig. 1c) with clear threshold 116 
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behavior. There are multiple equations whose functional forms allow for extraction of this 117 

threshold; here we express this relationship as:  118 

𝑃 =
𝑎

(1+𝑏∗𝑒𝑥𝑝(−𝑐∗𝛥𝜃))
                         (1) 119 

where P is the total rainfall event depth, Δ is the corresponding soil moisture change, and a, b, 120 

and c are fitted parameters. Figure 2 illustrates this relationship and model fitting for observed 121 

Δ data from six plots at one of our study sites described below. The y-intercept of Eq. 1 (i.e., 122 

where Δ departs from zero) is given by: 123 

 𝑃𝑠 =
𝑎

(1+𝑏)
           (2) 124 

where Ps represents the total rainfall required to saturate βs, meet evaporative demands between 125 

storm onset and observed Δ, and supply any infiltration required to induce soil moisture 126 

response once βs has been saturated. This equality can be expressed as:  127 

𝑃𝑠 = 𝛽𝑠 + ∫ 𝐸𝑑𝑡
𝑇

0
+ ∫ 𝑓𝑑𝑡

𝑇

𝑡
= 𝛽𝑠 + ∫ 𝐸𝑑𝑡

𝑡

0
+ ∫ 𝐸𝑑𝑡

𝑇

𝑡
+ ∫ 𝑓𝑑𝑡

𝑇

𝑡
     (3)  128 

where T is the total time from rainfall onset until observed change in   (i.e., the wetting front 129 

arrival), t is the time when βs is satisfied, and E and f are the evaporation and infiltration rates, 130 

respectively. To connect this empirical observation to existing analytical frameworks [.g., Gash 131 

1979], we adopt the term PG, defined as the rainfall depth needed to saturate βs and supply 132 

evaporative losses between rainfall onset (time = 0) and βs saturation (time = t):  133 

𝑃𝐺 = 𝛽𝑠 + ∫ 𝐸𝑑𝑡
𝑡

0
           (4)  134 

Solving for βs in Eq. 3 and substituting into Eq. 4 yields: 135 

 𝑃𝐺 = 𝑃𝑠 − ∫ 𝐸𝑑𝑡
𝑇

𝑡
− ∫ 𝑓𝑑𝑡

𝑇

𝑡
          (5)  136 

Equation 5 may be simplified by assuming that average infiltration and evaporation rates apply 137 

during the relatively short period between t and T, such that:  138 
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𝑃𝐺 = 𝑃𝑠 − 𝑓(̅𝑇 − 𝑡) − �̅�(𝑇 − 𝑡)        (6) 139 

where f̅  is the average soil infiltration rate and �̅� is the average rate of evaporation from the 140 

forest surface (i.e., canopy, groundcover, and soil) during the time from t to T [see Gash, 1979]. 141 

The storage capacity βs can now be calculated following Gash [1979] as:   142 

 𝛽𝑠 = −
�̅�

�̅�
 

𝑃𝐺

𝑙𝑛(1−
�̅�

�̅�
)

= −
�̅�

�̅�

[𝑃𝑠−(𝑇−𝑡)(𝑓̅+�̅�)]

𝑙𝑛(1−
�̅�

�̅�
)

                  (7)  143 

where �̅� is the average rainfall rate and all other variables are as previously defined. In Eq. 5, �̅� 144 

is usually estimated using the Penman-Monteith equation [Monteith, 1965], setting canopy 145 

resistance to zero (e.g., Ghimire et al., 2017). 146 

 A key challenge in applying Eq. 5, and thus for the overall approach, is quantifying 147 

infiltration, since the time, t, when βs is satisfied is unknown. Moreover, the infiltration rate 148 

embedded in Ps is controlled by �̅� and initial soil moisture content (θi). It is worth noting that 149 

shallower sensor depth placement would likely eliminate the need for this step (see Discussion). 150 

However, to overcome this limitation in our study (where our soil moisture sensor was 15 cm 151 

below the ground surface), we used the 1-D unsaturated flow model HYDRUS-1D [Simunek et 152 

al., 1995] to simulate the required time for the wetting front to arrive (Tw) at the sensor under 153 

bare soil conditions across many combinations of �̅� and θi. As such, Tw represents the time 154 

required for a soil moisture pulse to reach the sensor once infiltration begins (i.e., after βs has 155 

been filled), which is T- t in Eq. 7. For each simulation, Tw (signaled by the first change in  at 156 

sensor depth) was recorded and used to develop a statistical model of Tw as a function of �̅�and θi. 157 

