
Reviewer 3 (Simon Paplexiou) 

This is a useful and interesting technical note on simulating stream flow time series preserving 

observed characteristics. Several techniques exist to approximate time series such as preserving 

moments, using marginal-back transformations, bootstrap, amplitude adjusted Fourier 

transformations methods, etc. All of them have advantages and disadvantages. This technical note is 

well-structured, well-written, and the real-world case is nicely demonstrated. The authors’ intention 

to provide an easy-to-apply solution is clear, and although this is a technical note, the added value 

against previews works on the amplitude adjusted Fourier transformation method should be better 

highlighted in order to strengthen the publication. 

 Before providing a detailed review, I’m expressing my gratitude to the commenters referring to my 

2018 work. Clarifying, I worked on this framework much earlier in 2009 for a multivariate and 

cyclostationary simulation of daily rainfall (13 stations in Greece) aiming to preserve marginals (the 

Burr type XII was used), correlations and intermittency. 

The method was described in detail in a document (Papalexiou, 2010) that includes also mixed-type 

distributions inflated at arbitrary points and not just at zero. 

The extended work was published in arXiv (Papalexiou, 2017), followed by the journal publication 

some months later (Papalexiou, 2018). The scheme also applied in a stationary/nonstationary 

disaggregation framework preserving marginals and correlations (DiPMaC) (Papalexiou et al., 2018). 

It was an attempt to provide a simple framework for univariate and multivariate modeling preserving 

continuous, discrete, binary or mixed-type marginals having positive definite autocorrelation 

structure (including long memory). The focus was specifically on hydroclimatic variables such as 

precipitation, streamflow, wind, humidity, etc. 

 Yet as the saying goes, most things have been already found before; indeed, the first attempts in 

other scientific fields to simulate time series preserving marginals and correlations using inflated 

correlations date back in the works of Conner and Hammond (1972), and probably much earlier. A 

clear presentation for continuous marginals using AR models was given by Li & Hammond in (1975). 

The authors may wish to check also an old paper entitled “Generation of random signals with 

specified probability density function and power density spectra” by Gugar and Kavanagh published 

in 1968. 

Following Li & Hammond (1975) several papers got published in different fields (e.g., Cario & Nelson, 

1997, 1998; Kugiumtzis, 2002; Macke et al., 2009; Demirtas, 2014, 2017; Emrich & Piedmonte, 1991; 

Macke et al., 2009 to mentioned a few) dealing with several cases. These and many other interesting 

works yet were not suitable for simulating intermittent processes, like precipitation or stream flows, 

and most of them suggested demanding iterative procedures to estimate the parent Gaussian 

correlations or the cross-correlation upper limits (Papalexiou, 2018). In few papers the same link 

between the gaussian correlation and the bivariate copula with prescribed marginals is also 

established (even earlier) by using the same technique, i.e., the fundamental 2-dimensional theorem 

of the expected value of a transformed random variable (Nataf, 1962; Liu & Der Kiureghian, 1986; H. 

Li et al., 2008; Lebrun & Dutfoy, 2009; Xiao, 2014). This link can also be established by using the 

Jacobian of the transformation (Papalexiou, 2018, Eq. 7). 



The authors here focus on another method, i.e., the amplitude adjusted Fourier transformation, with 

the same intent and aiming to generate consistent stream flow time series. They can also see a 

simulation of daily stream flow preserving a heavy tailed marginal (Burr type III) and a slowly 

decaying autocorrelation structure in Section 4.3 in Papalexiou (2018). Specific comments that 

authors may find useful to improve the manuscript are: 

1. The authors write: “We hereafter refer to such methods, which are also known as amplitude-

adjusted Fourier transformations (Lancaster et al., 2018), as phase randomization simulations. In 

hydrology, phase randomization simulation has rarely been applied for purposes other than 

hypothesis testing (Fleming et al., 2002), even though it has desirable properties which make it 

suitable for a wider range of applications. (. . .) However, its application is limited to Gaussian 

data. We here propose the use of phase randomization simulation for the stochastic generation 

of streamflow time series at individual and multiple sites. To allow for non-Gaussian 

distributions, as commonly observed for daily streamflow values, we combine the data 

simulated by phase randomization with the Kappa distribution,” Probably missing something 

here, but amplitude-adjusted Fourier transformations can account for non-Gaussian amplitude 

distributions. The method proposed by Prichard and Theiler (1994) (authors cite indeed this 

paper) accounts for non-Gaussian marginal distributions as stated by the authors at page 953 

