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Abstract 26 

Interception is the storage and subsequent evaporation of rainfall by above-ground 27 

structures, including canopy and groundcover vegetation and surface litter. Accurately 28 

quantifying interception is critical for understanding how ecosystems partition incoming 29 

precipitation, but it is difficult and costly to measure, leading most studies to rely on modeled 30 

interception estimates. Moreover, forest interception estimates typically focus only on canopy 31 

storage, despite the potential for substantial interception by groundcover vegetation and surface 32 

litter. In this study, we developed an approach to quantify “total” interception losses (i.e., 33 

including forest canopy, understory, and surface litter layers) using measurements of shallow soil 34 

moisture dynamics during rainfall events. Across 36 pine and mixed forest stands in Florida 35 

(USA), we used soil moisture and rainfall data to estimate the interception storage capacity (βs), 36 

a parameter required to estimate total annual interception losses (Ia) relative to rainfall (R). 37 

Estimated values for βs (mean βs = 0.30 cm; 0.01 ≤ βs ≤ 0.62 cm) and Ia/R (mean Ia/R = 0.14; 38 

0.06 ≤ Ia/R ≤ 0.21) were consistent with reported literature values for these ecosystems and were 39 

significantly predicted by forest structural attributes (leaf area index and percent groundcover), 40 

as well as other site variables (e.g., water table depth). The best-fit model was dominated by LAI 41 

and explained nearly 80% of observed βs variation. These results suggest that whole-forest 42 

interception can be measured using a single near-surface soil moisture time series and highlight 43 

the variability in interception losses across a single forest type, underscoring the need for 44 

expanded empirical measurement. Potential cost savings and logistical advantages of this method 45 

relative to conventional, labor-intensive interception measurements may improve empirical 46 

estimation of this critical water budget element.  47 
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Introduction 80 

Rainfall interception (I) is the fraction of incident rainfall stored by above-ground 81 

ecosystem structures (i.e., vegetation and litter layers) and subsequently returned to the 82 

atmosphere via evaporation (E), never reaching the soil surface and thus never directly 83 

supporting transpiration (T) [Savenije, 2004]. Interception depends on climate and vegetation 84 

characteristics and can be as high as 50% of gross rainfall [Gerrits et al., 2007; 2010; Calder, 85 

1990]. Despite being critical for accurate water budget enumeration [David et al., 2005], 86 

interception is often disregarded or lumped with evapotranspiration (ET) in hydrological models 87 

[Savenije, 2004]. Recent work suggests interception uncertainty constrains efforts to partition ET 88 

into T and E, impairing representation of water use and yield in terrestrial ecosystems [Wei et al., 89 

2017]. 90 

When interception is explicitly considered, it is typically empirically estimated or 91 

modeled solely for the tree canopy. For example, direct measurements are often obtained from 92 

differences between total rainfall and water that passes through the canopy to elevated above-93 

ground collectors (throughfall) plus water that runs down tree trunks (stemflow) during natural 94 

[e.g., Bryant et al., 2005, Ghimire et al., 2012, 2016] or simulated [e.g., Guevara-Escobar et al., 95 

2007; Putuhena and Cordery, 1996] rainfall events. This method yields the rainfall fraction held 96 

and subsequently lost by the canopy but ignores interception by understory vegetation and litter. 97 

Alternatively, numerous empirical [e.g., Merriam, 1960], process-based [e.g., Rutter et al., 1971, 98 

1975; Gash, 1979, 1995, Liu, 1998], and stochastic [Calder, 1986] models are available for 99 

estimating interception. As with direct measurements, most model applications consider only 100 

canopy storage despite groundcover (both understory vegetation and litter layers) interception 101 

that can exceed canopy values [Gerrits and Savenije, 2011; Putuhena and Cordery, 1996].  As 102 
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such, it seems likely that conventional measures and typical model applications underestimate 117 

actual (i.e., “total”) interception.  118 

New field approaches are needed to improve quantification of total interception and 119 

refine the calibration and application of available models. A detailed review of available 120 

interception models [Muzylo et al., 2009] stresses the need for direct interception measurements 121 

across forest types and hydroclimatic regions, but meeting this need will require substantial 122 

methodological advances. Throughfall measurements yield direct and site-specific interception 123 

estimates [e.g., Ghimire et al., 2017; Bryant et al., 2005], but they are difficult and costly to 124 

implement even at the stand scale because of high spatial and temporal variability in vegetation 125 

