1			
2			
3			
4			
5			
6			
7	Estimating Interception from Near-Surface Soil Moisture Response,	Deleted: Rainfall	
8		Deleted: s)
9			
10			
11			
12			
13			
14	Subodh Acharya ^{1*} , Daniel McLaughlin ² , David Kaplan ³ , and Matthew J. Cohen ¹		
15			
16			
17			
18 19 20 21 22	 1 – School of Forest Resources and Conservation, University of Florida, Gainesville FL 2 – Department of Forest Resources and Conservation, Virginia Tech, Blacksburg, VA 3 – Environmental Engineering Sciences Department, University of Florida, Gainesville FL * – Corresponding Author 		

Abstract

26

27	Interception is the storage and subsequent evaporation of rainfall by above-ground		
28	structures, including, canopy and groundcover vegetation and surface litter. Accurately	(Deleted: such as
29	quantifying interception is critical for understanding how ecosystems partition incoming		
30	precipitation, but it is difficult and costly to measure, leading most studies to rely on modeled	(Deleted: water use
31	interception estimates, Moreover, forest interception estimates typically focus only on canopy		Deleted: forcing Deleted: models.
32	storage, despite the potential for substantial interception by, groundcover vegetation and surface	(Deleted: capacity for
33	litter, In this study, we developed an approach to <u>quantify</u> "total" interception losses (i.e.,		Deleted: to also intercept rainfall.
34	including forest canopy, understory, and surface litter layers), using measurements of shallow soil		Deleted: empirically estimate Deleted: from the
35	maisture dynamics during rainfall events. Across 36 nine and mixed forest stands in Florida		Deleted: groundcover
55	moisture dynamics put ing faintait events. Across 50 pine and mixed forest stands in Piorida	(Deleted: measured
36	(USA), we used soil moisture and rainfall data to estimate the interception storage capacity (β_5),	-(Deleted: determined
37	a parameter required to estimate total annual interception losses (I_a) relative to rainfall (R).	-(Deleted: which was then used
38	Estimated, values for β_s (mean $\beta_s = 0.30$ cm; $0.01 \le \beta_s \le 0.62$ cm) and I_a/R (mean $I_a/R = 0.14$;	(Deleted:). Calculated
30	$0.06 \le L/R \le 0.21$) were consistent with reported literature values for these ecosystems and were	(Deleted: both
57	$0.00 \le 1_{a} \times \le 0.21$ were consistent with peptited pretature values for these coosystems and were	\leq	Deleted: within the ranges
40	significantly, predicted by forest structural attributes (leaf area index and percent groundcover),		Deleted: In
41	as well as other site variables (e.g., water table depth). The best-fit model was dominated by LAI	(Deleted:)
42	and explained nearly 80% of observed β_s variation. These results suggest that whole-forest		
43	interception, can be measured using a single near-surface soil moisture time series and highlight,		Deleted: well as soil moisture conditions, suggesting total interception (i.e., storage across canopy, groundcover, and
44	the variability in interception losses across a single forest type, underscoring the need for	\setminus	Deleted: Moreover
45	expanded empirical measurement. Potential cost savings and logistical advantages of this method		Deleted: considerable spatial variation observed with standard interception measurements, which necessitates intensive sampling, was reduced using this approach, with
46	relative to conventional, labor-intensive interception measurements, may improve empirical	\mathbf{Y}	Deleted: coefficient of variation among within-plot estimates
47	estimation of this critical water budget element.		of 18%. Indeed, less than a quarter of the total variance was at the within-stand level. The proposed method offers several cost
48		$\backslash \langle$	Deleted: , and thus
) (Deleted: ······Page Break······

Introduction

81	Rainfall interception (I) is the fraction of incident rainfall stored by above-ground	
82	ecosystem structures (i.e., vegetation and litter layers) and subsequently returned to the	
83	atmosphere via evaporation (E), never reaching the soil surface and thus never directly	Deleted: nor
84	supporting transpiration (T) [Savenije, 2004]. Interception depends on climate and vegetation	Deleted:
85	characteristics, and can be as high as 50% of gross rainfall [Gerrits et al., 2007; 2010; Calder,	Deleted: ic Deleted: landscape
86	1990]. Despite being critical for accurate water budget enumeration [David et al., 2005],	Deleted: ,
87	interception is often disregarded or lumped with evapotranspiration (ET) in hydrological models	Deleted: other water balance components (e.g.,
88	[Savenije, 2004]. Recent work suggests interception uncertainty constrains efforts to partition ET	Deleted: ,
89	into T and E, impairing representation of water use and yield in terrestrial ecosystems [Wei et al.,	
90	2017].	
91	When interception, is explicitly considered, it is typically empirically estimated or	Deleted: 1
92	modeled solely for, the tree canopy. For example, direct measurements are often obtained from	Deleted: om
93	differences between total rainfall and water that passes through the canopy to elevated above-	
94	ground collectors (throughfall) plus water that runs down tree trunks (stemflow) during natural	
95	[e.g., Bryant et al., 2005, Ghimire et al., 2012, 2016] or simulated [e.g., Guevara-Escobar et al.,	
96	2007; Putuhena and Cordery, 1996] rainfall events. This method yields the rainfall fraction held	
97	and subsequently lost by the canopy but ignores interception by understory vegetation and litter.	
98	Alternatively, numerous empirical [e.g., Merriam, 1960], process-based [e.g., Rutter et al., 1971,	
99	1975; Gash, 1979, 1995, Liu, 1998], and stochastic [Calder, 1986] models are available for	
100	estimating interception. As with direct measurements, most model applications consider only,	Deleted: However, similar to
101	canopy storage despite groundcover, (both understory vegetation and litter layers), interception	Deleted: focus on Deleted: . Groundcover
102	that can exceed canopy values [Gerrits and Savenije, 2011; Putuhena and Cordery, 1996]. As	Deleted: reservoirs can, in some cases, be higher than canopy

117	such, it seems likely, that conventional measures and typical model applications underestimate	Deleted:], indicating
118	actual <u>(i.e., "total")</u> interception.	Deleted: almost certainly
119	New field approaches are needed to improve quantification of total interception and	Deleted: , thereby,
120	refine <u>the</u> calibration and application of available models. A detailed review of available	
121	interception models [Muzylo et al., 2009] stresses the need for direct interception measurements	Deleted: 0
122	across forest types and hydroclimatic regions, but meeting this need will require substantial	Deleted: [Muzylo et al., 2009]. Meeting
123	methodological advances. Throughfall measurements yield direct and site-specific interception	Deleted: requires
124	estimates [e.g., Ghimire et al., 2017; Bryant et al., 2005], but they are difficult and costly to	
125	implement even at the stand scale because of high spatial and temporal variability in vegetation	
126	structure. Moreover, comprehensive, measurements also require enumeration of spatially	Deleted: the method requires concatenation with stemflow
107	hat an an an and the second	Deleted: that are equally or more
127	neterogeneous stemilow, as well as interception storage by the understory and litter layers,	Deleted: , and fails to capture potentially significant components of
128	greatly exacerbating sampling complexity and cost [Lundberg et al., 1997]. Empirical techniques	Deleted: in
129	that estimate total interception integrate across local spatial and temporal variation and	Deleted: measurement of which only exacerbates
		Deleted: Techniques that yield empirical, site-specific
130	minimize, field installation complexity, are clearly desirable.	Deleted: estimates that
131	Here we present a novel approach for estimating total (i.e., canopy, understory and litter)	Deleted: do so with minimal Deleted: maintenance and labor
132	interception using continuously logged, near-surface soil moisture. Prior to runoff generation,	Deleted: estimate total interception (i.e., canopy, understory and litter). Since
133	infiltration is <u>equivalent to</u> rainfall minus total interception, <u>and</u> the response of near-surface soil	Deleted: (here we assume negligible surface runoff due to highly sandy soils in our study sites),
134	moisture during and directly following rain events can be used to inform interception parameters	Deleted: is
135	and thus interception losses. Since soil moisture is relatively easy and economical to measure	Deleted: Because
136	continuously for extended periods, successful inference of interception from soil moisture time	
137	series may greatly expand the temporal and spatial domains of empirical interception	
138	measurements. As a proof-of-concept, we tested this simple interception estimation method in 36	Deleted: to estimate interception was tested