“We account for non-Gaussian amplitude distribution by using the amplitude adjusting 

algorithm described in in Ref. [8] for each component”. Prichard and Theiler (1994) use the 

algorithm described in Sec 2.4.3 of Theiler et al (1992), which reads as follows “The idea is to 

first rescale the values in the original time series so they are gaussian. Then the FF or WFT 

algorithm can be used to make surrogate time series which have the same Fourier spectrum as 

the rescaled data. Finally, the gaussian surrogate is then rescaled back to have the amplitude 

distribution as the original time series.”. These techniques (Amplitude adjusted Fourier 

transformations) are known to preserve the linear correlations of the parent Gaussian process 

rather than those of the target. Indeed, they were further refined as Iterative Amplitude 

adjusted Fourier transformations in order to match ACF and marginal distributions of the target 

variables as closely as possible (Kugiumtzis, 1999; Schreiber & Schmitz, 1996; e.g., Serinaldi & 

Lombardo, 2017; Venema et al., 2006). So, if not missing something here I see that the 

methodology proposed in this technical note is related to the procedure applied by Prichard and 

Theiler (1994) in their second example with a difference spotted in the rescaling of the marginal 

distribution, where empirical CDF is replaced by a parametric Kappa distribution. Thus, maybe 

the statement that AAFT cannot deal with non-Gaussian marginals should be revised as my 

understanding is that AAFT it was devised to deal exactly with this. Of course, replacing empirical 

CDF with Kappa is more appropriate for stream flow simulations. 

Reply: We agree that the amplitude-adjusted Fourier transformation procedure proposed by 

Prichard and Theiler (1994) can deal with non-Gaussian data. However, it does usually not 

allow for the use of parametric distributions in the back-transformation process. We 

adjusted the text accordingly by acknowledging that amplitude-adjusted Fourier transform 

allows for the generation of non-Gaussian data. We specified that our approach differs from 

amplitude-adjusted Fourier transformation by that it allows for the generation of values 

beyond the values in the empirical distribution. 



2. An important point regards the underestimation of cross-correlation reported by the authors (it 

could be also observed also in the autocorrelation). It was proven mathematically long time ago 

(Kendall & Stuart, 1979, p. 600) (Embrechts et al., 2002) that any nonlinear transformation of a 

gaussian time series reduces the strength of the linear correlations as expressed by the Pearson 

correlation coefficient. Obviously, this does not affect the rank correlations. Since the authors 

are not calculating the inflated autocorrelations (or inflated spectrum) it is expected the 

generated time series to have lower correlations. However, in practice this depends on the 

transformation used. If the target marginal is bell-shaped then typically it has a small effect in 

reducing the autocorrelation, yet the effect can be very large for j-shaped target marginals with 

heavy tails and zero inflated (see Fig. 1 and Fig. 2 and the simulation examples in Fig4-Fig7 in 

Papalexiou (2018) and the discussion therein). Therefore, the fact that the authors don’t observe 

large differences in the autocorrelation of the simulated time series is case specific and not 

generally true. This point is important and should be mentioned as there are streamflow series 

highly inflated at zero and highly skewed; without using inflated correlations for the parent 

gaussian process it is certain that the transformed series will not match the target process. 

Reply: We agree that the autocorrelation of a stochastically generated time series might not 

in all cases well reproduced the autocorrelation of observed time series. We add a section to 

the discussion section, that discusses this issue: “While the reproduction of the temporal 

dependence was well reproduced here, this is not necessarily the case under all conditions. 

Embrechts et al., 2010 have shown that any nonlinear transformation of a Gaussian time 

series, which is done during backtransformation, reduces the strength of the linear 

correlations in the time series as expressed by Pearson's correlation coefficient. If one is 

working with heavy-tailed and zero inflated marginals, it can happen that autocorrelations 

are reduced during backtransformation (Papalexiou, 2018).” 

3. As previously mentioned early approaches in simulating nongaussian timeseries preserving 

marginals and correlations date back long time ago (e.g. S. T. Li & Hammond, 1975), yet this 

framework as it was formulated didn’t include the modeling of mixed-type marginals (see 

Papalexiou 2018) which allows easy simulation of intermittent processes such as precipitation or 

stemflows of ephemeral streams. To increase the novelty of the paper the authors can easily 

include mixed-type quantiles (see Eq. 17 in Papalexiou 2018) with the kappa distribution. As far 

as I know this approach has not been implemented in amplitude adjusted Fourier 

transformations. 

Reply: We agree that the use of mixed-type marginals can be beneficial in certain cases, 

where the process to simulate from is intermittent. We therefore made PRSim even more 

flexible by introducing user-defined distributions to be used in the backtransformation 

process. The software illustrates the functionality with GEV and GB2 distributions. This user-

defined distribution can potentially be a mixture distribution. We did not include an example 

of a mixture distribution in our technical note because the time series chosen for the analysis 

were not characterized by intermittency. Furthermore, the use of mixtures of a discrete and 

a continuous part is delicate as we cannot resort on classical/standard definitions of 

likelihood tests or confidence intervals. 