structure. Moreover, comprehensive measurements also require enumeration of spatially 126 

heterogeneous stemflow, as well as interception storage by the understory and litter layers, 127 

greatly exacerbating sampling complexity and cost [Lundberg et al.,1997]. Empirical techniques 128 

that estimate total interception, integrate across local spatial and temporal variation, and 129 

minimize field installation complexity are clearly desirable.  130 

Here we present a novel approach for estimating total (i.e., canopy, understory and litter) 131 

interception using continuously logged, near-surface soil moisture. Prior to runoff generation, 132 

infiltration is equivalent to rainfall minus total interception, and the response of near-surface soil 133 

moisture during and directly following rain events can be used to inform interception parameters 134 

and thus interception losses. Since soil moisture is relatively easy and economical to measure 135 

continuously for extended periods, successful inference of interception from soil moisture time 136 

series may greatly expand the temporal and spatial domains of empirical interception 137 

measurements. As a proof-of-concept, we tested this simple interception estimation method in 36 138 
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forest plots spanning a wide range of conditions (e.g., tree density, composition, groundcover, 162 

understory management, age, and hydrogeologic setting) across Florida (USA).  163 

 164 

Methods 165 

Estimating Interception Storage Capacity from Soil Moisture Data 166 

During every rainfall event, a portion of the total precipitation (P) is temporarily stored in 167 

the forest canopy and groundcover (hereafter referring to both live understory vegetation and 168 

forest floor litter). We assume that infiltration (and thus any increase in soil moisture) begins 169 

only after total interception storage, defined as the sum of canopy and groundcover storage, is 170 

full. We further assume this stored water subsequently evaporates to meet atmospheric demand. 171 

Calculating dynamic interception storage requires first determining the total storage capacity 172 

(βs), which is comprised of the storage capacities for the forest canopy (βc) and groundcover (βg) 173 

(Fig. 1a).  174 

To estimate βs, we consider a population of individual rainfall events of varying depth 175 

over a forest for which high frequency (i.e., 4 hr-1) soil-moisture measurements are available 176 

from near the soil surface. Soil moisture content (SMC) at the sensor changes only after rainfall 177 

fills total interception storage, evaporative demands since rainfall onset are met, and there is 178 

sufficient infiltration for the wetting-front to arrive at the sensor. Rainfall events large enough to 179 

induce a soil moisture change (DSMC) are evident as a rainfall threshold in the relationship 180 

between P and ΔSMC. An example time series of P and SMC (Fig. 1b) yields a P versus ΔSMC 181 

relationship (Fig. 1c) with clear threshold behavior. There are multiple equations whose 182 

functional forms allow for extraction of this threshold; here we express this relationship as:  183 

𝑃 = #
$%&'∗)*+(-.∗/012)4

                       (1) 184 
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where P is the total rainfall event depth, ΔSMC is the corresponding soil moisture change, and a, 212 

b, and c are fitted parameters. Figure 2 illustrates this relationship and model fitting for observed 213 

SMC data from six plots at one of our study sites described below. The x-intercept of Eq. 1 (i.e., 214 

where ΔSMC departs from zero) is given by: 215 

 𝑃5 =
#

(%&')
           (2) 216 

Empirically observed values of Ps represent the total rainfall required to saturate βs, meet 217 

evaporative demands between storm onset and observed ΔSMC, and supply any infiltration 218 

required to induce soil moisture response once interception storage has been saturated. This 219 

equality can be expressed as:  220 

𝑃5 = 𝛽5 + ∫ 𝐸𝑑𝑡<
= + ∫ 𝑓𝑑𝑡<

? = 𝛽5 + ∫ 𝐸𝑑𝑡?
= + ∫ 𝐸𝑑𝑡<

? + ∫ 𝑓𝑑𝑡<
?     (3)  221 

where T is the total time from rainfall onset until observed change in SMC (i.e., the wetting front 222 

arrival), t is the time when βs is satisfied, and E and f are infiltration and evaporation rates, 223 

respectively. To connect this empirical observation to existing analytical frameworks (e.g., Gash 224 

1979), we adopt the term PG, defined as the rainfall depth needed to saturate βs and supply 225 

evaporative losses between rainfall onset (t = 0) and βs saturation (t = t):  226 

