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Abstract 17 

The Upper Missouri River Headwaters Basin (36,400 km2) depends on its river corridors to 18 

support irrigated agriculture and world-class trout fisheries. We evaluated trends (1984-2016) in 19 

riparian wetness, an indicator of riparian condition, in peak irrigation months (June, July, 20 

August) for 158 km2 of riparian area across the basin using the Landsat Normalized Difference 21 

Wetness Index (NDWI). We found that 8 of the 19 riparian reaches across the basin showed a 22 

significant drying trend over this period, including all three basin outlet reaches along the 23 

Jefferson, Madison and Gallatin Rivers. The influence of upstream climate was quantified using 24 

per reach random forest regressions. Much of the interannual variability in the NDWI was 25 

explained by climate, especially by drought indices and annual precipitation, but the significant 26 

temporal drying trends persisted in the NDWI-climate model residuals, indicating that trends 27 

were not entirely attributable to climate. Over the same period we documented a basin-wide shift 28 

from 9% of agriculture irrigated with center pivot irrigation to 50% irrigated with center pivot 29 

irrigation. Riparian reaches with a drying trend had a greater increase in the total area with center 30 

pivot irrigation (within-reach and upstream from the reach) relative to riparian reaches without 31 

such a trend (p<0.05). The drying trend, however, did not extend to river discharge. Over the 32 

same period, stream gages (n=7) showed a positive correlation with riparian wetness (p<0.05), 33 

but no trend in summer river discharge, suggesting that riparian areas may be more sensitive to 34 

changes in irrigation return flows, relative to river discharge. Identifying trends in riparian 35 

vegetation is a critical precursor to enhancing the resiliency of river systems and associated 36 

riparian corridors.  37 
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1. Introduction 42 

Riparian ecosystems provide critical biological, chemical and hydrological functions 43 

(Fritz et al., 2018). Defined as semi-terrestrial areas influenced by freshwaters at the interface of 44 

rivers and adjacent upland areas (Naiman et al., 2005), riparian ecosystems store water, nutrients, 45 

and sediments, reducing downstream flood impacts and non-point source pollution (Lowrance et 46 

al., 1984; Vivoni et al., 2006). They also provide corridors for biotic movement and migration, 47 
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particularly through arid, urban and agricultural landscapes (Boutin and Belanger, 2003; Lees 48 

and Peres, 2008), and maintain fish habitat by lowering stream temperatures and contributing in-49 

stream woody debris (Poole and Berman, 2001; Isaak et al., 2012). Long-term trends in the 50 

degradation of riparian areas are common globally (Stromberg, 2001; Richardson et al., 2007). 51 

The hydrological alteration of rivers, including dam construction, drainage and water diversion 52 

ditches, flow regulation, and pumping of surface and ground water for human use, can alter flow 53 

timing and magnitude leading to riparian degradation including changes to riparian functioning, 54 

loss of riparian extent, and shifts in species composition (Poff et al., 1997; Nilsson and Berggren, 55 

2000; Sweeney et al., 2004). Periodic drought and continued water withdrawals degrade cold-56 

water spawning and rearing habitat for salmonid species (Clancy, 1988; Isaak et al., 2012). 57 

Balancing anthropogenic water needs while maintaining or enhancing riparian ecosystem 58 

integrity requires an improved understanding of the relationship between water extraction, river 59 

discharge, and riparian vegetation (Jones et al., 2010; Cunningham et al., 2011). 60 

Irrigated agriculture is a primary consumptive use of water in the United States and 61 

globally. Across the United States, 26% of surface water withdrawals and 68% of groundwater 62 

withdrawals are attributable to agricultural irrigation (Dieter et al., 2018). Globally, irrigation 63 

accounts for 70% of water withdrawals (Wisser et al., 2008). Expansion of agricultural irrigation 64 

over the past centuries and shifts in irrigation methods over the past decades have led to major 65 

gains in agricultural productivity, food security, profitability, and crop diversification 66 

(Falkenmark and Lannerstad, 2005). As a primary use of water withdrawals and water 67 

consumption, however, irrigated agriculture can be expected to play a key role in local water 68 

cycles. When gravity-fed (i.e., flood) irrigation is applied, water that is not evaporated or 69 

transpired by plants, replenishes soil water storage, recharges aquifers, and contributes return 70 

flows to streams and wetlands (Peterson and Ding, 2005; Perry et al., 2017; Grafton et al., 2018). 71 

Additional groundwater recharge also comes from unlined ditch systems used to convey water to 72 

agricultural fields. Return flow from excess irrigation has been argued to have artificially 73 

elevated autumn and winter streamflow for decades (Kendy and Bredehoeft, 2006). As farmers 74 

switch to more modern irrigation techniques, such as center pivot irrigation, they can achieve 75 

greater crop yields and gross revenue with less water, improving their “crop per drop” ratio (or 76 

water use efficiency; Peterson and Ding, 2005). This shift in irrigation practices, however, is 77 

expected to have hydrological consequences, namely increased evapotranspiration, and a 78 
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reduction in surface runoff and subsurface recharge (Ward and Pulido-Velazquez, 2008; Grafton 79 

et al., 2018) which can impact local aquifers (Peterson and Ding, 2005; Pfeiffer and Lin, 2014), 80 

base flow (Kendy and Bredehoeft, 2006; Gosnell et al., 2007), and potentially riparian 81 

ecosystems (Carrillo-Guerrero, 2013).  82 

Water withdrawals for irrigation may impact local water cycling, but patterns in river 83 

discharge and riparian vegetation are largely driven by a watershed’s climate patterns. Riparian 84 

vegetation tends to be adapted to highly variable fluvial disturbance regimes, a product of 85 

seasonal and interannual variability in river discharge, with riparian wetness peaking during 86 

episodic storm and flood events and lessening during drought events (Hughes, 2005; Goudie, 87 

2006; Capon, 2013). River discharge and groundwater hydrology, in turn, tends to be highly 88 

responsive to variability in precipitation and evaporative demand (Goudie, 2006; Dragoni and 89 

Sukhiga, 2008; Hausner et al., 2018). Further, in snow-melt dominated systems, changes in snow 90 

pack storage and rain to snow event ratios can influence the timing of river discharge and 91 

regional groundwater recharge, impacting water availability in associated riparian areas (Rood et 92 

al., 2008). 93 

While satellite imagery offers a cost-effective means to monitor landscapes, the narrow, 94 

linear nature of riparian corridors presents a challenge for ecosystem characterization with 95 

remote sensing tools (Klemas, 2014; Vanderhoof and Lane, 2019). Along large rivers, Landsat 96 

satellites provide a multi-decadal source of imagery to monitor changes in riparian vegetation 97 

(Jones et al., 2010; Henshaw et al., 2013). Remote sensing can also complement field data to 98 

enhance our understanding of the relationship between riparian vegetation and agents of change, 99 

such as climate (Huntington et al., 2016). The Normalized Difference Vegetation Index (NDVI) 100 

(Tucker, 1979) is the most commonly used spectral index to evaluate changes in riparian 101 

vegetation over time (Fu and Burgher, 2015; Hamdan and Myint, 2015; Nguyen et al., 2015; 102 

Hausner et al., 2018). Trends in riparian greenness have been related successfully to climate 103 

variables and river discharge (Shafroth et al., 2002; Fu and Burgher, 2015; Nguyen et al., 2015), 104 

in part because riparian and wetland herbaceous species can respond rapidly to changes in soil 105 

moisture. Thus, riparian greenness tends to reflect river corridor hydrologic processes 106 

(Stromberg et al., 2001, 2006; Jones et al., 2008). Other indices can also potentially inform 107 

riparian wetness. For instance, the normalized difference wetness index (NDWI) was designed to 108 

be sensitive to changes in leaf and soil water content as well as to identify waters associated with 109 



5 
 

wetlands or floodplains (Gao, 1996; McFeeters, 1996). This index has been used successfully, 110 

for example, to monitor changes in the extent of waterlogged areas (e.g., Chatterjee et al., 111 

2005; Chowdary et al., 2008).  112 

Despite the potential for satellite imagery to characterize plant-water interactions along 113 

riparian corridors, few studies have evaluated the impact of changing irrigation methods on 114 

riparian vegetation (Klemas, 2014; Perry et al., 2017), or have attempted to distinguish the 115 

relative influence of climate and agricultural irrigation on riparian vegetation. The Upper 116 

Missouri River Headwaters (UMH) Basin in southwestern Montana provides an excellent case 117 

study for exploring the interactions between climate, irrigation and riparian vegetation. The basin 118 

contains the Jefferson, Madison, and Gallatin Rivers, all of which support world-class cold-water 119 

trout fisheries that provide substantial economic value to the region (Duffield et al., 1992; 120 

Kerkvliet et al., 2002; Gosnell et al., 2007). In addition, the agricultural valleys of the basin are 121 

very productive yet rely on a complex irrigation system to water crops grown in and near riparian 122 

areas. Irrigation accounts for 97% of Montana’s consumptive water use (Clifford, 1995; Dieter et 123 

al., 2018). Along with the high demand for irrigation water (Goklany, 2002; Schaible and 124 

Aillery, 2012), there are also increasing public water supply needs in the basin (Hansen et al., 125 

2002; Gude et al., 2006). Finally, the timing of peak river flows is predicted to change, 126 

attributable to warmer temperatures at higher elevations and more precipitation in winter and 127 

early spring occurring as rainfall rather than snow (Pederson et al., 2011, 2013; USBR, 2012). 128 