We used plot-specific soil moisture retention parameters from Florida Soil Characterization 158 

Retrieval System (https://soils.ifas.ufl.edu/flsoils/) to develop these curves for our sites, but 159 

simulations can be applied for any soil with known or estimated parameters.  160 

https://soils.ifas.ufl.edu/flsoils/
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Simulations revealed that Tw at a specific depth declined exponentially with increasing θi: 161 

𝑇𝑤 = 𝑎𝑒−𝑏𝜃𝑖           (8) 162 

where a and b are fitting parameters. Moreover, the parameters a and b in Eq. (6) are well fitted 163 

by a power function of �̅�: 164 

𝑎 = 𝑎1�̅�𝑎2 , 𝑏 = 𝑏1�̅�𝑏2          (9) 165 

where a1 and b1 are fitting parameters. These relationships are illustrated in Fig. 3 for a loamy 166 

sand across a range of �̅� and θi at 15 cm depth. The relationship between θi and Tw is very strong 167 

for small to moderate �̅� (< 3.0 cm/hr). At higher values of �̅�, Tw is smaller than the 15-minute 168 

sampling resolution, and these events were excluded from our analysis (see below).  169 

 Assuming that f̅ equals �̅� over the initial infiltration period from t to T (robust for most 170 

soils, see below), Eq. 7 can be modified to:  171 

 𝛽𝑠 =
−�̅�

�̅�
[

𝑃𝑠−𝑇𝑤(�̅�+�̅�)

𝑙𝑛(1−
�̅�

�̅�
)

]          (10) 172 

This approach assumes no surface runoff or lateral soil-water flow near the top of the soil profile 173 

from time t to T. Except for very fine soils under extremely high �̅�, this assumption generally 174 

holds during early storm phases, before ponding occurs [Mein and Larsen, 1973]. However, 175 

where strong layering occurs near the surface, lateral flow above the sensor (i.e., at capillary 176 

barriers or differential conductivity layers; Blume et al., 2009) may occur, and wetting front 177 

simulations described above would need to account for layered soil structure to avoid potential 178 

overestimation of interception. Lateral flow within the duff layer during high-intensity 179 

precipitation events as observed by Blume et al. (2008) would be more difficult to correct for, 180 

though we note that since our goal is to determine βs, extreme storms can be omitted from the 181 

analysis when implementing Eqs. 1-10, without compromising βs estimates. Similarly, not 182 

accounting for the presence of preferential flow (e.g., finger flow, funnel flow, or macropore 183 
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flow; Orozco-Lopez et al., 2018) in wetting front calculations could lead to underestimation of 184 

interception, though application in coarser texture soils (as evaluated here) likely minimize this 185 

challenge. More generally, these limitations can be minimized by placing the soil moisture 186 

sensor close to the soil surface (e.g., within 5 cm). Finally, we note that values of βs from Eq. 10 187 

represent combined interception from canopy and groundcover, but the method does not allow 188 

for disaggregation of these two components. 189 

Calculating Interception  190 

Interception storage and subsequent evaporation (sometimes referred to as interception 191 

loss) for a given rain event are driven by both antecedent rain (which fills storage) and 192 

evaporation (which depletes it). Instantaneous available storage ranges from zero (saturated) to 193 

the maximum capacity (i.e., βs which occurs when the storage is empty). While discrete, event-194 

based interception models [Gash, 1979, 1995; Liu, 1998] have been widely applied to estimate 195 

interception, continuous models more accurately represent time-varying dynamics in interception 196 

storage and losses. We adopted the continuous, physically based interception modeling 197 

framework of Liu [1998, 2001]:  198 

𝐼 = 𝛽𝑠(𝐷0 − 𝐷) + ∫ (1 − 𝐷)𝐸𝑑𝑡
𝑡

0
         (11)  199 

where I is interception, D0 is the forest dryness index at the beginning of the time step t, D is the 200 

forest dryness index at time the end of t, and E is the evaporation rate from wetted surfaces.  The 201 

dryness index at each time-step is calculated as:  202 

𝐷 = 1 −
𝐶

𝛽𝑠
           (12)   203 

where C is “adherent storage” (i.e., water that does not drip to the ground) and is given by: 204 

