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Abstract. We propose an alternative model to overcome the weaknesses of the Darcy-Richards approach and to 

simulate preferential soil water flow and tracer transport in macroporous soils. Our LAST-Model (Lagrangian Soil 

Water and Solute Transport) relies on the movement of water particles carrying a solute mass through the soil 

matrix and macropores. We advance the model of Zehe and Jackisch (2016) by two main extensions: a) a new 

routine for solute transport in the soil matrix and b) the implementation of an additional 1-D preferential flow 

domain which simulates flow and transport in a population of macropores. We show that the latter can be 

parametrized based on field observations of macropore geometries. Infiltration into the matrix and the macropores 

depends on the respective moisture state and subsequently macropores are gradually filled. Macropores and matrix 

interact through diffusive mixing of water and solutes between the two flow domains which again depends on their 

water content and matric potential at the considered depths. 

The LAST-Model is evaluated by sensitivity analyses and tested against experimental data of tracer field 

experiments at four different study sites. We additionally compare the results of the LAST-Model with those of 

the commonly used HYDRUS 1-D model. The results corroborate the feasibility of the LAST-Model approach 

and its ability to simulate preferential flow through macropores in a good accordance with observed tracer data 

which is better than the results of HYDRUS 1-D. Yet, the LAST-Model operates at a high computational efficiency 

resulting in short simulation times and it provides a promising framework to improve the linkage between field 

experiments and computer models to reduce working effort, as well as to improve the understanding of preferential 

flow processes.  

1 Introduction  

Until now, the most commonly used hydrological models have been following an Eulerian perspective on the flow 

processes with a stationary observer balancing dynamic changes in a control volume. The alternative Lagrangian 

perspective with a mobile observer travelling along the trajectory of a solute particle through the system (Currie, 

2002) has up to now only been used to simulate advective-dispersive transport of solutes (Delay und Bodin, 2001; 

Zehe et al., 2001; Berkowitz et al., 2006; Koutsoyiannis, 2010; Klaus and Zehe, 2011). However, this particle 

tracking approach is mostly embedded in frameworks with Eulerian control volumes which still characterize the 

dynamics of the carrying fluid. Lagrangian descriptions of the fluid dynamics itself are only realized in a few 

models. But such a particle tracking framework may offer many advantages, especially at the coping of the 

challenges induced by preferential water flow and solute transport in structured heterogeneous soils. 

Preferential flow has become a major issue in hydrological research since the benchmark papers of Beven and 

Germann (1982), Flury et al. (1994) and Uhlenbrook (2006). The term of preferential flow is used to summarize a 

variety of mechanisms leading to a rapid water movement in soils. The most prominent one is the flow through 



non-capillary macropores (Beven and Germann, 2013) where water and solutes travel in a largely unimpeded 

manner due to the absence of capillary forces and bypass the soil matrix (Jarvis, 2007). Macropores can be 

classified into e.g. earth worm burrows, channels from degraded plant roots or shrinkage cracks and all of them 

are not static in space nor time (e.g. Blouin et al., 2013; Nadezhdina et al., 2010; Palm et al., 2012; van Schaik et 

al., 2014; Schneider et al., 2018). Especially in rural areas and in combination with agrochemicals, macropore flow 

can be a dominant control on stream and groundwater pollution (e.g. Flury, 1996; Arias-Estévez et al., 2008). To 

understand such water and solute movements a combination of plot-scale experiments and computer models is 

commonly used (Zehe et al., 2001; Šimůnek and van Genuchten, 2008; Radcliffe and Šimůnek, 2010; Klaus et al., 

2013). One of the most frequently used approaches to simulate water flow dynamics and solute transport is to use 

the Darcy-Richards and the advection-dispersion equation. Both equations fundamentally assume that solute 

transport is controlled by the interplay of advection and dispersion (Roth, 2006; Beven and Germann, 2013) and 

that the underlying soil water dynamics are dominated by capillary-driven diffusive flow. While the second 

assumption is well justified in homogeneous soils, it frequently fails in soils with macropores. Consequently, we 

separate at least two flow regimes in soils: the slow diffusive flow in the soil matrix and the rapid advective flow 

in the macropores. Partial mixing between these two flow regimes is non-trivial as it depends on the hydraulic 

properties of the macropore walls, the water content of the surrounding soil, actual flow velocities, hydrophobicity 

of organic coatings and much more. The inability of the Richards equation to simulate partial mixing between both 

flow regimes is well known and a variety of different models have been proposed to address this problem (Šimůnek 

et al., 2003; Beven and Germann, 2013). But most of them are still fundamentally based on the Darcy-Richards 

equation like the most prominent and well-established double-domain models like for instance the HYDRUS 

model of Šimůnek and van Genuchten (2008). 

A promising alternative approach is provided by particle-based Lagrangian models for subsurface fluid dynamics. 