All these factors contribute to an increasingly uncertain supply of water across the basin, 129 

particularly in the late summer. This uncertainty, in turn, has elevated interest in improving the 130 

resiliency of local streams and rivers so that the basin can continue to support the agricultural, 131 

recreational, municipal and ecological needs of the watershed (Montana DNRC, 2014, 2015; 132 

Montana Drought Demonstration Partners, 2015; McEvoy et al., 2018). In this study we used a 133 

time series of Landsat imagery (1984-2016) together with climate datasets, agricultural datasets, 134 

and U.S. Geological Survey (USGS) stream gage datasets to explore trends over time in riparian 135 

vegetation for the major river valleys across the UMH Basin. We sought to link the temporal 136 

trends not explained by climate to changes in land use type and intensity. Our research questions 137 

were:  138 

1. How does remotely sensed riparian wetness across the UMH Basin reflect interannual 139 

variability in climate and river discharge? 140 
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2. How and to what degree are trends in riparian wetness from 1984-2016 attributable to 141 

changes in climate versus shifts in land use such as irrigation practice?  142 

 143 

2. Methods 144 

2.1 Study Area 145 

The study area was the UMH Basin (36,400 km2). Near the basin outlet, the Jefferson, 146 

Madison, and Gallatin Rivers merge to form the Missouri River at Three Forks, Montana. A total 147 

of nine rivers were included in the analysis with riparian vegetation divided into 19 riparian 148 

reaches (Fig. 1). Hydrologic regimes of the rivers across the basin are snow-melt dominated 149 

(Markstrom et al., 2016; Cross et al., 2017) with multiple mountain ranges contributing surface 150 

runoff and ground water recharge to valley aquifers (Hackett et al. 1960; Slagle 1995). Annual 151 

precipitation across the basin averages 565 mm yr−1, most of which falls in the mountains, where 152 

it is received primarily as snow (Fig. 2). The annual maximum and minimum temperatures 153 

average 10 °C and −3 °C respectively (1981-2010 period of record) (PRISM Climate Group, 154 

2018). Elevations across the basin range from 1231 m to 3433 m (Gesch, 2002). While the 155 

mountain ranges are dominated by evergreen forest (35%), at lower elevations, the forest gives 156 

way to herbaceous vegetation (35%) and shrub/scrub (20%) cover types that dominate the large 157 

river valleys (Homer et al., 2015, Fig. 2). Agriculture occurs primarily in the lower elevations 158 

adjacent to many of the major rivers. As of 2017, alfalfa was the most common crop (41%), 159 

followed by other non-alfalfa hay crops (25%), barley (11%) and spring wheat (11%) (USDA, 160 

2018). The riparian ecosystems along the major rivers are dominated by tree species including 161 

cottonwood (Populus spp.), willow (Salix spp.), and alder (Alnus spp.); shrubs including 162 

chokecherry (Prunus virginiana), snowberry (Symphoricarpos spp.), and wild rose (Rosa 163 

woodsia); and wet meadows dominated by cattails (Typha spp.), sedges (Carex spp.), and rushes 164 

(Juncus spp.). Warming temperatures in March and April initiate snowmelt and a corresponding 165 

increase in river discharge. Spring precipitation and snowmelt produce peak river discharge in 166 

May and June (Cross et al., 2017) followed by a sharp decline in July and August due to a 167 

dwindling supply of melt water from snow pack and consumptive use from withdrawals. Late 168 

autumn through early spring are generally characterized by lower flow conditions, presumably 169 

dominated by baseflow contributions from groundwater discharge (Cross et al., 2017). Major 170 
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waterbodies across the basin are predominately reservoirs located upstream from dams (Fig. 1b) 171 

that support irrigation, hydropower, and recreation.  172 

2.2 Unit of Analysis 173 

The objective of this study was not to document changes in the total amount of riparian 174 

vegetation, but instead to document temporal variability and trends in the wetness of persistent 175 

riparian vegetation in relation to climate and landscape variables. The extent of persistent 176 

riparian vegetation in major river valleys was delineated manually using Landsat imagery from 177 

1985, 1986, 2016, and 2017 (Table 1). National Agricultural Imaging Program (NAIP) imagery 178 

was also used to improve accuracy in areas where agriculture was inter-mixed with riparian 179 

vegetation. The active river channel was excluded from the area of analyses. For headwater 180 

reaches, riparian areas upstream of all identifiable irrigated agriculture were excluded from the 181 

analysis. This approach enabled us to reduce uncertainty in the vegetation types and the temporal 182 

analysis but potentially limited our ability to include changes where there was a complete loss or 183 

novel gain of riparian vegetation. 184 

For trend analysis, we used river topology, topography, and clusters of irrigated 185 

agriculture to divide the delineated riparian areas into 19 study reaches (Table 2, Fig. 2). After 186 

riparian reach lengths were defined, the per reach contributing area was calculated using the 187 

Spatial Tools for the Analysis of River Systems (STARS, v 2.0.4) (Peterson, 2017). All pits and 188 

flow interruptions in the digital elevation model (DEM) were filled. The flow direction for the 189 

river network was generated and the rivers burned into the DEM.  The area contributing to the 190 

downstream point of each riparian reach (n=19) was estimated so that each contributing area was 191 

non-overlapping with edge-matching inter-basins (Theobald et al., 2006) (Table 2, Fig. 1).   192 

2.3 Dependent Variable 193 

The NDWI calculated from Landsat imagery (NIR – SWIR1)/(NIR + SWIR1) (Gao, 194 

1996; McFeeters, 1996) was used to estimate riparian wetness. Relative to other indices such as 195 

the NDVI, NDWI is considered to be less sensitive to atmospheric conditions including solar 196 

elevation angle, sensor angle, and atmospheric condition, making it suitable for time series 197 

analysis (Crétaux et al., 2015), and has been used to monitor patterns in waterlogged areas 198 

(e.g., Chatterjee et al., 2005; Chowdary et al., 2008). Reach-scale average NDVI and NDWI 199 

values were provided to give a sense of the reach-scale variability in spectral characteristics 200 

(Table 2). NDWI values greater than approximately 0.3 are typically used to distinguish open 201 
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water (Chatterjee et al., 2005; Chowdary et al., 2008; McFeeters, 2013). Across the UMH Basin, 202 

we determined that riparian NDWI values were more sensitive to interannual variability in 203 

climate (Fig. 3) and river discharge than NDVI, making it a more appropriate index for this 204 

analysis. Per year, average NDWI values (June–August 1984-2017, 102 values per riparian 205 

reach) were calculated using the Landsat surface reflectance image collections in Google Earth 206 

Engine for all delineated riparian reaches (n=19). June, July and August were selected to 207 

correspond to peak months for irrigation water withdrawals (Bauder, 2018). Potentially 208 

erroneous values were defined as values that were greater or less than plus or minus two standard 209 

deviations from the riparian reach-specific mean monthly and were removed. To normalize the 210 

data for seasonality, values were calculated as the anomaly from the riparian reach specific, long-211 

term (1984-2017) mean monthly value (NDWI anomaly), then averaged summer values (June-212 

August) to provide a single NDWI anomaly per summer, per reach. The multi-month approach 213 

compensated for data gaps created when cloud cover masked Landsat NDWI values.  214 

2.4 Independent Variables 215 

Climate variables derived from the Parameter-elevation Regressions on Independent 216 

Slopes Model (PRISM, 4 km resolution, Daly et al., 2008) included annual precipitation, annual 217 

lagged (one year) precipitation, winter precipitation (January-March), spring precipitation 218 

(March-May), summer precipitation (June-August), spring maximum and minimum temperature 219 

(March-May), summer maximum and minimum temperature (June-August) and maximum vapor 220 

pressure deficit (VPD; spring and summer). VPD represents a measure of the drying power of 221 

the air and is a function of air temperature and humidity. Across the contributing area of each 222 

riparian reach (n=19), 100 points were randomly selected (total points = 1900). To generate 223 

basin-wide values, the climate values for each year (1984-2016) were extracted for each point, 224 

averaged for the reach, then weighted using the relative size (ha) of each reach across the basin. 225 

Because upstream climate, such as snowfall or precipitation, can influence downstream riparian 226 

wetness, climate variables for each riparian reach were similarly calculated using the area-227 

weighted average values for that reach and all reaches contributing to that reach. 228 

To characterize interannual variability in snowfall, we used a total of 13 Snow Telemetry 229 

(SNOTEL) sites (IDs: 315, 318, 328, 355, 381, 403, 448, 568, 576, 578, 603, 656, 858). Annual 230 

total snowfall (September – August) and total spring snowfall (March-July) were calculated for 231 

each SNOTEL site. For each riparian reach we identified the nearest one or two SNOTEL sites, 232 



9 
 

using the SNOTEL site immediately upstream from the riparian reach as available. When two 233 

SNOTEL sites were used, the snowfall amounts were averaged across the two sites. Only sites 234 

with data available for the entire period of 1984-2017 were used (NSIDC, 2018). To further 235 

characterize climate conditions, we included the monthly Palmer Drought Severity Index (PDSI) 236 

and the Palmer Z-Index for NOAA NCDC Division 2 in Montana. Both indices are calculated 237 

from precipitation and temperature station data and interpolated at 5 km (NOAA NCDC 2014). 238 

The PDSI represents the accumulation or deficit of water over the past approximately 9 months, 239 

while the Palmer Z-Index represents the current monthly conditions with no memory of previous 240 

deficits or surpluses (NOAA NCDC 2014). The indices were averaged to spring (March-May), 241 

summer (June-August), and annual, and represent multi-month averages of the drought indices. 242 