𝑃@ = 𝛽5 + ∫ 𝐸𝑑𝑡?
=            (4)  227 

Solving for βs in Eq. 3 and substituting into Eq. 4 yields: 228 

 𝑃@ = 𝑃5 − ∫ 𝐸𝑑𝑡<
? − ∫ 𝑓𝑑𝑡<

?          (5)  229 

Equation 5 may be simplified by assuming that average infiltration and evaporation rates apply 230 

during the relatively short period between t and T, such that:  231 

𝑃@ = 𝑃5 − 𝑓(𝑇 − 𝑡) − �́�(𝑇 − 𝑡)        (6) 232 
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where f̅  is the average soil infiltration rate and �́� is the average rate of evaporation from the 238 

forest surface (i.e., canopy, groundcover, and soil) during the time from t to T (see Gash 1979). 239 

The storage capacity βs can now be calculated following Gash (1979) as:   240 

 𝛽5 = −𝑃@
É
F́
𝑙𝑛 I1 −

É
F́K =

LÉ
F́
MNOL(<L?)$Ṕ&É4Q

RST%L
Ú
V́W

                (7)  241 

where R̅ is the rainfall rate and all other variables are as previously defined. In Eq. 5, �́� is usually 242 

estimated using the Penman-Monteith equation [Monteith, 1965], setting canopy resistance to 243 

zero (e.g., Ghimire et al 2017). 244 

 A key challenge in applying Eq. 5, and thus for the overall approach, is quantifying 245 

infiltration, since the time, t, when PG is satisfied is unknown. Moreover, the infiltration rate 246 

embedded in Ps is controlled by the rainfall rate (R̅) and initial soil moisture content (θi). It is 247 

worth noting that shallower sensor depth placement would likely eliminate the need for this step 248 

(see Discussion). However, to overcome this limitation in our study, we used the 1-D unsaturated 249 

flow model HYDRUS-1D (Simunek et al., 1995) to simulate the time it takes for the wetting 250 

front to arrive (Tw) at the sensor under bare soil conditions across many combinations of R̅ and 251 

θi. As such, Tw represents the time required for a soil moisture pulse to reach the sensor once 252 

infiltration begins (i.e., after total interception capacity has been filled), which is T- t in Eq. 7.  253 

For each simulation, Tw (signaled by the first change in SMC at sensor depth) was recorded and 254 

used to develop a statistical model of Tw as a function of R̅ and θi. We used plot-specific soil 255 

moisture retention parameters from Florida Soil Characterization Retrieval System 256 

(https://soils.ifas.ufl.edu/flsoils/) to develop these curves for our six sites, but simulations can be 257 

applied for any soil with known or estimated parameters.  258 

Simulations revealed that Tw at a specific depth declined exponentially with increasing θi: 259 

𝑇X = 𝑎𝑒L'[\          (8) 260 
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where a and b are fitting parameters. Moreover, the parameters a and b in Eq. (6) are well fitted 271 

by a power function of R̅: 272 

𝑎 = 𝑎%�́�#a, 𝑏 = 𝑏%�́�'a        (9) 273 

where a1 and b1 are fitting parameters. These relationships are illustrated in Fig. 3 for a loamy 274 

sand across a range of R̅ and θi. The relationship between initial SMC and Tw is very strong for 275 

small to moderate R̅ (< 3.0 cm/hr). At higher values of R̅, Tw is smaller than the 15-minute 276 

sampling resolution, and these events were excluded from our analysis (see below).   277 

 Assuming that f̅ equals R̅ over the initial infiltration period from t to T (robust for most 278 

soils, see below), Eq. 7 can be modified to:  279 

 𝛽5 =
LÉ
F́ d

NOL<e$F́&É4

RST%L
Ú
V́W

f         (10) 280 

This approach assumes no runoff or lateral soil-water flow near the top of the soil profile from 281 

time t to T. Except for very fine soils under extremely high R̅, this assumption generally holds 282 

during early storm phases, before ponding occurs (Mein and Larsen, 1973). Moreover, since our 283 

goal is to determine βs, extreme storms can be omitted from the analysis when implementing 284 

Eqs. 1-10, without compromising our estimates. Finally, we note that values of βs from Eq. 10 285 

represent combined interception from canopy and groundcover, but the method does not allow 286 

for disaggregation of these two components. 287 

Calculating Interception Loss 288 

Interception storage and resulting interception loss for a given rain event are driven by 289 

both antecedent rain (which fills storage) and evaporation (which depletes it). Instantaneous 290 

available storage ranges from zero (saturated) to the maximum capacity (i.e., βs which occurs 291 

when the storage is empty). While discrete, event-based interception models [Gash, 1979, 1995; 292 