4.00			
162	forest plots spanning a wide <u>range</u> of conditions (e.g., tree density, composition, <u>groundcover</u> ,		Deleted: array
163	understory management, age, and hydrogeologic setting) across Florida (USA).		Deleted: Torest
1.64			
164			
165	Methods		
166	Estimating Interception Storage Capacity from Soil Moisture Data		
167	During every rainfall event, a portion of the total precipitation (P) is temporarily stored in		Deleted: A portion of each
168	the forest canopy and groundcover (hereafter referring to both live <u>understory</u> vegetation and		
169	forest floor litter.). We assume that infiltration (and thus any increase, in soil moisture) begins		Deleted:) (Fig. 1a
1.50			Deleted: increases
170	only after total interception storage, defined as the sum of canopy and groundcover storage, is		Deleted: forest
171	full. We further assume, this stored water subsequently evaporates to meet atmospheric demand.		Deleted: , and that
172	Coloulating dynamic intercention stores a required first determining the total stores constitu-		Paleta de Cala dation of
1/2	Calculating dynamic interception storage requires inst determining the total storage capacity	\leq	Deleted: Carculation of
173	$(\underline{\beta}_s)$, which is comprised of the storage capacities for the forest canopy (β_c) and groundcover (β_s)		Deleted: maximum
174	(Fig. 1a).		Deleted:), which are added to define total storage capacity (β_s)
175	To estimate β_s , we consider a population of individual rainfall events of varying <u>depth</u>		
176	over a forest for which high frequency (i.e., 4 hr ⁻¹) soil-moisture measurements are available		
177	from near the soil surface. Soil moisture content (SMC) at the sensor changes only after rainfall		
170			Deleted: magnitude. Between
178	fills total interception storage, evaporative demands since rainfall onset are met, and there is		Deleted: the
179	sufficient, infiltration for the wetting front to arrive at the sensor. Rainfall events large enough to	L	Deleted: reaching a
			Deleted: an observed
180	induce \underline{a} , soil moisture change (ΔSMC) are evident as a rainfall threshold in the relationship		Deleted: (ΔSMC), interception storages β_c and β_g become
181	between P and ΔSMC_{a} An example time series of P and SMC_{a} (Fig. 1b) yields a P versus ΔSMC		saturated. Only rainfall events large enough to overcome this combined storage induce a soil moisture change, with this
		\mathcal{N}	Deleted: evident
182	relationship (Fig. 1c) with clear, threshold behavior. There are multiple equations whose	$\left\ \right\ $	Deleted: across events.
192	functional forms allow for avtraction of this threshold, have we avarage this relationship as	$\langle \rangle$	Deleted: near-surface soil moisture content (
105	runchonar forms and w for extraction of this threshold, here we express this felationship as	(M)	Deleted:)
184	$P = \frac{a}{(1)}$	$\langle \rangle \rangle$	Deleted: vs.
	$(1+b*exp(-c*\Delta SMC))$		Deleted: that clearly exhibits this
			Deleted: expressed as:

Deleted: , expressed as:

212	where P is the total rainfall event depth, ΔSMC is the corresponding soil moisture change, and a,	
213	b, and c are fitted parameters. Figure 2 illustrates this relationship and model fitting for observed	
214	SMC data from six plots at one of our study sites described below. The x-intercept of Eq. 1 (i.e.,	
215	where ΔSMC departs from zero) is given by;	Deleted: represents rainfall required (P_s) to both saturate total storage capacity ($B_s = B_s + B_s$) and to meet evaporation
216	$P_s = \frac{a}{(1+b)} $ (2)	demand that occurs between rainfall onset and the soil moisture response
217	Empirically observed values of P_s represent the total rainfall required to saturate β_s , meet	Deleted:
218	evaporative demands between storm onset and observed <i>ASMC</i> , and supply any infiltration	
219	required to induce soil moisture response once interception storage has been saturated. This	
220	equality can be expressed as:	
221	$P_{s} = \beta_{s} + \int_{0}^{T} E dt + \int_{t}^{T} f dt = \beta_{s} + \int_{0}^{t} E dt + \int_{t}^{T} E dt + \int_{t}^{T} f dt $ (3)	
222	where T is the total time from rainfall onset until observed change in SMC (i.e., the wetting front	
223	arrival), t is the time when β_s is satisfied, and E and f are infiltration and evaporation rates,	
224	respectively. To connect this empirical observation to existing analytical frameworks (e.g., Gash	
225	1979), we adopt the term P_{G_s} defined as the rainfall depth needed to saturate β_s and supply	
226	evaporative losses between rainfall onset ($t = 0$) and β_{s} saturation ($t = t$):	
227	$P_G = \beta_S + \int_0^t E dt $ (4)	
228	Solving for β_s in Eq. 3 and substituting into Eq. 4 yields:	
229	$P_G = P_s - \int_t^T E dt - \int_t^T f dt $ (5)	
230	Equation 5 may be simplified by assuming that average infiltration and evaporation rates apply	
231	during the relatively short period between t and T, such that:	
232	$P_G = P_s - f(T - t) - E(T - t) $ (6)	
I		

l

238	where \overline{f} is the average soil infiltration rate and \acute{E} is the average rate of evaporation from the		
239	forest surface (i.e., canopy, groundcover, and soil) during the time from t to T (see Gash 1979).		
240	The storage capacity β_s can now be calculated following Gash (1979) as:		
241	$\beta_{s} = -P_{G}\frac{\acute{E}}{\acute{k}}ln\left(1-\frac{\acute{E}}{\acute{k}}\right) = \frac{-\acute{E}\left[P_{s}-(T-t)(\acute{f}+\acute{E})\right]}{\acute{k}} \tag{7}$		
242	where \overline{R} is the rainfall rate and all other variables are as previously defined. In Eq. 5, \acute{E} is usually,		Deleted: P_s can be used to calculate β_s by acc event evaporation following Gash [1979): ¶
243	estimated using the Penman-Monteith equation [Monteith, 1965], setting canopy resistance to		$\beta_s = -P_s \frac{\bar{E}}{\bar{R}} \ln \left(1 - \frac{\bar{E}}{\bar{R}} \right) \longrightarrow \longrightarrow \longrightarrow$ where, \bar{E} and
244	zero (e.g., Ghimire et al 2017).		Deleted: are the mean evaporation rate from v (e.g., vegetation and litter surfaces) and rainfa the rainfall event. E is
245	A key challenge in applying Eq. 5, and thus for the overall approach, is quantifying)	Deleted: ,
246	infiltration, since the time, t , when $P_{\underline{G}}$ is satisfied is unknown. Moreover, the infiltration rate		
247	embedded in P_s is controlled by the rainfall rate (\overline{R}) and initial soil moisture content (θ_i). It is		
248	worth noting that shallower sensor depth placement would likely eliminate the need for this step		Deleted: [<i>Monteith</i> , 1965]. Note that β_s in Eq the moisture stored in the soil column betwee
249	(see Discussion). However, to overcome this limitation in our study, we used the 1-D unsaturated		
250	flow model HYDRUS-1D (Simunek et al., 1995) to simulate the time it takes for the wetting		
251	front to arrive (T_w) at the sensor under bare soil conditions across many combinations of \overline{R} and		
252	θ_{i} . As such, T_{w} represents the time required for a soil moisture pulse to reach the sensor once		
253	infiltration begins (i.e., after total interception capacity has been filled), which is T-t in Eq. 7.		
254	For each simulation, T_{w} (signaled by the first change in SMC at sensor depth) was recorded and		
255	used to develop a statistical model of T_w as a function of \overline{R} and θ_i . We used plot-specific soil		
256	moisture retention parameters from Florida Soil Characterization Retrieval System		
257	(https://soils.ifas.ufl.edu/flsoils/) to develop these curves for our six sites, but simulations can be		
258	applied for any soil with known or estimated parameters.		
259	Simulations revealed that T_{w} at a specific depth declined exponentially with increasing θ_{i} :		
260	$T_w = ae^{-b\theta_i} $ (8)		

counting for rain (3)