 𝐶 = 𝛽𝑠 (1 − 𝐷0𝑒𝑥𝑝 (
−(1−𝜏)

𝛽𝑠
𝑃))        (13) 205 
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where τ is the free throughfall coefficient. Because our formulation of βs in Eq. 10 incorporates 206 

both canopy and groundcover components (i.e., negligible true throughfall), we approximated τ 207 

in Eq. 13 as zero. Between rainfall events, water in interception storage evaporates to meet 208 

atmospheric demand, until the dryness index, D reaches unity [Liu 1997]. The rate of 209 

evaporation from wetted surfaces between rainfall events (Es) is: 210 

𝐸𝑠 = 𝐸(1 − 𝐷)𝑒𝑥𝑝 (
𝐸

𝛽𝑠
)         (14) 211 

A numerical version of Eq. 11 to calculate interception at each time step, t, is expressed as:  212 

𝐼 = 𝛽𝑠(𝐷𝑡−1 − 𝐷𝑡) +
1

2
[𝐸𝑡−1(1 − 𝐷𝑡−1) + 𝐸𝑡(1 − 𝐷𝑡)]      (15) 213 

Eq. 15 quantifies continuous and cumulative interception using precipitation and other climate 214 

data (for E) along with βs derived from soil moisture measurements and corresponding 215 

meteorological data.  216 

Study Area and Data Collection 217 

As part of a multi-year study quantifying forest water use under varying silvicultural 218 

management, we instrumented six sites across Florida, each with six 2-ha plots spanning a wide 219 

range of forest structural characteristics. Data from two of the plots at one site were not used here 220 

due to consistent surface water inundation, yielding a total of 34 experimental forest plots. Sites 221 

varied in hydroclimatic forcing (annual precipitation range: 131 to 154 cm/yr and potential ET 222 

range: 127 to 158 cm/yr) and hydrogeologic setting (shallow vs. deep groundwater table). 223 

Experimental plots within sites varied in tree species, age, density, leaf area index (LAI), 224 

groundcover vegetation density (%GC), soil type, and management history (Table 1). Each site 225 

contained a recent clear-cut plot, a mature pine plantation plot, and a restored longleaf pine 226 

(Pinus palustris) plot; the three remaining plots at each site included stands of slash pine (Pinus 227 

elliottii), sand pine (Pinus clausa), or loblolly pine (Pinus taeda) subjected to varying 228 
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silvicultural treatments (understory management, canopy thinning, prescribed burning) and 229 

hardwood encroachment. The scope of the overall project (34 plots spanning 6 sites across 230 

Florida) and the emphasis on measuring variation in forest ET and water yield precluded 231 

conventional measurements of interception (e.g., throughfall and stemflow collectors). Because 232 

model estimates of interception were considered sufficient for water yield predictions across 233 

sites, the analyses presented here represent a proposal for additional insights about interception 234 

that can be gleaned from time series of soil moisture rather than a meticulous comparison of 235 

methods. We assessed results from this new proposed method using comparisons with numerous 236 

previous interception studies in pine stands in the southeastern US and elsewhere, and by testing 237 

for the expected associations between estimated interception and stand structure (e.g., LAI and 238 

groundcover).  239 

Within each plot, three sets of TDR sensors (CS655, Campbell Scientific, Logan, UT, 240 

USA) were installed to measure soil moisture at multiple soil depths (Fig. 1a). Only data from 241 

the top-most sensor (15 cm below the ground surface) were used in this study. Soil-moisture 242 

sensors were located to capture representative variation in stand geometry and structure (i.e., 243 

within and between tree rows) to capture variation in surface soil moisture response to rainfall 244 

events. While this spatial layout was intended to characterize the range of plot-scale forest 245 

canopy and groundcover heterogeneity, the three measurements locations were within a 10-m 246 

radius and thus represent localized (sub-plot) interception estimates. Within each clear-cut plot at 247 

each site, meteorological data (rainfall, air temperature, relative humidity, solar insolation, wind 248 

speed and direction) were measured using a weather station (GRSW100, Campbell Scientific, 249 