The first implementation of such a model for soil water dynamics is the SAMP model proposed by Ewen (1996a; 

b). SAMP represents soil water by a large number of particles travelling in an one-dimensional soil domain by 

means of a random walk which is based on soil physics and soil water characteristics. A more recent example is 

the two-dimensional MIP model of Davies et al. (2013) developed for hillslopes. Fluid particles travel according 

to a distribution function of flow velocities which needs to be estimated from tracer field experiments. Exchange 

of particles among the different pathways is conceptualized as random process following an exponential 

distribution of mixing times. Inspired by the SAMP model, Zehe and Jackisch (2016) conceptualized a Lagrangian 

model describing soil water flow by means of a non-linear space domain random walk. In line with Ewen (1996), 

they estimated the diffusivity and the gravity-driven drift term of the random walk based on the soil water retention 

curve (Ψ(θ)) and the soil hydraulic conductivity curve (k(θ)).  

The particle-based Lagrangian model of Zehe and Jackisch (2016) initially assumed that all particles travel at the 

same diffusivity and velocity corresponding to the actual soil water content. But a comparison to a Richards solver 

revealed that this straightforward, naive random walk implementation highly overestimates infiltration and 

redistribution of water in the soil. The solution for this overestimation was to account for variable diffusive 

velocities. Now, particles in different pore sizes travel with various diffusivities, which are determined based on 

the shape of the soil hydraulic conductivity curve. This approach reflects the idea that the actual soil water content 

is the sum of volume fractions that are stored in different pore sizes and that the different pore sizes constitute flow 

paths which differ in both advective and diffusive velocities. 



Recently, this model was advanced by Jackisch and Zehe (2018) with the implementation of  a second dimension 

which contains spatially explicit macropores to simulate preferential flow. Within a macropore the velocity of each 

particle is described by interactions of driving and hindering forces. Driver is the potential energy of a particle 

while energy dissipation due to friction at the macropore walls dissipates kinetic energy and accordingly reduces 

particle velocities. With this approach, Jackisch and Zehe (2018) tried to make maximum use of observables for 

model parametrization. The assets of their echoRD model are a self-controlling macropore film flow and its ability 

to represent 2-D infiltration patterns. The drawback of echoRD is the huge computational expense. The simulation 

time is about 10 to 200 times longer than real-time. 

The huge computational expense of the echoRD model is one main motivation for us to develop a Lagrangian 

approach which balances necessary complexity with greatest possible simplicity. The other motivation is the 

inability of all models mentioned above to simulate solute transport appropriately. This is essential for a rigorous 

comparison of the model with tracer data and to get closer to the simulation of reactive transport. Thus, the main 

objectives of this study are to:  

1) Present a new routine for solute transport and diffusive mixing for well-mixed matrix flow conditions 

which is implemented into the model of Zehe and Jackisch (2016) and to test this approach against tracer 

data from plot-scale experiments carried out in the Weiherbach catchment (Zehe and Flühler, 2001b). 

2) Extend the model by implementing a macropore domain accounting for preferential flow of water and 

solutes and related exchange with the matrix domain. In contrast to the echorRD model, we maintain the 

one-dimensional approach to keep the computational expense moderate.  

 

The structure of our LAST-Model (Lagrangian Soil Water and Solute Transport) is hence similar to a double-

domain approach. The main asset is that flow and transport in both domains and their exchange are described by 

the same stochastic physics and that the macropore domain can be parametrized by observable macropore 

geometries. This fact may help to overcome the limiting assumptions of the Darcy-Richards and the advection-

dispersion equation. The refined LAST-Model is tested by extensive sensitivity analyses to corroborate its physical 

validity. Further, it is also tested with four tracer infiltration experiments at different study sites in the Weiherbach 

catchment which are either dominated by well-mixed conditions (sites 23, 31) or preferential flow in macropores 

(sites Spechtacker, 33). For comparison, these four experiments are also simulated with HYDRUS 1-D. 

2 Concept and implementation of the LAST-Model 

2.1 The Lagrangian model of Zehe and Jackisch (2016) in a nutshell 

The basis of our development is the Lagrangian model of Zehe and Jackisch (2016). It describes infiltration and 

water movement through a spatial explicit 1-D soil domain dependent on the effects of gravity and capillarity in 

combination with a spatial random walk concept. Water is represented by particles with constant mass and volume. 

The density of soil water particles in a grid element represents the actual soil water content (t) [m³/m³] which 

reflects in turn the sum of the volume fractions of soil water that are stored in pores of strongly different sizes. 