Liu, 1998] have been widely applied to estimate interception, continuous models more accurately 293 
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represent time-varying dynamics in interception storage and losses. We adopted the continuous, 307 

physically-based interception modeling framework of Liu [1998, 2001]:  308 

𝐼 = 𝛽5(𝐷= − 𝐷) + ∫ (1 − 𝐷)𝐸𝑑𝑡<
=          (11)  309 

where I is interception, E is the evaporation rate from wetted surfaces, D0 is the forest dryness 310 

index at the beginning of a rain event, and D is the forest dryness index at time T. The dryness 311 

index is calculated as:  312 

𝐷 = 1 − i
jO

           (12)   313 

where C is “adherent storage” (i.e., water that does not drip to the ground) and is given by: 314 

 𝐶 = 𝛽5 l1 − 𝐷=𝑒𝑥𝑝 I
L(%Lo)
jO

𝑃Kp        (13) 315 

where τ is the free throughfall coefficient. Because our formulation of βs in Eq. 10 incorporates 316 

both canopy and groundcover components (i.e., negligible true throughfall), we approximated τ 317 

in Eq. 13 as zero. For single storms or when sufficient time has passed to dry the canopy, D0 is 318 

assumed to be unity [Liu 2001]. Between rainfall events, water in interception storage evaporates 319 

to meet atmospheric demand, until the dryness index, D reaches unity [Liu 1997]. The rate of 320 

evaporation from wetted surfaces between rainfall events (Es) is: 321 

𝐸5 = 𝐸(1 − 𝐷=)𝑒𝑥𝑝 I
E
jO
K         (14) 322 

A numerical version of Eq. 9 to calculate interception at each time step, t, is expressed as:  323 

𝐼 = 𝛽5(𝐷?L% − 𝐷?) +
%
q
[𝐸?L%(1 − 𝐷?L%) + 𝐸?(1 − 𝐷?)]      (15) 324 

Eq. 15 quantifies continuous and cumulative interception losses using precipitation and other 325 

climate data (for E) along with βs derived from soil moisture measurements and corresponding 326 

meteorological data.  327 
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Study Area and Data 366 

As part of a multi-year study quantifying forest water use under varying silvicultural 367 

management, we instrumented six sites across Florida, each with six 2-ha plots spanning a wide 368 

range of forest structural characteristics. Sites varied in hydroclimatic forcing (annual 369 

precipitation range: 131 to 154 cm/yr and potential ET range: 127 to 158 cm/yr) and 370 

hydrogeologic setting (shallow vs. deep groundwater table). Experimental plots within sites 371 

varied in tree species, age, density, leaf area index (LAI), groundcover density (%GC), soil type, 372 

and management history (Table 1). Each site contained a recent clear-cut plot, a mature pine 373 

plantation plot, and a restored longleaf pine (Pinus palustris) plot; the three remaining plots at 374 

each site included stands of slash pine (Pinus elliottii), sand pine (Pinus clausa), or loblolly pine 375 

(Pinus taeda) subjected to varying silvicultural treatments (understory management, canopy 376 

thinning, prescribed burning) and hardwood encroachment. 377 

Within each plot, three banks of TDR sensors (CS655, Campbell Scientific, Logan, UT, 378 

USA) were installed to measure soil moisture at multiple soil depths (Fig. 1a). Only data from 379 

the top-most sensor (15 cm below the ground surface) were used in this study. Soil-moisture 380 

sensor banks were located to capture representative variation in stand geometry (i.e., below the 381 

tree canopy and within inter-canopy rows), and thus capture variation in surface soil moisture 382 

response to rainfall events driven by forest canopy and groundcover differences. Within each 383 

clear-cut plot at each site, meteorological data (rainfall, air temperature, relative humidity, solar 384 

insolation, wind speed and direction) were measured using a weather station (GRSW100, 385 

Campbell Scientific, Logan, UT; Fig. 4c) every 3 seconds and used to calculate hourly E by 386 

setting the canopy resistance to zero [Ghimire et al., 2017; Gash, 1995; Monteith, 1965]. 387 

