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I enjoyed reading this paper, which aims to address a challenging and critical task for
many water resources studies, that of synthetic data generation. I also appreciated
the availability of the PRSim R package. This is an additional short comment contin-
uing the interesting comment posed by F. Serinaldi regarding the preservation of the
ACF/CCF. As the Authors recognize, and F. Serinaldi mentions in his comment, the
ACF/CCF in the Gaussian domain and the ACF/CCF in the actual domain (i.e., that of
the distribution function), typically differ. In my view, this is mainly due to two reasons:
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1. The final process (the one obtained after the use of the quantile function; i.e.,
the inverse cumulative distribution function; ICDF) results from the mapping of a
Gaussian one (a concept related with the so-called Nataf’s joint distribution model
(Mardia, 1970; Nataf, 1962) – see below)

2. The use of Pearson’s correlation coefficient to express the dependence structure
(ACF/CCF) of the process.

Within hydrological domain, beyond the work of Papalexiou (2018) (also mentioned
by F. Serinaldi), this mapping procedure has been also employed for the simulation of
non-Gaussian univariate and multivariate processes in the works of Tsoukalas et al.
(2019, 2018a, 2018b, 2017) and Tsoukalas (2018; for a Thesis-length treatment on the
subject) which adopt the term “Nataf-based processes”, and also discuss similarities
with other approaches in hydrology and beyond (see also the work of Serinaldi and
Lombardo (2017) for univariate binary processes). For instance, the work of Liu and
Der Kiureghian (1986) and Lebrun and Dutfoy (2009), that regard the Nataf’s joint
distribution model per se – which in my understanding regards the core idea of the
above mapping procedure (initially proposed for correlated random variables, and not
processes).

Interestingly, and regarding processes, the concept of Nataf’s joint distribution can be
traced back in the early work of Grigoriu (1984) and later in sequel works, who used
it to establish non-Gaussian stochastic process, the so-called “translation processes”.
Similar models for non-Gaussian stochastic processes have been proposed by Cario
and Nelson (1996) and Biller and Nelson (2003), the so-called “To-Anything” models.
More specifically, this type of models use (low-order) AR models to simulate an auxil-
iary (appropriately “inflated/adjusted”) Gaussian process (Gp), which after its mapping
(through the ICDF) to the actual domain, results into a process with the target distri-
bution and correlation structure. Actually, it is noted, that any linear stochastic model
(e.g., AR, MA, ARMA or other) can be used within such simulation schemes to simulate
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the auxiliary Gp (Tsoukalas et al., 2018b).

Regarding the preservation of the ACF/CCF from such methods (i.e., relying on this
mapping procedure), it is recalled that the Pearson’s correlation is a linear measure
of dependence that uses first cross-product moments of the process, and is not in-
variant under non-linear monotonic transformations (such as those imposed by the
ICDF). Please, also refer to section 4 in Tsoukalas et al. (2018c), and section 3.2.3 in
Tsoukalas et al. (2018b), who highlight a delicate point related with the above mapping
procedure and the use of alternative rank-based dependence measures (i.e., Kendall’s
tau and Spearman’s rho). Further information can be found in the book of Embrechts
et al. (1999), while a discussion related with this property, in the context of similarly-
constructed stochastic processes for hydrological time series generation, is given in
Tsoukalas et al. (2018a, 2018b).

As noted in F. Serinaldi’s comment, and also discussed by others (e.g., Koutsoyiannis,
2016, 2000; Papoulis, 1991 pp. 118) the power spectrum and the ACF (or CCF) of a
process are interrelated quantities. Hence, it is reasonably to expect that a spectrum-
based simulation method (such as the one proposed by the Authors) will inherit the
properties of Pearson’s correlation coefficient. To elaborate, let Zt be a univariate
stationary standard (with mean zero and unit variance) Gaussian process with auto-
correlation ρ̃τ = Corr (Xt, Xt+τ ), where τ denotes the time lag, and Xt be a process
obtained by the mapping operator Xt = F−1 (Φ (Zt)), where F−1 () denotes the ICDF
of the target distribution (with finite variance) and Φ () denotes the Gaussian cumulative
distribution function. It can be shown that the autocorrelation ρτ = Corr (Xt, Xt+τ ) of
the final process is related to the Gaussian one by (see the abovementioned papers,
and references therein),

ρτ =

∫∞
−∞

∫∞
−∞ F

−1
X (Φ (zt))F−1

X (Φ (zt+τ )) ϕ2 (zt, zt+τ , ρ̃τ ) dztdzt+τ − (E [X])2

Var [X]
1 (1)

where ϕ2 (zt, zt+τ , ρ̃τ ) is the bivariate standard normal probability density function,
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which contains ρ̃τ .