Logan, UT; Fig. 4c) every 3 seconds and used to calculate hourly E by setting the canopy 250 

resistance to zero [Ghimire et al., 2017; Gash, 1995; Monteith, 1965]. Growing season forest 251 
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canopy LAI (m2 m-2) and groundcover (%) were measured at every 5-m node within a 50 m x 50 252 

m grid surrounding soil moisture measurement banks. LAI was measured at a height of 1 m 253 

using a LI-COR LAI-2200 plant canopy analyzer, and %GC was measured using a 1 m2 quadrat. 254 

To estimate βs, mean Δ values from the three surface sensors were calculated for all 255 

rainfall events separated by at least 72 hours. Storm separation was necessary to ensure the 256 

canopy and groundcover surfaces were mostly dry (and thus antecedent storage capacity = βs) at 257 

the onset of each included rainfall event. Rainfall events were binned into discrete classes by 258 

depth and plotted against mean Δ to empirically estimate Ps (e.g., Fig. 2). For each rainfall bin, 259 

mean θi, �̅� and E̅ were also calculated to use in Eq. 10, which was then applied to calculate βs. 260 

Subsequently, we developed generalized linear models (GLMs) using forest canopy structure 261 

(site-mean LAI), mean groundcover (% GC), hydrogeologic setting (shallow vs. deep 262 

groundwater table), and site as potential predictors, along with their interactions, to statistically 263 

assess predictors of βs estimates. Because models differed in fitted parameter number, the best 264 

model was selected using the Akaike Information Criteria (AIC; Akaike, 1974). Finally, we 265 

calculated cumulative annual interception (Ia) and its proportion of total precipitation (Ia/P) for 266 

each study plot using the mean βs for each plot (across the 3 sensor banks), climate data from 267 

2014 to 2016, and Eq. 15. Differences in Ia/P across sites and among plots within sites were 268 

assessed using ANOVAs. All analyses were performed using R [R Core Team, 2017].  269 

 270 

Results 271 

Total Storage Capacity (βs) 272 

The exponential function used to describe the P-Δ relationship (Eq. 1) showed strong 273 

agreement with observations at all sites and plots (overall R2 = 0.80; 0.47 ≤ R2 ≤ 0.97; Table 1) 274 
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as illustrated for a single site in Fig. 2. This consistency across plots and sites suggests that Eq. 1 275 

is capable of adequately describing observed P-Δ relationships, enabling estimates of βs across 276 

diverse hydroclimatic settings and forest structural variation. Estimates of βs ranged from 0.01 to 277 

0.62 cm, with a mean of 0.30 cm (Table 1). Plot-scale LAI was moderately correlated with plot-278 

mean βs, describing roughly 32% of observed variation across plots (Fig. 4a). This relatively 279 

weak association may arise because LAI measurements only characterize canopy cover, while βs 280 

combines canopy and groundcover storage. The best GLM of βs (Fig. 4b) used %GC and an 281 

interaction term between site and LAI (R2 = 0.84 and AIC = 253.7, Table 2). The best GLM 282 

without site used LAI and hydrogeologic setting (shallow vs. deep water table) but had reduced 283 

performance (R2 = 0.55 and AIC = 338.3; Table 2). All models excluding LAI as a predictor 284 

performed poorly, so we report model comparisons only for those including LAI. 285 

Annual Interception (Ia) 286 

Despite having similar rainfall regimes (mean annual precipitation ranging from 131 to 287 

154 cm yr-1 across sites), mean annual interception (Ia) differed significantly both across sites 288 

(one-way ANOVA p < 0.001) and among plots within sites (one-way ANOVA p < 0.001). 289 

Estimates of Ia/P across all plots and sites ranged from 6 to 21% of annual rainfall (Table 1) and 290 

were moderately, but significantly, correlated with mean LAI, explaining approximately 30% of 291 

variation in Ia/P (Fig. 5a). Correlations among Ia/P and LAI were stronger for individual sites 292 

than the global relationship (0.51 ≤ R2 ≤ 0.84), except for site EF, where Ia was small and similar 293 

across plots regardless of LAI (Fig. 5b; Table 1). This suggests that additional site-level 294 

differences (e.g., hydroclimate, soils, geology) play a role in driving Ia, as expected following 295 

from their effects on βs described above. 296 
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Discussion 297 

