
Dear Editor, 

We again thank you for your effort and the coordination of the review process. Your 

comments as well as the comments of the reviewer were very constructive and helped to 

significantly improve our manuscript. In line with our response to the reviewer, we 

considerably revised our manuscript as outlined below:  

- We added a passage in the discussions section to specify the possibilities of 

parametrization of our model, in line with our response to the first comment of the 

reviewer. 

- We revised some other sections and corrected several typos, considering the minor 

comments of the reviewer. 

- Moreover, we again revised our abstract to make it more significant. 

Furthermore, our authors’ response contains: 

- a point-by-point response to the review 

- a marked-up manuscript version (all changes made or contents added are highlighted 

in yellow colour) 

 

Thank you very much, 

Best regards 

Alexander Sternagel on behalf of all authors 

  



Point-by-point response to the review 

Response to Comments of Anonymous Referee #2 

On behalf of all co-authors I sincerely thank the Anonymous Referee #2 for his thoughtful 

and detailed assessment of our work.  

 

R2: In my opinion, the authors replied quite satisfactorily to my first review. They added an 

additional infiltration test to illustrate the feasibility of the LAST-Model, they compared the 

results of the model with the ones of a numerical one (HYDRUS-1D) and they (partially) 

improved the explanation of LAST-model parametrisation. However, there are some typos 

and I still have some doubts about the feasibility of designing a physically based structure of 

the preferential flow domain suitable for the model proposed. Specifically, in Section 3.2 

devoted to the parametrization of the model, is written: “Horizontal layers in different 

depths of the vertical soil profiles were excavated and in each layer the amount of present 

macropores counted as well as the diameters and depths measured”. Is this the procedure 

one should use in order to apply your model? In order to use LAST-model, should one 

excavate at different depths, until an (unknown) “predefined length” (=LM), count the 

number of macropores (=nmac), measure their diameters (=dmac) and use these numbers as 

input parameters for your model? Especially because the model looks extremely sensitive to 

these parameters.  

AS: We thank you for the positive comment on our previous revision and for your questions. 

The answer is yes and no. We indeed recommend mapping of the macropore system if you 

want to characterize the transport behavior of a field site using tracer experiments. These 

experiments are very laborious anyway (irrigation application, profile excavation, soil 

sampling on a grid, tracer extraction etc.), particularly if soil hydraulic properties are further 

characterized by soil sampling and subsequent multistep outflow experiments. But 

compared to this general effort, the mapping of a macropore network is relatively easy to 

realize by excavating one horizontal layer with a size of 1 m by 1 m, simple counting of 

macropore numbers, measurement of their radii and depths, e.g. by pushing a wire into the 

macropores. Altogether this procedure takes about 2 h per replicate. Please note that we 

added this section to corroborate that the geometric properties of the macropore domain 

are observable and not random factors as criticized in a review of the previous manuscript. 

Beside the parametrization with experimental data, it is also possible to setup our model by 

using pedotransfer functions for the soil hydraulic properties and to vary the parameters of 

the macropore domain by inverse modelling, which needs prior knowledge of the depth of 

typical macropore systems (e.g. worm burrow networks) and literature data to parametrize 

macropore flow velocities. This method would reduce time and the amount of work but it 

could result in equifinality as shown by Klaus and Zehe (2010) or Wienhöfer and Zehe (2014). 

We will better explain this in the revised manuscript. 

 

R2: In the 5.2 Result and Discussion Section is written that a possible explanation for the 

discrepancy between the model and the data observed at Site 33 is that “examination of the 



macropore network were performed on different dates” … Does it mean that even if I 

carefully parametrize the pfd zone (with LM, nmac, dmac) I have to consider a temporal 

evolution of this parameters, depending e.g. to saturation conditions? It looks like a long and 

expensive preliminary work, for a relatively simple 1D double domain water flow and tracer 

transport model or am I missing something? I write “relatively simple” in the sense that 

there are many hypothesis underlying your model (e.g. no lateral exchange, diffusive 

exchange between solutes in the matrix, reverse diffusion from the matrix into the 

macropores…).  

AS: As stated above, performing tracer field experiments is always time and work expensive 

anyway. The additional mapping of the macropore system makes just a marginal difference. 

We of course agree that the numerical implementation of the random walk is very simple, 

but yet it performs satisfyingly compared to the results of the tracer experiments and 

HYDRUS-1D as we have shown. And yes, it might be indeed the case that macropore systems 

are not static in space or time but underlie natural variations like changes in worm 

populations as explained by van Schaik et al. (2014) or anthropogenic influences like 

plowing. This implies that the macropore domain needs to be re-parameterized. But this 

problem is not specific to the LAST-Model. Instead, it applies to any kind of soil physical 

model and we have to deal with this problem if we want to reach real progress. 

 

R2: As a curiosity, do you have any idea about why HYDRUS model is able to reproduce site 

23 and not site 31? 
 

AS: In general, you are right. HYDRUS slightly overestimates tracer masses and hence 

predicts a deeper percolation of water and solutes at site 31. But the shape and course of 

the simulated profile are still in a pretty good accordance with the observed one, so we 

would state that HYDRUS is indeed able to moderately reproduce the tracer profile at the 

end of the experiment on site 31. Obviously, in the HYDRUS model the impact of downward 

flow determined by the hydraulic conductivity is stronger than the lateral mixing of solutes 

in the matrix. Hence, because of the higher saturated hydraulic conductivity at site 31, 

HYDRUS predicts a deeper percolation of water and solutes. 

 

MINOR COMMENTS:  

 

R2: Please revise carefully the notation, there are still some typos that I had already pointed 

out in my first revision, e.g: 

- In Eq. 2, 3, 4: please use consistent notation for the times sign with the rest of the 

manuscript 

AS: Good point, thank you. We will change this. 

 

R2: - Eq. 3: is dz = 𝑑𝑧𝑝fd ? 



AS: As stated below Equation 3, dz is the grid element size in the matrix domain. dzpfd is the 

grid element size in the preferential flow domain. They both have different sizes as the two 

domains also have different extents (dz = 0.1 m; dzpfd = 0.05 m). We will specify this. 

 

R2: - Eq. 5: is 𝑑𝑚𝑎𝑐 =  DM? 

AS:  Sorry for this error. We have changed DM to dmac. 

 

R2: - In the text the number of macropore is indicated both with nmac and 𝑛𝑚𝑎𝑐 

AS: You are right, thanks. We will use a unified format. 

 

R2: - Table 1, 2, text: please write consistently f big or fbig 

AS: Thank you. We will revise that. 

 

R2: - Eq. 6: It would not be preferable to write d𝑞𝑚𝑖𝑥 consistently with 𝑑𝑧𝑝𝑓𝑑 instead of 

𝑞𝑚𝑖𝑥? 

AS: The d in dz and dzpfd indicates a distance or difference between two depths but qmix is a 

mixing flux between macropore and matrix. We hence maintain our notation. 

 

R2: - Eq. 7: is rM = 2 DM ?  

AS: No, rM is the radius of a macropore. As Equation 7 originates from the study of Zehe and 

Flühler (2001b), we also adopted their notation. To stay consistent with our notation, we will 

change the variable to dmac/2. 

 

R2: - Fig. 4: Please use consistent notation in the axes i.e. use the dot and not the comma to 

separate decimal digits 

AS: Thanks, you are right. Figure 4 also originates from the study of Zehe and Flühler (2001b) 

like Equation 7 (see above). We just adopted their figure and equation in our study. We will 

update Figure 4 and specify it in the caption. 

 

R2: - In my first review, I asked you to highlight the differences/similarities of your model 

with previous double-continuum models, your replied that “ This similarity arises from the 

fact that both the LAST-Model and double-domain models work with two different domains. 

But apart from that, the two domains of our model and these of the double-domain models 

have not much in common because we really established a separate, physically and 

geometrically described macropore domain with the particle-based Lagrangian approach to 

simulate water flow and solute transport. The other double-domain models rely on 

separated overlapping continua…” I would specify that there are already double domain 

models that do not rely on overlapping continua, but take into account physically and 



geometrically separate domains (e.g. Russian, et al. ( 2013) Water Resour. Res., 49, 8552– 

8564, doi:10.1002/2013WR014255). 

AS: Thank you for this hint. We were not aware of this study. We will check it and implement 

a respective passage into the discussion section. 
 

R2: Considering the large number of parameters that characterise your model I would not 

introduce new parameters without pointing out which the independent ones are. 