wetted surfaces all rates during

q.3 also includes en the

271	where a and b are fitting parameters. Moreover, the parameters a and b in Eq. (6) are well fitted		
272	by a power function of \overline{R} :		
273	$a = a_1 \acute{R}^{a_2}, b = b_1 \acute{R}^{b_2} $ (9)		
274	where a_1 and b_1 are fitting parameters. These relationships are illustrated in Fig. 3 for a loamy		Deleted: and the ground surface (see
275	sand across a range of \overline{R} and θ_{i} . The relationship between initial SMC and T_{w} is very strong for		
276	small to moderate \overline{R} (< 3.0 cm/hr). At higher values of \overline{R} , T_w is smaller than the 15-minute		Deleted: 1a) during the period between rainfall onset and
277	sampling resolution, and these events were excluded from our analysis (see below).		close to the soil surface, this shallow soil storage component is
278	Assuming that \overline{f} equals \overline{R} over the initial infiltration period from t to T (robust for most		
279	soils, see below), Eq. 7 can be modified to:		
280	$\beta_{s} = \frac{-\acute{E}}{\acute{R}} \left[\frac{P_{s} - T_{w}(\acute{R} + \acute{E})}{ln\left(1 - \frac{\acute{E}}{\acute{R}}\right)} \right] $ (10)		
281	This approach assumes no runoff or lateral soil-water flow near the top of the soil profile from		
282	time t to T. Except for very fine soils under extremely high \overline{R} , this assumption generally holds		
283	during early storm phases, before ponding occurs (Mein and Larsen, 1973). Moreover, since our		
284	goal is to determine β_{s} , extreme storms can be omitted from the analysis when implementing		
285	Eqs. 1-10, without compromising our estimates. Finally, we note that values of β_5 from Eq. 10	****	Moved (insertion) [1]
286	represent combined interception from canopy and groundcover, but the method does not allow		Deleted: and may be considered part of the interception loss [<i>Savenije</i> , 2004]. Values of β_s from Eq. 3 allow modeling of
287	for disaggregation of these two components,		Deleted: cannot disaggregate into canopy and forest-floor
288	Calculating Interception Loss		
289	Interception storage and resulting interception loss for a given rain event are driven by		Deleted: the
			Deleted: largely
290	both antecedent rain (which fills storage) and evaporation (which depletes it). Instantaneous,		Deleted:), where instantaneous
291	available storage ranges from zero (saturated) to the maximum capacity (i.e., β_s which occurs		
292	when the storage is empty). While discrete, event-based interception models [Gash, 1979, 1995;		
293	<i>Liu</i> , 1998] have been, widely applied to estimate interception, continuous models more accurately		Deleted: are

307	represent time-varying dynamics in interception storage and losses. We adopted the continuous,		
308	physically-based interception modeling framework of Liu [1998, 2001]:		
309	$I = \beta_{s}(D_{0} - D) + \int_{a}^{T} (1 - D)Edt $ (11)	D	Peleted:
		D	Deleted: $\int_0^T (1-D) E dt (4)$
310	where I is interception, E is <u>the</u> evaporation rate from wetted surfaces, D_0 is the forest dryness	(D	eleted: and
0.1.1			Deleted: and D are
311	index at the beginning of a fain event, and <u>D is the forest dryness index at time 1. The dryness</u>	D	Deleted: values
312	index is calculated as:	D	eleted: ,
		D	Deleted: $\frac{c}{\beta_s} \longrightarrow \longrightarrow \longrightarrow \longrightarrow (5)$
313	$D = 1 - \frac{c}{\beta_s} \tag{12}$	D	Deleted: $D_0 = 1 - \frac{c_0}{B_c} \xrightarrow{\longrightarrow} \xrightarrow{\longrightarrow} \xrightarrow{\longrightarrow} \xrightarrow{\longrightarrow} \xrightarrow{\longrightarrow} \xrightarrow{\longrightarrow} \xrightarrow{\longrightarrow} \longrightarrow$
314	where <i>C</i> is "adherent storage" (i.e., water that does not drip to the ground) and is given by:	aı C	$d^{\text{I}} = \beta_s \left(1 - D_0 \exp\left(-\frac{(1-\tau)P}{\beta_s}\right) \right) \longrightarrow (7)^{\text{I}}$
		D	Deleted: Co and
315	$C = \beta_s \left(1 - D_0 exp\left(\frac{-(1-t)}{\beta_c}P\right) \right) $ (13)		Deleted: are
			Deleted: at
316	where, τ is the free through fall coefficient. Because our formulation of β_s in Eq. 10 incorporates	D	peleted: start of rainfall
			beleted: at time T, and
317	both canopy and groundcover components (i.e., negligible true throughfall), we approximated τ		
318	in Eq. 13 as zero. For single storms or when sufficient time has passed to dry the canony D_0 is		peleted:
510	in Eq. 15 ad 2010. For single storing of when sufficient time has passed to dry ind canopy, Dy is	D	Peleted: 7 is set to
319	assumed to be unity [Liu 2001], Between rainfall events, water in interception storage evaporates		Noved up [1]: Eqs.
320	to meet atmospheric demand, until the dryness index, D reaches <u>unity</u> [Liu 1997]. The rate of	Dtt	Deleted: 4 through 9 assume the same evaporation rate, E for he entire forest surface despite
321 322	evaporation <u>from wetted surfaces</u> between rainfall events (E_s) is: $E_s = E(1 - D_0)exp\left(\frac{E}{a}\right) $ (14)	D th th ca li	Deleted: evaporation rates that may be greater than rates on he forest floor [<i>Gerrits et al.</i> , 2010]. Because we consider he entire forest surface, not just individual components (i.e., anopy or forest floor), errors due to this assumption are kely
	The state of the s		eleted: small.
323	A numerical version of Eq. 9 to calculate interception at each time step, t, is expressed as:	D	Peleted: with
			Deleted: one
324	$I_{t} = \beta_{s}(D_{t-1} - D_{t}) + \frac{1}{2}[E_{t-1}(1 - D_{t-1}) + E_{t}(1 - D_{t})] $ (15)		eleted: =
			eleted: exp
325	Eq. <u>15</u> quantifies <u>continuous</u> and cumulative interception losses using precipitation and other		eleted: (8
326	climate data (for E) along with β_e derived from soil moisture measurements and corresponding		Deleted: 4
20	chinate data (161 2) along whit p ₃ derived from son moisture medsurements <u>and corresponding</u>		Deleted:
327	meteorological data.		Deleted: $[E_{t-1}(1 - D_{t-1}) + E_t(1 - D_t)] \rightarrow \rightarrow \rightarrow (9)$
			beleted: 9
		D	eleted: time series

.

9

366	Study Area and Data		Deleted: Proof of Concept:
367	As part of a multi-year study quantifying forest water use under varying silvicultural		Deleted: enumerating
368	management, we instrumented six sites across Florida, each with six 2-ha plots spanning a wide	~~~	Deleted: installed
369	range of forest structural characteristics. Sites varied in hydroclimatic forcing (annual		Deleted:
370	precipitation range: 131 to 154 cm/yr and potential ET range: 127 to 158 cm/yr) and		
371	hydrogeologic setting (shallow vs. deep groundwater table). Experimental plots within sites		Deleted: Plots
372	varied in tree species, age, density, leaf area index (LAI), groundcover density (%GC), soil type,		
373	and management history (Table 1), Each site contained a recent clear-cut plot, a mature pine		Deleted: .
374	plantation plot, and a restored longleaf pine (Pinus palustris) plot; the three, remaining plots at	~	Deleted: as well as
375	each site included stands of slash pine (Pinus elliottii), sand pine (Pinus clausa), or loblolly pine	~~~	Deleted: , with Deleted: including
376	(Pinus taeda) subjected, to varying silvicultural treatments (understory management, canopy		Deleted: pine subject
377	thinning, prescribed burning) and hardwood encroachment.		Deleted: and
378	Within each plot, three banks of TDR sensors (CS655, Campbell Scientific, Logan, UT,	~	Deleted: Three
379	USA), were installed to measure soil moisture at multiple soil depths (Fig. 1a). Only data from		Deleted: 5-6
380	the top-most sensor (15 cm below the ground surface) were used in this study. Soil-moisture	\mathbb{N}	Deleted: [
291	sensor banks were located to conture representative variation in stand geometry (i.e., below the		Deleted: Model CS655]
202	tree energy and within inter energy raws) and thus centure variation in surface call moisture		Deleted: up to 2.5 m. The shallowest sensor at each bank was 15 cm below ground
562	the canopy and writing inter-canopy tows), and thus capture variation in surface son moisture		Deleted:) and provided SMC
383	response to rainfall events driven by forest canopy and groundcover differences. Within each		Deleted: (15-minute intervals
384	clear-cut plot at each site meteorological data (rainfall air temperature relative humidity solar		Deleted: 2014-2016)
001	elear out plot at cach show meteorological data (raintan, an competatule, rotative namenty, solar		Deleted: estimate β_s . A Campbell Scientific GRSW100 weather station installed
385	insolation, wind speed and direction) were measured using a weather station (GRSW100,		Deleted: collected
386	Campbell Scientific, Logan, UT; Fig. 4c) every 3 seconds and used to calculate hourly E by		Deleted: every 3 seconds, which were
387	setting the canopy resistance to zero [Ghimire et al., 2017; Gash, 1995; Monteith, 1965].		
388	Growing season forest <u>canopy</u> LAI ($m^2 m^{-2}$) and groundcover (%) were measured at every 5-m		