Growing season forest canopy LAI (m2 m-2) and groundcover (%) were measured at every 5-m 388 
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node within a 50 m x 50 m grid surrounding soil moisture measurement banks. LAI was 415 

measured at a height of 1 m using a LI-COR LAI-2200 plant canopy analyzer, and %GC was 416 

measured using a 1 m2 quadrat. 417 

To estimate βs, mean ΔSMC values from the three surface sensors were calculated for all 418 

rainfall events separated by at least 72 hours. Storm separation was necessary to ensure the 419 

canopy and groundcover surfaces were mostly dry at the onset of each included rainfall event. 420 

Rainfall events were binned into discrete classes by depth and plotted against mean ΔSMC to 421 

empirically estimate Ps (e.g., Fig. 2). For each rainfall bin, mean θi, R̅ and E̅ were also calculated 422 

to use in Eq. 10, which was then applied to calculate βs. Subsequently, we developed generalized 423 

linear models (GLMs) using forest canopy structure (site-mean LAI), mean groundcover (% 424 

GC), hydrogeologic setting (shallow vs. deep groundwater table), and site as potential predictors, 425 

along with their interactions, to statistically assess predictors of βs estimates. Because models 426 

differed in fitted parameter number, the best model was selected using the Akaike Information 427 

Criteria (AIC; Akaike, 1974). Finally, we calculated cumulative annual interception loss (Ia) and 428 

its proportion of total rainfall for each study plot using the mean βs for each plot (across the 3 429 

sensor banks), climate data from 2014 to 2016, and Eq. 15. All analyses were performed using R 430 

statistical software [R Core Team, 2017].  431 

 432 

Results 433 

Total Storage Capacity (βs) 434 

The exponential function used to describe the P-ΔSMC relationship (Eq. 1) showed 435 

strong agreement with observations at all sites and plots (overall R2 = 0.80; 0.47 ≤ R2 ≤ 0.97; 436 

Table 1) as illustrated for a single site in Fig. 2. This consistency across plots and sites suggests 437 
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¶471 
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that Eq. 1 is capable of adequately describing observed P-ΔSMC relationships, enabling 486 

estimates of βs across diverse hydroclimatic settings and forest structural variation. Estimates of 487 

βs ranged from 0.01 to 0.62 cm, with a mean of 0.30 cm. Plot-scale LAI was moderately 488 

correlated with plot-mean βs, describing roughly 32% of observed variation across plots (Fig. 489 

4a). This relatively weak association may arise because LAI measurements only characterize 490 

canopy cover, while βs combines canopy and groundcover storage. The best GLM of βs (Fig. 4b) 491 

used %GC and an interaction term between site and LAI (R2 = 0.84 and AIC = 253.7, Table 2). 492 

The best GLM without site used LAI and hydrogeologic setting (shallow vs. deep water table) 493 

but had reduced performance (R2 = 0.55 and AIC = 338.3; Table 2).  494 

Annual Interception Losses (Ia) 495 

Despite having similar rainfall regimes (mean annual precipitation ranging from 131 to 496 

154 cm yr-1 across sites), mean annual interception losses (Ia) differed significantly both across 497 

sites (one-way ANOVA p < 0.001) and among plots within sites (one-way ANOVA p < 0.001). 498 

Estimates of Ia/P across all plots and sites ranged from 6 to 21% of annual rainfall (Table 1) and 499 

were moderately, but significantly, correlated with mean LAI, explaining approximately 30% of 500 

variation in Ia (Fig. 5a). Correlations among Ia/P and LAI were stronger for individual sites than 501 

the global relationship (0.51 ≤ R2 ≤ 0.84), except for site EF, where Ia losses were small and 502 

similar across plots regardless of LAI (Fig. 5b; Table 1). This suggests that additional site-level 503 

differences (e.g., hydroclimate, soils, geology) play a role in driving Ia, as expected following 504 

from their effects on βs described above. 505 

Discussion and Conclusions 506 

When combined with local rainfall data, near-surface soil moisture dynamics inherently 507 

contain information about rainfall interception by above-ground structures. Using soil moisture 508 
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data, we developed and tested an analytical approach for estimating total interception storage 750 

capacity (βs) that includes canopy, understory, and groundcover vegetation, as well as any litter 751 

on the forest floor. The range of βs given by our analysis (mean βs = 0.30 cm; 0.01 ≤ βs ≤ 0.62 752 

cm) is close to, but generally higher than previously reported canopy storage capacity values for 753 

similar pine forests (e.g., 0.17 to 0.20 cm for mature southeastern USA pine forests; Bryant et al. 754 