Temporal trends (1984-2016) in the climate variables were tested at the basin scale using the 243 

non-parametric Mann-Kendall test for trends (Kendall R package) (Mann, 1945, Kendall, 1975, 244 

Gilbert, 1987). Each SNOTEL site was tested independently for temporal trends in snowfall. 245 

2.5 Agricultural Patterns 246 

We sought to relate patterns in riparian wetness to patterns in total irrigated agricultural 247 

area and the relative abundance of irrigation methods. Existing sources of data, such as the 248 

Montana Department of Revenue’s Final Land Unit Classification (FLU, 2010 and 2017) or the 249 

USGS (county-scale) Water Use Surveys (1950-2015), lacked a spatially explicit dataset of 250 

agricultural extent and irrigation methods for the early part of the Landsat archive (1980s). 251 

Therefore, we generated two agricultural extent datasets representing the two temporal ends of 252 

the Landsat archive (1985/1986 and 2016/2017). The Landsat images used to define the active 253 

cropland extent are shown in Table 1. Cloud cover was only present in the mountainous areas in 254 

all images used. We recognize that by using a single Landsat image (instead of multiple images 255 

collected over the growing-season) and only representing the ends of the study time span, we 256 

may be underestimating agricultural extent and missing year-to-year variability in agricultural 257 

activities. Generating agriculture extent and irrigation types for the beginning and end of our 258 

study period, however, enabled us to identify spatially explicit trends or shifts in agricultural 259 

practices that have been previously shown at a county/state scale (USDA, 2018). Cropland extent 260 

was generated initially using eCognition 9.2 software (Trimble, Westminster, CO). The Landsat 261 

images were segmented into objects using the near infrared (NIR), red, and green bands. The 262 

FLU 2017 data layer was used to mask out non-crop and non-pasture land cover types. The 263 
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objects were classified as agriculture or non-agriculture using NDVI thresholds. The draft 264 

agricultural outputs were then manually edited to add and remove agricultural fields as needed. 265 

Fallow fields were not included in the agricultural extent as they were assumed to be non-266 

irrigated for that year. For overlapping portions between adjacent Landsat images, a field was 267 

included as crop if it was identified as such in either image. It is possible there could be potential 268 

confusion between non-center pivot irrigation and non-irrigated fields, however, 92 and 93% of 269 

the 1985/1986 and 2016/2017 agricultural area, respectively, co-occurred with Montana FLU 270 

polygons classified as irrigated, suggesting that non-irrigated agriculture is a minority cover class 271 

across the UMH basin. 272 

Active crop fields were further classified manually as center pivot irrigation or non-center 273 

pivot irrigation (e.g., gravity-fed, non-center pivot sprinklers such as tower sprinklers, solid set 274 

and permanent sprinklers, side roll, big gun or traveler, or hand move sprinklers) based on field 275 

shape (i.e., round, not round). For reference, the FLU polygons were classified as center pivot, 276 

sprinkler or gravity-fed using irrigation infrastructure (gates, ditches, dikes) identifiable from 277 

National Agricultural Imaging Program (NAIP) images (1 m resolution). Sprinkler irrigation was 278 

distinguished using parallel wheel lines. Because this irrigation infrastructure was not visible in 279 

the Landsat imagery, we did not attempt to distinguish gravity-fed irrigation from non-center 280 

pivot sprinkler irrigation. Consequently, the datasets as created enabled us to quantify changes in 281 

irrigation extent and any shifts in center-pivot irrigation. It did not allow us to make estimates of 282 

water consumption or quantify shifts from gravity-fed irrigation to non-center pivot sprinkler 283 

irrigation. 284 

2.6 Analysis 285 

Temporal trends in riparian wetness (NDWI anomaly) were tested for each riparian reach 286 

using the non-parametric Mann-Kendall (MK) test for trends. As the MK test for trends can be 287 

sensitive to temporal autocorrelation (Hamed and Rao, 1998), we used the Durbin-Watson 288 

statistic to test for the presence of temporal autocorrelation in the NDWI anomaly values of each 289 

riparian reach. Because autocorrelation can inflate trend significance, in reaches where temporal 290 

autocorrelation was present we calculated a modified Mann-Kendall test for trends that accounts 291 

for the autocorrelation structure of the data (Hamed and Rao, 1998).  292 

Interannual variability in riparian wetness for a given reach can be expected to be a 293 

function of (1) interannual climate variability and (2) changes in the amount and timing of 294 
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anthropogenic water withdrawals or water return flow, while spatial variability in these 295 

relationships can be expected to be a function of landscape characteristics. Temporal variability 296 

in climate and anthropogenic activities could occur both within each reach and upstream of each 297 

reach. Because annual (1984-2016) agricultural and irrigation data were not available for the 298 

entire time series, the influence of water withdrawals was estimated as the residual variance after 299 

modeling the interannual variability in riparian wetness attributable to climate.  300 

The NDWI anomaly values were related to climate variables for each riparian reach using 301 

random forest analysis. The random forest analyses were used to quantify the amount of 302 

variation in the NDWI anomalies explained by climate variables and to identify the frequency 303 

(importance) of specific climate variables in predicting NDWI anomalies. Random forest 304 

techniques use bootstrapping to employ hundreds of regression trees and make no prior 305 

assumptions about cause and effect relationships or correlations among variables (Hastie et al., 306 

2009). Random forest techniques are generally insensitive to multicollinearity; however, the 307 

inclusion of highly correlated variables can deflate both variable importance and the overall 308 

variation explained by the analysis, while the inclusion of many variables can make 309 

interpretation difficult and introduce noise (Murphy et al., 2010). We therefore implemented 310 

variable selection using the rfUtilities package in R (Murphy et al., 2010) before running random 311 

forest regressions for each riparian reach with the selected subset of climate variables. To model 312 

growing-season riparian NDWI anomalies we calculated 500 regression trees for each riparian 313 

reach. We did not restrict the number of nodes, model overfit was instead limited by setting the 314 

minimum sample size per node to 5. Because of the limited data points per riparian reach (n=33) 315 

model fit was assessed using out of bag (OOB) root mean squared error (RMSE, 70% of points 316 

used to train, 30% of points used to validate) using the randomForest package in the R statistical 317 

software (Liaw and Wiener, 2015). We found no increase in the OOB error as more trees were 318 

generated (i.e., up to 500 trees). Random forest regression residuals were then extracted and 319 

evaluated for temporal trends not attributable to climate variability. Temporal trends in the 320 

regression residuals were tested using the non-parametric MK test for trends. We again used the 321 

Durbin-Watson statistic to test for the presence of temporal autocorrelation in the NDWI 322 

anomaly-climate regression residual values of each riparian reach. If temporal autocorrelation 323 

was significant, the modified Mann-Kendall test for trends was used instead. 324 
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We note that we tested an alternative method in which data for all riparian reaches and 325 

years were combined in a single linear mixed model. This approach increased our sample size 326 

(33 years x 19 riparian reaches), but we found that the error in the regression, specifically the 327 

strength of the relationship between the predicted and actual NDWI anomalies, was uneven 328 

between riparian reaches, thereby decreasing our confidence in the analysis of trends in the 329 

residuals. This finding further supported our decision to run a random forest regression for each 330 

riparian reach.  331 

2.7 Ancillary Spatial Datasets 332 

Landscape characteristics such as topography, geology, and landcover may influence how 333 

riparian vegetation responds to climate variability over time and were therefore also considered. 334 

Between-group differences in landscape characteristics were calculated for riparian reaches that 335 

showed a temporal trend in riparian wetness relative to riparian reaches that showed no temporal 336 

trend in riparian wetness using the non-parametric Mann-Whitney-Wilcoxon Test (or the 337 

Wilcoxon rank sum test) (Cohen, 1988). Variability in topography was quantified as the (1) 338 

elevation coefficient of variation across each 10-digit hydrologic unit code (HUC-10) (Ascione 339 

et al., 2008), as well as the (2) Melton Ruggedness number, which is calculated as the maximum 340 

elevation minus the minimum elevation divided by the area of the hydrological unit (HUC10) 341 

(Melton, 1965), using the USGS National Elevation Dataset (NED) 10 m resolution (Gesch et 342 

al., 2002). The percent of the riparian reach’s within reach contributing area that was (1) 343 

evergreen forest, (2) herbaceous vegetation, (3) pasture, and (4) crop was included, as classified 344 

by the National Land Cover Database (NLCD) 2011 (Homer et al., 2015). Soil and geology 345 

characteristics were considered using the minimum water table depth (April-July), bedrock 346 

depth, and soil drainage characteristics, specifically the percent of each riparian reach’s 347 

contributing area that is well drained (excessively drained, somewhat excessively drained, well 348 

drained) and poorly drained (very poorly drained, poorly drained). These variables were derived 349 

from the National Resources Conservation Service’s Soil Survey Geographic (SSURGO) 350 

database to characterize infiltration capacity (Soil Survey Staff, 2018). Change in developed 351 

(built-up) land, including urban, residential, and commercial land uses was quantified using the 352 

“Historical built-up intensity layer (1810-2015, 5-year intervals)” (Leyk and Johannes, 2018). 353 