Water particles travel at different velocities in these pores which are characterized by the shape of the hydraulic 

conductivity and water diffusivity curve. The curves are subdivided into NB bins, starting from the residual 

moisture r stepwise to the actual moisture (t) using a step size of ∆𝜃 =
(𝜃(𝑡)−𝜃𝑟)

𝑁𝐵
 (Figure 1). The particle 

displacement within the bins is described by Equation 1:  



 

𝑧𝑖(𝑡 + ∆𝑡) = 𝑧𝑖(𝑡) − (
𝑘(𝜃𝑟+𝑖∙∆𝜃)

𝜃(𝑡)
+

𝜕𝐷(𝜃𝑟+𝑖∙∆𝜃)

𝜕𝑧
) ∙ ∆𝑡 + 𝑍√2 ∙ 𝐷(𝜃𝑟 + 𝑖 ∙ ∆𝜃) ∙ ∆𝑡              𝑖 = 1, … , 𝑁       (1) 

    

Where z is the vertical position [m], k the hydraulic conductivity [m/s], i the number of the current bin, D the water 

diffusivity [m²/s], i.e. the product of the hydraulic conductivity k() and the slope of the soil water retention curve 

with the relation 
𝜕𝛹

𝜕𝜃
 [m], t the simulation time [s], ∆t the simulation time step and Z a random, uniformly distributed 

number between [-1, 1]. The equation comprises two terms. The first one represents gravity-driven downward 

advection of each particle based on the hydraulic conductivity, the second one is the diffusive term driven by 

capillarity. According to Figure 1 and Equation 1, particles in coarse pores travel more rapidly at a higher hydraulic 

conductivity due to wet conditions. In smaller pores or during drier conditions the flow velocities are so small that 

the particles are in fact immobile. This binning of particle velocities and diffusivities also opens the opportunity 

to simulate rainfall infiltration under non-equilibrium conditions. To this end, infiltrating rainfall-event water is 

treated as second type of particles which initially travel at gravity-driven, rapid velocities in the largest pore 

fraction and experience a slow diffusive mixing with the pre-event water particles of the matrix during a 

characteristic mixing time. Test simulations revealed that the Lagrangian model can simulate water dynamics 

under equilibrium conditions in good accordance with a Darcy-Richards approach for three different soils. For a 

detailed description of the underlying model concept and the derivation of the equations see the study of Zehe and 

Jackisch (2016). 

2.2 Representation of solute transport in the LAST-Model 

In a first step we implement a routine for solute transport into the particle model by assigning a solute concentration 

C [kg/m³] to each particle. This implies that a particle carries a solute mass which is equal to its concentration 

times its volume. Due to the particle movements through the matrix domain the dissolved mass experiences 

advective transport in every time step. Diffusive mixing among all particles is calculated after each displacement 

step by summing up the entire solute mass in a grid element and dividing it by the amount of all present water 

particles. The underlying assumption of perfect mixing among all particles in a grid element requires a diffusive 

mixing time corresponding to the molecular diffusion coefficient, which is smaller than the time step t. The latter 

is ensured by a sufficiently fine subdivision of the soil matrix. 

2.3 The macropore domain and representation of preferential flow 

The second and main model extension is the implementation of a 1-D preferential flow domain considering the 

influence of macropores on water and solute dynamics. This requires four main steps: 

1. Design of a physically based structure of the preferential flow domain; 

2. Conceptualisation of the infiltration and partitioning of water into the two domains; 

3. Description of advective flow in the macropores; 

4. Conceptualisation of water and tracer exchange between the macropore and the matrix domain. 

2.3.1 The preferential flow domain 

We define a 1-D macropore or preferential flow domain (pfd) which is surrounded by a 1-D soil matrix domain 

with vertically distinct boundaries. In line with other Lagrangian models, we represent water as particles with 



constant mass and volume corresponding to their domain affiliation. As the vertical extent and volume of the pfd 

is much smaller than that of the matrix domain, the corresponding particles must be much smaller to ensure that 

an adequate number of particles travel within the pfd for a valid stochastic approach. 

The pfd comprises a certain amount of macropores. Each macropore has the shape and structure of a straight 

circular cylinder with a predefined length LM (m) and diameter dmac (m) containing spherically shaped particles 

(Figure 2a). Two of the most important geometrical properties of the pfd are the macropore diameter and the total 

number of macropores nmac (-) as they scale exchange fluxes and determine several other characteristics like the 

total macropore volume. The macropore number, lengths and diameters can be directly measured in field 

experiments as described in section 3.2. From these observable parameters it is further possible to calculate 

additional pfd parameters like the total volume, stored water mass at saturation, the circumference and the flux 

rate. As we assume purely gravity-driven flow, the flux rate, the hydraulic conductivity of the pfd kpfd [m/s] and 

the advective velocity of a particle within the pfd v [m/s] are assumed to be equal and can be calculated by the 

diameter as also described in section 3.2.  