When combined with local rainfall data, near-surface soil moisture dynamics inherently 298 

contain information about rainfall interception by above-ground structures. Using soil moisture 299 

data, we developed and tested an analytical approach for estimating total interception storage 300 

capacity (βs) that includes canopy, understory, and groundcover vegetation, as well as any litter 301 

on the forest floor. The range of βs given by our analysis (mean βs = 0.30 cm; 0.01 ≤ βs ≤ 0.62 302 

cm) is close to, but generally higher than previously reported canopy-only storage capacity 303 

values for similar pine forests (e.g., 0.17 to 0.20 cm for mature southeastern USA pine forests; 304 

Bryant et al. 2005). Moreover, our estimates of βs and annual interception corresponded to 305 

expected forest structure controls (e.g., LAI and ground cover) on interception, further 306 

supporting the feasibility of the soil moisture-based approach. However, we emphasize that a 307 

more robust validation of the method using co-located and contemporaneous measurement using 308 

standard techniques is warranted. Below we summarize the assumptions and methodological 309 

considerations that affect the potential utility and limitation of the method. 310 

An important distinction between our proposed method and previous interception 311 

measurement approaches is that the soil moisture-based method estimates composite rainfall 312 

interception of not only the canopy, but also of the groundcover vegetation and forest floor litter. 313 

Rainfall storage and subsequent evaporation from groundcover vegetation and litter layers can be 314 

as high, or higher than, canopy storage in many forest landscapes [Putuhena and Cordery, 1996; 315 

Gerrits et al., 2010]. For example, Li et al. [2017] found that the storage capacity of a pine forest 316 

floor in China was between 0.3 and 0.5 cm, while maximum canopy storage was < 0.1 cm. 317 

Putuhena and Cordery [1996] also estimated storage capacity of pine forest litter to be 318 

approximately 0.3 cm based on direct field measurements. Gerrits et al. [2007] found forest floor 319 
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interception to be 34% of measured precipitation in a beech forest, while other studies have 320 

shown that interception by litter can range from 8 to 18% of total rainfall [Gerrits et al., 2010; 321 

Tsiko et al., 2012; Miller et al., 1990; Pathak et al., 1985; Kelliher et al., 1992]. A recent study 322 

using leaf wetness observations [Acharya et al., 2017] found the storage capacity of eastern 323 

redcedar (Juniperus virginiana) forest litter to range from 0.12 to as high as 1.12 cm, with forest 324 

litter intercepting approximately 8% of gross rainfall over a six-month period. Given the 325 

composite nature of forest interception storage and the range of storage capacities reported in 326 

these studies, the values we report appear to be plausible and consistent with the expected 327 

differences between canopy-only and total interception storage.   328 

Interception varies spatially and temporally and is driven by both βs and climatic 329 

variation (i.e., P and E). Our approach represents storage dynamics by combining empirically 330 

derived βs estimates with climatic data using a previously developed continuous interception 331 

model [Liu 1998, 2001]. Cumulative Ia estimates in this study ranged considerably (i.e., from 6% 332 

to 21% of annual rainfall) across the 34 plots, which were characterized by variation in canopy 333 

structure (0.12 < LAI < 3.70) and groundcover (7.9 < %GC < 86.2). In comparison, interception 334 

by pine forests reported in the literature (all of which report either canopy-only or groundcover-335 

only values, but not their composite) range from 12 to 49% of incoming rainfall [Bryant et al., 336 

2005; Llorens et al., 1997; Kelliher and Whitehead, 1992; Crockford and Richardson, 1990]. 337 

Notably, most of the variation in this range is driven by climate rather than forest structure, with 338 

the highest Ia values from more arid regions [e.g., Llorens et al. 1997]. Future work could also 339 

consider seasonally disaggregated measurements to explore intra-annual variation in canopy 340 

structure and litter composition [Van Stan et al. 2017].   341 
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Broad agreement between our results and literature Ia values again supports the potential 342 

utility of our method for estimating this difficult-to-measure component of the water budget, 343 

though additional direct comparisons would further support this assertion. Additionally, the 344 

magnitude and heterogeneity of our Ia estimates across a single forest type (southeastern US 345 

pine) underscores the urgent need for empirical measurements of interception that incorporate 346 

information on both canopy and groundcover storage in order to develop accurate water budgets.  347 