AS: Yes, good point. In general, all observable parameters listed in Table 1 can be freely 

adjusted in our model and are hence independent from other variables. All other calculated 

parameters presented in the text like infiltrating or mixing masses are of course dependent 

on these observable parameters. We will specify this in the caption of Figure 1. 
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Abstract. We propose an alternative model concept to represent rainfall-driven soil water dynamics and 

especially preferential water flow and solute transport in the vadose zone. Our LAST-Model (Lagrangian Soil 

Water and Solute Transport) is based on a Lagrangian perspective on the movement of water particles (Zehe and 

Jackisch, 2016) carrying a solute mass through the subsurface which is separated into a soil matrix domain and a 

preferential flow domain. The preferential flow domain relies on observable field data like the average number 

of macropores of a given diameter, their hydraulic properties and their vertical length distribution. These data 

may either be derived from field observations or by inverse modelling using tracer data. Parametrization of the 

soil matrix domain requires soil hydraulic functions which determine the parameters of the water particle 

movement and particularly the distribution of flow velocities in different pores sizes. Infiltration into the matrix 

and the macropores depends on their respective moisture state and subsequently macropores are gradually filled. 

Macropores and matrix interact through diffusive mixing of water and solutes between the two flow domains 

which again depends on their water content and matric potential at the considered depths. 

The LAST-Model is evaluated using tracer profiles and macropore data obtained at four different study sites in 

the Weiherbach catchment in south Germany and additionally compared against simulations using HYDRUS 1-

D as benchmark model. While both models show an equal performance at two matrix flow dominated sites, 

simulations with LAST are in a better accordance with the fingerprints of preferential flow at the two other sites 

compared to HYDRUS 1-D. These findings generally corroborate the feasibility of the model concept and 

particularly the implemented representation of macropore flow and macropore-matrix exchange. We thus 

conclude that the LAST-Model approach provides a useful and alternative framework for a) simulating rainfall-

driven soil water and solute dynamics and fingerprints of preferential flow as well as b) linking model 

approaches and field experiments. We also suggest that the Lagrangian perspective offers promising 

opportunities to quantify water ages and to evaluate travel and residence times of water and solutes by a simple 

age tagging of particles entering and leaving the model domain. 

1 Introduction  

Until now, the most commonly used hydrological models have been following an Eulerian perspective on the 

flow processes with a stationary observer balancing dynamic changes in a control volume. The alternative 

Lagrangian perspective with a mobile observer travelling along the trajectory of a solute particle through the 

system (Currie, 2002) has up to now only been used to simulate advective-dispersive transport of solutes (Delay 

und Bodin, 2001; Zehe et al., 2001; Berkowitz et al., 2006; Koutsoyiannis, 2010; Klaus and Zehe, 2011). 

However, this particle tracking approach is mostly embedded in frameworks with Eulerian control volumes 

which still characterize the dynamics of the carrying fluid. Lagrangian descriptions of the fluid dynamics itself 



are only realized in a few models. But such a particle tracking framework may offer many advantages, especially 

at the coping of the challenges induced by preferential water flow and solute transport in structured 

heterogeneous soils. 

Preferential flow has become a major issue in hydrological research since the benchmark papers of Beven and 

Germann (1982), Flury et al. (1994) and Uhlenbrook (2006). The term of preferential flow is used to summarize 

a variety of mechanisms leading to a rapid water movement in soils. The most prominent one is the flow through 

non-capillary macropores (Beven and Germann, 2013) where water and solutes travel in a largely unimpeded 

manner due to the absence of capillary forces and bypass the soil matrix (Jarvis, 2007). Macropores can be 

classified into e.g. earth worm burrows, channels from degraded plant roots or shrinkage cracks and all of them 

are not static in space nor time (e.g. Blouin et al., 2013; Nadezhdina et al., 2010; Palm et al., 2012; van Schaik et 

al., 2014; Schneider et al., 2018). Especially in rural areas and in combination with agrochemicals, macropore 

flow can be a dominant control on stream and groundwater pollution (e.g. Flury, 1996; Arias-Estévez et al., 

2008). To understand such water and solute movements a combination of plot-scale experiments and computer 

models is commonly used (Zehe et al., 2001; Šimůnek and van Genuchten, 2008; Radcliffe and Šimůnek, 2010; 

Klaus et al., 2013). One of the most frequently used approaches to simulate water flow dynamics and solute 

transport is to use the Darcy-Richards and the advection-dispersion equation. Both equations fundamentally 

assume that solute transport is controlled by the interplay of advection and dispersion (Roth, 2006; Beven and 

Germann, 2013) and that the underlying soil water dynamics are dominated by capillary-driven diffusive flow. 

While the second assumption is well justified in homogeneous soils, it frequently fails in soils with macropores. 

Consequently, we separate at least two flow regimes in soils: the slow diffusive flow in the soil matrix and the 

rapid advective flow in the macropores. Partial mixing between these two flow regimes is non-trivial as it 

depends on the hydraulic properties of the macropore walls, the water content of the surrounding soil, actual 

flow velocities, hydrophobicity of organic coatings and much more. The inability of the Richards equation to 

simulate partial mixing between both flow regimes is well known and a variety of different models have been 

proposed to address this problem (Šimůnek et al., 2003; Beven and Germann, 2013). But most of them are still 

fundamentally based on the Darcy-Richards equation like the most prominent and well-established double-

domain models like for instance the HYDRUS model of Šimůnek and van Genuchten (2008). 

A promising alternative approach is provided by particle-based Lagrangian models for subsurface fluid 

dynamics. The first implementation of such a model for soil water dynamics is the SAMP model proposed by 

Ewen (1996a; b). SAMP represents soil water by a large number of particles travelling in an one-dimensional 

soil domain by means of a random walk which is based on soil physics and soil water characteristics. A more 

recent example is the two-dimensional MIP model of Davies et al. (2013) developed for hillslopes. Fluid 

particles travel according to a distribution function of flow velocities which needs to be estimated from tracer 

field experiments. Exchange of particles among the different pathways is conceptualized as random process 

following an exponential distribution of mixing times. Inspired by the SAMP model, Zehe and Jackisch (2016) 

conceptualized a Lagrangian model describing soil water flow by means of a non-linear space domain random 

walk. In line with Ewen (1996), they estimated the diffusivity and the gravity-driven drift term of the random 

walk based on the soil water retention curve (Ψ(θ)) and the soil hydraulic conductivity curve (k(θ)).  

The particle-based Lagrangian model of Zehe and Jackisch (2016) initially assumed that all particles travel at the 

same diffusivity and velocity corresponding to the actual soil water content. But a comparison to a Richards 

solver revealed that this straightforward, naive random walk implementation highly overestimates infiltration 



and redistribution of water in the soil. The solution for this overestimation was to account for variable diffusive 

velocities. Now, particles in different pore sizes travel with various diffusivities, which are determined based on 

the shape of the soil hydraulic conductivity curve. This approach reflects the idea that the actual soil water 

content is the sum of volume fractions that are stored in different pore sizes and that the different pore sizes 

constitute flow paths which differ in both advective and diffusive velocities. 

Recently, this model was advanced by Jackisch and Zehe (2018) with the implementation of  a second dimension 

which contains spatially explicit macropores to simulate preferential flow. Within a macropore the velocity of 

each particle is described by interactions of driving and hindering forces. Driver is the potential energy of a 

particle while energy dissipation due to friction at the macropore walls dissipates kinetic energy and accordingly 

reduces particle velocities. With this approach, Jackisch and Zehe (2018) tried to make maximum use of 

observables for model parametrization. The assets of their echoRD model are a self-controlling macropore film 

flow and its ability to represent 2-D infiltration patterns. The drawback of echoRD is the huge computational 

expense. The simulation time is about 10 to 200 times longer than real-time. 

The huge computational expense of the echoRD model is one main motivation for us to develop a Lagrangian 

approach which balances necessary complexity with greatest possible simplicity. The other motivation is the 

inability of all models mentioned above to simulate solute transport appropriately. This is essential for a rigorous 

comparison of the model with tracer data and to get closer to the simulation of reactive transport. Thus, the main 

objectives of this study are to:  

1) Present a new routine for solute transport and diffusive mixing for well-mixed matrix flow conditions 

which is implemented into the model of Zehe and Jackisch (2016) and to test this approach against 

tracer data from plot-scale experiments carried out in the Weiherbach catchment (Zehe and Flühler, 

2001b). 

2) Extend the model by implementing a macropore domain accounting for preferential flow of water and 

solutes and related exchange with the matrix domain. In contrast to the echorRD model, we maintain 

the one-dimensional approach to keep the computational expense moderate.  

 

The structure of our LAST-Model (Lagrangian Soil Water and Solute Transport) is hence similar to a double-

domain approach. The main asset is that flow and transport in both domains and their exchange are described by 

the same stochastic physics and that the macropore domain can be parametrized by observable macropore 

geometries. This fact may help to overcome the limiting assumptions of the Darcy-Richards and the advection-

dispersion equation. The refined LAST-Model is tested by extensive sensitivity analyses to corroborate its 

physical validity. Further, it is also tested with four tracer infiltration experiments at different study sites in the 

Weiherbach catchment which are either dominated by well-mixed conditions (sites 23, 31) or preferential flow in 

macropores (sites Spechtacker, 33). For comparison, these four experiments are also simulated with HYDRUS 1-

D. 