2005).   755 

An important distinction between our method and previous interception measurement 756 

approaches is that the soil moisture-based method estimates composite rainfall interception of 757 

not only the canopy, but also of the groundcover vegetation and forest floor litter. Rainfall 758 

storage and subsequent evaporation from groundcover vegetation and litter layers can be as high, 759 

or higher than, canopy storage in many forest landscapes [Putuhena and Cordery, 1996; Gerrits 760 

et al., 2010]. For example, Li et al. [2017] found that the storage capacity of a pine forest floor in 761 

China was between 0.3 and 0.5 cm, while maximum canopy storage was < 0.1 cm.  Putuhena 762 

and Cordery [1996] also estimated storage capacity of pine forest litter to be approximately 0.3 763 

cm based on direct field measurements. Gerrits et al. [2007] found forest floor interception to be 764 

34% of measured precipitation in a beech forest, while other studies have shown that interception 765 

by litter can range from 8 to 18% of total rainfall [Gerrits et al., 2010; Tsiko et al., 2012; Miller 766 

et al., 1990; Pathak et al., 1985; Kelliher et al., 1992]. A recent study using leaf wetness 767 

observations [Acharya et al. 2017] found the storage capacity of eastern redcedar (Juniperus 768 

virginiana) forest litter to range from 0.12 to as high as 1.12 cm, with forest litter intercepting 769 

approximately 8% of gross rainfall over a six-month period. Given the composite nature of forest 770 

interception storage and the range of storage capacities reported in these studies, the values we 771 

report appear to be plausible, and consistent with the expected differences between canopy-only 772 
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and total interception storage. As such, our results support the general applicability of the soil 798 

moisture-based approach for developing forest interception estimates across a wide range of 799 

hydroclimatic and forest structural settings. 800 

Interception losses vary spatially and temporally and are driven by both βs and climatic 801 

variation (i.e., P and E). Our approach represents storage dynamics by combining empirically 802 

derived βs estimates with climatic data using a previously developed continuous interception 803 

model [Liu 1998, 2001]. Cumulative Ia estimates in this study ranged considerably (i.e., from 6% 804 

to 21% of annual rainfall) across the 34 plots, which were characterized by variation in canopy 805 

structure (0.12 < LAI < 3.70) and groundcover (7.9 < %GC < 86.2). In comparison, interception 806 

losses by pine forests reported in the literature (all of which report either canopy-only or 807 

groundcover-only values, but not their composite) range from 12 to 49% of incoming rainfall 808 

[Bryant et al., 2005; Llorens et al., 1997; Kelliher and Whitehead, 1992; Crockford and 809 

Richardson, 1990]. Notably, most of the variation in this range is drive by climate rather than 810 

forest structure, with the highest Ia values from more arid regions (e.g., Llorens et al. 1997). 811 

Broad agreement between our results and literature Ia values supports the utility of our method 812 

for estimating this difficult-to-measure component of the water budget. Additionally, the 813 

magnitude and heterogeneity of our Ia estimates across a single forest type (southeastern US 814 

pine) underscores the urgent need for empirical measurements of interception that incorporate 815 

information on both canopy and groundcover storage in order to develop accurate water budgets.   816 

This conclusion is further bolstered by the persistent importance of site-level statistical effects in 817 

predicting βs (and therefore Ia), even after accounting for forest structural attributes, which 818 

suggests there are influential edaphic or structural attributes that we are not currently adequately 819 

assessing.   820 
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Generally, estimated Ia losses in clear-cut plots were smaller than plots with a developed 847 

canopy, as expected. One exception was at EF where the clear-cut plot exhibited the highest Ia of 848 

the six EF plots (8.4%, Table 1). Notably, differences among EF plots were very small (Ia ranged 849 

only from 7.9 to 8.4 % of annual rainfall), an annual interception rate consistent with or even 850 

slightly lower than other clear cuts across the study. This site is extremely well drained and has 851 

dense litter dominated by mosses and nutrient-poor sandy soils, highlighting the potential for 852 

additional local measurements to better understand how forest structure controls observed 853 

interception.    854 

There are several important methodological considerations and assumptions inherent to 855 

estimating interception using near-surface soil moisture data. First is the depth at which SMC is 856 

measured. Ideally, soil moisture would be measured a few centimeters into the soil profile, 857 

eliminating the need to account for infiltration when calculating PG in Eqs. (4-6). Soil moisture 858 

data used here were leveraged from a study of forest water yield, with sensor deployment depths 859 

selected to efficiently integrate soil moisture patterns through the vadose zone. While the extra 860 

step of modeling infiltration may increase uncertainty in βs, infiltration was extremely well-861 

described using wetting front simulations of arrival time based on initial soil moisture and 862 

rainfall.  As such, while we advocate for shallower sensors in future efforts, our solution here 863 

given the depths that were available seem tenable for this and other similar data sets.  Second, in 864 

contrast to the original Gash (1979) formulation, Eq. 5 does not explicitly include throughfall. 865 