415	node within a 50 m x 50 m grid surrounding soil moisture measurement banks. LAI was		
416	measured at a height of 1 m using a LI-COR LAI-2200 plant canopy analyzer, and %GC was		Delete
417	macrumed using a 1 m ² guadmat		Delete
41/	measured using a 1 m ² quadrat.		Delete
418	To estimate $\beta_{s, \text{mean}} \Delta SMC$ values from the three surface sensors were calculated for all	$\langle \rangle$	Delete
419	rainfall events separated by at least 72 hours. Storm separation was necessary to ensure the		Delete
120	anony and aroundary autores were mostly dry at the erect of each included rainfall event	///	Delete
420	canopy and groundcover surfaces were, mostry dry at the onset of each included rainfair event.		Delete
421	Rainfall events were binned into discrete classes by depth and plotted against mean ΔSMC to		estima
422	empirically estimate P_s (e.g., Fig. 2). For each rainfall bin, mean θ_i , \overline{R} and \overline{E} were also calculated.		soil mo overes placem
423	to use in Eq. 10, which was then applied to calculate β_s . Subsequently, we developed generalized		more t highlig
424	linear models (GLMs) using forest canopy structure (site-mean LAI), mean groundcover (%		flexibi Delete
425	GC), hydrogeologic setting (shallow vs. deep groundwater table), and site as potential predictors,		To ass model
426	along with their interactions, to statistically assess predictors of β_s estimates. Because models		Delete Delete
427	differed in fitted parameter number, the best model was selected using the Akaike Information		degree
428	Criteria (AIC; Akaike, 1974). Finally, we calculated cumulative annual interception loss (Ia) and		Delete extract satisfy
429	its proportion of total rainfall for each study plot using the mean β_s for each plot (across the 3		Delete of all t
430	sensor banks), climate data from 2014 to 2016, and Eq. 15, All analyses were performed using R		models to unde
431	statistical software [R Core Team, 2017]		scales
432		$\langle \rangle \rangle$	Delete
122	Desults		loss (I _c study p
433	Kesuits		means
434	Total Storage Capacity (β_s)		Delete
135	The exponential function used to describe the $P \land SMC$ relationship (Eq. 1) showed	Ì	Delete
-55	The exponential function ascente and r-2500 c relationship (Eq. 1) showed		Delete
436	strong agreement with observations at all sites and plots (overall $R^2 = 0.80$; $0.47 \le R^2 \le 0.97$;		Delete
127	Table 1) as illustrated for a single site in Fig. 2. This consistency excess n^{1} to n^{-1} site success		Delete
+ <i>3 </i>	Table 1) as mustrated for a single site in Fig. 2, This consistency across plots and sites suggests	\langle	Delete

	Deleted: above 1-m
	Deleted: while
	Deleted: for each bank within every plot, corresponding
	Deleted: surface was
7	Deleted: rain
	Deleted: ,
	Deleted: then
	Deleted: for each depth-class was plotted vs. P
	Deleted: β_s using Eqs. 1 and 3, respectively. As noted, β_s estimated this way
	Deleted: includes water stored in the soil column above the soil moisture sensor (15 cm in this case), likely overestimating derived β_y values. Shallower sensor placement would enable measurement of interception as more traditionally defined (i.e., water not reaching the soil), highlighting the general utility of our approach and its flexibility
	Deleted: quantify storage as defined by installation design. To assess the drivers of β_s estimates, a multiple regression model was
V.	Deleted: the
	Deleted: mean antecedent soil water storage (storage at the beginning of rainfall events) in the top-soil (expressed as degree of saturation (S) = SMC/SMC_{max})
	Deleted: . For each plot, the antecedent <i>S</i> values were extracted for all the rainfall events that were large enough to satisfy the estimated β_s . The regression model based on <i>S</i>
	Deleted: LAI and %GC, therefore, incorporates the effects of all the three components of the forest that drive β_s estimated by Eqs. 1 through 3. In addition to the regression models, a variance component analysis was also performed to understand the variability of β_s at point, plot, and site scales respectively.
	Deleted: 9, we calculated cumulative annual interception loss (I_a) and its proportion relative to total rainfall for each study plot. Effects of LAI, %GC and other site characteristics on proportional I_a losses were assessed by means of general linear models.
/	Deleted: the
	Deleted:
	Deleted: (Eq. 1)
	Deleted: mean
	Deleted:). Observed and modeled <i>P</i> - Δ <i>SMC</i> relationships
	Deleted: the six plots at
	Deleted: located in the Florida panhandle (site EF)

Deleted: indicate the range of observed behaviors.

508 contain information about rainfall interception by above-ground structures. Using soil moisture

Deleted: describes the...observed P- ΔSMC relationships, enablingand thus enables...estimates of β_s across diverse hydroclimatic settings and forest structural variation. Estimates of β_s ranged from 0.0123 cm...to 0.621.2...cm, with a mean of 0.30 cm. Plot6 cm. However, among the 36 forests plots that were analyzed only 2 had $\beta s > 1.0$ cm. Excluding these two plots as outliers resulted in mean β_s = 0.55 cm and maximum $\beta s = 0.96$ cm. Estimated β_s values showed increasing variance from the point...scale LAI was moderately(i.e., among the three sensor banks within a plot, CV = 0.18) to the plot scale (i.e., across the six plots within a site, CV = 0.26) to the site scale (i.e., across all measurement locations, CV = 0.47). These results follow from hydroclimatic, edaphic, and vegetation variation, all of which increase with increasing scales of analysis. Indeed, an analysis of the random variance components (Fig. 3a) performed for a general linear mixed model revealed that 43% of the total variance in β_s could be attributed to site differences followed by 33% attributable to plot level differences. Within plots, only 23% of the variance in β_s was attributed to bank differences indicating that estimates of ps were similar between proximate measurements. Variability in β_s across plots within a site is primarily driven by variation in forest structure (LAI and %GC), which is sensitive to management decisions. Across sites, variability in β_s is driven by both hydroclimatic and management differences that control forest canopy and groundcover composition. The smaller variability in β_s observed at the point scale supports our use of mean plot values (i.e., the mean across three sensor banks) for subsequent analyses. Across plots, LAI was significantly ... correlated with plotmean β_s , describing roughly 3240... of observed variation across plots (Fig. 4a3b.... This relatively weak association may arise because LAI measurements only characterize canopy cover, while β_s combines canopy and groundcover storage. The best GLM of β_s (Fig. 4b) used %GC and an Multiple linear regression using LAI and %GC increased model explanatory power to 56% of the observed variation in β_s (not shown). We note again that β_s estimates in our .. [1]

Deleted: Annual ... ainfall regimes (mean annual precipitation rangingranged...from 131120 cm...to 154160... cm yr-1 acrossand differed significantly among the six...sites),....mM...an annual interception losses (Ia) also differed significantly both acrossamong...sites (one-way ANOVA p < 0.001),...and among plots within sites (oneway ANOVA p-value...< 0.001). Estimates of) despite receiving the same rainfall input... I_a/P estimates...across all plots and sites ranged from 613...to 2128... of annual rainfall (Table 1) and were moderately, showed a moderate...but significantly, correlated significant correlation ... with the ... ean LAI, explaining approximately 3040... of variation in I_a (Fig. 5a).during the three year study period....Correlations among between fractions of annual interception loss (\dots_a/P) ...and LAI were much ...tronger for individual sites than the global relationship $(0.5138... \le R^2 \le$ 0.84),95,...except for the EF...site EF, where the ...a losses were relatively ...mall and similar across all ... plots regardless of LAI (Fig. 5b; Table 1). This suggests that compared to the other sites, see SI table S2), highlighting. [2]

Deleted: cumulative ...ainfall interception by above-ground structures. Using the empirical[3]

