
Referee #2 

We first would like to thank the anonymous referee 2 for the kind words in support of our 

manuscript and for the time spent reviewing our text. We appreciated the insightful 

comments that enabled us to improve the quality of our manuscript. Please, note that the 

original referee’s comments are written in bold, and the author’s responses are right below. 

The manuscript is well written and structured, sound and pleasant to read. Little is said 

about the hydrological model (section 2.3) and the GCM output downscaling procedure 

(section 2.4). This simplifies the presentation and makes the manuscript easier to read. 

The readers are referred to previously published papers for more details. The results 

of this projection work, mainly presented in figures 4 and 5, are surprising and 

insufficiently discussed and commented. In fact, all projected average monthly 

streamflows appear very similar for all periods and the two scenarios (RCP 4.5 and 

RCP 8.5) and differ significantly from the actual situation (fig. 4). Such a little contrast 

between RCP 4.5 and RCP 8.5 is difficult to understand, especially for the second half 

of the 21st century where both projections differ greatly for the evolution of 

temperatures, which have a direct impact on potential evapotranspiration. This 

extremely strange outcome is acknowledged by the authors (P8, L3-5) but not explained 

nor discussed. As the rest of the manuscript and the conclusion are based on these 

results, a critical analysis appears to me as essential. 

To keep our manuscript clear and easier to read, we decided to insert additional information 

about sections 2.3 in the supplement material following the Reviewer suggestion. Also, about 

section 2.4, the downscaling procedure is detailed described in Jones and Thornton ( 2000, 

2013) as mentioned in P5, L22-25. 

To clarify the Reviewer doubt regarding the similarity between monthly streamflow 

scenarios across the studied periods, we added the datasets in the supplementary material. In 

addition, it is important to remark that we use variables at a daily time step but assessed the 

results in terms of monthly averages on three 30-year time slices: near future (2010-2040); 

middle future (2041-2070); and far future (2071-2095). Therefore, the long-term monthly 

averages reveal the similar values of monthly streamflow scenarios. We will improve the 

discussion about it in the text. Thanks!! 



1) The projected evolutions of temperatures and potential evapotranspiration for all 

periods and scenarios to be added in figure 4. This will certainly reveal clearer contrasts 

between scenarios. 

We appreciate the reviewer’s comments and suggestions. We hope to solve the problems of 

contrasts between scenarios by adding the projected evolutions of temperatures and potential 

evapotranspiration for all periods and scenarios, and, improve the discussion along with the 

text. We will add these full information in the supplementary material.  

2) The GCM simulations for average monthly temperatures and rainfall for the actual 

period should also be presented. A major concern in climate change studies, especially 

when rainfall is considered, are the intrinsic biases of GCM models. A large amount of 

works have been devoted to the treatment of these biases to provide reasonable trends. 

Nothing is said about this problem in the manuscript and I highly suspect that the major 

differences between actual and projected situations, that draw the attention of the 

authors and on which their conclusions are focused, may be mainly due to these biases. 

If this is confirmed, the conclusions of the manuscript should be considered as invalid. 

This missing discussion and treatment of climate projection biases is a real major flaw 

and made me hesitate very much between suggesting "major revisions" or "rejection". 

It should absolutely be solved in a revised version of the manuscript. 

We appreciate your concern about the treatment of climate projection. In this study, we assess 

the issue by using an ensemble of 17 stochastically downscaled GCM models. We chose to 

use an ensemble, instead of any single model projection, to reflect the range of uncertainties 

inherent to the current suite of GCMs, and also because reports have indicated that the 

ensembles, as a whole, provide superior performance to that of any individual model, as 

shown by Dhakal et al (2018) and  Gleckler et al (2008). Mentioned in P5, L14-20. 

Further, in the downscaled procedure by the MakSiM GCM statistical relationship with 

existing meteorological data from a met station was taken into account. Two aspects were 

considered in the downscaling: one was to interpolate the results of the GCM spatially; and 

the other was to ensure that the results are relevant to the local climate (using of 720 classes 

of weather, worldwide, to calculate the coefficients of a third order Markov rainfall 



generator). This constitutes 'stochastic downscaling' as it fits a Markov model to the GCM 

output and uses it to generate weather data for the site indicated (Jones and Thornton, 2013). 

We will also add the GCM simulations for average monthly temperatures and rainfall data in 

the supplementary material. 

Minor comments: 

1) Since the manuscript is mainly focused on low flows, criterions specifically focused 

on the lower flow values should also be used to assess the hydrological model. R2, MSE 

and KGE are predominantly controlled by the larger discharge values.  

The MSE and NSE are the two criteria most widely used for calibration and evaluation of 

hydrological models. They are closely related, but the results can be generalized to MSE (and 

similar criteria such as RSR) (Gupta et al., 2009). Using the R2, or similar indexes as an 

objective function, the simulations are prior matching the high flow and these measures are 

oversensitive to extreme values (Jie et al., 2015). We choose to use KGE instead of MSE or 

NSE, whereas the KGE criteria is a decomposition of NSE (and hence MSE), which 

facilitates analysis of the relative importance of different components in the context of 

hydrological modeling (Gupta et al., 2009). Thus, Garcia et al (2017) recommend using the 

mean of KGE(Q) and KGE(1/Q) as an objective function to simulate low-flow indices with 

continuous conceptual rainfall-runoff models. Yet, performance during the calibration and 

evaluation periods can be considered quite good, representing both high and low flows, with 

R2 and KGE values both exceeding 0.8, indicating a relatively high degree of correspondence 

between the model simulations and the observations (Gupta et al., 2009). 