While throughfall has been a critical consideration for rainfall partitioning by the forest canopy, 866 

our approach considers total interception by aboveground forest structures (canopy, groundcover, 867 

and litter).  A portion of canopy throughfall is captured by non-canopy storage and thus 868 

intercepted.  Constraining this fraction is not possible with the data available, and indeed our soil 869 
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moisture response reflects the “throughfall” passing the canopy, understory and litter.  Similarly, 870 

estimation of βs using Eqs. 1-7 cannot directly account for stemflow, which can be an important 871 

component of rainfall partitioning in forests (e.g., Bryant et al., 2005). We used the mean soil 872 

moisture response across three sensor locations (close to a tree, away from the tree but below the 873 

canopy, and within inter-canopy rows), which lessens the impact of this assumption on our 874 

estimates of βs.  Finally, Eqs. (3-10) assume the same evaporation rate, E, for intercepted water 875 

from the canopy and from the understory. Evaporation rates may vary substantially between the 876 

canopy, understory, and forest floor [Gerrits et al., 2007, 2010], especially in more energy-877 

limited environments. Future work should consider differential evaporation rates within each 878 

interception storage, particularly since the inclusion of litter as a component potentially 879 

accentuates these contrasts in E.     880 

Rainfall interception by forests is a dynamic process that is strongly influenced by 881 

rainfall patterns (e.g., frequency, intensity), along with various forest structural attributes such as 882 

interception storage capacity (βs) [Gerrits et al., 2010]. In this work, we coupled estimation of a 883 

total (or “whole-forest”) βs parameter with a continuous water balance model [Liu, 1997, 2001; 884 

Rutter et al., 1975], providing an integrative approach for quantifying time-varying and 885 

cumulative interception losses. We propose that soil moisture-based estimates of βs have the 886 

potential to more easily and appropriately represent combined forest interception relative to 887 

existing time- and labor-intensive field methods that fail to account for groundcover and litter 888 

interception. Soil moisture can be measured relatively inexpensively and easily using continuous 889 

logging sensors that require little field maintenance, facilitating application of the presented 890 

approach across large spatial and temporal extents and reducing the time and resources that are 891 

needed for other empirical measures [e.g., Lundberg et al., 1997]. Finally, while direct 892 
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comparisons with other empirical measures of forest canopy interception should be treated 942 

cautiously, this approach yields values that are broadly consistent with the literature, and provide 943 

an estimate of combined canopy and groundcover storage capacity that has the potential to 944 

improve the accuracy of water balances models at scales from the soil column to watershed.  945 
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 1130 

Figure 1. (a) Schematic illustration of experimental setup and interception water storages, where 1131 

total interception storage (bs) is the sum of canopy storage (bc) and groundcover (understory and 1132 

litter) storage (bg). (b) Example time series of rainfall (blue lines) and corresponding near-1133 

surface soil moisture content  (SMC, black line; observed at 15 cm in this study). (c) Resultant 1134 

relationship between rainfall and change in soil moisture DSMC during rainfall, along with fitted 1135 

model to extract the x-intercept (i.e., Ps).  1136 
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 1145 

Figure 2: Change in soil moisture content (DSMC) versus binned rainfall depths for six plots at 1146 

one of the study sites used in the study (Econfina; EF). The x-intercept of the fitted relationships 1147 

were used to derive Ps in Eq. 2. Note different y-axis scale for EF-Plot 3.  1148 
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 1152 

Figure 3: Initial soil moisture content (SMC) versus time of wetting front arrival (Tw) for a loamy 1153 

sand soil. Dots are simulated results from HYDUS-1D simulation, and lines are the exponential 1154 

model given in Eq. 8, fitted for each rainfall rate, R.  1155 
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 1156 

Figure 4. (a) Interception storage capacity (bs) versus leaf area index (LAI) for all sites and plots. 1157 