750	data, we developed and tested an analytical approach for estimating total interception, storage	
751	capacity (β_s) that includes canopy, understory, and groundcover vegetation, as well as any litter	
752	on the forest floor. The range of β_s given by our analysis (mean $\beta_s = 0.30$ cm; $0.01 \le \beta_s \le 0.62$	
753	cm) is close to, but generally higher than previously reported canopy storage capacity values for	
754	similar pine forests (e.g., 0.17 to 0.20 cm for mature southeastern USA pine forests; Bryant et al.	
755	2005).	
756	An important distinction between our method and previous interception measurement	
757	approaches is that the soil moisture-based method estimates composite rainfall interception of	s
758	not only the canopy, but also of the groundcover vegetation and forest floor litter. Rainfall	(ii a
759	storage and subsequent evaporation from groundcover, vegetation and litter layers can be as high,	
760	or higher than, canopy storage in many forest landscapes [Putuhena and Cordery, 1996; Gerrits	
761	et al., 2010], For example, Li et al. [2017] found that the storage capacity of a pine forest floor in	
762	China was between 0.3 and 0.5 cm, while maximum canopy storage was < 0.1 cm. <i>Putuhena</i>	
763	and Cordery [1996] also estimated storage capacity of pine forest litter to be approximately, 0.3	c t
764	cm based on direct field measurements. Gerrits et al. [2007] found forest floor interception to be	
765	34% of measured precipitation in a beech forest, while other studies have shown that interception	
766	by litter can range from 8 to 18% of total rainfall [Gerrits et al., 2010; Tsiko et al., 2012; Miller	
767	et al., 1990; Pathak et al., 1985; Kelliher et al., 1992]. A recent study using leaf wetness	
768	observations [Acharya et al. 2017] found the storage capacity of eastern redcedar (Juniperus	
769	virginiana) forest litter to range from 0.12 to as high as 1.12 cm, with forest litter intercepting	
770	approximately 8% of gross rainfall over a six-month period. Given the composite nature of forest	
771	interception storage and the range of storage capacities reported in these studies, the values we	
772	report appear to be plausible, and consistent with the expected differences between canopy-only	
1		

Deleted: the "whole-forest"

Deleted: layers. Our estimates
Deleted: ranged from 0.23 cm to 1.2 cm, with a
Deleted: value of
Deleted: 6 cm. These values are considerably
Deleted: capacities reported in the literature
Deleted: regional forest types
Deleted: 2
Deleted: 2005]. However, our estimates also include important groundcover storage, along with the shallow soil storage (0-15 cm), yielding higher overall storage capacity values. While shallower installation of soil-moisture sensors (e.g., 0 - 5 cm depth) would reduce top-soil storage fractions in β_s , results here highlight the general applicability our approach and provide robust inferences regarding management and hydroclimatic drivers of forest interception.

Deleted: Collective rainfall storage by ground cover

Deleted: 2010], necessitating enumeration for accurate water budgets.

Deleted: In another recent study, *Acharya et al* [2017] found, using the leaf wetness observations, that the storage capacity of forest litter of an eastern redcedar forest ranged from 0.12 to 1.12 cm and the forest litter intercepted ca. 8% of gross rainfall during a 6-month period.

Deleted: ca.

798	and total interception storage. As such, our results support the general applicability of the soil		
799	moisture-based approach for developing forest interception estimates across a wide range of		
800	hydroclimatic and forest structural settings,		Deleted: Given the composite nature of forest interception storage capacity considered, values reported here appear entirely plausible.
801	Interception losses vary, spatially and temporally and are, driven by both β_s and climatic	(Deleted: e
802	variation (i.e. P and E). Our approach represents storage dynamics by combining empirically	\sim	Deleted: varying,
002		\leq	Deleted: in
803	derived β_s estimates with climatic data using a previously developed continuous interception	\sim	Deleted: integrating
804	model [<i>Liu</i> 1998, 2001], Cumulative I_a estimates in this study ranged considerably (i.e., from 6%)	(Deleted: .
805	to 21% of annual rainfall) across the 34 plots, which were characterized by variation in canony		Deleted: 36
000		\leq	Deleted: (13% -28% of rainfall),
806	structure (0.12 < LAI < 3.70) and groundcover (7.9, < %GC < 86.2). In comparison, interception	X	Deleted: a
0.07		NY	Deleted: a wide range of
807	losses by pine forests reported in the literature (all of which report either canopy-only or		Deleted: 7
808	groundcover-only values, but not their composite) range from 12 to 49% of incoming rainfall	- \\ X	Deleted: 5.0
		$\langle \rangle \langle \rangle$	Deleted: 90.0
809	[Bryant et al., 2005; Llorens et al., 1997; Kelliher and Whitehead, 1992; Crockford and	\sim	Deleted: total canopy
810	Richardson, 1990]. Notably, most of the variation in this range is drive by climate rather than) (Deleted: range
811	forest structure, with the highest I _a values from more arid regions (e.g., Llorens et al. 1997).		
812	Broad agreement between our results and literature Ia values supports the utility of our method	(Deleted: This broad
		(Deleted: with values from the
813	for estimating this difficult-to-measure component of the water budget. Additionally, the		Deleted: reasonably
814	magnitude and heterogeneity of our I_a estimates across a single forest type (southeastern US,		Deleted: interception losses, despite generally higher estimates of β_s . The
815	pine) underscores the urgent need for empirical measurements of interception that incorporate	(Deleted: SE
816	information on both canopy and groundcover storage in order to develop accurate water budgets.		
817	This conclusion is further bolstered by the persistent importance of site-level statistical effects in	(Deleted: this component of the water budget, a
818	predicting β_s (and therefore I_a) ₄ even after accounting for forest structural attributes, which	(Deleted: I _a ,
819	suggests there are influential edaphic or structural attributes that we are not currently adequately		
820	assessing.	(Deleted: .

847	Generally, estimated I _a losses in clear-cut plots were smaller than plots with a developed
848	canopy, as expected. One exception was at EF where the clear-cut plot exhibited the highest I_a of
849	the six EF plots (8.4%, Table 1). Notably, differences among EF plots were very small (I_a ranged
850	only from 7.9 to 8.4 % of annual rainfall), an annual interception rate consistent with or even
851	slightly lower than other clear cuts across the study. This site is extremely well drained and has
852	dense litter dominated by mosses and nutrient-poor sandy soils, highlighting the potential for
853	additional local measurements to better understand how forest structure controls observed
854	interception.
855	There are several important methodological considerations and assumptions inherent to
856	estimating interception using near-surface soil moisture data. First is the depth at which SMC is
857	measured. Ideally, soil moisture would be measured a few centimeters into the soil profile,
858	eliminating the need to account for infiltration when calculating P_G in Eqs. (4-6). Soil moisture
859	data used here were leveraged from a study of forest water yield, with sensor deployment depths
860	selected to efficiently integrate soil moisture patterns through the vadose zone. While the extra
861	step of modeling infiltration may increase uncertainty in β_{s} , infiltration was extremely well-
862	described using wetting front simulations of arrival time based on initial soil moisture and
863	rainfall. As such, while we advocate for shallower sensors in future efforts, our solution here
864	given the depths that were available seem tenable for this and other similar data sets. Second, in
865	contrast to the original Gash (1979) formulation, Eq. 5 does not explicitly include throughfall.
866	While throughfall has been a critical consideration for rainfall partitioning by the forest canopy,
867	our approach considers total interception by aboveground forest structures (canopy, groundcover,
868	and litter). A portion of canopy throughfall is captured by non-canopy storage and thus
869	intercepted. Constraining this fraction is not possible with the data available, and indeed our soil
1	

l

870	moisture response reflects the "throughfall" passing the canopy, understory and litter. Similarly,
871	estimation of β_s using Eqs. 1-7 cannot directly account for stemflow, which can be an important
872	component of rainfall partitioning in forests (e.g., Bryant et al., 2005). We used the mean soil
873	moisture response across three sensor locations (close to a tree, away from the tree but below the
874	canopy, and within inter-canopy rows), which lessens the impact of this assumption on our
875	estimates of β_{s} . Finally, Eqs. (3-10) assume the same evaporation rate, <i>E</i> , for intercepted water
876	from the canopy and from the understory. Evaporation rates may vary substantially between the
877	canopy, understory, and forest floor [Gerrits et al., 2007, 2010], especially in more energy-
878	limited environments. Future work should consider differential evaporation rates within each
879	interception storage, particularly since the inclusion of litter as a component potentially
880	accentuates these contrasts in E.
881	Rainfall interception by forests is a dynamic process that is strongly influenced by
882	rainfall patterns (e.g., frequency, intensity), along with various forest structural attributes such as
883	interception storage capacity (β_s) [Gerrits et al., 2010]. In this work, we coupled estimation of a
884	total (or "whole-forest") β_s parameter with a continuous water balance model [<i>Liu</i> , 1997, 2001;
885	<i>Rutter et al.</i> , 1975], providing an integrative approach for quantifying time-varying and
886	cumulative interception losses. We propose that soil moisture-based estimates of β_s have the
887	potential to more easily and appropriately represent combined forest interception relative to
888	existing time- and labor-intensive field methods that fail to account for groundcover and litter
889	interception. Soil moisture can be measured relatively inexpensively and easily using continuous
890	logging sensors that require little field maintenance, facilitating application of the presented
891	approach across large spatial and temporal extents and reducing the time and resources that are
892	needed for other empirical measures [e.g., Lundberg et al., 1997]. Finally, while direct
1	