Our 1-D approach can of course not account for the lateral positions of the macropores but the pfd allows a depth 

distribution of macropores which is important for calculating the depth-dependent exchange with the matrix 

(section 2.3.4). To calculate the water content and tracer concentrations, the macropores of the pfd are vertically 

subdivided into grid elements of certain length dzpfd (m). Therefore, water contents and solute concentrations are 

regarded as averaged over these grid elements. Within a grid element of a macropore we assume cubic packing of 

a number of particles N (cf. Figure 2a), each having a mass mP (kg) which is derived from the total water mass 

stored in a macropore when fully saturated. Based on this mass and the water density, the pfd particles are also 

geometrically defined by a diameter DP (m) and volume VP (m³). 

In a cubic packing the particles are arranged in the way that the centres of the particles form the corners of a cube. 

The concept of cubic packing facilitates the calculation of the proportion of particles having contact to the lateral 

surface of a grid element. The rectangle in Figure 2a describes such a lateral surface of a grid element, with a 

height corresponding to the grid element length dzpfd and the circumference C (m) as length, which can be obtained 

when a macropore grid element is cut open and its surface is laid-flat. The number of particles which can be packed 

into this rectangle have then contact to the lateral surface of this grid element. The proportion of these contact 

particles on the total amount of particles roughly corresponds to the hydraulic radius scaling the wetted cross 

section with the wetted contact area in a macropore. Within the mixing process only the contact particles are able 

to infiltrate via the interface into the soil matrix. 

2.3.2 Infiltration and partitioning of water into the two domains 

As a 1-D approach does not allow an explicit, spatial distribution of the incoming precipitation water over the soil 

surface, we use an implicit, effective infiltration concept. The infiltration and distribution of water are controlled 

by the actual soil moisture and the flux densities driven by the hydraulic conductivity and the hydraulic potential 

gradient of the soil matrix as well as by friction and gravity within the macropores (Weiler, 2005; Nimmo, 2016; 

Jackisch and Zehe, 2018). For example, a soil matrix with a low hydraulic conductivity increases the proportion 

of water infiltrating the macropores as it preferentially uses pathways of low flow resistance.  

In our model, we use a variable flux condition at the upper boundary of the soil domain dependent on the 

precipitation intensity. Incoming precipitation water accumulates in an initially empty fictive surface storage from 

which infiltrating water masses and related particle numbers are calculated. To this end, we distinguish several 



cases. In Case 1, the top soil grid elements of the soil matrix and the pfd are initially unsaturated and the infiltration 

capacity of the soil matrix is smaller than the incoming precipitation flux density. Water infiltrates the soil matrix 

and the excess water is redistributed to the pfd and infiltrates it with a macropore-specific infiltration capacity. 

Case 2 applies when the top matrix grid element is saturated and water exclusively infiltrates the pfd until all 

macropores are also saturated. Case 3 occurs when both the top matrix layer and the pfd are saturated leading to 

an accumulation of precipitation water in the surface storage. As soon as the water contents in the first soil matrix 

grid element and in the pfd are subsequently decreasing due to downward water flow or drainage of the 

macropores, again infiltration occurs according to Case 1. The incoming precipitation mass (mrain) and the 

infiltrating water masses into the matrix (mmatrix) and the pfd (mpfd) are calculated with Equations 2-4. Please note 

that these equations present infiltrating masses and not fluxes because the model generally works with discrete 

particles and their masses. 

 

𝑚𝑟𝑎𝑖𝑛 = 𝑞𝑟𝑎𝑖𝑛 ∗ 𝜌𝑤 ∗ ∆𝑡 ∗ 𝐴            (2) 

𝑚𝑚𝑎𝑡𝑟𝑖𝑥 = (
𝑘_𝑚1+𝑘𝑠

2
) ∗ (

𝜓1−𝜓2

𝑑𝑧
+ 1) ∗ 𝐴 ∗ 𝜌𝑤 ∗ ∆𝑡          (3) 

𝑚𝑝𝑓𝑑 = 𝑘𝑝𝑓𝑑 ∗ 𝜋 ∗ (
𝑑𝑚𝑎𝑐

2
)

2

∗ 𝜌𝑤 ∗ ∆𝑡 ∗ 𝑛𝑚𝑎𝑐          (4) 

 

Where qrain [m/s] is the precipitation flux density, respectively the intensity, k_m1 [m/s] the actual hydraulic 

conductivity of the first grid element of the matrix, ks [m/s] the saturated hydraulic conductivity of the matrix and 

𝜓1 − 𝜓2 [m] the matric potential difference between the surface and the first grid element right beneath the surface, 

dz [m] the grid element length of the matrix, kpfd [m/s] the saturated hydraulic conductivity of a macropore (cf. 

section 3.2), dmac [m] the diameter of a macropore and nmac the total number of macropores within the pfd, 𝜌𝑤 

[kg/m³] the water density, ∆𝑡 [s] the simulation time step and A [m²] the plot area.  