(b) Modeled versus observed bs using the best GLM, which included % groundcover vegetation 1158 

and an interaction term between site and LAI. The dashed line is the 1:1 line. 1159 
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 1161 
 1162 
Figure 5. (a) Annual proportion of rainfall that is intercepted (Ia/R) intercepted versus LAI for all 1163 

sites and plots. (b) Site-specific Ia/R versus LAI relationships. The relationship is generally 1164 

strong except for the EF site, where the overall storage capacity is small across all values of LAI.  1165 
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Table 1. Summary of storage capacity (βs) and annual interception losses (Ia) for all sites and 1168 

plots, along with plot characteristics (mean annual precipitation, P; leaf area index, LAI; percent 1169 

groundcover, %GC; and species). Note that the AP site only had three plots with the data 1170 

required for the analysis. 1171 

Site Plot LAI %GC Species βs (cm) R2 (DSMC-R) P (cm) Ia/P 
AP 2 1.65 47.6 SF Slash 0.620 0.31 145.0 0.206 
AP 3 0.90 62.8 SF Slash 0.014 0.78 145.0 0.06 
AP 4 1.35 49.1 SF Slash 0.445 0.67 145.0 0.184 
AP 6 0.40 73.4 Longleaf 0.014 0.57 145.0 0.06 
DH 1 0.85 86.2 Loblolly 0.170 0.90 131.5 0.121 
DH 2 2.48 51.2 Slash 0.621 0.68 131.5 0.211 
DH 3 1.40 39.2 Slash 0.249 0.49 131.5 0.144 
DH 4 3.31 35.8 Slash 0.464 0.71 131.5 0.188 
DH 5 3.70 27.1 Loblolly 0.383 0.69 131.5 0.173 
DH 6 3.48 32.9 Slash 0.418 0.40 131.5 0.18 
EF 1 0.12 13.6 Clearcut 0.099 0.93 153.8 0.084 
EF 2 1.05 56.9 Slash 0.092 0.96 153.8 0.081 
EF 3 2.50 11.8 Sand 0.086 0.93 153.8 0.079 
EF 4 0.66 50.9 Slash 0.094 0.92 153.8 0.082 
EF 5 0.81 17.9 Sand 0.085 0.96 153.8 0.078 
EF 6 0.52 52.0 Longleaf 0.076 0.89 153.8 0.075 
GS 1 1.07 67.9 Clearcut 0.502 0.84 132.4 0.199 
GS 2 2.66 7.9 Slash 0.535 0.88 132.4 0.203 
GS 3 2.11 71.5 Slash 0.587 0.82 132.4 0.211 
GS 4 1.12 42.4 Slash 0.421 0.90 132.4 0.185 
GS 5 1.17 45.6 Slash 0.382 0.76 132.4 0.178 
GS 6 0.51 55.2 Longleaf 0.339 0.78 132.4 0.169 
LF 1 0.26 43.5 None 0.166 0.85 136.3 0.121 
LF 2 2.86 23.1 Slash 0.525 0.64 136.3 0.195 
LF 3 1.23 24.9 Slash 0.266 0.72 136.3 0.147 
LF 4 0.80 25.7 Slash 0.248 0.64 136.3 0.143 
LF 5 2.60 12.3 Slash 0.443 0.63 136.3 0.182 
LF 6 0.89 25.9 Longleaf 0.458 0.69 136.3 0.184 
LR 1 0.46 34.0 Clearcut 0.151 0.96 144.5 0.099 
LR 2 2.97 38.1 Slash 0.429 0.84 144.5 0.162 
LR 3 0.92 47.0 Slash 0.173 0.95 144.5 0.106 
LR 4 2.52 26.7 Slash 0.232 0.92 144.5 0.122 
LR 5 1.55 28.1 Slash 0.177 0.96 144.5 0.107 
LR 6 1.16 35.5 Longleaf 0.160 0.96 144.5 0.102 
  1172 
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Table 2. Summary of generalized linear model (GLM) results for interception storage capacity 1173 

(bs). LAI is leaf area index, GC is groundcover, and WT is water table (shallow vs. deep). The 1174 

best model (by AIC) is shown in bold. 1175 

Model # Variable(s) AIC R2 
1 LAI 378.1 0.32 
2 LAI + site 318.5 0.66 
3 LAI * site 255.9 0.83 
4 LAI * site + GC 253.1 0.84 
5 LAI + WT 338.3 0.55 
6 LAI * WT 339.8 0.55 
7 LAI * WT + GC 341.8 0.55 
8 LAI + WT + GC 340.3 0.55 
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