2 Concept and implementation of the LAST-Model 

2.1 The Lagrangian model of Zehe and Jackisch (2016) in a nutshell 

The basis of our development is the Lagrangian model of Zehe and Jackisch (2016). It describes infiltration and 

water movement through a spatial explicit 1-D soil domain dependent on the effects of gravity and capillarity in 



combination with a spatial random walk concept. Water is represented by particles with constant mass and 

volume. The density of soil water particles in a grid element represents the actual soil water content (t) (m³ m-3) 

which reflects in turn the sum of the volume fractions of soil water that are stored in pores of strongly different 

sizes. Water particles travel at different velocities in these pores which are characterized by the shape of the 

hydraulic conductivity and water diffusivity curve. The curves are subdivided into NB bins, starting from the 

residual moisture r stepwise to the actual moisture (t) using a step size of ∆𝜃 =
(𝜃(𝑡)−𝜃𝑟)

𝑁𝐵
 (Figure 1). The 

particle displacement within the bins is described by Equation 1:  

 

𝑧𝑖(𝑡 + ∆𝑡) = 𝑧𝑖(𝑡) − (
𝑘(𝜃𝑟+𝑖∙∆𝜃)

𝜃(𝑡)
+

𝜕𝐷(𝜃𝑟+𝑖∙∆𝜃)

𝜕𝑧
) ∙ ∆𝑡 + 𝑍√2 ∙ 𝐷(𝜃𝑟 + 𝑖 ∙ ∆𝜃) ∙ ∆𝑡              𝑖 = 1, … , 𝑁       (1) 

    

Where z is the vertical position (m), k the hydraulic conductivity (m s-1), i the number of the current bin, D the 

water diffusivity (m s-1), i.e. the product of the hydraulic conductivity k() and the slope of the soil water 

retention curve with the relation 
𝜕𝛹

𝜕𝜃
 (m), t the simulation time (s), ∆t the simulation time step and Z a random, 

uniformly distributed number between [-1, 1]. The equation comprises two terms. The first one represents 

gravity-driven downward advection of each particle based on the hydraulic conductivity, the second one is the 

diffusive term driven by capillarity. According to Figure 1 and Equation 1, particles in coarse pores travel more 

rapidly at a higher hydraulic conductivity due to wet conditions. In smaller pores or during drier conditions the 

flow velocities are so small that the particles are in fact immobile. This binning of particle velocities and 

diffusivities also opens the opportunity to simulate rainfall infiltration under non-equilibrium conditions. To this 

end, infiltrating rainfall-event water is treated as second type of particles which initially travel at gravity-driven, 

rapid velocities in the largest pore fraction and experience a slow diffusive mixing with the pre-event water 

particles of the matrix during a characteristic mixing time. Test simulations revealed that the Lagrangian model 

can simulate water dynamics under equilibrium conditions in good accordance with a Darcy-Richards approach 

for three different soils. For a detailed description of the underlying model concept and the derivation of the 

equations see the study of Zehe and Jackisch (2016). 

2.2 Representation of solute transport in the LAST-Model 

In a first step we implement a routine for solute transport into the particle model by assigning a solute 

concentration C (kg m-3) to each particle. This implies that a particle carries a solute mass which is equal to its 

concentration times its volume. Due to the particle movements through the matrix domain the dissolved mass 

experiences advective transport in every time step. Diffusive mixing among all particles is calculated after each 

displacement step by summing up the entire solute mass in a grid element and dividing it by the amount of all 

present water particles. The underlying assumption of perfect mixing among all particles in a grid element 

requires a diffusive mixing time corresponding to the molecular diffusion coefficient, which is  smaller than the 

time step ∆𝑡. The latter is ensured by a sufficiently fine subdivision of the soil matrix. 

2.3 The macropore domain and representation of preferential flow 

The second and main model extension is the implementation of a 1-D preferential flow domain considering the 

influence of macropores on water and solute dynamics. This requires four main steps: 

1. Design of a physically based structure of the preferential flow domain; 



2. Conceptualisation of the infiltration and partitioning of water into the two domains; 

3. Description of advective flow in the macropores; 

4. Conceptualisation of water and tracer exchange between the macropore and the matrix domain. 

2.3.1 The preferential flow domain 

We define a 1-D macropore or preferential flow domain (pfd) which is surrounded by a 1-D soil matrix domain 

with vertically distinct boundaries. In line with other Lagrangian models, we represent water as particles with 

constant mass and volume corresponding to their domain affiliation. As the vertical extent and volume of the pfd 

is much smaller than that of the matrix domain, the corresponding particles must be much smaller to ensure that 

an adequate number of particles travel within the pfd for a valid stochastic approach. 

The pfd comprises a certain amount of macropores. Each macropore has the shape and structure of a straight 

circular cylinder with a predefined length LM (m) and diameter dmac (m) containing spherically shaped particles 

(Figure 2a). Two of the most important geometrical properties of the pfd are the macropore diameter and the 

total number of macropores nmac (-) as they scale exchange fluxes and determine several other characteristics 

like the total macropore volume. The macropore number, lengths and diameters can be directly measured in field 

experiments as described in section 3.2. From these observable parameters it is further possible to calculate 

additional pfd parameters like the total volume, stored water mass at saturation, the circumference and the flux 

rate. As we assume purely gravity-driven flow, the flux rate, the hydraulic conductivity of the pfd kpfd (m s-1) and 

the advective velocity of a particle within the pfd v (m s-1) are assumed to be equal and can be calculated by the 

diameter as also described in section 3.2.  

Our 1-D approach can of course not account for the lateral positions of the macropores but the pfd allows a depth 

distribution of macropores which is important for calculating the depth-dependent exchange with the matrix 

(section 2.3.4). To calculate the water content and tracer concentrations, the macropores of the pfd are vertically 

subdivided into grid elements of certain length dzpfd (m). Therefore, water contents and solute concentrations are 

regarded as averaged over these grid elements. Within a grid element of a macropore we assume cubic packing 

of a number of particles N (cf. Figure 2a), each having a mass mP (kg) which is derived from the total water mass 

stored in a macropore when fully saturated. Based on this mass and the water density, the pfd particles are also 

geometrically defined by a diameter DP (m) and volume VP (m³). 

In a cubic packing the particles are arranged in the way that the centres of the particles form the corners of a 

cube. The concept of cubic packing facilitates the calculation of the proportion of particles having contact to the 

lateral surface of a grid element. The rectangle in Figure 2a describes such a lateral surface of a grid element, 

with a height corresponding to the grid element length dzpfd and the circumference C (m) as length, which can be 

obtained when a macropore grid element is cut open and its surface is laid-flat. The number of particles which 

can be packed into this rectangle have then contact to the lateral surface of this grid element. The proportion of 

these contact particles on the total amount of particles roughly corresponds to the hydraulic radius scaling the 

wetted cross section with the wetted contact area in a macropore. Within the mixing process only the contact 

particles are able to infiltrate via the interface into the soil matrix. 

2.3.2 Infiltration and partitioning of water into the two domains 

As a 1-D approach does not allow an explicit, spatial distribution of the incoming precipitation water over the 

soil surface, we use an implicit, effective infiltration concept. The infiltration and distribution of water are 



controlled by the actual soil moisture and the flux densities driven by the hydraulic conductivity and the 

hydraulic potential gradient of the soil matrix as well as by friction and gravity within the macropores (Weiler, 

2005; Nimmo, 2016; Jackisch and Zehe, 2018). For example, a soil matrix with a low hydraulic conductivity 

increases the proportion of water infiltrating the macropores as it preferentially uses pathways of low flow 

resistance.  

In our model, we use a variable flux condition at the upper boundary of the soil domain dependent on the 

precipitation intensity. Incoming precipitation water accumulates in an initially empty fictive surface storage 

from which infiltrating water masses and related particle numbers are calculated. To this end, we distinguish 

several cases. In Case 1, the top soil grid elements of the soil matrix and the pfd are initially unsaturated and the 

infiltration capacity of the soil matrix is smaller than the incoming precipitation flux density. Water infiltrates the 

soil matrix and the excess water is redistributed to the pfd and infiltrates it with a macropore-specific infiltration 

capacity. Case 2 applies when the top matrix grid element is saturated and water exclusively infiltrates the pfd 

until all macropores are also saturated. Case 3 occurs when both the top matrix layer and the pfd are saturated 

leading to an accumulation of precipitation water in the surface storage. As soon as the water contents in the first 

soil matrix grid element and in the pfd are subsequently decreasing due to downward water flow or drainage of 

the macropores, again infiltration occurs according to Case 1. The incoming precipitation mass (mrain) and the 

infiltrating water masses into the matrix (mmatrix) and the pfd (mpfd) are calculated with Equations 2-4. Please note 

that these equations present infiltrating masses and not fluxes because the model generally works with discrete 

particles and their masses. 