Deleted: Generally, interception in clear-cut plots was smaller than other plots with a forest canopy. However, a few clear-cut plots intercepted as much rainfall as nearby forested plots (See SI Table S2). . This may be attributed to the dense groundcover vegetation that rapidly establishes in clear-cut plots following tree removal and attendant increases in both water and light availability. For example, at the Green Swamp (GS) site, %GC in the clear-cut plot increased from < 10% at the beginning of the study (few weeks after clearing in July 2014) to ca. 90% near the end of the study period (attributed entirely to rapidly growing grasses and low-stature woody shrubs). On average, 23% of incoming rainfall was lost to interception during the threeyear period. In contrast, several plots with pine canopies, but with substantially lower %GC, had lower or similar values of I_a . We note that both canopy and understory structure impact interception, but that there is a strong negative association between LAI and %GC across plots (See SI Table S2). As such, interception variation across plots with starkly different canopy structure was lower than expected. As noted above, a critical factor that affects estimation of β_s (and hence I_a) from near-surface soil moisture data is the depth of SMC measurement. Although SMC measurement at the top of the soil-profile (i.e., within the first few centimeters of soil) may be ideal, our SMC observations (at 15 cm) were from a larger project. Accordingly, β_s values obtained using Eq (1) likely overestimate the actual storage capacity. Installing sensors at the shallowest possible depth may minimize this error, though it remains unclear whether between-sensor variation will be as low when sampling very shallow soils. We note that errors in I_a due to soil storage are likely to be relatively small because the majority of rainfall events are smaller than β_s . Moreover, shallow soil depths wetted during rainfall may also contribute to interception since the moisture retained is more likely to return to the atmosphere via evaporation than contribute to plant transpiration [*Savenije*, 2004]. This is particularly important in warm regions where the collective storage by shallow soil, litter, and groundcover and subsequent wet-surface evaporation are likely greater than what may occur from the forest canopy alone. Rainfall interception by forests is a dynamic process that is most Deleted:) among

ş	Deleted.) among
Ì	Deleted: factors, including the
l	Deleted: Therefore, coupling the composite
l	Deleted: es
Ì	Deleted: -
ì	Deleted: Soil-

942	comparisons with other empirical measures of forest canopy interception should be treated			
943	cautiously, this approach yields values that are broadly consistent with the literature, and provide	De	leted: Additionally	
944	an estimate of combined canopy and groundcover storage capacity that has the potential to	De	leted: provides a combined	
945	improve the accuracy of water balances models at scales from the soil column to watershed	De	leted: and thus "whole-forest" rainfall interception	n
946				
947	References			
948	Acharya, B.S., Stebler, E., and Zou, C.B.; Monitoring litter interception of rainfall using leaf		Deleted: E.	
949 050	wetness sensor under controlled and field conditions. <i>Hydrological Processes</i> , 31, 240-240: DOI 10.1002/hym.11047.2005		Deleted: C.B.	
950	249. DOI 10.1002/hyp.11047, 2005			
951 952 953	Benyon, R.G., <u>Doody</u> , and T. M.; Comparison of interception, forest floor evaporation and transpiration in <i>Pinus radiata</i> and <i>Eucalyptus globulus</i> plantations. <i>Hydrological</i> <i>Processes</i> 29 (6): 1173–1187 DOI: 10.1002/hyp.10237.2015		Deleted: Doody. 2015.)
954	Bryant, M.L., Bhat, S., and Jacobs, J.M.; Measurements and modeling of throughfall variability		Deleted: S.	
955	for five forest communities in the southeastern US. Journal of Hydrology, DOI:		Deleted: J.M.	\square
956	10.1016/j.jhydrol.2005.02.012 <u>, 2005</u>	Č	Deleted: . 2005.	
957	Bulcock, H.H., and Jewitt, <u>G.P.W.</u> ; Modelling canopy and litter interception in commercial	\leq	Deleted: G.P.W.	
958 959 960	drying curves. <i>Hydrol. Earth Syst. Sci</i> 16 : 4693–4705 DOI: 10.5194/hess-16-4693-2012 <u>2012</u>		Deleted: . 2012.)
961	Carlyle-Moses, D.E., and Price, A.G.; Modelling canopy interception loss from a Mediterranean		Deleted: A.G.	
962 963	pine-oak stand, northeastern Mexico. <i>Hydrological Processes</i> 21 (19): 2572–2580 DOI: 10.1002/hyp.6790, 2007		Deleted: . 2007.	
964	Carlyle-Moses, D.E., and Gash, J.H.C.; Rainfall Interception Loss by Forest Canopies. In		Deleted: . Gash. 2011.	
965 966	Carlyle-Moses and Tanaka (Eds), <i>Ecological Studies</i> 216. DOI: 10.1007/978-94-007-1363, 2011			
967	Crockford, R.H., and Richardson, D.P.; Partitioning of rainfall into throughfall, stemflow and		Deleted: D.P.	
968 969 970	interception: effect of forest type, ground cover and climate. <i>Hydrological Processes</i> 14 (16–17): 2903–2920 DOI: 10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6, 2000		Deleted: . 2000.)
971	Gash, J.H.C., Lloyd, C.R., and Lachaud, B.G., Estimating sparse forest rainfall interception with		Deleted: C.R.	
972	an analytical model. <i>Journal of Hydrology</i> 170 : 79–86 <u>, 1995</u>		Deleted: B. G.	\square
973	Gash, J.H.C.; An analytical model of rainfall interception by forests. Quarterly Journal of the		Deleted: 1995.	$ \longrightarrow $
974	Royal Meteorological Society 105 (443): 43–55 DOI: 10.1002/qj.49710544304 <u>, 1979</u>	C	Deletea: . 1979.)

996	Gerrits, A.M.J., Savenije, H.H.G., Hofmann, L., and Pfister, L.; New technique to measure forest	Deleted: H.H.G.
997	floor interception – an application in a beech forest in Luxembourg. Hydrol. Earth Syst.	Deleted: . Hoffmann,
998	<i>Sci</i> 11: 695–701 <u>, 2007</u>	Deleted: L.
000	Chimira C. P. Bruiinzael I. A. Lubezunski, M.W. and Bonell, M. Bainfall intercention by	Deleted: . 2007.
1000	notural and planted forests in the Middle Mountains of Central Nenal Lowrad of	Deleted: L.A.
1000	Hydrology 475 : 270, 280 DOI: 10.1016/j.jbydrol.2012.00.051, 2012	Deleted: M.W.
1001	<i>Hydrology</i> 475. 270–280 DOI: 10.1010/J.Jhydrol.2012.09.051, <u>2012</u>	Deleted: M.
1002	Ghimire, C.P., <u>Bruijnzell, L.A., Lubczynski, M.W.</u> , Ravelona, <u>M.</u> , Zwartendijk, <u>B.W.</u> , and	Deleted: . 2012.
1003	Meervald, H.H.; Measurement and modeling of rainfall interception by two differently	Deleted: . Bruijnzeel, M.W.
1004	aged secondary forests in upland eastern Madagascar, Journal of Hydrology, DOI:	Deleted: B.W.
1005	10.1016/j.jhydrol.2016.10.032 <u>, 2017</u>	Deleted: . Meerveld. 2017.
1006	Liu, J.; A theoretical model of the process of rainfall interception in forest canopy. <i>Ecological</i>	Deleted: . 1988.
1007	Modelling 42 : 111–123, <u>1988</u>	
1008	Kelliher F.M. Whitehead D and Pollock D.S. Rainfall interception by trees and slash in a	· Deleted: D.
1000	voung Pinus radiata D. Don stand. <i>Journal of Hydrology</i> 131 (1–4): 187–204 DOI:	Deleted: D.S.
1009	10 1016/0022_1604(92)00217_L 1002	Deleted: . 1992.
1010	$10.1010/0022 \cdot 1094(92)90217 \cdot 3, 1992$	· Deleted: Q.
1011	Li, X., Xiao, Q., Niu, J., Dymond, S., Mcherson, E. G., van Doorn, N., Yu, X., Xie, B., Zhang,	Deleted: J.
1012	K., and Li, J.; Rainfall interception by tree crown and leaf litter: an interactive process.	Deleted: S.
1013	Hydrological Processes DOI: 10.1002/hyp.11275, 2017	Deleted: . McPherson, N.
1014	Liu, S.; Evaluation of the Liu model for predicting rainfall interception in forests world-wide.	Deleted: X.
1015	Hydrological Processes 15 (12): 2341–2360 DOI: 10.1002/hyp.264, 2001	Deleted: B.
1016	Liu S: A new model for the prediction of rainfall interception in forest comprise <i>Ecological</i>	Deleted: K.
1017	Modelling 00: 15, 150, 2001	Deleted: J.
1017	Modelling 99. 13–139 <u>, 2001</u>	Deleted: . 2017.
1018	Liu, S.; Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine	Deleted: . 2001.
1019	uplands in North-Central Florida. <i>Journal of Hydrology</i> 207: 32–41, 1998	Deleted: . 1997.
1020	Llorens, P., and Poch, R.; Rainfall interception by a <i>Pinus sylvestris</i> forest patch overgrown in a	Deleted: . 1998.
1021	Mediterranean mountainous abandoned area I. Monitoring design and results down to	Deleted: Journal
1022	the event scale. Journal of Hydrology 199 : 331–345, 1997	Deleted: R.
1022		Deleted: . 1997.
1023	Lundberg, A., Eriksson, M., Halldin, S., Kellner, E., and Seibert, J., New approach to the	Deleted: g
1024 1b25	measurement of interception evaporation. Journal of Atmospheric and Oceanic	C Deleted: M.
1025	Technology 14 (5), 1023–1035, 1997	¹ Deleted: S.
1026	Massman, W.J.; The derivation and validation of a new model for the interception of rainfall by	Deleted: E.
1027	forests. Agricultural and Forest Meteorology 28: 261–286, 1983	Deleted: J.
1028	Merriam R A · A note on the interception loss equation <i>Journal of Geophysical Research</i> 65	Deleted: .1997.
1029	(11): 3850–3851 DOI 10 1029/IZ065i011p03850_1960	Deleted:
1029	(11). 5050 5051 DOL 10.102/1220030111005050, 1700	Deleted: . 1983.
		Deleted: . 1960.
		Deleted:

1070	Muzylo A Llorens P Valente F Keizer LL Domingo F and Gash LHC Gash A review	Deleted: P
1071	of rainfall interception modelling <i>Journal of Hydrology</i> 370 : 191–206 DOI:	Deleted: F.
1072	10.1016/i.ihvdrol.2009.02.058.2009	Deleted: J.J.
1072		Deleted: F.
1073	Pook, E.W., Moore, <u>P.H.R.</u> , and Hall, <u>I.;</u> Rainfall interception by trees of <i>Pinus radiata</i> and	Deleted: P.H.R.
1074	<i>Eucalyptus viminali</i> in a 1300 mm rainfall area of southeastern New South Wales: 1.	Deleted: T.
1075	Gross losses and their variability. <i>Hyarological Processes</i> 5 (2): 127–141 DOI:	Deleted: . 1991.
1076	10.1002/nyp.3360030202 <u>, 1991</u>	
1077	Putuhena, W.M., and Cordery, I.; Estimation of interception capacity of the forest floor. Journal	Deleted: I.
1078	of Hydrology 180: 283–299 <u>, 1996</u>	Deleted: . 1996.
1079	Rutter, A.J., Morton, A.J., and Robins, P.C.: A Predictive Model of Rainfall Interception in	Deleted: A.J.
1080	Forests. II. Generalization of the Model and Comparison with Observations in Some	Deleted: P.C.
1081	Coniferous and Hardwood Stands Journal of Applied Ecology 12 (1): 367–380, 1975	Deleted: . 1975.
1082	Savanija H H G . The importance of interception and why we should delete the term	Deleted: (2004)
1082	evapotranspiration from our vocabulary. Hydrol. Processes 18, 1507 – 1511, 2004	Peleted: (2004),
1005	evaportalispiration nom our vocabulary, frydrof. Froesses, fo, f307 - 1311, 2004	Dereted.
1084	Schaap, M.G., Bouten, W., and Verstraten, J.M.; Forest floor water content dynamics in a	Deleted: W.
1085	Douglas fir stand. Journal of Hydrology 201: 367–383, 1997	Deleted: J.M.
1086	Valente, F., David, J.S., and Gash, J.H.C.; Modelling interception loss for two sparse eucalypt	Deleted: . 1997.
1087	and pine forests in central Portugal using reformulated Rutter and Gash analytical	Deleted: J.S.
1088	models. Journal of Hydrology ELSEVIER Journal of Hydrology 190: 141–162, 1997	Deleted: . Gash. 1997.
1089	Van Dijk A I I M and Brujinzeel I. A Modelling rainfall interception by vegetation of	Deleted: I. A
1090	variable density using an adapted analytical model. Part 1. Model description. Journal of	Deleted: 2001.
1091	Hydrology, 247:230-238, 2001	
1002	Wei 7 Verkimure K. Wang L. Mirelles D.C. Jassekka S. and Lee V. Devisiting the	
1092	wei, Z., Yoshimura, K., Wang, L., Minanes, D.O., Jasecinko, S., and Lee, A., Revisiting the	Deleted: K.
1095	Descent Letters 14 (6): 2702, 2801 DOL: 10 1002/2016CL 072225, 2017	Deleted: L.
1094	Research Letters 44 (6). 2/92–2801 DOI. 10.1002/2010GL0/2253 <u>, 2017</u>	Deleted: D.G.
1095	Xiao, Q., McPherson, E.G., Ustin, S.L., and Grismer, M.E.; A new approach to modeling tree	Deleted: S.
1096	rainfall interception. Journal of Geophysical Research: Atmospheres 105 (D23): 29173-	Deleted: 2017
1097	29188 DOI: 10.1029/2000JD900343 <u>, 2000</u>	Deleted: 2017.
1098		Deleted: E.U.
•		Deleted: M.E.
		Deleted: . 2000.

1133 <u>litter</u>) storage $(\beta_g)_{\tau}(b)$ Example time series of rainfall (blue lines) and corresponding near-

1|34 surface soil moisture <u>content (SMC, black line; observed at 15 cm in this study)</u>, (c) Resultant

1 relationship between rainfall and change in soil moisture ΔSMC during rainfall, along with fitted

1136 model to extract the x-intercept (i.e., P_s).

Deleted:Page Break	
Figure Captions	
Deleted: the different	
Deleted: during rainfall events,	
Deleted: -	
Deleted: data (
Deleted: ; black line),	

l

1154 <u>sand soil. Dots are simulated results from HYDUS-1D simulation, and lines are the exponential</u>

1155 model given in Eq. 8, fitted for each rainfall rate, *R*.

l

1|157 Figure 4. (a) Interception storage capacity (β_{s}) versus leaf area index (LAI) for all sites and plots.

1 158 (b) Modeled versus observed β_{s} using the best GLM, which included % groundcover vegetation

1159 and an interaction term between site and LAI. The dashed line is the 1:1 line.

1160

1 168 Table 1. Summary of storage capacity (β_s) and annual interception losses (I_a) for all sites and

1169 plots, along with plot characteristics (mean annual precipitation, *P*; leaf area index, LAI; percent

1170 groundcover, %GC; and species). Note that the AP site only had three plots with the data

1171 required for the analysis.