This conclusion is further bolstered by the persistent importance of site-level statistical effects in 348 

predicting βs (and therefore Ia), even after accounting for forest structural attributes, which 349 

suggests there are influential edaphic or structural attributes that we are not currently adequately 350 

assessing. For example, while estimated Ia in clear-cut plots was generally smaller than plots 351 

with a developed canopy, as expected, one exception was at EF where the clear-cut plot 352 

exhibited the highest Ia of the six EF plots (8.4%, Table 1). However, differences among all EF 353 

plots were very small (Ia ranged only from 7.9 to 8.4 % of annual rainfall), a rate consistent with 354 

or even lower than other clear cuts across the study. This site is extremely well drained with 355 

nutrient-poor sandy soils and differs from other sites in that it has dense litter dominated by 356 

mosses, highlighting the need for additional local measurements to better understand how forest 357 

structure controls observed interception.   358 

There are several important methodological considerations and assumptions inherent to 359 

estimating interception using near-surface soil moisture data. First is the depth at which soil 360 

moisture is measured. Ideally,  would be measured a few centimeters into the soil profile, 361 

eliminating the need to account for infiltration when calculating PG in Eqs. (4-6) and thereby 362 

alleviating concerns about lateral and preferential flow. Soil moisture data used here were 363 

leveraged from a study of forest water yield, with sensor deployment depths selected to 364 
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efficiently integrate soil moisture patterns through the vadose zone. The extra step of modeling 365 

infiltration likely increases uncertainty in βs given field-scale heterogeneity in soil properties and 366 

potential lateral and preferential flow. Specifically, lateral flow would delay wetting-front 367 

arrival, leading to overestimation of interception, while preferential flow would do the opposite. 368 

Despite these caveats, infiltration in our system was extremely well-described using wetting 369 

front simulations of arrival time based on initial soil moisture and rainfall. As such, while we 370 

advocate for shallower sensor installation and direct comparison to standard methods in future 371 

efforts, the results presented here given the available sensor depth seem tenable for this and other 372 

similar data sets.  373 

Another methodological consideration is that, in contrast to the original Gash (1979) 374 

formulation, Eq. 5 does not explicitly include throughfall. While throughfall has been a critical 375 

consideration for rainfall partitioning by the forest canopy, our approach considers total 376 

interception by aboveground forest structures (canopy, groundcover, and litter). A portion of 377 

canopy throughfall is captured by non-canopy storage and thus intercepted. Constraining this 378 

fraction is not possible with the data available, and indeed our soil moisture response reflects the 379 

“throughfall” passing the canopy, understory and litter. Similarly, estimation of βs using Eqs. 1-7 380 

cannot directly account for stemflow, which can be an important component of rainfall 381 

partitioning in forests [e.g., Bryant et al., 2005]. We used the mean soil moisture response across 382 

three sensor locations (close to a tree, away from the tree but below the canopy, and within inter-383 

canopy rows), which lessens the impact of this assumption on our estimates of βs. Further, Eqs. 384 

(3-10) assume the same evaporation rate, E, for intercepted water from the canopy and from the 385 

understory. Evaporation rates may vary substantially between the canopy, understory, and forest 386 

floor [Gerrits et al., 2007, 2010], especially in more energy-limited environments. Future work 387 
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should consider differential evaporation rates within each interception storage, particularly since 388 

the inclusion of litter as a component potentially accentuates these contrasts in E.    389 

Among the many challenges of measuring interception is the spatial heterogeneity of 390 

canopy and ground cover layers, with associated heterogeneity in interception rates. Our study 391 

deployed only three sensors per plot, yielding interception estimates that covaried with the 392 

expected forest structure controls (i.e., LAI and ground cover) and that aligned closely with 393 

literature reported values. Nonetheless, future work should assess spatial variation in soil 394 

moisture responses to known heterogeneity in net precipitation (i.e., throughfall plus stemflow) 395 

across forest stands (e.g., Roth et al., 2007; Wullaert et al., 2009; Fathizadeh et al., 2014). Soil 396 

moisture responses are likely driven by variation in both vegetation and soil properties [Metzger 397 

et al., 2017], indicating the need for future inquiry across systems to inform the number and 398 

locations of soil moisture sensor needed for accurate interception estimates in a variety of 399 

settings. Notably, the requisite sampling frequency for aboveground interception is estimated to 400 

be 25 funnel collectors per hectare (or more) to maintain relative error below 10% for long-term 401 

monitoring, with as many as 200 collectors needed for similar error rates during individual event 402 

sampling [Zimmerman et al., 2010; Zimmerman and Zimmerman, 2014]. Spatial averaging using 403 