 

𝑚𝑟𝑎𝑖𝑛 = 𝑞𝑟𝑎𝑖𝑛 ∙ 𝜌𝑤 ∙ ∆𝑡 ∙ 𝐴               (2) 

𝑚𝑚𝑎𝑡𝑟𝑖𝑥 = (
𝑘_𝑚1+𝑘𝑠

2
) ∙ (

𝜓1−𝜓2

𝑑𝑧
+ 1) ∙ 𝐴 ∙ 𝜌𝑤 ∙ ∆𝑡             (3) 

𝑚𝑝𝑓𝑑 = 𝑘𝑝𝑓𝑑 ∙ 𝜋 ∙ (
𝑑𝑚𝑎𝑐

2
)

2

∙ 𝜌𝑤 ∙ ∆𝑡 ∙ 𝑛𝑚𝑎𝑐                 (4) 

 

Where qrain (m s-1) is the precipitation flux density, respectively the intensity, k_m1 (m s-1) the actual hydraulic 

conductivity of the first grid element of the matrix, ks (m s-1) the saturated hydraulic conductivity of the matrix 

and 𝜓1 − 𝜓2 (m) the matric potential difference between the surface and the first grid element right beneath the 

surface, dz (m) the grid element length in the matrix domain (0.1 m), kpfd (m s-1) the saturated hydraulic 

conductivity of a macropore (cf. section 3.2), dmac (m) the diameter of a macropore and nmac (-) the total 

number of macropores within the pfd, 𝜌𝑤 (kg m-3) the water density, ∆t (s) the simulation time step and A (m²) 

the plot area.  

According to Equation 3, the infiltration rate into the matrix is based on Darcy’s law and thus we are generally 

able to account for an extra pressure due to a ponded surface, e.g. in Case 3. But in our simulation cases, ponding 

heights are small and have only marginal effect. After the precipitation water has infiltrated into the two domains 

the masses are converted to particles which are initially stored in the first grid elements of the matrix and pfd. 

They are now ready for the displacement process.  



2.3.3 Advective flow in the macropores 

In the pfd, we assume a steady state balance between gravity and dissipative energy loss at the macropore walls. 

This implies purely advective flow characterised by a flow velocity v which can either be inferred from tracer or 

infiltration experiments on macroporous soils as described by Shipitalo and Butt (1999), Weiler (2001) and Zehe 

and Blöschl (2004). The particle displacement in our pfd is described by Equation 5: 

 

∆𝑧 = 𝑣 ∙ ∆𝑡                     (5) 

 

As all particles in the pfd travel at the same velocity, their displacement depends on the time step. Generally, our 

model can work with variable time stepping as Lagrangian approaches are not subject to time step restrictions or 

numerical stability criteria. Here, we select the time step such that the particle displacement per time step equals 

the maximum depth of the pfd and subsequently excess particles are shifted upwards to the deepest unsaturated 

grid element. In this way, we gradually fill the macropores from the bottom to the top comparable to the filling 

of a bottle with water. This simple volume filling method was applied before in other models, e.g. in the SWAP 

model of van Dam et al. (2008) or in the study of Beven and Clarke (1986). Figure 2b shows an example for the 

macropore filling concept: in each of the three points in time (t1-t3) new particles, shown by the different 

colours, infiltrate the macropore and subsequently they are displaced with ∆𝑧 to the bottom of the macropore, 

initially saturating the deepest grid element (t1). In the following points in time t2 and t3 the new particles do not 

fit into the respective saturated grid elements anymore and are then shifted to the next deepest unsaturated grid 

element. In line with the matrix, particle densities are calculated in each grid element to obtain the actual soil 

water content and tracer concentrations of the pfd. 

2.3.4 Water and tracer exchange between the macropore and the matrix domain 

Commonly, macropore-matrix interactions are challenging to observe within field experiments. One approach is 

to evaluate the isotopic composition of water in the two domains (Klaus et al., 2013). In theory it is often 

assumed that the interactions and water dynamics at the interface between macropores and the matrix are mainly 

controlled by the matric head gradients and the hydraulic conductivity of both domains which depend on an 

exchange length and the respective flow velocities (Beven and Germann, 1981; Gerke, 2006).  

Our model approach is also based on these assumptions as illustrated in Figure 2c. We restrict exchange to the 

saturated parts of the pfd assuming downward particle transport as being much larger than the lateral exchange 

and we neglect diffusive exchange between solutes in the matrix and the pfd. We are aware that these 

simplifications might constrain the generality of our model. For instance, we also neglect the effect of a reverse 

diffusion from the matrix into the macropores. This effect can influence water and solute dynamics when the 

propagation of a pressure wave pushes matrix water into empty macropores, mainly in deeper saturated matrix 

areas (Beven and Germann, 2013). We rely on those simplifications a) to keep the model simple and efficient 

and b) because the focus of our model is on unsaturated soil domains and during rainfall-driven conditions the 

macropores are most of the time largely filled due to their small storage volume. 

The distribution of different macropore depths and the definition of distribution factors can be derived from 

datasets containing information on macropore networks observed in field experiments as described in section 

3.2. Based on these datasets, the current version of our model divides the total amount of macropores nmac in 



the pfd into three depths. To this end, the total number is multiplied with a distribution factor 𝑓 for big (𝑓𝑏𝑖𝑔), 

medium (𝑓𝑚𝑒𝑑) and small (𝑓𝑠𝑚𝑙) macropores (cf. Figure 2c). 

The saturated grid elements (blue filled) of the largest macropores are coupled to the respective grid elements of 

the medium and small macropores. In this example, the red respectively the black framed grid elements of the 

three macropore sizes are coupled due to their saturation state and depth order. This coupling ensures a 

simultaneous diffusive water flow out of the respective grid elements of all three macropore depths. The mixing 

fluxes (𝑞𝑚𝑖𝑥  (m s-1)) in the actual grid elements are calculated by Equation 6: 

 

𝑞𝑚𝑖𝑥 =
2∙𝑘𝑠∙𝑘_𝑚𝑖

(𝑘𝑠+𝑘_𝑚𝑖)
∙

𝜓𝑖

𝑑𝑚𝑎𝑐
∙ 𝐶 ∙ 𝑑𝑧𝑝𝑓𝑑                (6) 

           

Thus, diffusive mixing fluxes are calculated with the harmonic mean of the saturated hydraulic conductivity of 

the matrix ks (m s-1) and the current hydraulic conductivity of the respective matrix grid element 𝑘_𝑚𝑖 (m s-1), 

multiplied with the relation of the matric potential 𝜓𝑖  (m) of the actual matrix grid element and the macropore 

diameter dmac (m) as exchange length and the circumference C (m) of the macropore grid element. We use the 

harmonic mean here because we assume a row configuration at the calculation of the lateral diffusive mixing 

fluxes between macropore and matrix as there is a vertical interface between the two domains. 

The mixing masses are again converted into particle numbers with the two different particle masses. Due to the 

higher masses of the matrix particles a much lower amount of particles is entering the matrix. This has to be 

taken into account by choosing an adequate number of total particles present in the matrix, i.e. at least one 

million at moderate saturated hydraulic conductivities. In addition, it is ensured that the number of particles 

leaving a grid element of the pfd is lower than the maximum possible number of particles having contact to the 

lateral surface (cf. section 2.3.1) dependent on its current soil water content. Please note that up to now our 

model works with a no-flow condition at the lower boundary of the pfd but the model structure is generally 

capable to add an additional diffusive drainage with particles leaving the macropores at their lower boundary. 

3 Model benchmarking 

3.1 Evaluation of the solute transport and linear mixing approach during well-mixed matrix flow 

Basis of the first evaluation of our solute transport and linear mixing approach are data from tracer experiments 

conducted by Zehe and Flühler (2001b) in the Weiherbach catchment to investigate mechanisms controlling flow 

patterns and solute transport. The Weiherbach valley is located in the southwest of Germany and has a total 

extent of 6.3 km². The basic geological formations comprise Triassic Muschelkalk marl and Keuper sandstone 

covered by Pleistocene Loess layers with a thickness of up to 15 m. The hillslopes exhibit a typical Loess catena 

with erosion derived Colluvic Regosols at lower slopes and Calcaric Regosols or Luvisols at the top and mid 

slopes. Land use is dominated by agriculture. For further details on the Weiherbach catchment please see the 

work of Plate and Zehe (2008). 

In this catchment, a series of irrigation experiments with bromide as tracer were performed at ten sites. At each 

site, a plot area of 1.4 m x 1.4 m was defined and the initial soil water content and the soil hydraulic functions 

were measured. The plot area was then irrigated by a block rainfall of approx. 10 mm h-1 with a tracer solution 

containing 0.165 kg m-3 bromide. After one day, soil profiles were excavated and soil samples were collected in 

a 0.1 m x 0.1 m grid down to a depth of 1 m and their corresponding bromide concentrations measured.  