 

2) The precipitation unit must be clarified in figure 4 (mm/day)  

Changes made according to reviewer’s suggestion 

3) The figure reference numbering does not seem to be correct at some places in the text 

(4 rather than 5 at op8 L4 and P9L7).  

Thanks for noticing our mistake. We corrected and also double-checked all figure reference 

numbering. 



4) At P7L25: it must be specified that the authors speak about “hydrological dryness”. 

The rainfall amounts start to rise in October and November even in the projections.  

Thank you for the suggestion. We will change the term “dry season” to “hydrological 

dryness” along with the text. 

5) P7L24: It cannot be stated, based on the presented results that rainfall extremes 

increase. The authors only present monthly averages. In general, the authors should 

avoid presenting conclusions that are not directly related or illustrated by the presented 

results. In the same line of thought, plant water stress mentioned on P8L2 should be 

illustrated (through the simulated soil water contents for instance). By the way, how is 

the vegetation cover reaction to the climate change taken into account? Again, it is 

suggested that RCP 8.5 generates more intense rain : please illustrate this fact based on 

the available projections. P9L20 : There is no direct relation between the increase of 

extreme rainfall and the possible increase of monthly rainfall in December. As for the 

previous remark, if it is true that the projected rainfall amounts are linked to an 

increase of the frequency of extreme events, this can be illustrated based on the climatic 

projections.  

Thank you for this important remark. We will modify the paragraph (P1,L20-24) and also 

other conclusions that are not directly related to the presented results (P8, L2 and P9, L20). 

Since we wanted to quantify the relationship between climate and streamflow, we chose to 

use a lumped conceptual “rainfall excess” type of catchment system model, that despite the 

relative simplicity of its structure facilitates computationally fast data processing, and it 

imposes minimal requirements for input data (precipitation and potential evapotranspiration), 

while maintaining a suitable level of hydrological process representation (Gong et al., 2013). 

As mentioned in (P4, L12-22). Therefore, the vegetation cover wasn’t taken into account in 

our investigation. 

6) Figure 5 increases dramatically the undetectable contrasts of figure 4. Why? 

Moreover, some inconsistencies seem to exist between the two figures. If the demand is 

considered as relatively constant over the year (if it is not, this should be explained and 

commented by the authors), discharges and scarcity and vulnerability indicators should 

have the same dynamics. It is not the case. The lowest simulated discharges are observed 



in October for all scenarios and periods (fig 4); Why are then peak indicators values 

computed in November? Some explanations are clearly missing. 

To assess water security, we used the approach developed by Rodrigues et al. (2014), in 

which water use (Abstraction and Consumption) is contrasted with probabilistic levels of 

Water Provision , based on the fulfillment of environmental demand represented by an 

Environmental Flow Requirement (EFR), as cited in (P6, L5-7). Thereby, the indices are 

similar, but not the same. Water Scarcity assesses the impacts of water use on median water 

availability for consumption (50%), while Water Vulnerability expresses the susceptibility 

of water withdrawal for human activities under low-flow (30%), or drought-like, conditions, 

as described in (P6, L10-12). That’s why figure 5 shows the undetectable contrasts of figure 

4, besides using 50% (median water availability for consumption) and 30% (water 

withdrawal under low-flow), we also had to fulfill the EFR (discounting this value from total 

streamflow). 

We developed seven demand scenarios for future periods, approached as “threshold levels”, 

defined based on non-stationary demand as a hypothesis representative of the population 

growth in the Sao Paulo Metropolitan Region, as mentioned in (P6, L26-28 and P7, L1-2). 

The demand scenarios are represented in figure 5 by the layers, as described in figure label 

(P23, L 2-6). The lowest simulated monthly streamflow is observed in October for all 

scenarios and periods, and the highest value of Water Scarcity and Vulnerability indicators 

for RCP 8.5. On the other hand, in scenario RCP 4.5 we observed the highest values of 

Scarcity and Vulnerability indicators in November. This happens because, in the early days 

of November, the streamflow was so low, that couldn’t even fulfill the EFR, raising the 

monthly index to high values, including the maximum in some cases. 

We will include this explanation into the discussion section in the revised manuscript to be 

submitted, and also add the Water Scarcity and Vulnerability indicators data sets and 

calculation in the supplementary material. 

7) Figure 6 is not needed since the same results as in figure 4 are presented, except that 

error bars have been added. It is by the way not explained how these boxplots have been 

build. Do they represent the inter-annual variability (this is what I suspect)? Or do they 

represent the variability of the projections of the 17 tested GCMs. By the way, these 17 



simulations and the information provided by the variability of their outcomes are never 

presented nor used in the manuscript. This should be added somewhere.  

Thank you for the suggestions. We want to clarify that figure 4 shows the monthly average 

on three periods: near future (2010-2040); middle future (2041-2070); and far future (2071-

2095), and figure 6, as asked, the inter-annual monthly variability. The explanation of its 

construction is in the figure caption (P24, L2-5). We decided to maintain the figure 6, since 

presents a different result than figure 4, and we will improve the discussion of the results in 

the revised manuscript to be submitted. Additionally, we will add the ensemble of 17 

stochastically downscaled GCM models data in the supplementary material. 

8) Section 3.4 is not really related to the rest of the manuscript. These thoughts about 

public policies are not totally uninteresting, but not supported by the presented results. 

In would suggest to remove this part, or to summarize it in the conclusion of the 

manuscript. 

We appreciate the reviewer’s comment and suggestion. In the revised version, we will add 

substantial information and clarifications discussed by referee 2. In addition, the data set in 

supplementary materials. We believe in this way, there will be no doubt regarding the data 

sets and therefore we consider essential to maintain section 3.4. Whereas section 3.4 improve 

the comprehension of our scientific contributions, discusses the applicability of the results 

and it is critical to guide future studies. 
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