This dataset quantifies the sum of building areas of all structures per pixel, where pixel size is 354 
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250 m by 250 m. Change in built-up intensity was quantified as the change in the sum of 355 

building areas between 2015 and 1985 (m2) per river length (m).  356 

2.8 River Discharge 357 

Riparian corridors are interconnected with its adjacent rivers via longitudinal, lateral, and 358 

vertical fluxes of water (Fritz et al., 2018). To explore the potential relationship between riparian 359 

water storage and river discharge across the UMH Basin, we identified seven USGS stream 360 

gages within the basin with upstream contributing areas ranging between ~3,400 ha and ~25,000 361 

ha. The gages were variable in their position relative to flow regulators such as dams associated 362 

with lakes or reservoirs. The amount of flow regulation enforced by these flow regulators was 363 

unknown and therefore a major point of uncertainty. The Spearman correlation coefficient was 364 

calculated between the monthly river discharge, averaged to June-August, and the riparian 365 

NDWI anomalies for the co-located riparian reach or the riparian reach immediately adjacent to 366 

each gage. We note that a correlation can be indicative of a similar response of both variables to 367 

interannual water availability (e.g., precipitation) as well as potential movement of water across 368 

the river-upland interface. We also evaluated trends in river discharge over time (1984-2016) in 369 

growing-season (June, July, August), as well as autumn (September, October, and November) 370 

and winter (December, January, February) seasons using the MK test for trends. The temporal 371 

trends in river discharge were calculated only to compare with temporal trends in riparian 372 

wetness over the same period. We note that a full trend analysis in river discharge would require 373 

not only utilizing the entire record of river discharge available per gage, but also considering the 374 

potential impact of flow regulation via dams, as well as interannual variability in surface 375 

withdrawals for irrigation, which are closely regulated by Montana State Law (Montana DNRC, 376 

2015). 377 

 378 

3. Results 379 

3.1 Trends in Riparian Wetness 380 

A total of 15,785 ha (157.85 km2) of riparian vegetation was delineated along the major 381 

rivers (Fig. 1). River length within each riparian reach ranged from 21 km along the Gallatin 382 

River to 180 km along the Ruby River, and averaged 70 km in length (Table 2, Fig. 1). The total 383 

riparian area analyzed per reach ranged from 26 ha (289 Landsat pixels) along the Black Tail 384 

Deer River to 1771 ha (19,678 Landsat pixels) along the Madison River, and averaged 831 ha 385 
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(9,233 Landsat pixels, Table 2). The NDVI and NDWI averaged 0.45 and 0.22, respectively, 386 

across riparian reaches and years (Table 2). All 19 riparian reaches showed an average NDWI of 387 

<0.3 (Table 2), the threshold that is typically used to identify open water (Chatterjee et al., 2005; 388 

Chowdary et al., 2008; McFeeters, 2013).Temporal autocorrelation was found to be significant 389 

for the NDWI anomaly data over time in 3 of the 19 riparian reaches, but in all three cases, the 390 

autoregressive model (AR1) performed worse than the linear model, as evaluated by comparing 391 

Akaike Information Criterion (AICc) values (Hurvich and Tsai, 1989), suggesting that 392 

autoregressive models were not appropriate for this analysis (Table 3). For these three reaches, 393 

and three reaches for which the residuals were found to show temporal autocorrelation, the 394 

modified MK test for trends was used. 395 

When we tested for MK trends in growing-season (June-August) riparian wetness over 396 

time, 8 of the 19 riparian reaches showed a significant decline over time in growing-season 397 

NDWI anomalies (5 riparian reaches p<0.05, 3 riparian reaches p<0.1) (Table 3, Fig. 4). The 398 

BVHR3 and BVHR4 riparian reaches that tested positive for autocorrelation still showed a 399 

significant drying trend after using the modified MK test. Interannual variability in climate can 400 

be expected to explain a portion of the interannual variability in riparian wetness. Across all 19 401 

reaches, climate variables explained 23 to 69% (averaged 47%) of the interannual variability in 402 

riparian NDWI anomalies (Table 3). However, basin-wide, the climate variables did not show a 403 

temporal trend over same period (1984-2016), apart from the VPD maximum (summer) which 404 

showed an increasing trend (p<0.1) (Table 4). Drought indices, in particular the PDSI (summer, 405 

selected in 15 regressions and annual, selected in 13 regressions), but also the Palmer Z-index 406 

(annual and spring both selected in 9 regressions), as well as annual precipitation (selected in 11 407 

regressions) were the variables most frequently selected for inclusion in the random forest 408 

analyses (Table 4).  409 

For the eight riparian reaches that showed a temporal trend in NDWI anomalies (Figure 410 

4a) the NDWI anomaly-climate regression residuals also showed a significant negative trend 411 

over time, indicating that declines in riparian wetness cannot be attributed solely to climate 412 

variability (7 riparian reaches p<0.05, 1 riparian reach p<0.1, Table 3, Fig. 4b). One additional 413 

riparian reach along the Jefferson River (JR3) did not show a significant trend in NDWI 414 

anomalies but did show a significant negative trend in the NDWI anomaly-climate regression 415 

residuals (p<0.05, Table 3, Fig. 4). The riparian reach BVHR1 also showed a significant negative 416 
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trend in the NDWI anomaly-climate regression residuals when tested using the modified MK 417 

test. Data for two of the riparian reaches at the basin outlet (JR1, GR1) are shown in Fig. 5 and 418 

Fig. 6, respectively. Both show a decline in NDWI anomalies over time, with the slope of the 419 

relationship steepening after the removal of the climate component (Fig. 5 and 6). 420 

3.2 Trends in Agriculture and Water Withdrawals  421 

Agriculture across the UMH Basin is spatially distributed along the major rivers (Fig. 422 

2a). Using the endpoint (1985/86 and 2016/17) agriculture dataset, the largest amounts of 423 

agriculture occurred along the Gallatin River, Beaverhead River, Ruby River, and the most 424 

upstream reach of the Big Hole River (Fig. 7a). The effect of water withdrawals can be expected 425 

to accumulate downstream, therefore the total hectares of upstream agriculture was highest along 426 

the Beaverhead River, Jefferson River and downstream portion of the Gallatin River (Fig. 7b).  427 

Over the study period the total hectares of land in active agricultural production increased 428 

by 10.5% (Table 5). The largest increases in total hectares were observed along the Gallatin and 429 

Jefferson Rivers, while minor declines in total hectares were observed across the most upstream 430 

portion of the basin (Fig. 7 and 8). We also observed changes in irrigation methods. The basin-431 

wide area irrigated using center pivot increased from 8961 ha (9% of irrigated area) to 54,295 ha 432 

(50% of irrigated area), while non-center pivot (gravity, non-center pivot sprinklers) decreased 433 

from 89,049 ha (91% of irrigated area) to 54,009 ha (50% of irrigated area) (Table 5). Aerial 434 

imagery shows examples of the conversion to center pivot irrigation between 1985 and 2017 435 

(Fig. 8). The percent change in the proportion of agricultural land area using center pivot 436 

irrigation ranged from 0% to +58% across the reaches, with the biggest conversions along the 437 

Jefferson, Beaverhead, Madison and Black Tail Deer Rivers (Table 5).  438 

The conversion of irrigation methods could help explain the drying trends. Riparian 439 

reaches that saw a significant decline in riparian wetness, even after accounting for variability 440 

explained by climate, showed several differences relative to riparian reaches where no such 441 

temporal trend was observed. First these drying reaches showed a greater average increase 442 

(within and upstream from the reach) in center pivot irrigation area (+11,459 ha on average 443 

relative to +5,634 ha) over the period (Mann-Whitney-Wilcoxon, p<0.05) (Table 5). These 444 

reaches also showed a greater reach-scale change in the fraction center pivot irrigation (+46% 445 

average relative to +32%, p<0.1) as well as a greater change in the fraction of center pivot 446 

irrigation across a reach’s contributing area (42% average relative to 27%, p<0.1) (Table 5). 447 
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The response of a riparian reach to changes in water withdrawals and irrigation method 448 

may also depend on other landscape characteristics such as soil, geology and topography. 449 

Riparian reaches that showed a significant non-climate related drying over time showed a higher 450 

percent well-drained soils (p<0.05) and higher Melton Ruggedness number (greater range in 451 

elevation per area, p<0.05, Table 6). In addition, although irrigation dominates water 452 

consumption across the basin, we note that development has increased around Bozeman, along 453 

the East Gallatin River, over the study period, while minimal increases in development were 454 

found elsewhere (Fig. 7F).  455 

The examples in Fig. 5 and Fig. 6 fit the pattern of a shift towards center pivot irrigation 456 

and a corresponding drying trend in riparian wetness. Other reaches, however, showed less 457 

intuitive patterns. For instance, all reaches that showed a significant drying trend also showed a 458 

substantial increase in the fraction of center pivot agriculture, ranging from 35% to 64%, except 459 

BVHR4, which showed a significant drying trend without an associated increase in center pivot 460 

agriculture (a 24% increase in center pivot agriculture, but the lowest total ha of center pivot 461 

irrigation in 2016/17 of any riparian reach). The NDWI anomalies and NDWI anomalies-climate 462 

residuals shown in Fig. 9a and 9b indicate that this stretch of the Beaverhead River (BVHR4), 463 

which is immediately downstream from the Clark Canyon Reservoir, experienced a steep 464 

decrease in riparian wetness in 2002, with no visible trend before or after 2002. Such a clear 465 

steep decrease, however, was not observed in the closest stream gage (Station ID: 06016000) 466 

downstream of this riparian reach. In contrast, one riparian reach on the Beaverhead River 467 

further downstream (BVHR2) showed a 54% increase in the fraction of center pivot agriculture, 468 

as well as a decrease in the total hectares of irrigated agriculture over the study period (-48.5 ha 469 

km-1 river length), with no drying trend (Fig. 9c and 9d), even though reaches upstream and 470 

downstream of BVHR2 show significant drying trends. With the landscape characteristics 471 

considered we were again unable to determine why this riparian reach was more resilient than 472 

other riparian reaches of this river. 473 

3.3 Trends in River Discharge 474 

Growing-season riparian NDWI anomalies were significantly correlated (p<0.05) with 475 

growing-season river discharge at all seven USGS stream gages analyzed (Spearman correlation 476 

coefficient ranged between 0.55 along Beaverhead River and Big Hole River and 0.82 along the 477 