Thus, every 10 cm soil depth interval, ten samples were taken and for the comparison with our 1-D simulation 

results, the bromide concentrations were averaged over each sample depth. Note that the corresponding 

observations provide the tracer concentration per dry mass of the soil Cdry while the LAST-Model simulates 

concentrations in the water phase Cw. We thus compare simulated and observed tracer masses in the respective 

depths. More details on the tracer experiments can be taken from Zehe and Flühler (2001a; b). For the evaluation 

of our solute transport and linear mixing approach, we select the two sites 23 and 31 where flow patterns reveal a 

dominance of well-mixed matrix flow without any considerable influence of macropores. Thus, we use the 

LAST-Model without an active pfd for the simulations at the study sites 23 and 31.   

The soil at the two sites can be classified as Calcaric Regosol (IUSS Working Group WRB, 2014). In line with 

the experiments, our model uses a spatial soil matrix discretization of 0.1 m and the soils initially contain in total 

1 million water particles but with no tracer masses. Initial soil water contents and all further experimental and 

model parameters as well as the soil properties at these sites are listed in Table 1. 

3.2 Parametrization and evaluation of the preferential flow domain 

In a next step, our pfd model extension is again evaluated with the help of the results of two additional field 

tracer experiments of Zehe and Flühler (2001b). This time, we select the study sites Spechtacker and 33 which 

show numerous worm burrows inducing preferential flow. The sites are also located in the Weiherbach 

catchment and the sprinkling experiments were equally conducted with the application of a block rainfall 

containing bromide on a soil plot. The soils can be classified as Colluvic Regosol (IUSS Working Group WRB, 

2014).  

Additionally, the patterns of the worm burrows were extensively examined at these study sites. Horizontal layers 

in different depths of the vertical soil profiles were excavated (cf. introduction of van Schaik et al., 2014) and in 

each layer the amount of present macropores counted as well as the diameters and depths measured. These 

detailed measurements provided an extensive dataset of the macropore network at the study sites Spechtacker 

and 33. Based on this dataset, we can obtain those data we need for the derivation of a mean macropore 

diameter, macropore depth distribution and distribution factors. We focus on a mean macropore diameter of 5 

mm at the site Spechtacker because worm burrows with a diameter range of roughly 4 - 6 mm are dominant here 

and at site 33 we select a mean diameter of 6 mm. Figure 3 shows the mean number of macropores with these 

diameters in each depth at both sites. Based on this distribution, we can identify and select three considerable 

macropore depths at the site Spechtacker (0.5 m, 0.8 m and 1.0 m) and two macropore depths at site 33 (0.6 m 

and 1.0 m) (cf. Table 1). In these depths, we count circa 11, 3 and 2 macropores (nmac = 16) at the site 

Spechtacker as well as 30 and 16 macropores (nmac = 46) at site 33, respectively. With these distributions we 

are able to calibrate our distribution factors f in the way that a multiplication of the total number of macropores 

with these factors results in the correct number of macropores in the respective depths. The obtained distribution 

factors are listed in Table 1. 

Moreover, Zehe and Flühler (2001b) measured saturated water flow through a set of undisturbed soil samples 

containing macropores of different radii at the study site Spechtacker with the assumption that flow through 

these macropores dominated. In line with the law of Hagen-Poiseuille, they found a strong proportionality of the 

flux through the macropores to the square of the macropore radius while frictional losses were 500 to 1000 times 

larger. This dependence of the flux rate on the macropore radius can be described by the linear regression shown 

in Figure 4. Based on this linear regression, the hydraulic conductivity of the macropores kpfd was calculated as a 



function of the macropore radius 
𝑑𝑚𝑎𝑐

2
 (termed rM in Zehe and Flühler, 2001b) as we assume the hydraulic 

conductivity kpfd is equal to the flux rate qM of the macropore (Equation 7). 

 

𝑘𝑝𝑓𝑑 = 2884.2 ∙ (
𝑑𝑚𝑎𝑐

2
)

2

                (7) 

 

For more details on the two study sites and their macropore network, see also the studies of Ackermann (1998) 

and Zehe (1999). Here, we select a spatial pfd discretization of 0.05 m and assume that macropores initially 

contain no particles and hence also no water or tracer masses. The total possible number of particles which can 

be stored in the pfd is 10,000 particles. All further experimental and simulation parameters, soil properties as 

well as information about the macropore network at the sites Spechtacker and 33 are listed in Table 1. 

3.3 Simulations with HYDRUS 1-D 

The simulations with HYDRUS 1-D are performed with the same soil properties, model setups and initial 

conditions introduced in the sections 3.1 and 3.2 as well as shown in Table 1. The simulations of the well-mixed 

sites 23 and 31 are performed with a van Genuchten - Mualem single porosity model for water flow and an 

equilibrium model for solute transport. For the simulations at the preferential flow sites Spechtacker and 33 we 

use dual-porosity models for water flow (“Durner, dual van Genuchten – Mualem”) and solute transport 

(“Mobile - Immobile Water”). This means HYDRUS assumes two differently mobile domains to account for 

preferential flow. The theory of that approach describes preferential flow in the way that the effective flow space 

is decreased due to the immobile fraction and thus the same volume flux is forced to flow through this decreased 

flow space resulting in higher pore water velocities and consequently also in a deeper percolation of water and 

solutes (Šimůnek and van Genuchten, 2008). For the parametrization of these two domains we select an 

immobile soil water content ThImob. of 0.2 m³ m-3. We hence assume that about 80 – 90 % of the total soil water 

amounts at the two sites are stored in the matrix and are therefore in fact immobile compared to the remaining 10 

– 20 %, which are assumed to flow through macropores. Zehe and Jackisch (2016) elaborated this rate of an 

immobile and mobile fraction in the fine-grained soils of the Weiherbach catchment. For all simulations we 

choose an atmospheric condition with a surface layer and variable infiltration fluxes at the upper boundary as 

well as a free drainage condition at the lower boundary.  

3.4 Sensitivity analyses of selected parameters 

The sensitivity analyses of the model with the pfd-extension are conducted by varying several parameters 

describing the soil matrix and the pfd in a realistic, evenly spaced value range. To this end, the saturated 

hydraulic conductivity of the matrix ks, the diameter dmac and the number nmac of the macropores are the 

selected parameters which are deemed to be most sensitive and crucial for the model behaviour and the 

simulation results. The probably most sensitive parameter is ks as it controls the infiltration capacities of both 

domains, the displacement within the soil matrix as well as the diffusive mixing fluxes. Beside the saturated 

hydraulic conductivity of the matrix, we also assume that the total number and diameter of the macropores are 

probably of great importance for the model results because they are crucial for the development of the new pfd 

(cf. section 2.3.1). Moreover, based on the derived three depths and distribution factors at the site Spechtacker 

(cf. section 3.2) we arbitrarily select different configurations of the macropore depth distribution and the 



distribution factors to evaluate the behaviour of the model related to various numbers of macropores in different 

depths. The depth distribution of macropores thereby comprises a deep (Configuration 1), medium 

(Configuration 2) and shallow (Configuration 3) distribution. At the distribution factors there are four different 

configurations. A realistic distribution comprising more small than big macropores is represented by 

Configuration A and D, a homogeneous distribution is shown by Configuration B and a rather uncommon 

distribution with more big than small macropores is illustrated by Configuration C. All parameter ranges and the 

detailed configurations of the sensitivity analyses are listed in Table 2.  

All model runs of the sensitivity analyses are performed at the site Spechtacker using 22 mm of rainfall in 140 

minutes with subsequent drainage duration of one day. Additional parameters like soil properties, antecedent 

moisture and concentration states, bromide concentration of precipitation water remain constant (cf. Table 1). 

4 Results 

4.1 Simulation of solute transport under well-mixed conditions 

The well-mixed sites 23 and 31 show a high similarity due to their spatial proximity (Figure 5a, b). The shape 

and courses of the simulated tracer mass profiles coincide well with the observed ones over the entire soil 

domain with RMSE values of 0.23 g and 0.28 g, respectively. The observed values are within the uncertainty 

range, represented by the rose shaded areas. This area reflects the uncertainty arising from a variation of ks 

values of the soil matrix in the observed range of 10-7 - 10-6 m s-1 at site 23 and 10-6 - 10-5 m s-1 at site 31. 

Note that in the experiments the tracer mass was not directly measured at the soil surface but the observations 

represent averages across 10 cm depth increments, starting in a depth of 5 cm. A comparison of the simulated 

masses close to the surface is thus not meaningful. This difference between simulated and observed profiles near 

to the surface suggests that the coarse resolution of the sampling grid is a likely reason for the relatively low 

recovery rates of 77 % and 76 % at the two sites (cf. Table 1). Overall, we conclude that manipulating ks within 

the observed uncertainty leads to an unbiased simulation ensemble compared to the observed tracer data at 

matrix flow dominated sites. 