Site	<u>Plot</u>	LAI	<u>%GC</u>	Species	<u>β_s(cm)</u>	R^2 ($\Delta SMC-R$)	<u>P (cm)</u>	<u>I_a/P</u>
AP	<u>2</u>	1.65	<u>47.6</u>	SF Slash	0.620	0.31	145.0	0.206
AP	<u>3</u>	<u>0.90</u>	62.8	SF Slash	0.014	0.78	<u>145.0</u>	0.06
AP	<u>4</u>	1.35	49.1	SF Slash	0.445	0.67	<u>145.0</u>	0.184
AP	<u>6</u>	0.40	73.4	Longleaf	0.014	0.57	<u>145.0</u>	0.06
DH	1	0.85	86.2	Loblolly	0.170	<u>0.90</u>	<u>131.5</u>	0.121
DH	<u>2</u>	2.48	51.2	Slash	0.621	0.68	<u>131.5</u>	0.211
DH	<u>3</u>	1.40	39.2	Slash	0.249	0.49	<u>131.5</u>	0.144
DH	4	<u>3.31</u>	<u>35.8</u>	Slash	0.464	0.71	131.5	0.188
DH	5	<u>3.70</u>	<u>27.1</u>	Loblolly	0.383	0.69	<u>131.5</u>	0.173
DH	<u>6</u>	<u>3.48</u>	<u>32.9</u>	<u>Slash</u>	<u>0.418</u>	<u>0.40</u>	<u>131.5</u>	<u>0.18</u>
EF	1	<u>0.12</u>	<u>13.6</u>	<u>Clearcut</u>	<u>0.099</u>	<u>0.93</u>	<u>153.8</u>	<u>0.084</u>
EF	<u>2</u>	1.05	<u>56.9</u>	<u>Slash</u>	<u>0.092</u>	<u>0.96</u>	<u>153.8</u>	<u>0.081</u>
EF	<u>3</u>	<u>2.50</u>	<u>11.8</u>	Sand	<u>0.086</u>	<u>0.93</u>	<u>153.8</u>	<u>0.079</u>
EF	<u>4</u>	<u>0.66</u>	<u>50.9</u>	<u>Slash</u>	<u>0.094</u>	0.92	<u>153.8</u>	<u>0.082</u>
EF	<u>5</u>	<u>0.81</u>	<u>17.9</u>	Sand	<u>0.085</u>	<u>0.96</u>	<u>153.8</u>	<u>0.078</u>
EF	<u>6</u>	<u>0.52</u>	<u>52.0</u>	Longleaf	<u>0.076</u>	<u>0.89</u>	<u>153.8</u>	<u>0.075</u>
GS	<u>1</u>	1.07	<u>67.9</u>	<u>Clearcut</u>	0.502	<u>0.84</u>	132.4	<u>0.199</u>
<u>GS</u>	<u>2</u>	2.66	<u>7.9</u>	Slash	0.535	<u>0.88</u>	132.4	0.203
<u>GS</u>	<u>3</u>	2.11	71.5	Slash	0.587	<u>0.82</u>	132.4	0.211
GS	<u>4</u>	1.12	42.4	Slash	0.421	<u>0.90</u>	132.4	0.185
GS	<u>5</u>	<u>1.17</u>	<u>45.6</u>	Slash	0.382	<u>0.76</u>	132.4	<u>0.178</u>
<u>GS</u>	<u>6</u>	0.51	<u>55.2</u>	<u>Longleaf</u>	0.339	0.78	132.4	<u>0.169</u>
LF	<u>1</u>	0.26	<u>43.5</u>	None	<u>0.166</u>	0.85	136.3	0.121
LF	<u>2</u>	<u>2.86</u>	<u>23.1</u>	<u>Slash</u>	0.525	0.64	136.3	<u>0.195</u>
LF	<u>3</u>	1.23	<u>24.9</u>	<u>Slash</u>	<u>0.266</u>	0.72	<u>136.3</u>	<u>0.147</u>
LF	<u>4</u>	0.80	<u>25.7</u>	<u>Slash</u>	0.248	0.64	136.3	<u>0.143</u>
LF	<u>5</u>	<u>2.60</u>	12.3	<u>Slash</u>	0.443	0.63	136.3	0.182
LF	<u>6</u>	<u>0.89</u>	<u>25.9</u>	<u>Longleaf</u>	<u>0.458</u>	0.69	136.3	0.184
LR	<u>1</u>	<u>0.46</u>	<u>34.0</u>	<u>Clearcut</u>	<u>0.151</u>	<u>0.96</u>	144.5	<u>0.099</u>
LR	<u>2</u>	<u>2.97</u>	<u>38.1</u>	<u>Slash</u>	<u>0.429</u>	<u>0.84</u>	144.5	<u>0.162</u>
LR	<u>3</u>	<u>0.92</u>	<u>47.0</u>	<u>Slash</u>	<u>0.173</u>	<u>0.95</u>	144.5	<u>0.106</u>
LR	<u>4</u>	2.52	26.7	Slash	0.232	<u>0.92</u>	144.5	0.122
LR	<u>5</u>	1.55	28.1	Slash	0.177	<u>0.96</u>	144.5	0.107
LR	6	1.16	35.5	Longleaf	0.160	0.96	144.5	0.102

- 1173 <u>Table 2. Summary of generalized linear model (GLM) results for interception storage capacity</u>
- 1174 $(\underline{\beta}_s)$. LAI is leaf area index, GC is groundcover, and WT is water table (shallow vs. deep). The

	Model #	Variable(s)	AIC	$\underline{\mathbf{R}^2}$
	1	LAI	<u>378.1</u>	<u>0.32</u>
	<u>2</u>	LAI + site	<u>318.5</u>	<u>0.66</u>
	<u>3</u>	LAI * site	<u>255.9</u>	<u>0.83</u>
	<u>4</u>	LAI * site + GC	<u>253.1</u>	<u>0.84</u>
	<u>5</u>	LAI + WT	<u>338.3</u>	0.55
	<u>6</u>	LAI * WT	<u>339.8</u>	0.55
	<u>7</u>	LAI * WT + GC	<u>341.8</u>	0.55
	<u>8</u>	LAI + WT + GC	340.3	0.55
76				

best model (by AIC) is shown in bold.

1176

1

1175

Deleted: Figure 3: (a) Components of the total observed variances in β_x at bank, plot and site scales, and b) LAI vs mean β_x for all plots across all sites. ¶ Figure 4: a) Observed β_x versus the predicted β_x values from the multiple linear regression model with LAI, groundcover and antecedent soil wetness predictors, and b) Observed I_a/P vs predicted I_a/P from the linear mixed-effect model with random site level effects. The gray line indicates 1:1 line and the blue line is the best fit.¶

Demonstration of a simple method to estimate rainfall interception by forests using near-surface soil moisture responses is presented[¶] The method provides composite estimates of total interception by the canopy, understory, groundcover vegetation and forest floor litter ¶

The method is potentially more feasible to apply at larger spatiotemporal extents compared to previous approaches.

age 12: [1] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
age 12: [1] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
age 12: [1] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
	· · · · · · · · · · · · · · · · · · ·	
age 12: [1] Deleted	Acharya Subodh	5/9/19 10:11:00 AM
		5/5/15 1011100 / WI
42. [4] D-1-4- 1		
age 12: [1] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
age 12: [1] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
· · ·		
· · ·		
· · ·		
age 12: [1] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
age 12: [1] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
age 12: [1] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
age 12: [1] Deleted age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted age 12: [1] Deleted	Acharya, Subodh Acharya, Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted age 12: [1] Deleted age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted age 12: [1] Deleted age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted age 12: [1] Deleted age 12: [1] Deleted age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted age 12: [1] Deleted age 12: [1] Deleted age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted age 12: [1] Deleted age 12: [1] Deleted age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
age 12: [1] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM

Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharva.Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharva Subodh	5/9/19 10·11·00 AM
יישר דדי ובו הכובובת		5/5/15 10.11.00 Alvi
·		
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM

Page 12: [2] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya.Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya Subodh	5/9/19 10:11:00 AM
	, tentar yayou boart	0,0,10 1012100 / 401
Page 12: [2] Deleted	Acharva Subodh	5/9/19 10:11:00 AM
age 12. [2] Deleted		5/5/15 10.11.00 AM
Page 12: [2] Delated	Acharva Subodh	5/9/19 10-11-00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted Page 12: [2] Deleted	Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
Page 12: [2] Deleted Page 12: [2] Deleted	Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
Page 12: [2] Deleted Page 12: [2] Deleted Page 12: [2] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
Page 12: [2] Deleted Page 12: [2] Deleted Page 12: [2] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
Page 12: [2] Deleted Page 12: [2] Deleted Page 12: [2] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
Page 12: [2] Deleted Page 12: [2] Deleted Page 12: [2] Deleted Page 12: [2] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
Page 12: [2] Deleted Page 12: [2] Deleted Page 12: [2] Deleted Page 12: [2] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM
Page 12: [2] Deleted Page 12: [2] Deleted Page 12: [2] Deleted Page 12: [2] Deleted	Acharya,Subodh Acharya,Subodh Acharya,Subodh Acharya,Subodh	5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM 5/9/19 10:11:00 AM

Page 12: [2] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharva Subodh	5/9/19 10:11:00 AM
	Achar yayawaan	5,5,15 10.11.00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya, Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharva.Subodh	5/9/19 10:11:00 AM
	, tentar y ayo ano an	0,0,10 1012100 AM
·		
	Ash swar Cash a dh	E /0 /40 40 44 00 494
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [2] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [3] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM
Page 12: [3] Deleted	Acharya,Subodh	5/9/19 10:11:00 AM