Jefferson River) (Table 7). In addition, all gages, except the Beaverhead River at Twin Bridges 478 
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gage, were significantly correlated with spring snowfall (Spearman p-value <0.05), the climate 479 

variable that showed the highest correlation on average between summer discharge and the 480 

climate variables considered in the analysis. Unlike the riparian reaches, we saw no temporal 481 

trend (1984-2016) in the growing-season river discharge for any of the seven gages evaluated. 482 

However, because the watershed is a snowmelt-driven system, we also tested if trends were 483 

restricted to the low-flow seasons (autumn and winter). During the autumn months (September, 484 

October, November) we observed a decline in river discharge at the Madison River (p<0.05) and 485 

Gallatin River (p<0.1) gages and an increase at the Big Hole River gage near Wisdom (p<0.05), 486 

which is near the upstream end of the Big Hole River (Table 7). During the winter months 487 

(December, January, February) we observed a decline in river discharge at the Madison river 488 

gage (p<0.05) and an increase in river discharge at the Beaverhead River near the Twin Bridges 489 

gage (p<0.1) (Table 7). 490 

 491 

4. Discussion 492 

Across the western U.S., water withdrawals, diversions and impoundments associated 493 

with agriculture have contributed to riparian degradation (Goodwin et al., 1997; Klemas, 2014). 494 

In examining the multi-decadal trends in riparian wetness for a total of 158 km2 of riparian 495 

ecosystem across the UMH Basin, we found long-term, significant drying along 8 of the 19 496 

riparian reaches in this basin, including all three of the riparian reaches (the Jefferson, Madison 497 

and Gallatin Rivers) at the confluence forming the Missouri River. In contrast, we did not 498 

observe trends in growing-season river discharge or climate variables over the same period. 499 

Shifts in land use, therefore, is a potential driver of riparian condition across the UMH basin. 500 

Water withdrawals across the UMH basin are almost entirely surface-water (99%) and for 501 

irrigation (99%) (USGS 1988; Dieter et al., 2018). We found only a moderate increase in total 502 

irrigated area over the period (+10.5%). An increase in irrigated area is consistent with state-503 

wide estimates over the same time period. The USDA Farm and Ranch Irrigation Surveys 504 

(FRIS), for instance, documented an increase in the area of irrigated agriculture across Montana 505 

of 18.9% between 1984 and 2013 (USDA, 1984, 2014). The persistence of drying trends in 506 

riparian vegetation after accounting for the influence of climate variability, and the correlation of 507 

riparian drying with basin-wide changes in irrigation practices, suggest that the complexities of 508 
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agricultural water use and irrigation practices are likely to be contributing factors to the drying of 509 

riparian areas in this basin. 510 

  One source of uncertainty in our analysis is that at the Landsat scale (30 m) we were 511 

unable to confidently distinguish gravity-fed irrigation from non-center pivot sprinkler irrigation, 512 

methods of irrigation that can be expected to show different rates of water efficiency. This source 513 

of uncertainty made it difficult to reach definitive conclusions about reach-scale changes in the 514 

consumptive water use using our data alone. However, our assumption of a transition away from 515 

gravity-fed irrigation and towards center-pivot irrigation is consistent with other comparable 516 

sources of data. Across Montana the FRIS surveys (1984 and 2013) documented an increase in 517 

the fraction irrigated with center pivot from 9% to 30%, a decrease in the fraction irrigated with 518 

gravity-fed irrigation from 77% to 57%, and a minimal change (<3%) in the fraction of 519 

agriculture irrigated with non-center pivot sprinklers (USDA, 1985, 2014). Across the UMH 520 

Basin, the Montana Department of Revenue’s Final Land Unit Classification (FLU) surveys 521 

documented a 17% increase in center-pivot irrigation and a corresponding decrease in both 522 

sprinkler and gravity-fed irrigation between 2010 and 2017. Despite these ancillary datasets, 523 

however, it is possible that shifts from gravity-fed irrigation to non-center pivot sprinkler 524 

irrigation, have also contributed to changes in return flow and riparian condition. Using the 525 

irrigation data generated in this study, the shift in irrigation practices was concentrated along the 526 

Beaverhead, Jefferson and Gallatin Rivers, all of which showed statistically significant drying in 527 

at least portions of their riparian reaches. Correspondingly, the Big Hole River sub-watershed, 528 

which is dominated by gravity-fed irrigated hay and pasture (Montana DNRC, 2014), showed the 529 

fewest hectares converted to center pivot irrigation relative to other sub-watersheds over the 530 

study period, with no temporal trends in riparian wetness.  531 

Shifts away from gravity-fed irrigation have been observed across the United States 532 

(Schaible, 2017). Advances in irrigation technology allow for water to be applied at the most 533 

appropriate timing in plant root zones to increase crop consumptive use of water and therefore, 534 

crop yields (Falkenmark and Lannerstad, 2005; Ward and Pulido-Velazquez, 2008). However, 535 

despite the shift to more efficient irrigation methods, the total water applied to irrigated fields 536 

across the U.S. remained largely stable over the same period (Schaible, 2017). This pattern may 537 

indicate that local water savings do not necessarily translate to the watershed scale. Increases in 538 

crop yields are linearly correlated with increases in evapotranspiration (Steduto et al., 2012), so 539 
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that the reduction in water application is often off-set by increases in evapotranspiration, 540 

specifically crop transpiration (Ward and Pulido-Velazquez, 2008; Grafton et al., 2018). A 541 

schematic of the potential impact of irrigation method on water cycling is shown in Fig. 10. 542 

Further, proposed water savings in per field water applications often fail to account for farm-543 

level decisions and incentives (Ward and Pulido-Velazquez, 2008; Perry et al., 2017). Within the 544 

current water rights framework, more efficient water use can incentivize farmers to make 545 

changes to crop choices and crop rotation patterns, or to increase the total area irrigated or the 546 

frequency of irrigation so that their water rights and usage are maintained and maximized 547 

(Pfeiffer and Lin, 2014; Grafton et al., 2018). If there is a local reduction in water usage 548 

downstream water users can more fully exercise their water rights so that there is no net 549 

reduction in water usage at the watershed scale (Ward and Pulido-Velazquez, 2008; Perry et al., 550 

2017).  551 

Riparian and river condition for a given reach can be expected to be a function of its 552 

upstream river network, including water added and removed from upstream reaches, as well as 553 

upstream land uses (Ver Hoef and Peterson, 2012; Fritz et al., 2018). Biotic integrity, for 554 

example, has been shown to depend on upstream conditions (Schofield et al., 2018), which can 555 

extend tens of kilometers up the channel network (Van Sickle and Johnson, 2008). In 556 

consideration of this, the climate variables used to model temporal variability in riparian wetness 557 

were calculated as a function of each reach’s total upstream contributing area. Similarly, we 558 

considered upstream accumulated changes in irrigation to help interpret trends in the NDWI 559 

anomaly-climate regression residuals. For instance, the total upstream increase in hectares of 560 

center pivot irrigation over the period was found to be significantly different between reaches 561 

that showed a drying trend and those that did not. Landscape characteristics can also inform how 562 

a riparian ecosystem responds to changes in reach- or basin-scale hydrology. Well-drained soils 563 

and a higher Melton Ruggedness number, characteristics significantly associated with the reach-564 

scale riparian drying trends, can be expected to facilitate the return flow of excess irrigation 565 

water to the riparian corridor. These findings suggest that both reach-scale and upstream 566 

characteristics can influence how riparian vegetation will respond to changes in climate and land 567 

use. 568 

While the presence of riparian drying trends in the NDWI anomaly-climate residuals 569 

indicated that the observed drying trends were not solely attributable to climate, climate 570 
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variability was a significant predictor of the interannual variability in riparian wetness (e.g., Fig. 571 

5 and Fig. 6), a finding documented in other geographic regions as well (e.g., Fu and Burgher, 572 

2015; Nguyen et al., 2015; Huntington et al., 2016). Drought events, and the resilience of river 573 

and riparian ecosystems to these events, are a significant concern for stakeholders in the Upper 574 

Missouri Headwaters Basin (Montana DNRC, 2015; McEvoy et al., 2018).  Evaluation of water 575 

rights and corresponding water withdrawals under drought conditions was beyond the scope of 576 

this study, however, our findings suggest that the conversion to center pivot irrigation could 577 

amplify the impacts of reduced precipitation on riparian areas. Additionally, an increasing 578 

summer VPD could further increase crop water losses to evapotranspiration (Massmann et al., 579 

2018), potentially exacerbating both the hydrological effect and salinization effect of irrigation 580 

conversion (Singh, 2015). We note, however, that climate and river discharge trends were 581 

quantified only to be compared with trends observed in riparian wetness over the same period 582 