4.2 Evaluation of the preferential flow domain 

Our model with the new preferential flow domain is tested against two tracer experiments on macroporous soils 

at the sites Spechtacker and 33. At the site Spechtacker, the simulated and observed tracer mass distributions are 

generally in good accordance (Figure 6a) with a RMSE of 0.3 g and again the values are within the uncertainty 

range. In this case, the rose area shows the standard deviation of measured macropore numbers (± 4) and 

diameters (± 1 mm) from the mean values (cf. Table 1) at the site Spechtacker. Especially in deeper soil regions 

from 0.35 m to 1 m, the shape and the magnitude of values correspond well. In the upper soil parts from 0.05 m 

to 0.15 m the model slightly overestimates the tracer masses. Between 0.15 m and 0.35 m soil depth both profiles 

exhibit the greatest differences and even contrary courses.  

In general, the simulated mass profile at site 33 corroborates the results of the site Spechtacker (Figure 6b). The 

simulated and observed tracer masses are also in a good accordance with a RMSE value of 0.15 g. In contrast to 

the site Spechtacker, varying the macropore numbers and diameters within the standard deviation (± 4; ± 1 mm) 

has just slight effects on the mass profile at this site. However, especially in deeper soil regions from 0.6 m to 1 



m the values correspond well, while the greatest differences occur between 0.25 m and 0.45 m as the simulated 

mass profile is not able to completely depict the observed hump in this area. 

4.3 Comparison with HYDRUS 1-D 

The mass profiles at the well-mixed sites 23 and 31 simulated with HYDRUS 1-D show similar patterns and are 

in accordance with the observed profiles with RMSE values of 0.1 g at site 23 and 0.37 g at site 31 (Figures 5c, 

d). Especially at site 23 the simulated mass profile is centred within the uncertainty range of the measured ks 

values (rose shaded area, cf. section 4.1). At site 31, HYDRUS 1-D slightly overestimates the tracer masses over 

the entire soil domain but also here the shape of the profiles coincide well. In contrast, at the two preferential 

flow sites Spechtacker and 33 the mass profiles simulated with HYDRUS 1-D and the dual-porosity approach 

(rose profile) are not in a good accordance with the observed profiles with RMSE values of 0.46 g and 0.53 g, 

respectively (Figures 6c, d). In the first 40 cm there is an overestimation of the simulated tracer masses, while in 

the deeper soil regions HYDRUS 1-D is not able to reproduce well the tail of the mass profiles with their 

heterogeneous courses. A comparison with the results of HYDRUS with an equilibrium model (red profile) 

reveals that the dual-porosity approach is generally able to predict a deeper percolation of solutes through the 

mobile domain. 

4.4 Sensitivity analyses  

4.4.1 Sensitivity to saturated hydraulic conductivity ks 

The concentration profile range of the matrix reveals a strong sensitivity of the simulated profiles to ks when we 

neglect macropores (Figure 7a). Especially in the upper soil part, the differences arising from low and high ks 

values are clearly detectable. Lower values imply that the soil matrix has a smaller infiltration capacity and 

therefore less water is infiltrating the matrix. Consequently, without macropores solutes do not penetrate into 

depths greater than 0.2 m. The presence of macropores significantly alters the sensitivity of the concentration 

and soil moisture profiles (Figures 7b, c). Again, the profile shapes clearly depend on the ks values but now water 

and solutes reach greater depths of down to 0.8 m by flowing through the macropores. At low ks values (red 

curve) the reduced matrix infiltration capacity leads to an increased infiltration of water and solute into the 

macropores. Subsequently, the solutes bypass the matrix until they diffusively mix into the matrix at greater 

depths.  

In contrast, at high ks values the matrix infiltration capacity is increased. This leads in turn to a reduced 

infiltration into the macropores and instead the majority of water and solute masses infiltrates the matrix and 

remains in the top soil. This effect is reflected by the blue curves in Figure 7 with higher solute concentrations 

near the soil surface and decreased concentrations at greater depths in comparison to low ks values.  

Finally, the yellow curves in Figure 8 show the proportion of solutes within the matrix which originates from the 

macropores. In general, at all ks values and depths below 0.2 m the entire solute amount within the matrix 

travelled through the macropores. Differences are restricted to the upper soil part. Here the largest proportion of 

solutes has directly infiltrated the matrix without having been in the macropores before. The pfd proportion 

decreases from low to high ks values confirming again the important influence of the ks values on the infiltration 

capacities and the distribution of water and solutes. 



4.4.2 Sensitivity to macropore number nmac and diameter dmac 

The model results sensitively respond to a variation of macropore diameters. In the upper soil part, the solute 

concentrations and moisture are slightly higher, when macropores are small (Figures 9a, b). In this case, the 

macropores collect only smaller amounts of water and solutes and the majority has directly infiltrated the soil 

matrix. Wider macropores transport larger amounts of water and solutes to greater depths where they diffusively 

mix into the subsoil matrix. This deep redistribution is reflected by the characteristic profile shapes and the 

higher concentration and moisture values in the deep soil.  

Furthermore, the influence of different macropore numbers on the concentration and moisture profiles is 

marginal (Figures 9c, d). This implies that the model does not respond to every geometrical parameter equally 

sensitively. The macropore number scales less than the diameter at the calculation of the further macropore 

measures. However, this could change when working with higher precipitation intensities. 

Simulations with different macropore depth configurations again reveal a clear sensitivity of the model (Figures 

10a, b). A steady decrease of the deep redistribution of the concentration and moisture values from the deep 

(Configuration 1) to the shallow depth configuration (Configuration 3) is obvious. Shallow macropores distribute 

the total amount of water and solutes mainly in the upper soil part, while deep macropores relocate this 

distribution to greater depths of down to 1 m. The results of the distribution factor configurations again 

corroborate the previous findings (Figures 10c, d). Configuration B produces a homogeneous solute 

concentration profile from 0.2 m to the total depth. Both more realistic Configurations A and D comprise more 

small than big macropores. This increased number of small macropores ensures higher water and solute amounts 

in the first 0.5 m of the soil matrix due to an enhanced mixing in this area. Finally, the rather uncommon 

Configuration C with more big than small macropores shows converse results. Solute concentrations and 

moisture contents are strongly increased at great depths from 0.7 m to 1 m because of increased diffusive mixing 

fluxes in these parts. 

5 Discussion and Conclusions 

We extend the Lagrangian model of Zehe and Jackisch (2016) with routines to consider transport and linear 

mixing of solutes within the soil matrix as well as preferential flow through macropores and related interactions 

with the soil matrix. The evaluation of the model with data of tracer field experiments, the comparison with 

results of HYDRUS 1-D and the sensitivity analyses reveal the feasibility and physical validity of the model 

structure as well as the robustness of the solute transport and linear mixing approach. The LAST-Model provides 

a promising framework to improve the linkage between field experiments and computer models to reduce 

working effort, and to improve the understanding of preferential flow processes. 

5.1 New routine for solute transport and diffusive mixing 

The initially performed simulations of the bromide mass profiles at the two well-mixed sites 23 and 31 support 

the validity of the straightforward assumptions of the underlying solute transport routine with its perfect mixing 

approach (Figures 5a, b). In the presented version, our mixing routine works with a short mixing time to ensure 

an instantaneous mixing between event and pre-event particles to account for the well-mixed conditions at the 

selected sites. However, the model allows to select longer mixing times or even a distribution of various mixing 

times to consider imperfect mixing among different flow paths. 



The simulation results at the well-mixed sites 23 and 31 are confirmed by the commonly approved HYDRUS 1-

D model. The simulated tracer mass profiles and RMSE values of both models are in a good accordance at these 

sites (Figure 5). The capability of predicting the solute dynamics is hence a big asset of our approach and it is a 

solid base to realize the second model extension with the implementation of the preferential flow domain.  

5.2 Model extension to account for preferential flow in macropores 

The results of the evaluation of the pfd-extension show that our model is furthermore capable to simulate tracer 

experiments on macroporous soils and to depict well their observed 1-D tracer mass profiles with the typical 

fingerprint of preferential flow (Figure 6a, b). Especially the tracer masses in the subsoil match well between 

simulated and observed data. This corroborates our assumptions concerning the macropore structure and the 

approach to describe macropore-matrix exchange which proved to be feasible to predict solute distribution 

patterns due to preferential flow and related long transport lengths. In this context, we stress that the approach to 

simulate macropore-matrix exchange (cf. Figure 2c) does not rely on an extra leakage parameter but follows the 

theory of deriving an effective diffusive exchange between the domains (cf. Equation 6). 