According to Equation 3, the infiltration rate into the matrix is based on Darcy’s law and thus we are generally 

able to account for an extra pressure due to a ponded surface, e.g. in Case 3. But in our simulation cases, ponding 

heights are small and have only marginal effect. 

After the precipitation water has infiltrated into the two domains the masses are converted to particles which are 

initially stored in the first grid elements of the matrix and pfd. They are now ready for the displacement process.  

2.3.3 Advective flow in the macropores 

In the pfd, we assume a steady state balance between gravity and dissipative energy loss at the macropore walls. 

This implies purely advective flow characterised by a flow velocity v which can either be inferred from tracer or 

infiltration experiments on macroporous soils as described by Shipitalo and Butt (1999), Weiler (2001) and Zehe 

and Blöschl (2004). The particle displacement in our pfd is described by Equation 5: 

 

∆𝑧 = 𝑣 ∙ ∆𝑡                  (5) 

 

As all particles in the pfd travel at the same velocity, their displacement depends on the time step. Generally, our 

model can work with variable time stepping as Lagrangian approaches are not subject to time step restrictions or 

numerical stability criteria. Here, we select the time step such that the particle displacement per time step equals 



the maximum depth of the pfd and subsequently excess particles are shifted upwards to the deepest unsaturated 

grid element. In this way, we gradually fill the macropores from the bottom to the top comparable to the filling of 

a bottle with water. This simple volume filling method was applied before in other models, e.g. in the SWAP 

model of van Dam et al. (2008) or in the study of Beven and Clarke (1986). Figure 2b shows an example for the 

macropore filling concept: in each of the three time steps (t1-t3) new particles, shown by the different colours, 

infiltrate the macropore and subsequently they are displaced with ∆𝑧 to the bottom of the macropore, initially 

saturating the deepest grid element (t1). In the following time steps t2 and t3 the new particles do not fit into the 

respective saturated grid elements anymore and are then shifted to the next deepest unsaturated grid element. In 

line with the matrix, particle densities are calculated in each grid element to obtain the actual soil water content 

and tracer concentrations of the pfd. 

2.3.4 Water and tracer exchange between the macropore and the matrix domain 

Commonly, macropore-matrix interactions are challenging to observe within field experiments. One approach is 

to evaluate the isotopic composition of water in the two domains (Klaus et al., 2013). In theory it is often assumed 

that the interactions and water dynamics at the interface between macropores and the matrix are mainly controlled 

by the matric head gradients and the hydraulic conductivity of both domains which depend on an exchange length 

and the respective flow velocities (Beven and Germann, 1981; Gerke, 2006).  

Our model approach is also based on these assumptions as illustrated in Figure 2c. We restrict exchange to the 

saturated parts of the pfd assuming downward particle transport as being much larger than the lateral exchange 

and we neglect diffusive exchange between solutes in the matrix and the pfd. We are aware that these 

simplifications might constrain the generality of our model. For instance, we also neglect the effect of a reverse 

diffusion from the matrix into the macropores. This effect can influence water and solute dynamics when the 

propagation of a pressure wave pushes matrix water into empty macropores, mainly in deeper saturated matrix 

areas (Beven and Germann, 2013). We rely on those simplifications a) to keep the model simple and efficient and 

b) because the focus of our model is on unsaturated soil domains and during rainfall-driven conditions the 

macropores are most of the time completely filled due to their small storage volume. 

The distribution of different macropore depths and the definition of distribution factors can be derived from 

datasets containing information on macropore networks observed in field experiments as described in section 3.2. 

Based on these datasets, the current version of our model divides the total amount of macropores 𝑛𝑚𝑎𝑐  in the pfd 

into three depths. To this end, the total number is multiplied with a distribution factor 𝑓 for big (𝑓𝑏𝑖𝑔), medium 

(𝑓𝑚𝑒𝑑) and small (𝑓𝑠𝑚𝑙) macropores (cf. Figure 2c). 

The saturated grid elements (blue filled) of the largest macropores are coupled to the respective grid elements of 

the medium and small macropores. In this example, the red respectively the black framed grid elements of the 

three macropore sizes are coupled due to their saturation state and depth order. This coupling ensures a 

simultaneous diffusive water flow out of the respective grid elements of all three macropore depths. The mixing 

fluxes (𝑞𝑚𝑖𝑥  [m³/s]) in the actual grid elements are calculated by Equation 6: 

 

𝑞𝑚𝑖𝑥 =
2∙𝑘𝑠∙𝑘_𝑚𝑖

(𝑘𝑠+𝑘_𝑚𝑖)
∙

𝜓𝑖

𝑑𝑚𝑎𝑐
∙ 𝐶 ∙ 𝑑𝑧𝑝𝑓𝑑               (6) 

           

Thus, diffusive mixing fluxes are calculated with the harmonic mean of the saturated hydraulic conductivity of the 

matrix ks [m/s] and the current hydraulic conductivity of the respective matrix grid element 𝑘_𝑚𝑖 [m/s], multiplied 



with the relation of the matric potential 𝜓𝑖  [m] of the actual matrix grid element and the grid element diameter 𝐷𝑀  

[m] as exchange length and the circumference C [m] of the macropore grid element. We use the harmonic mean 

here because we assume a row configuration at the calculation of the lateral diffusive mixing fluxes between 

macropore and matrix as there is a vertical interface between the two domains. 