(1984-2016). Because only partial climate and river discharge records were used, our findings 583 

regarding the presence or absence of trends in the climate and river discharge data should be 584 

interpreted with caution.   585 

Despite only partial discharge records being utilized, one interesting finding was that 586 

over the same period a drying trend in riparian areas did not necessarily translate into a trend in 587 

river discharge. We can speculate that because the rivers are snow-melt dominated (Markstrom 588 

et al., 2016; Cross et al., 2017), during the summer months irrigation return flow may have an 589 

impact on riparian areas but could represent a relatively small percent of summer flows. A 590 

comprehensive water budget or hydrological modeling approach, however, would be needed to 591 

quantify this, and specifically to determine how anthropogenic activities may have a differential 592 

impact on riparian wetness relative to river discharge. Additionally, rivers across the basin vary 593 

in the amount of flow regulation from dams. For example, the Big Hole River and Gallatin 594 

Rivers are relatively unregulated while the Madison River, Beaverhead River, Ruby River and 595 

Red Rock River are all regulated by large dams. The reservoirs above dams retain water during 596 

the spring runoff, reducing peak flows, and release more water in the autumn, changing a river’s 597 

natural flow regime (Montana DNRC, 2014). It is possible that shifts in dam management and 598 

corresponding changes in flow regulation could contribute to trends in riparian wetness. 599 

However, river discharge (JJA) was significantly correlated with spring snowfall at eight of nine 600 
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gages, suggesting that even with seasonal flow regulation, discharge along dammed rivers still 601 

typically represents interannual variability in climate.  602 

Efforts to characterize the factors influencing variability and trends in riparian wetness 603 

are critical to maintain and restore riparian functionality. Healthy floodplains and riparian areas 604 

serve a number of functions including slowing runoff, promoting local groundwater recharge, 605 

and quickening the recovery of local groundwater storage post-drought (Montana DNRC, 2014). 606 

Spectral indices calculated from satellite imagery have been successfully used to monitor the 607 

response of riparian vegetation to variability in channel morphology (Henshaw et al., 2013; 608 

Hamdan and Myint, 2015), as well as changes induced by the installation of in-stream restoration 609 

structures (Hausner et al. 2018; Vanderhoof and Burt, 2018). While Landsat has been commonly 610 

used to examine multi-decadal trends in vegetation condition (Goetz et al., 2005; McManus et 611 

al., 2012; White et al., 2017), because of the narrow, linear footprint of riparian ecosystems 612 

within human-influenced landscapes, efforts to apply Landsat time-series analysis to riparian 613 

systems have been limited (e.g., Henshaw et al., 2013; Hamden and Myint, 2015; Nguyen et al., 614 

2015). Regional-scale Landsat efforts have tended to focus on changes to riparian extent rather 615 

than riparian trends in greenness or wetness (e.g., Jones et al., 2010; Macfarlane et al., 2017). 616 

Along river systems, however, the moderate resolution of Landsat can misrepresent riparian 617 

edges or fail to detect portions of the riparian corridor that are narrower than Landsat’s minimum 618 

mapping unit, potentially influencing the calculated spectral patterns. In our analysis we 619 

minimized such errors by (1) restricting the analysis to rivers with riparian corridors large 620 

enough to be measured using Landsat, and (2) using a consistent riparian area extent across the 621 

time series. It is clear, however, that finer spatial resolution sources of imagery will be critical 622 

for riparian corridors too narrow to be monitored with Landsat imagery. To this end, data sources 623 

with increased spatial resolution are rapidly becoming more available and useful for monitoring 624 

water resources (e.g., Sentinel-2, CubeSats) (e.g., Vande Kamp et al., 2013; Gärtner et al., 2016; 625 

Cooley et al., 2017; Yang et al., 2017), but lack the multi-decadal data records provided by 626 

Landsat. This means that for larger riparian corridors, Landsat spectral indices remain a critical 627 

data source that can be used to characterize trends in riparian wetness as well as potentially 628 

quantify the impact of land use changes, including long-term shifts in irrigation methods, on 629 

riparian vegetation.  630 

 631 
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5. Conclusion 632 

Riparian corridors provide valuable ecosystem functions including storing water, 633 

mitigating nutrients, pollutants, and sediments, providing wildlife corridors, and influencing 634 

water temperature (Vivoni et al., 2006; Lees and Peres, 2008; Isaak et al., 2012). A drying trend 635 

in riparian areas across the Upper Missouri Headwaters Basin could lessen the effectiveness of 636 

these functions and shift the systems towards more drought-tolerant plant species that are less 637 

adapted to highly variable flow regimes (Capon, 2013; Catford et al., 2014). Although promoted 638 

as a more water-efficient approach, several recent studies have demonstrated a lack of 639 

catchment-scale water savings after farmers transitioned to center pivot irrigation (Perry et al., 640 

2017; Grafton et al., 2018). We were able to pair a Landsat time series analysis with climate and 641 

agricultural data to document a statistically significant drying trend, not explained by climate 642 

variability, along nearly half (42%) of riparian reaches in the Upper Missouri Headwaters Basin. 643 

The riparian reaches experiencing drying trends tended to have more upstream agriculture and 644 

greater shifts toward center pivot irrigation, but the correlations between agricultural activities 645 

and riparian wetness were imperfect, suggesting that the upstream river network, as well as other 646 

reach-scale characteristics such as the riparian species or the geology/soil characteristics, also 647 

influence the response of a riparian reach to changes in water withdrawal. In addition, the drying 648 

trends in riparian ecosystems were not observed in the snow-melt driven river discharge (JJA), a 649 

finding that should be explored further using hydrological models. Maintaining and improving 650 

riparian functionality across watersheds dominated by agricultural activity will require not only 651 

more efforts to track temporal trends in riparian vegetation, but also more efforts to separate out 652 

the relative influence of climate and anthropogenic activities.  653 
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 967 

Tables 968 

Table 1. Landsat images used to map agricultural extent. The Palmer Hydrological Drought 969 
Index (PHDI) values were provided for the month of July. The percent was calculated based on 970 
the values that occurred between 1984 and 2017. TM: Thematic Mapper, OLI: Operational Land 971 

Imager 972 

Date Path/Row Sensor PHDI (%) 

6-Aug-85 p39r28 TM -2.85 (12.6) 

6-Aug-85 p39r29 TM -2.85 (12.6) 

31-Jul-86 p40r28 TM 0.33 (43.0) 

31-Jul-86 p40r29 TM 0.33 (43.0) 

2-Aug-16 p40r28 OLI -2.22 (19.3) 

2-Aug-16 p40r29 OLI -2.22 (19.3) 

29-Jul-17 p39r28 OLI -1.03 (35.2) 

29-Jul-17 p39r29 OLI -1.03 (35.2) 

 973 
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Table 2. Characteristics of each riparian reach considered including river length, riparian area analyzed, riparian reach contributing 974 
area, and average (1984-2016) growing-season (June, July, August, JJA) Normalized Difference Wetness Index (NDWI) and 975 

Normalized Difference Vegetation Index (NDVI). Standard error shown in parentheses. 976 

Reach 

Code 
River 

River 

Length 

(km) 

Riparian 

Area 

(ha) 

Reach 

Contributing 

Area (km2) 

Total 

Upstream 

Contributing 

Area (km2) 

NDWI 

(JJA) 
NDVI (JJA) 

JR1 Jefferson River 55.4 1190 1021 24711 0.17 (0.01) 0.38 (0.01) 

JR2 Jefferson River 25 745 395 21233 0.22 (0.01) 0.41 (0.01) 

JR3 Jefferson River 48.9 1080 1348 20839 0.22 (0.01) 0.41 (0.01) 

BVHR1 Beaverhead River 47.9 805 377 8867 0.20 (0.01) 0.47 (0.01) 

BVHR2 Beaverhead River 34.3 352 345 8491 0.26 (0.01) 0.51 (0.01) 

BVHR3 Beaverhead River 24 218 544 6774 0.21 (0.01) 0.48 (0.01) 

BVHR4 Beaverhead River 93.8 160 2236 6230 0.26 (0.01) 0.50 (0.01) 

RRR Red Rock River 158 410 3993 3993 0.27 (0.01) 0.50 (0.01) 

BTDR Black Tail Deer River 77 26 1373 1373 0.22 (0.01) 0.45 (0.01) 

RR  Ruby River 180.2 813 2726 2726 0.27 (0.01) 0.49 (0.01) 

BHR1 Big Hole River 29.9 800 317 7898 0.20 (0.01) 0.43 (0.01) 

BHR2 Big Hole River 64 850 1838 7581 0.23 (0.01) 0.42 (0.01) 

BHR3 Big Hole River 104.6 1623 3259 5743 0.12 (0.01) 0.37 (0.01) 

BHR4 Big Hole River 75.3 1717 2484 2484 0.17 (0.01) 0.49 (0.01) 

MR1 Madison River 53.7 1072 886 8231 0.22 (0.01) 0.40 (0.01) 

MR2 Madison River 108 1771 7345 7345 0.22 (0.01) 0.38 (0.01) 

GR1 Gallatin River 20.9 495 310 3427 0.23 (0.01) 0.45 (0.01) 

GR2 Gallatin River 54.4 1058 1660 1660 0.29 (0.01) 0.53 (0.01) 

EGR East Gallatin River 73 602 1457 1457 0.24 (0.01) 0.52 (0.01) 

 977 
  978 
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Table 3. Temporal trends in per reach riparian Normalized Difference Wetness Index (NDWI, June, July, August) anomalies using the 979 
Mann-Kendall (MK) test for trends. The Durbin-Watson (DW) statistic was used to test for the presence of temporal autocorrelation. 980 