larger trough collectors reduces some of this sampling effort, yielding guidance of 5 trough 404 

collectors per hectare for assessment of multiple precipitation events or up to 20 per hectare for 405 

individual events [Zimmerman and Zimmerman, 2014].  406 

While the comparative spatial integration extent of aboveground collectors versus soil 407 

moisture sensors remains unknown, the strong correspondence between our measurements and 408 

literature reported values for the magnitude of interception storage, as well as the forest structure 409 

controls (i.e., LAI and ground cover) on that storage volume, underscores that soil moisture 410 
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measurements, at least in this setting, can integrate key quantitative aspects of the interception 411 

process. One possible explanation for the consistency of our results with previous interception 412 

studies using aboveground collectors is that soil moisture averages across extant spatial 413 

heterogeneity in canopy processes, providing comparable spatial integration to throughfall 414 

troughs. In this context, soil moisture measurements have several operational advantages over 415 

trough-type collectors, including automated data logging and reduced maintenance burden (e.g., 416 

clearing litter accumulation in collectors), while also providing total interception estimates (as 417 

opposed to canopy-only measures). Additional soil moisture measurements would undoubtedly 418 

improve the accuracy of these estimates, and indeed we recommend that more direct 419 

methodological comparisons are needed to determine the optimal number of sensors for future 420 

applications. Overall, however, our results support the general applicability of this proposed soil 421 

moisture-based approach for developing “whole-forest” interception estimates across a wide 422 

range of hydroclimatic and forest structural settings. 423 

 424 

Conclusions 425 

Rainfall interception by forests is a dynamic process that is strongly influenced by 426 

rainfall patterns (e.g., frequency, intensity), along with various forest structural attributes such as 427 

interception storage capacity (βs) [Gerrits et al., 2010]. In this work, we coupled estimation of a 428 

total (or “whole-forest”) βs parameter with a continuous water balance model [Liu, 1997, 2001; 429 

Rutter et al., 1975], providing an integrative approach for quantifying time-varying and 430 

cumulative interception. We propose that soil moisture-based estimates of βs have the potential 431 

to more easily and appropriately represent combined forest interception relative to existing time- 432 

and labor-intensive field methods that fail to account for groundcover and litter interception. 433 
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However, we emphasize that further experimental work is needed to validate this promising 434 

approach. Soil moisture can be measured relatively inexpensively and easily using continuous 435 

logging sensors that require little field maintenance, facilitating application of the presented 436 

approach across large spatial and temporal extents and reducing the time and resources that are 437 

needed for other empirical measures [e.g., Lundberg et al., 1997]. Finally, while our comparisons 438 

with other empirical measures of forest canopy interception should be treated cautiously, this 439 

approach yields values that are broadly consistent with the literature and provide an estimate of 440 

combined canopy and groundcover storage capacity that has the potential to improve the 441 

accuracy of water balances models at scales from the soil column to watershed.  442 
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 577 

Figure 1. (a) Schematic illustration of experimental setup and interception water storages, where 578 

total interception storage (s) is the sum of canopy storage (c) and groundcover (understory and 579 

litter) storage (g). (b) Example time series of rainfall (blue lines) and corresponding near-580 

surface soil moisture content (, black line; observed at 15 cm in this study). (c) Resultant 581 

relationship between rainfall and change in soil moisture  during rainfall, along with fitted 582 

model to extract the y-intercept (i.e., Ps).  583 
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 584 

Figure 2: Binned rainfall depths vs change in soil moisture content () for six plots at one of the 585 

study sites used in the study (Econfina; EF). The y-intercept of the fitted relationships were used 586 

to derive Ps in Eq. 2. Note different y-axis scale for EF-Plot 3.  587 

  588 
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  589 

Figure 3: Initial soil moisture content (i) versus time of wetting front arrival (Tw) at 15 cm depth 590 

for a loamy sand soil. Dots are simulated results from HYDUS-1D simulation, and lines are the 591 

exponential model given in Eq. 8, fitted for each rainfall rate, �̅�.   592 
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 593 

Figure 4. (a) Interception storage capacity (s) versus leaf area index (LAI) for all sites and plots. 594 

(b) Modeled versus observed s using the best GLM, which included % groundcover vegetation 595 

and an interaction term between site and LAI. The dashed line is the 1:1 line. 596 
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 598 