In contrast, the HYDRUS 1-D model performs clearly inferior and does not match the fingerprints of preferential 

flow in the mass profiles at the sites Spechtacker and 33 (Figures 6c, d). Especially the penetration of bromide 

through macropores into greater depths is ignored by HYDRUS 1-D, although we selected dual-porosity models 

for both water flow and solute transport (cf. section 3.3). The better performance of our LAST-Model at the two 

preferential flow sites compared to HYDRUS is further reinforced by the RMSE values which are significantly 

different. The results imply that, when working with a dual-porosity approach, HYDRUS and the underlying 

theory of two differently mobile domains is indeed able to depict a generally deeper penetration of solutes but it 

is not sufficient to exactly simulate the heterogeneous course and shape of the observed tracer mass profiles in 

preferential flow dominated soil domains. 

 

The results of our LAST-Model mainly deviate from the observations in the upper soil parts. However, these 

deviations are within the uncertainty ranges revealed by the sensitivity analyses (Figures 7, 9). Further, the 

model reveals difficulties at the simulation of bromide masses between 0.15 m and 0.35 m soil depth at the site 

Spechtacker (Figure 6a). Possible reasons could be the influence of a) lateral endogeic worm burrows which are 

completely unknown and not represented in the model and b) a nearby plow horizon. Both reasons result in a 

disturbance of the soil structure leading to an increased uncertainty of soil properties in this region.  

At site 33, our model is not able to sufficiently reproduce the hump of the observed mass profile between 0.25 m 

and 0.45 m soil depth (Figure 6b). A possible explanation for this issue could be the fact that the tracer 

experiment and the examination of the macropore network were performed on different dates. It is likely that 

uncertainties arise from this temporal discrepancy with a mismatch between observed macropore geometries and 

recovered tracer pattern due to natural soil processes as well as anthropogenic soil cultivation during this time 

lapse. Another possible explanation could be the fact that up to now the exchange is only simulated for saturated 

parts of the pfd (cf. section 2.3.4) and hence the transport of solute masses from the pfd into the matrix is 

delayed. A test of this idea requires a refinement of the model in future research. Moreover, varying macropore 

numbers and diameters in the range of the standard deviation reveals just slight effects on the simulated mass 

profile at site 33 and is thus less sensitive compared to the results at the site Spechtacker. The reason for this 

phenomenon is probably the higher total number of macropores (nmac = 46) and thus a larger macropore volume 



at site 33. In relation to this larger volume, the variation of macropore numbers and diameters in the quite narrow 

range of the standard deviation (± 4, ± 1 mm) has only a minor influence on the total water and tracer masses 

transported through the macropore network and thus on the resulting mass profile at site 33.  

 

Note that the conversion of solute masses into an integer number of particles results in small errors, leading to a 

small amount of solutes not entering the system and remaining in the fictive surface storage. To mitigate this 

model effect, a high number of total particles present in the matrix is necessary, at least one million. Beside 

many displacement steps of each particle, the total number of particles is important to render the random walk 

approach statistically valid (Uffink, 1990), although too high particle numbers will decrease the computational 

efficiency. Thus, we conclude that our extension of the Lagrangian particle model of Zehe and Jackisch (2016) is 

a promising tool for a straightforward 1-D estimation of non-uniform solute and water dynamics in macroporous 

soils. However, before the suitability of our model approach to simulate preferential flow of non-interacting 

tracers is generalized, further field experiments on a variety of differently structured soils are necessary. In the 

presented model version, we assume that a macropore distribution with maximal three different depths is a 

sufficient approximation of the observed macropore networks at the study sites Spechtacker and 33 (cf. section 

3.2, Figure 3). Nevertheless, as a variable macropore depth distribution might be observed at other sites, the 

implementation of the macropore depth distribution must be kept flexible for other soils in future model 

parametrizations. Beside the parametrization with experimental data, it is also possible to setup our model by 

using pedotransfer functions for the soil hydraulic properties and to vary the parameters of the pfd by inverse 

modelling, which needs prior knowledge of the depth of typical macropore systems (e.g. worm burrow 

networks) and literature data to parametrize macropore flow velocities. This method would reduce time and the 

amount of work but it could result in equifinality as shown by Klaus and Zehe (2010) or Wienhöfer and Zehe 

(2014). 

Some of our assumptions like the macropore geometry, the simple volume filling or the depth distribution of 

macropores were applied in a similar way in dual-porosity models before (Beven and Germann, 1981; Workman 

and Skaggs, 1990; van Dam et al., 2008) and even few previous studies also worked with physically and 

geometrically separated domains (e.g. Russian et al., 2014). Thus, our model extension can be seen as an 

advancement of double-domain approaches by assuming simple volume filling for macropore flow and particle 

tracking for matrix flow instead of relying on the Darcy-Richards equation. With these results, our model is one 

of the first which proves that simulations based on a Lagrangian perspective on both solute transport and 

dynamics of the carrying fluid itself are possible and well applicable. Also, the vertically distributed exchange 

between both domains seems feasible and does not rely on extra parameters like a leakage coefficient, e.g. used 

in dual-models (Gerke, 2006). The concept of cubic particle packing within the macropores (cf. Figure 2a, 

section 2.3.1) is strongly motivated by the hydraulic radius and can thus be transferred to flow in further kinds of 

macropore geometries, including flow between two parallel walls like it occurs in soil cracks or corner flow in 

rills (Germann, 2018). 

 

Another remarkable result is the high model sensitivity towards the saturated hydraulic conductivity ks of the soil 

matrix (Figures 7, 8). Especially its direct influence on the infiltration process is crucial. As ks determines the 

initialisation, infiltration fluxes and the distribution of incoming precipitation masses to the two domains, it has a 

direct impact on the deep displacement of water and solutes. Therewith, our findings highlight the importance of 



infiltration processes on macroporous soils and the challenge to implement them properly into models which 

have also been stressed by other studies (Beven and Germann, 1982; Weiler, 2005; Nimmo, 2016).  

Our model shows further a remarkable sensitivity to the presence of a population of macropores while 

differences in macropore properties comparatively have little impact. Generally, wider macropores collect and 

transport more water and solutes to greater depths than small ones (Figures 9a, b). In contrast, high numbers of 

macropores do not necessarily result in a greater and deeper percolation of solutes (Figures 9c, d). Jackisch and 

Zehe (2018) also reported this aspect and explain it with the distribution of the irrigation supply to all 

macropores and this supply can drop below the diffusive mixing fluxes from the macropores into the matrix. 

However, this implies that the number of macropores becomes more sensitive at much larger irrigation rates. 

Where and to which extent water and solutes are diffusively mixed from the macropores into the matrix clearly 

depends on the depth distribution of the macropores and the distribution of the mixing masses among the various 

depths (Table 2, Figure 10). This concept of the distribution of macropore depths and mixing masses is important 

to meet the natural condition of a high spatial heterogeneity of the macropore network. Generally, the results of 

our sensitivity analyses are in line with the findings of Loritz et al. (2017) as they reveal a significant impact of 

the implementation of macropore flow on the model behaviour and its complexity. 

Please note that we are aware of the fact that some results of the sensitivity analyses are straightforward and 

expectable. Nevertheless, we think that their presentation is necessary to allow the reader to check if our 

Lagrangian approach with the macropore domain reproduces these results as the model concept is new. To this 

end, please also see further sensitivity analyses in the appendix. 

 

We overall conclude that the modified 1-D structure of our model is robust and provides a high computational 

efficiency with short simulation times, which is a big advantage of our model. In line with the underlying 

Lagrangian model of Zehe and Jackisch (2016), we also used the programming language MATLAB to develop 

the two model extensions. The model simulation at the site Spechtacker with the selected parametrization (cf. 

Table 1) only runs for about five minutes, even on a personal computer with moderate computing power. 

Without an active pfd, like it is the case for the simulations at the study sites 23 and 31, the model runs even 

faster. If performing these simulations on a high performance computer or workstation, one could probably also 

run several model simulations in parallel within minutes. 

Moreover, the efficiency allows for the implementation of further routines with yet still appropriate simulation 

times. In this way, the model could prospectively consider retardation and adsorption effects as well as first-

order reactions during the transport of non-conservative substances like pesticides. Until now, the solute 

movement of conservative tracers like bromide is only determined by the water flow without any consideration 

of molecular diffusion or particle interactions, although some evidence suggests a non-conservative behaviour of 

bromide tracers under certain conditions (e.g. Whitmer et al., 2000; Dusek et al., 2015). In our case, we believe 

that the event scale and the short simulation times allow for the assumption of a conservative behaviour of 

bromide.  

Moreover, the model can be extended to 2-D for simulations on hillslope or even catchment scales. In this 

regard, our model also offers the promising opportunity to quantify water ages and to evaluate travel and 

residence times of water and solutes by a simple age tagging of particles. This can shed light on the chemical 

composition and generation of runoff fluxes as well as on the “Inverse Storage Effect”. This effect describes a 



greater discharge fraction of recent event water at a high catchment water storage than at low storage  

(Hrachowitz et al., 2013; Harman, 2015; Klaus et al., 2015; van der Velde et al., 2015; Sprenger et al., 2018). 
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Appendix: Further sensitivity analyses with time series 

We performed additional sensitivity analyses to determine the effect of different ks values and macropore 

diameters on the temporal development of the solute concentration profile. We moved the results of these time 

series to the appendix as they generally provide no new insights but confirm the findings presented in the results 

section. 