NDWI anomalies were modeled against climate variables using random forest regressions. The temporal trends in the random forest 981 
regression residuals were evaluated using MK test for trends. A modification of the MK (Hamed and Rao, 1998) was used for the 982 

reaches where the DW statistic was significant. RMSE: root mean square error, *: p<0.1, **: p<0.05. 983 

Reach 

Code 
River 

NDWI 

anomaly 

DW statistic 

NDWI 

anomaly 

MK tau 

Random 

forest R2 

value 

Random 

Forest 

RMSE 

Residual 

DW 

statistics 

Residual 

MK tau 

JR1 Jefferson River 1.56 -0.22* 0.65** 0.02 1.74 -0.28** 

JR2 Jefferson River 2.13 -0.10 0.48** 0.03 2.58 -0.15 

JR3 Jefferson River 1.75 -0.20 0.66** 0.02 2.13 -0.27** 

BVHR1 Beaverhead River 1.51 -0.35** 0.53** 0.03 1.36** -0.27** 

BVHR2 Beaverhead River 1.77 -0.08 0.56** 0.03 1.84 -0.03 

BVHR3 Beaverhead River 1.78 -0.46** 0.43** 0.05 2.35 -0.38** 

BVHR4 Beaverhead River 1.40** -0.36** 0.47** 0.04 1.51 -0.36** 

RRR Red Rock River 1.63 -0.20 0.32** 0.03 1.61 -0.16 

BTDR Black Tail Deer River 1.57 -0.35** 0.48** 0.04 1.87 -0.30** 

RR  Ruby River 1.84 -0.21* 0.34** 0.03 2.05 -0.21* 

BHR1 Big Hole River 1.64 -0.16 0.64** 0.02 1.68 -0.15 

BHR2 Big Hole River 2.33 0.06 0.47** 0.02 2.05 0.16 

BHR3 Big Hole River 2.01 -0.06 0.69** 0.02 2.37 -0.03 

BHR4 Big Hole River 2.13 -0.02 0.28** 0.05 2.88** -0.08 

MR1 Madison River 2.18 -0.23* 0.54** 0.02 2.32 -0.26** 

MR2 Madison River 2.47 -0.10 0.58** 0.02 2.40 -0.05 

GR1 Gallatin River 2.02 -0.38** 0.37** 0.03 2.23 -0.53** 

GR2 Gallatin River 1.97 -0.16 0.23** 0.02 1.68 -0.10 

EGR East Gallatin River 2.68* -0.11 0.46** 0.02 2.69* -0.16 

 984 
  985 
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Table 4. Climate variables considered in the analysis to represent interannual variability in conditions. The 25th, 50th, and 75th quartile 986 
are shown to indicate the variability in the per-riparian reach values included in the random forest (RF) regressions (n=19). The 987 

frequency of variable selection for inclusion in the random forest regressions is also shown. When tested at a basin-scale for the time 988 
period of 1984-2016, no climate variables showed a significant temporal trend except summer vapor pressure deficit (* = p<0.1). 989 

PRISM: Parameter-elevation Regressions on Independent Slopes Model, SNOTEL: snow telemetry, NOAA: National Oceanic and 990 
Atmospheric Administration, summer: (June, July, August), spring: (March, April, May)   991 

Climate Variables Source 
25th 

quartile 

50th 

quartile 

75th 

quartile 

Temporal 

Trend (tau) 

Frequency 

selected for 

inclusion in RF 

regressions 

Annual precipitation (mm) PRISM 456.1 527.1 620.4 -0.03 11 

1-year lagged annual precipitation (mm) PRISM 458.9 532.7 625.4 -0.03 2 

Precipitation (spring) (mm) PRISM 48.1 56.2 68.0 -0.004 1 

Precipitation (summer) (mm) PRISM 32.7 43.8 58.1 -0.13 4 

Annual snowfall (snow water equivalent (SWE), mm) SNOTEL 938.6 1113.4 1421.0 -0.18 - 0.16 1 

Spring snowfall (March-June) (SWE, mm) SNOTEL 169.3 264.7 402.3 -0.18 - 0.15 7 

Maximum temperature (spring) (°C) PRISM 9.7 11.1 12.4 -0.03 3 

Maximum temperature (summer) (°C) PRISM 23.4 24.6 25.8 -0.03 1 

Minimum temperature (spring) (°C) PRISM -4.2 -3.1 -2.0 -0.004 0 

Minimum temperature (summer) (°C) PRISM 5.3 6.4 7.5 -0.13 0 

Vapor Pressure Deficit maximum (spring) PRISM 7.1 8.1 9.0 0.07 8 

Vapor Pressure Deficit maximum (summer) PRISM 18.4 20.5 22.7 0.21* 6 

Palmer Z-Index (annual) NOAA -0.5 -0.3 0.3 -0.07 9 

Palmer Drought Severity Index (annual) NOAA -1.6 -0.2 0.8 -0.11 13 

Palmer Z-Index (spring) NOAA -0.9 0.2 0.8 0.02 9 

Palmer Drought Severity Index (spring) NOAA -1.8 -0.3 1.1 -0.05 8 

Palmer Z-Index (summer) NOAA -1.5 -0.4 1.0 -0.15 5 

Palmer Drought Severity Index (summer) NOAA -2.4 -0.5 1.3 -0.14 15 

 992 

  993 
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Table 5. The per reach abundance of irrigated agriculture (Ir) at the two ends of the time period considered (1985/86 and 2016/17). 994 
Irrigation method was identified as center pivot agriculture or non-center pivot agriculture based on field shape. Accumulated 995 

(accum.) ag is defined as the summed area of agriculture across the total contributing area of each reach (e.g., GR1 = agriculture area 996 
in GR1, GR2 and EGR). Riparian reaches that showed a significant non-climate related drying over time are shaded gray. ‡: 997 

headwater reach, *: p<0.1, **: p<0.05. 998 

 
Reach 

Code 

River 

Center 

Pivot Ir 

(1985/86, 

ha)  

Non-

Center 

Pivot Ir 

(1985/86, 

ha) 

Center 

Pivot Ir 

(2016/17, 

ha)  

Non-

Center 

Pivot Ir 

(2016/17, 

ha) 

Change in 

Total Ir 

(ha) 

Change 

in Total 

Accum. 

Ir (ha) 

Reach Change 

in Percent 

Center Pivot Ir 

(%) 

Accum. 

Change in 

Percent 

Center Pivot 

Ir (%) 

Accum. 

Increase in 

Center 

Pivot Ir 

(ha)   

JR1 Jefferson River 571 2365 3444 1027 1535 7188 58 41 31447 

JR2 Jefferson River 539 2544 2344 1301 562 5653 47 39.8 28574 

JR3 Jefferson River 601 2986 3093 1998 1504 5091 44 39.4 26769 

BVHR1 Beaverhead River 727 9034 5631 2226 -1904 -3054 64 51.3 17527 

BVHR2 Beaverhead River 196 11794 5794 4531 -1665 -1150 54 47.5 12623 

BVHR3 Beaverhead River 810 3254 3387 1772 1095 312 46 38.9 4740 

BVHR4‡ Beaverhead River 0 1420 330 1039 -51 -783 24 32 2163 

RRR‡ Red Rock River 535 5754 2368 3189 -732 -732 34 34 1833 

BTDR‡ 
Black Tail Deer 

River 
1066 3138 3351 1056 203 203 51 51 2285 

RR‡  Ruby River 540 10414 4852 5739 -363 -363 41 41 4312 

BHR1 Big Hole River 215 1780 768 1029 -198 1581 32 13.7 2438 

BHR2 Big Hole River 0 3992 1854 3789 1651 1779 33 11.8 1885 

BHR3 Big Hole River 52 3174 83 2515 -628 128 2 0.3 31 

BHR4 Big Hole River 0 6868 0 7624 756 756 0 0 0 

MR1 Madison River 909 1445 2848 1020 1514 196 35 50.1 4785 

MR2‡ Madison River 1282 5620 4128 1456 -1318 -1318 55 55 2846 

GR1 Gallatin River 441 1957 3438 1494 2534 8333 51 37.7 9102 

GR2‡ Gallatin River 221 8143 4407 8133 4176 4176 33 33 4186 

EGR‡ East Gallatin River 256 3367 2175 3071 1623 1623 34 34 1919 

  
Total 

8961 

(9%) 

89049 

(91%) 

54295 

(50%) 

54009 

(50%)  

10294 

(+10.5%) 
        

Mann-Whitney-Wilcoxon p-

value 
        0.66 0.97 0.09* 0.07* 0.04** 
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Table 6. Characteristics of riparian reach contributing areas including median water table depth (m), median bedrock depth (m), 999 
percent well-drained (or very well drained) soil, percent poorly (or very poorly) drained soil, elevation coefficient of variation (CV), 1000 

and Melton Ruggedness number. The Mann-Whitney-Wilcoxon test was used to calculate a measure of the difference (or lack of) 1001 
between riparian reaches that showed a significant non-climate related drying over time (shaded gray), and riparian reaches that 1002 

showed no such pattern, with two asterisks indicating a significant difference (p<0.05) between the two groups. 1003 

Reach 

Code 
River 

Water 

Table 

Depth 

(median) 

Bed 

Rock 

Depth 

(median) 

Well 

Drained 

(%) 

Poorly 

Drained 

(%) 