The mixing masses are again converted into particle numbers with the two different particle masses. Due to the 

higher masses of the matrix particles a much lower amount of particles is entering the matrix. This has to be taken 

into account by choosing an adequate number of total particles present in the matrix, i.e. at least one million at 

moderate saturated hydraulic conductivities. In addition, it is ensured that the number of particles leaving a grid 

element of the pfd is lower than the maximum possible number of particles having contact to the lateral surface 

(cf. section 2.3.1) dependent on its current soil water content. Please note that up to now our model works with a 

no-flow condition at the lower boundary of the pfd but the model structure is generally capable to add an additional 

diffusive drainage with particles leaving the macropores at their lower boundary. 

3 Model benchmarking 

3.1 Evaluation of the solute transport and linear mixing approach during well-mixed matrix flow 

Basis of the first evaluation of our solute transport and linear mixing approach are data from tracer experiments 

conducted by Zehe and Flühler (2001b) in the Weiherbach catchment to investigate mechanisms controlling flow 

patterns and solute transport. The Weiherbach valley is located in the southwest of Germany and has a total extent 

of 6.3 km². The basic geological formations comprise Triassic Muschelkalk marl and Keuper sandstone covered 

by Pleistocene Loess layers with a thickness of up to 15 m. The hillslopes exhibit a typical Loess catena with 

erosion derived Colluvic Regosols at lower slopes and Calcaric Regosols or Luvisols at the top and mid slopes. 

Land use is dominated by agriculture. For further details on the Weiherbach catchment please see the work of Plate 

and Zehe (2008). 

In this catchment, a series of irrigation experiments with bromide as tracer were performed at ten sites. At each 

site, a plot area of 1.4 m x 1.4 m was defined and the initial soil water content and the soil hydraulic functions 

were measured. The plot area was then irrigated by a block rainfall of approx. 10 mm/h with a tracer solution 

containing 0.165 kg/m³ bromide. After one day, soil profiles were excavated and soil samples were collected in a 

0.1 m x 0.1 m grid down to a depth of 1 m and their corresponding bromide concentrations measured.  

Thus, every 10 cm soil depth interval, ten samples were taken and for the comparison with our 1-D simulation 

results, the bromide concentrations were averaged over each sample depth. Note that the corresponding 

observations provide the tracer concentration per dry mass of the soil Cdry while the LAST-Model simulates 

concentrations in the water phase Cw. We thus compare simulated and observed tracer masses in the respective 

depths. More details on the tracer experiments can be taken from Zehe and Flühler (2001a; b). For the evaluation 

of our solute transport and linear mixing approach, we select the two sites 23 and 31 where flow patterns reveal a 

dominance of well-mixed matrix flow without any considerable influence of macropores. Thus, we use the LAST-

Model without an active pfd for the simulations at the study sites 23 and 31.   

The soil at the two sites can be classified as Calcaric Regosol (IUSS Working Group WRB, 2014). In line with the 

experiments, our model uses a spatial soil matrix discretization of 0.1 m and the soils initially contain in total 1 

million water particles but with no tracer masses. Initial soil water contents and all further experimental and model 

parameters as well as the soil properties at these sites are listed in Table 1. 



3.2 Parametrization and evaluation of the preferential flow domain 

In a next step, our pfd model extension is again evaluated with the help of the results of two additional field tracer 

experiments of Zehe and Flühler (2001b). This time, we select the study sites Spechtacker and 33 which show 

numerous worm burrows inducing preferential flow. The sites are also located in the Weiherbach catchment and 

the sprinkling experiments were equally conducted with the application of a block rainfall containing bromide on 

a soil plot. The soils can be classified as Colluvic Regosol (IUSS Working Group WRB, 2014).  