Furthermore let γτ = Cov (Xt, Xt+τ ) = ρtγ0 denote the autocovariance of the process,
where γ0 stands for its variance.

Let also recall that the power spectrum and the autocorrelation function of a process
are related by (e.g., Koutsoyiannis, 2016, 2000; Papoulis, 1991 pp. 118),

Sγ(ω) = 2γ0 + 4
∞∑

τ=1

γτcos (2πτω) = 2
∞∑

τ=−∞
γτcos (2πτω) , ω ∈ [0, 1/2] 2 (2)

Therefore, by using γτ = ρtγ0 and substituting Eq. (1) into Eq. (2), it is shown that the
power spectrum of the process Xt is related to the autocorrelation ρ̃τ of Zt, and hence
on its power spectrum Seγ(ω) = 2

∑∞
τ=−∞ γ̃tcos (2πτω) , where γ̃t = ρ̃τ (since the Gp

has unit variance).

For completeness, it is mentioned that the autocovariance γτ can be obtained from a
known power spectrum Sγ(ω) by,

γτ =
∫ 1/2

0
Sγ(ω)cos (2πτω) dω , j = 0, 1, 2, . . . .3 (3)

An example of a spectrum-based method that uses this mapping procedure (i.e.,
through the ICDF) in combination with a suitably inflated spectrum for the auxiliary
(or parent) Gaussian process is given by Deodatis and Micaletti (2001). This method
avoids the underestimation of correlation coefficients and manages to preserve the
distribution function of the process.

Just a few quick comments:

1. Section 3.1 (step 1): Since the authors employ the Kappa distribution (a general-
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ization of the GEV distribution; which is bounded from below or above, depending
on the parameters) to model the historical data, it could be insightful to mention
that under certain parameter combinations, this distribution may lead to infinite
moments. This can be a delicate issue, since if the fitted distribution exhibits infi-
nite variance then the Pearson’s correlation cannot be defined (the denominator
contains the variance), and thus the proposed model (as well as many other mod-
els) cannot be used. This situation is discussed in section 3.4 of Tsoukalas et al.
(2018b; and references therein), where it is advocated (based on empirical, as
well as theoretical reasoning) that physical processes are characterized by finite
variance (Koutsoyiannis, 2016).

Particularly, if X is a Kappa-distributed random variable, and µr = E [Xr] denotes the
rth raw moment, as discussed in Hosking (1994), and elsewhere, the existence of the
rth depends on the values of h and k. Specifically, the moments exist:

for all r if h ≥ 0 and k ≥ 0

for r < −1/hk if h < 0 and k ≥ 0, and

for r < −1/k if k < 0

It is also interesting to mention that Hosking (1994) notes that the first four moments
cannot uniquely determine the parameters of the distribution, since some combinations
of moments (expressed by skewness and kurtosis coefficients) correspond to different
pairs of h and k.

1. Section 3.1 (step 1): Can you please provide more details on the employed fitting
method. The fitting was performed using classical product-moments, L-moments,
maximum likelihood, or another method?
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2. Section 3.1 (Introduction and step 2): I believe that it would be useful to mention
that the recent literature contains alternative models, such as the Stochastic Pe-
riodic Autoregressive To Anything (SPARTA) model of Tsoukalas et al. (2018a,
2017), that do not employ de-seasonalization techniques and are able to simu-
late cyclostationary processes (univariate and multivariate), accounting for many
of its facets such as, seasonally varying marginal distributions and correlations.

3. Section 3.1 (step 6): The Authors mention that: “Negative simulated values are
replaced by 0, which corresponds to the lower boundary of the Kappa distribu-
tion”. As far as I am aware the left support of Kappa distribution is not necessar-
ily zero (e.g., when k = 0 and h ≤ 0, then the supports of the distribution are,
−∞ < x < ∞; see Hosking (1994)). In any case, the generation of negative
values can be eliminated by using a distribution function defined in the positive
real line. Particularly, I would suggest the investigation/use of the Generalized
Gamma and Burr type-XII distributions, which are more parsimonious (they entail
three parameters) and were found adequate for modelling of hydrometeorological
variables; particularly rainfall (e.g., Papalexiou and Koutsoyiannis, 2016). Exam-
ples of their use within the context of stochastic modelling can be found the work
Papalexiou (2018), as well as in Tsoukalas et al. (2019, 2018b) and Tsoukalas
(2018).

Regards,

Ioannis Tsoukalas
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