Elevation 

CV 

Melton 

Ruggedness 

Number 

JR1 Jefferson River 84 46 92 3 20 2.0 

JR2 Jefferson River 54 41 87 4 13 3.0 

JR3 Jefferson River 54 36 89 2 22 1.4 

BVHR1 Beaverhead River 54 41 91 3 12 3.5 

BVHR2 Beaverhead River 61 41 81 6 7 2.3 

BVHR3 Beaverhead River 45 46 92 2 15 3.0 

BVHR4 Beaverhead River 80 46 96 2 10 3.4 

RRR Red Rock River 15 46 90 4 13 1.2 

BTDR Black Tail Deer River 84 46 91 1 17 3.7 

RR  Ruby River 54 48 93 3 20 1.9 

BHR1 Big Hole River 54 41 99 0 10 3.1 

BHR2 Big Hole River 31 41 93 2 18 1.0 

BHR3 Big Hole River 15 38 91 4 13 0.8 

BHR4 Big Hole River 15 40 86 5 10 1.0 

MR1 Madison River 46 48 92 4 16 2.2 

MR2 Madison River 54 64 60 2 15 0.3 

GR1 Gallatin River 46 41 92 3 11 3.0 

GR2 Gallatin River 84 48 84 3 24 1.3 

EGR East Gallatin River 84 41 83 3 21 1.3 

Mann-Whitney-Wilcoxon p-value 0.45 0.37 0.04** 0.21 0.51 0.02** 

 1004 

  1005 
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Table 7. River discharge characteristics for the U.S. Geological Survey (USGS) gages used in the analysis. Summer (June, July, 1006 
August) discharge was correlated with the summer Normalized Difference Wetness Index (NDWI) and spring snowfall (March-June) 1007 

for the riparian reach adjacent to each gage, using the Spearman correlation. Temporal trends were quantified using the Mann-Kendall 1008 
test for trends. Percent discharge consumed and diverted is from the 2014 Water Plan (MT DNRC, 2014). JJA: June, July, August, 1009 

SON: September, October, November, DJF: December, January, February, D: dam present at gage, D-US: dam upstream, ND: no dam 1010 
or minimal flow regulation, na: data not available, SE: standard error, *: p<0.1, **: p<0.05.  1011 

     Seasonal mean river discharge (m3 sec-1; ±SE) 

Station ID USGS Gage Name 
Reach 

Code 

Contributing 

Area (ha) 

Consumed 

(%) / Diverted 

but not 

consumed (%) 

Summer (JJA) Autumn (SON) Winter (DJF) 

6036650 Jefferson River near Three Forks, MT JR1 24692 6% / 20% 68.3 (8.3) 35.0 (2.5) 33.0 (1.5) 

6018500 Beaverhead River near Twin Bridges, MT BVHR1 8490 29% / 69% 5.7 (1.7) 9.0 (1.2) 8.8 (0.7) 

6025500 Big Hole River near Melrose, MT BHR2 7581 13% / 43% 44.3 (4.5) 11.4 (0.5) 10.1 (0.4) 

6041000 Madison River below Ennis Lake near McAllister, MT MR2 7132 3% / 11% 56.9 (3.4) 44.5 (1.5) 38.5 (0.7) 

6016000 Beaverhead River at Barretts, MT BVHR3 6230  20.3 (1.5) 8.3 (1.2) na 

6052500 Gallatin River at Logan, MT GR1 3426 13% / 37% 40.7 (3.6) 18.9 (0.7) 18.6 (0.4) 

6024450 Big Hole River below Big Lake Creek at Wisdom, MT BHR4 2058  7.9 (1.3) 1.6 (0.1) na 

  Correlation coefficient (r)  Seasonal temporal trends (tau) 

Station ID USGS Gage Name 
NDWI 

(JJA) 

Snowfall 

(March-

June) 

Flow 

Regulation 

Summer       

(JJA) 

Autumn         

(SON) 

Winter          

(DJF) 

6036650 Jefferson River near Three Forks, MT 0.82** 0.89** D-US 0.02 -0.16 -0.07 

6018500 Beaverhead River near Twin Bridges, MT 0.57** 0.19  D-US -0.01 -0.10 0.07* 

6025500 Big Hole River near Melrose, MT 0.60** 0.84** ND 0.12 0.07 0.16 

6041000 Madison River below Ennis Lake near McAllister, MT 0.64** 0.79** D  0.06 -0.33** -0.33** 

6016000 Beaverhead River at Barretts, MT 0.55** 0.51** D 0.11 0.04 na 

6052500 Gallatin River at Logan, MT 0.60** 0.69** ND 0.00 -0.20* -0.15 

6024450 Big Hole River below Big Lake Creek at Wisdom, MT 0.55** 0.70** ND 0.02 0.28** na 

 1012 
 1013 
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Figures 1014 

 1015 
Figure 1. (a) The major rivers considered in the analysis, the distribution of the riparian areas 1016 

evaluated, and the division of the riparian areas into reaches across the Upper Missouri River 1017 

Headwaters Basin, southwestern Montana, USA. (b) The spatial distribution of the U.S. 1018 

Geological Survey stream gages and snow telemetry (SNOTEL) sites considered in the analysis. 1019 

STAID: Station ID, DEM: Digital Elevation Model. 1020 
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 1021 
Figure 2. Spatial variability in (a) landcover, defined using the 2011 National Land Cover 1022 

Database (NLCD), (b) elevation, (c) mean annual precipitation (PPT), and (d) mean annual vapor 1023 
pressure deficit (VPD), across the Upper Missouri River Headwaters Basin. DEM: Digital 1024 
Elevation Model, Vmax: maximum vapor pressure deficit.  1025 
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 1026 
Figure 3. A visual comparison of index values in a dry year (2001, 431 mm annual precipitation) and a wet year (1995, 687 mm 1027 

annual precipitation) at the confluence of Jefferson, Madison and Gallatin Rivers. The Normalized Difference Wetness Index (NDWI) 1028 
in the riparian vegetation showed more variability in response to precipitation relative to the Normalized Difference Vegetation Index 1029 
(NDVI). A comparison of (a) NDVI (July 2001), (b) NDWI (July 2001), (c) raw Landsat image (July 1, 2001), (d) NDVI (July 1995), 1030 
(e) NDWI (July 1995), and (f) raw Landsat image (July 17, 1995). A similar pattern was observed across the basin. 1031 
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 1032 

 1033 
 1034 

Figure 4. (a) The spatial distribution of riparian reaches found to show a significant decreasing trend (p<0.1 or p<0.05) in riparian 1035 

wetness using the Normalized Difference Wetness Index (NDWI, June, July, August) anomalies, and (b) the spatial distribution of 1036 
riparian reaches found to show a significant trend in NDWI anomaly-climate regression residuals, or the variance in NDWI anomalies 1037 
not explained by climate variables. All trends were negative, indicating a drying over time.1038 
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 1039 
Figure 5. Statistics for the Jefferson River riparian reach at the basin outlet (JR1) including, (a) 1040 

variability in June, July, August (JJA) river discharge over time (Station ID: 6036650), (b) 1041 
relationship between the Normalized Difference Wetness Index (NDWI) and river discharge, (c) 1042 

trend in NDWI anomalies over time, (d) correlation between NDWI anomalies and predicted 1043 
NDWI anomalies, and (e) trend in NDWI anomalies-climate regression residuals over time.  1044 
  1045 
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 1046 
Figure 6. Statistics for the Gallatin River riparian reach downstream of the East Gallatin River 1047 
(GR1) including, (a) variability in river discharge over time (Station ID: 6052500), (b) 1048 
relationship between the Normalized Difference Wetness Index (NDWI) and river discharge, (c) 1049 
trend in NDWI anomalies over time, (d) correlation between NDWI anomalies and predicted 1050 

NDWI anomalies, and (e) trend in NDWI anomalies-climate regression residuals over time.  1051 
 1052 
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 1053 
Figure 7. Changes in agricultural and development characteristics across Upper Missouri River 1054 
Headwaters Basin between 1985/86 and 2016/17 including, (a) total per reach agriculture 1055 
(2016/17), (b) total agriculture within and upstream of each reach (i.e., accumulated ag) 1056 

(2016/2017), (c) change in the extent of center pivot irrigation (1985/86 to 2016/17), (d) change 1057 
in the extent of non-pivot irrigation(1985/86 to 2016/17), (e) change in total per reach agriculture 1058 
(1985/86 to 2016/17), and (f) change in built-up intensity, defined as the summed building area 1059 

at 250 m resolution (1985 to 2015).1060 
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  1061 
Figure 8. Examples of areas showing a shift in irrigation technique over the past 30 years across 1062 
the Upper Missouri River Headwaters Basin including examples at the confluence of the 1063 

Beaverhead (center), Big Hole (left), and Ruby River (right), shown in (a) and (c), as well as 1064 
examples along Gallatin River shown in (b) and (d).  1065 
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 1066 
Figure 9. The Beaverhead River (BVHR4) (a) NDWI anomalies over time, (b) NDWI anomalies-climate regression residuals over 1067 

time, and the Beaverhead River (BVHR2), (c) NDWI anomalies over time, (d) NDWI anomalies-climate regression residuals over 1068 

time. The MK test for trends was significant (p<0.05) for (a) and (b), but not significant for (c) and (d). JJA: June, July, August. 1069 
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 1070 
Figure 10. A schematic showing the potential impacts of changing irrigation types. While shifting to center pivot irrigation can be 1071 

expected to reduce per-field water applications, it can also be expected to increase evapotranspiration as well as decrease sub-surface 1072 

return-flow and aquifer recharge. Reduced withdrawal may not persist downstream but instead be used by the same farmer or a 1073 

downstream user. Thicker and thinner lines are used to indicate more or less water, respectively. 1074 
 1075 

 1076 