Additionally, the patterns of the worm burrows were extensively examined at these study sites. Horizontal layers 

in different depths of the vertical soil profiles were excavated (cf. introduction of van Schaik et al., 2014) and in 

each layer the amount of present macropores counted as well as the diameters and depths measured. These detailed 

measurements provided an extensive dataset of the macropore network at the study sites Spechtacker and 33. Based 

on this dataset, we can obtain those data we need for the derivation of a mean macropore diameter, macropore 

depth distribution and distribution factors. We focus on a mean macropore diameter of 5 mm at the site Spechtacker 

because worm burrows with a diameter range of roughly 4 - 6 mm are dominant here and at site 33 we select a 

mean diameter of 6 mm. Figure 3 shows the mean number of macropores with these diameters in each depth at 

both sites. Based on this distribution, we can identify and select three considerable macropore depths at the site 

Spechtacker (0.5 m, 0.8 m and 1.0 m) and two macropore depths at site 33 (0.6 m and 1.0 m) (cf. Table 1). In these 

depths, we count circa 11, 3 and 2 macropores (nmac = 16) at the site Spechtacker as well as 30 and 16 macropores 

(nmac = 46) at site 33, respectively. With these distributions we are able to calibrate our distribution factors f in 

the way that a multiplication of the total number of macropores with these factors results in the correct number of 

macropores in the respective depths. The obtained distribution factors are listed in Table 1. 

Moreover, Zehe and Flühler (2001b) measured saturated water flow through a set of undisturbed soil samples 

containing macropores of different radii at the study site Spechtacker with the assumption that flow through these 

macropores dominated. In line with the law of Hagen-Poiseuille, they found a strong proportionality of the flux 

through the macropores to the square of the macropore radius while frictional losses were 500 to 1000 times larger. 

This dependence of the flux rate on the macropore radius can be described by the linear regression shown in Figure 

4. Based on this linear regression, the hydraulic conductivity of the macropores kpfd was calculated as a function of 

the radius rM as we assume the hydraulic conductivity kpfd is equal to the flux rate qM of the macropore (Equation 

7). 

 

𝑘𝑝𝑓𝑑 = 2884.2 ∙ 𝑟𝑀
2             (7) 

 

For more details on the two study sites and their macropore network, see also the studies of Ackermann (1998) 

and Zehe (1999). Here, we select a spatial pfd discretization of 0.05 m and assume that macropores initially contain 

no particles and hence also no water or tracer masses. The total possible number of particles which can be stored 

in the pfd is 10,000 particles. All further experimental and simulation parameters, soil properties as well as 

information about the macropore network at the sites Spechtacker and 33 are listed in Table 1. 

3.3 Simulations with HYDRUS 1-D 

The simulations with HYDRUS 1-D are performed with the same soil properties, model setups and initial 

conditions introduced in the sections 3.1 and 3.2 as well as shown in Table 1. The simulations of the well-mixed 

sites 23 and 31 are performed with a van Genuchten - Mualem single porosity model for water flow and an 



equilibrium model for solute transport. For the simulations at the preferential flow sites Spechtacker and 33 we 

use dual-porosity models for water flow (“Durner, dual van Genuchten – Mualem”) and solute transport (“Mobile 

- Immobile Water”). This means HYDRUS assumes two differently mobile domains to account for preferential 

flow. The theory of that approach describes preferential flow in the way that the effective flow space is decreased 

due to the immobile fraction and thus the same volume flux is forced to flow through this decreased flow space 

resulting in higher pore water velocities and consequently also in a deeper percolation of water and solutes 

(Šimůnek and van Genuchten, 2008). For the parametrization of these two domains we select an immobile soil 

water content ThImob. of 0.2 m³/m³. We hence assume that about 80 – 90 % of the total soil water amounts at the 

two sites are stored in the matrix and are therefore in fact immobile compared to the remaining 10 – 20 %, which 

are assumed to flow through macropores. Zehe and Jackisch (2016) elaborated this rate of an immobile and mobile 

fraction in the fine-grained soils of the Weiherbach catchment. For all simulations we choose an atmospheric 

condition with a surface layer and variable infiltration fluxes at the upper boundary as well as a free drainage 

condition at the lower boundary.  

3.4 Sensitivity analyses of selected parameters 

The sensitivity analyses of the model with the pfd-extension are conducted by varying several parameters 

describing the soil matrix and the pfd in a realistic, evenly spaced value range. To this end, the saturated hydraulic 

conductivity of the matrix ks, the diameter dmac and the number nmac of the macropores are the selected 

parameters which are deemed to be most sensitive and crucial for the model behaviour and the simulation results. 

The probably most sensitive parameter is ks as it controls the infiltration capacities of both domains, the 

displacement within the soil matrix as well as the diffusive mixing fluxes. Beside the saturated hydraulic 

conductivity of the matrix, we also assume that the total number and diameter of the macropores are probably of 

great importance for the model results because they are crucial for the development of the new pfd (cf. section 

2.3.1). Moreover, based on the derived three depths and distribution factors at the site Spechtacker (cf. section 3.2) 

we arbitrarily select different configurations of the macropore depth distribution and the distribution factors to 

evaluate the behaviour of the model related to various numbers of macropores in different depths. The depth 

distribution of macropores thereby comprises a deep (Configuration 1), medium (Configuration 2) and shallow 

(Configuration 3) distribution. At the distribution factors there are four different configurations. A realistic 

distribution comprising more small than big macropores is represented by Configuration A and D, a homogeneous 

distribution is shown by Configuration B and a rather uncommon distribution with more big than small macropores 

is illustrated by Configuration C. All parameter ranges and the detailed configurations of the sensitivity analyses 

are listed in Table 2.  