 

Figure A1 generally confirms the findings of the sensitivity analyses with different ks values (cf. section 4.4.1). 

The four temporal snapshots show the development of the concentration profiles at low (1 ∙ 10-6 m s-1), medium 

(2.5 ∙ 10-6 m s-1) and high (1 ∙ 10-5 m s-1) ks values throughout the simulation time with a) + b) during the rainfall 

event and c) + d) shortly after it and after one day, respectively. It is obvious how rapidly solute concentrations 

increase, especially in the upper soil part at high ks values. Shortly after the rainfall event almost the entire water 

and solute masses have infiltrated the matrix due to the higher infiltration capacity. At low ks values, water and 

solutes notably need more time to infiltrate completely. The differences of the centres of mass and the deeper 

shift of the mass centre at low ks values confirm the increased macropore infiltration and penetration of solutes 

through them to greater depths (cf. Figure 7). 

 

Moreover, the temporal development of the concentrations is similar for all macropore diameters with just 

marginal differences arising shortly after the rainfall event (Figure A2). While the macropore diameter has a 

minor influence in the initial phase, stronger differences occur at the end of the simulation when the residual 

water and solute amounts of the fictive surface storage have finally infiltrated. Thus, mainly at the end of the 

simulations the influence of the macropores on the infiltration and the macropore-matrix mixing processes are 

remarkable, because the storage volume of the preferential flow domain is small and hence it can only collect 

small amounts of water and solutes in relation to the matrix domain. The centres of mass corroborate the results 

of Figures 9a, b in the way that the big macropores have the tendency to transport more solute masses into the 

subsoil. 

 



 

Figure A1. Time series of bromide tracer concentration profiles and centres of mass at different ks values during the rainfall 

event (a+b), shortly after it (c) and at the end of simulation (d). 

 



 

Figure A2. Time series of bromide tracer concentration profiles and centres of mass at different macropore diameters (dmac) 

during the rainfall event (a+b), shortly after it (c) and at the end of simulation (d). 
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Figure 1. Concept of particle binning. All particles within a grid element are subdivided into bins (= red rectangles) of 

different pore sizes. Dependent on their related bin the particles travel at different flow velocities. 

 

Figure 2. Conceptual visualization of (a) the macropore structure and cubic packing of particles in the rectangle of a cut open 

and laid-flat grid element cylinder (cf. section 2.3.1), (b) the macropore filling with gradual saturation of grid elements, 

exemplarily shown for three points in time (t1-t3) whereby at each time new particles (differently coloured related to the 

current time) infiltrate the macropore and travel into the deepest unsaturated grid element (cf. section 2.3.3) and (c) the 

macropore depth distribution and diffusive mixing from macropores into matrix (cf. section 2.3.4). 

  



Table 1. Simulation and tracer experiment parameters (average values) as well as soil hydraulic parameters after Schäfer 

(1999) at the sites 23, 31, Spechtacker and 33. Where ks is the saturated hydraulic conductivity of the matrix, θs the saturated 

soil water content, θr the residual soil water content, α the inverse of an air entry value, n a quantity characterizing pore size 

distribution, s the storage coefficient and ρb the bulk density. In general, all these observable parameters can be freely 

adjusted in our model and are hence independent from other variables. All other calculated parameters presented in the text 

are dependent on these observable parameters. 

Parameter Site 23 Site 31 Spechtacker Site 33 

Irrigation duration (hh:mm) 02:10 02:10 02:30 02:20 

Irrigation intensity (mm h-1) 10.36 10.91 11.1 9.7 

Br-concentration of irrigation 

water (kg m-3) 
0.165 

Recovery rate (%) 77 76 95 96 

Initial soil moisture in 15 cm (%) 20.5 25.3 27.4 22.3 

Initial soil moisture in 30 cm (%) 25.3 15.9 - - 

Initial soil moisture in 45 cm) (%) 28.1 13 - - 

Initial soil moisture in 60 cm (%) 29.6 13.4 - - 

Simulation time t (s) 86400 (=1 Day) 

Time step ∆t (s) 120 

Particle number in matrix (-) 1 Mill. 

Particle number in pfd (-) - - 10 k 10 k 

Soil type Calcaric Regosol Calcaric Regosol Colluvic Regosol Colluvic Regosol 

ks m s-1 0.50 ∙ 10-7 0.50 ∙ 10-6 2.50 ∙ 10-6 2.50 ∙ 10-6 

θs (m³ m-3) 0.44 0.44 0.4 0.4 

θr (m³ m-3) 0.06 0.06 0.04 0.04 

α (m-1) 0.4 0.4 1.9 1.9 

n (-) 2.06 2.06 1.25 1.25 

s (-) 0.26 0.45 0.38 0.38 

ρb (kg m-3) 1300 1300 1500 1500 

nmac (-) - - 16 46 

dmac (m) - - 0.005 0.006 

Grid element length  

in pfd dzpfd (m) 
- - 0.05 0.05 

mac. big (m) - - 1 1 

mac. med (m) - - 0.8 0.6 

mac. sml (m) - - 0.5 - 

fbig (-) - - 0.13 0.35 

fmed (-) - - 0.19 0.65 

fsml (-) - - 0.68 - 

 

  



 

Figure 3. Distribution of macropore numbers with an average diameter of 5 mm (Spechtacker) and 6 mm (site 33) along the 

vertical soil profiles at the two study sites. The arrows highlight the derivation of the macropore numbers in different depths 

(cf. section 3.2), whereby “avg.” means that in these depths the macropore numbers are averaged because there was no clear 

macropore pattern observed. 

 

Figure 4. Linear regression of the flux rate within the macropore on the macropore radius (dmac/2) at the study site 

Spechtacker (edited figure, adopted from Zehe and Flühler, 2001b). This relation was derived from measurements of 

saturated flow through undisturbed soil columns containing worm burrows. 

 

Table 2. Parameter ranges of the sensitivity analyses and configurations of macropore depth distribution and distribution 

factors (cf. Figure 10). 

Parameter Value range 

ks (m s-1) 10-6 - 10-5 (step: 1∙10-6) 

dmac (m) 0.0035 – 0.008 (step: 0.0005) 

nmac (-) 11 – 20 (step: 1)  

mac. depth distr. 

config. 
1 2 3 

  

mac. big (m) -1 -0.8 -0.6 
 

mac. med (m) -0.8 -0.6 -0.4 
 

mac. sml (m) -0.6 -0.4 -0.2 
 

distr. factors 

config. 
A B C D 

fbig (-) 0.13 0.3 0 0.5 

fmed (-) 0.19 0.3 0.2 0.3 

fsml (-) 0.68 0.3 0.8 0.2 



 

Figure 5. Final simulated and observed vertical bromide mass profiles of the matrix at the two well-mixed sites 23 + 31 

(a+b) with RMSE values simulated with the LAST-Model. In comparison, final simulated and observed vertical bromide 

mass profiles at the two well-mixed sites 23+31 (c+d) with RMSE values simulated with HYDRUS 1-D. The rose shaded 

area shows the uncertainty area of measured ks values. 

 



 
Figure 6. Final simulated and observed vertical bromide mass profiles of the matrix at the two preferential flow sites 

Spechtacker + 33 (a+b) with RMSE values simulated with the LAST-Model. The rose area shows the standard deviation of 

measured macropore numbers and diameters from the mean values at site Spechtacker (nmac = 16, dmac = 5 mm) and site 33 

(nmac = 46, dmac = 6 mm) (cf. Table 1). In comparison, final simulated and observed vertical bromide mass profiles at the 

two preferential flow sites Spechtacker + 33 (c+d) with RMSE values simulated with HYDRUS 1-D. The rose mass profile is 

simulated with a dual-porosity approach to account for preferential flow (cf. section 3.3) and for comparison, the red mass 

profile is simulated with an equilibrium approach. 

 

 

Figure 7. Final simulated bromide concentration (Cs) and soil moisture (theta) profiles of the soil matrix (a) without and 

(b+c) with macropores at different ks values. The blue area shows the possible range of simulated profiles with different ks 

values. 

  



 

Figure 8. Final bromide concentration profiles at (a) low, (b) medium and (c) high ks values and the proportion of solutes 

which originates from the macropores. 

 

 

Figure 9. Final simulated bromide concentration (Cs) and soil moisture (theta) profiles of the soil matrix at different 

macropore diameters (dmac) (a+b) and macropore numbers (nmac) (c+d).  



 

Figure 10. Final simulated bromide concentration (Cs) and soil moisture (theta) profiles of the soil matrix at three different 

macropore depth distribution configurations (a+b) and at four different distribution factor configurations (c+d) (cf. Table 2). 

 