 599 
 600 

Figure 5. (a) Annual proportion of rainfall that is intercepted (Ia/P) intercepted versus LAI for all 601 

sites and plots. (b) Site-specific Ia/P versus LAI relationships. The relationship is generally 602 

strong except for the EF site, where the overall storage capacity is small across all values of LAI.  603 
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Table 1. Summary of storage capacity (βs) and annual interception losses (Ia) for all sites and 605 

plots, along with plot characteristics (mean annual precipitation, P; leaf area index, LAI; percent 606 

groundcover, %GC; and species). Note that the AP site only had four plots with the data required 607 

for the analysis. 608 

Site Plot LAI %GC Species βs (cm) R2 (-P) P (cm) Ia/P 

AP 2 1.65 47.6 SF Slash 0.620 0.31 145.0 0.206 

AP 3 0.90 62.8 SF Slash 0.014 0.78 145.0 0.06 

AP 4 1.35 49.1 SF Slash 0.445 0.67 145.0 0.184 

AP 6 0.40 73.4 Longleaf 0.014 0.57 145.0 0.06 

DH 1 0.85 86.2 Loblolly 0.170 0.90 131.5 0.121 

DH 2 2.48 51.2 Slash 0.621 0.68 131.5 0.211 

DH 3 1.40 39.2 Slash 0.249 0.49 131.5 0.144 

DH 4 3.31 35.8 Slash 0.464 0.71 131.5 0.188 

DH 5 3.70 27.1 Loblolly 0.383 0.69 131.5 0.173 

DH 6 3.48 32.9 Slash 0.418 0.40 131.5 0.18 

EF 1 0.12 13.6 Clearcut 0.099 0.93 153.8 0.084 

EF 2 1.05 56.9 Slash 0.092 0.96 153.8 0.081 

EF 3 2.50 11.8 Sand 0.086 0.93 153.8 0.079 

EF 4 0.66 50.9 Slash 0.094 0.92 153.8 0.082 

EF 5 0.81 17.9 Sand 0.085 0.96 153.8 0.078 

EF 6 0.52 52.0 Longleaf 0.076 0.89 153.8 0.075 

GS 1 1.07 67.9 Clearcut 0.502 0.84 132.4 0.199 

GS 2 2.66 7.9 Slash 0.535 0.88 132.4 0.203 

GS 3 2.11 71.5 Slash 0.587 0.82 132.4 0.211 

GS 4 1.12 42.4 Slash 0.421 0.90 132.4 0.185 

GS 5 1.17 45.6 Slash 0.382 0.76 132.4 0.178 

GS 6 0.51 55.2 Longleaf 0.339 0.78 132.4 0.169 

LF 1 0.26 43.5 None 0.166 0.85 136.3 0.121 

LF 2 2.86 23.1 Slash 0.525 0.64 136.3 0.195 

LF 3 1.23 24.9 Slash 0.266 0.72 136.3 0.147 

LF 4 0.80 25.7 Slash 0.248 0.64 136.3 0.143 

LF 5 2.60 12.3 Slash 0.443 0.63 136.3 0.182 

LF 6 0.89 25.9 Longleaf 0.458 0.69 136.3 0.184 

LR 1 0.46 34.0 Clearcut 0.151 0.96 144.5 0.099 

LR 2 2.97 38.1 Slash 0.429 0.84 144.5 0.162 

LR 3 0.92 47.0 Slash 0.173 0.95 144.5 0.106 

LR 4 2.52 26.7 Slash 0.232 0.92 144.5 0.122 

LR 5 1.55 28.1 Slash 0.177 0.96 144.5 0.107 

LR 6 1.16 35.5 Longleaf 0.160 0.96 144.5 0.102 

  609 
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Table 2. Summary of generalized linear model (GLM) results for interception storage capacity 610 

(s). LAI is leaf area index, GC is groundcover, and WT is water table (shallow vs. deep). The 611 

best model (by AIC) is shown in bold. 612 

Model # Variable(s) AIC R2 

1 LAI 378.1 0.32 

2 LAI + site 318.5 0.66 

3 LAI * site 255.9 0.83 

4 LAI * site + GC 253.1 0.84 

5 LAI + WT 338.3 0.55 

6 LAI * WT 339.8 0.55 

7 LAI * WT + GC 341.8 0.55 

8 LAI + WT + GC 340.3 0.55 
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