Minor points (p = page, L = Line) 



 p2L33-p3L4: We can easily use large order AR models to simulate time series having long memory or 

any other strong autocorrelation structure. Especially AR models have an analytical solution (Yule-

Walker system) and the fit and the application e.g., of an AR of order 10000 is a matter of less than a 

second. This means that we can reproduce exactly the autocorrelation structure up to order p. It 

should be clear that fitting an AR of any large order to a long memory autocorrelation structure is 

parsimonious and efficient as all the AR parameters are analytically and without uncertainty 

estimated by the autocorrelation structure, e.g., if an AR of order 10000 is fitted to an fGn correlation 

then it is an one-parameter model and not a 10000 parameter model. More details can be found in 

Papalexiou (2018), where the authors can also see examples of long memory process simulations 

using AR models and preserving marginals. Also long memory can be approximated by the sum of 

independent AR(1) processes as suggested by Mandelbrot (1971). So, it is a matter of how these 

models are applied and definitely  they can reproduce long memory or any other autocorrelation 

structure. 

Reply: We agree that it is possible to approximate an arbitrary spectrum with either a large 

order AR or many AR(1) processes. However, this approach remains an approximation. A 

long-memory process can be characterized with a polynomial decay of the spectrum. AR 

processes have an exponential decay. Hence, it will not be possible to generate a «truly» long 

range process. It is possible to approximate arbitrarily precisely an empirical  spectrum. If one 

observes a spectrum of length n, n AR(1) processes will allow for the approximation of an 

empirical spectrum. We specified in the introduction that AR models can be used to generate 

seemingly long-memory processes if a parametric autocorrelation structure is used to fit the 

data. 

 p4L6-p4L9: The Kappa distribution is a well-established distribution in hydrology and since Hosking 

(1994) introduced the four-parameter version it has been applied countless times (e.g., Hanson & 

Vogel, ; Kjeldsen et al., 2017; Park et al., 2009) ). Its importance and flexibility stems for the fact that 

generalizes important distribution such as the GP, GEV, GLO etc, but it can also be seen as a special 

case and generalization at the same time of the Burr type XII. Maybe the great disadvantage of the 

four-parameter version is the location parameter which can end up in supporting a range of values 

which is inconsistent with the variable under study. For stream flows expected to range in the 

positive axis this can be problematic. If distributions like the Generalized Gamma or the Burr type XII 

didn’t work, maybe the authors should try with the Burr type III (1 scale, 2 shape pars) (Burr, 1942) or 

the Generalized beta of the second kind (Mielke & Johnson, 1974) (1 scale, 3 shapes) which has great 

flexibility and is defined in (0, Infinity). This would solve the issue of negative values or of a lower 

positive limit but of course the authors may neglect this suggestion. 

Reply: Thank you for this suggestion. We tested the Generalized beta distribution of the 

second kind. It seems to be rather flexible and works fine for certain catchments. In other 

catchments, however, it produces very extreme, and rather implausible high-flow values. As 

the distribution is defined in the interval [0,Infinity], it solves the problem with the zero 

values, but introduces a problem with infinity values. While this and other distributions tested 

(GEV, Burr type XII, generalized Gamma, Wakeby) were not found to be suitable in our 

application example, they might be appropriate in other cases. We therefore adjusted the 

PRSim R-package (version > 1.0) to allow for any type of distribution specified by the user in 

the back-transformation process. 



 p5L19 and P6L9-11: To clarify regarding the normal transformation. The authors have fitted the 

Kappa in each day and then use the Kappa cdf to transform to uniform and then apply the gaussian 

quantile? Even if they did so the final time series might have normal marginal but the autocorrelation 

may be different in each week/month or season. 

Reply: It is correct that the kappa distribution was fitted to each day individually and that the 

autocorrelation shows monthly variations. 

 p6L3: The KS-test is not a very robust test. It will not change anything to the analysis, but maybe 

more robust tests should be used and promoted, e.g., the Anderson-Darling. If it’s not much of a 

trouble the authors could test the fit based on the AD test. 

Reply: We agree that the KS-test is not very robust and added the AD test as a goodness-of-fit 

test. The PRSim package now allows for choosing one of the two tests. 

 p6L20: I might be missing something here but why is 0 the lower bound of the four parameter 

Kappa? 

Reply: It is correct that the kappa distribution does not have a lower bound. The sentence was 

rephrased to “Negative simulated values are replaced by 0, because the kappa distribution 

does not allow for setting a lower bound”. 

Summarizing, this is well-written and useful technical note that deserves publication after some 

amendments and literature updates. 
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