All model runs of the sensitivity analyses are performed at the site Spechtacker using 22 mm of rainfall in 140 

minutes with subsequent drainage duration of one day. Additional parameters like soil properties, antecedent 

moisture and concentration states, bromide concentration of precipitation water remain constant (cf. Table 1). 

4 Results 

4.1 Simulation of solute transport under well-mixed conditions 

The well-mixed sites 23 and 31 show a high similarity due to their spatial proximity (Figure 5a, b). The shape and 

courses of the simulated tracer mass profiles coincide well with the observed ones over the entire soil domain with 



RMSE values of 0.23 g and 0.28 g, respectively. The observed values are within the uncertainty range, represented 

by the rose shaded areas. This area reflects the uncertainty arising from a variation of ks values of the soil matrix 

in the observed range of 10-7 - 10-6 m/s at site 23 and 10-6 - 10-5 m/s at site 31. 

Note that in the experiments the tracer mass was not directly measured at the soil surface but the observations 

represent averages across 10 cm depth increments, starting in a depth of 5 cm. A comparison of the simulated 

masses close to the surface is thus not meaningful. This difference between simulated and observed profiles near 

to the surface suggests that the coarse resolution of the sampling grid is a likely reason for the relatively low 

recovery rates of 77 % and 76 % at the two sites (cf. Table 1). Overall, we conclude that manipulating ks within 

the observed uncertainty leads to an unbiased simulation ensemble compared to the observed tracer data at matrix 

flow dominated sites. 

4.2 Evaluation of the preferential flow domain 

Our model with the new preferential flow domain is tested against two tracer experiments on macroporous soils at 

the sites Spechtacker and 33. At the site Spechtacker, the simulated and observed tracer mass distributions are 

generally in good accordance (Figure 6a) with a RMSE of 0.3 g and again the values are within the uncertainty 

range. In this case, the rose area shows the standard deviation of measured macropore numbers (± 4) and diameters 

(± 1 mm) from the mean values (cf. Table 1) at the site Spechtacker. Especially in deeper soil regions from 0.35 

m to 1 m, the shape and the magnitude of values correspond well. In the upper soil parts from 0.05 m to 0.15 m 

the model slightly overestimates the tracer masses. Between 0.15 m and 0.35 m soil depth both profiles exhibit the 

greatest differences and even contrary courses.  

In general, the simulated mass profile at site 33 corroborates the results of the site Spechtacker (Figure 6b). The 

simulated and observed tracer masses are also in a good accordance with a RMSE value of 0.15 g. In contrast to 

the site Spechtacker, varying the macropore numbers and diameters within the standard deviation (± 4; ± 1 mm) 

has just slight effects on the mass profile at this site. However, especially in deeper soil regions from 0.6 m to 1 m 

the values correspond well, while the greatest differences occur between 0.25 m and 0.45 m as the simulated mass 

profile is not able to completely depict the observed hump in this area. 

4.3 Comparison with HYDRUS 1-D 

The mass profiles at the well-mixed sites 23 and 31 simulated with HYDRUS 1-D show similar patterns and are 

in accordance with the observed profiles with RMSE values of 0.1 g at site 23 and 0.37 g at site 31 (Figures 5c, 

d). Especially at site 23 the simulated mass profile is centred within the uncertainty range of the measured ks values 

(rose shaded area, cf. section 4.1). At site 31, HYDRUS 1-D slightly overestimates the tracer masses over the 

entire soil domain but also here the shape of the profiles coincide well. In contrast, at the two preferential flow 

sites Spechtacker and 33 the mass profiles simulated with HYDRUS 1-D and the dual-porosity approach (rose 

profile) are not in a good accordance with the observed profiles with RMSE values of 0.46 g and 0.53 g, 

respectively (Figures 6c, d). In the first 40 cm there is an overestimation of the simulated tracer masses, while in 

the deeper soil regions HYDRUS 1-D is not able to reproduce well the tail of the mass profiles with their 

heterogeneous courses. A comparison with the results of HYDRUS with an equilibrium model (red profile) reveals 

that the dual-porosity approach is generally able to predict a deeper percolation of solutes through the mobile 

domain. 



4.4 Sensitivity analyses  

4.4.1 Sensitivity to saturated hydraulic conductivity ks 

The concentration profile range of the matrix reveals a strong sensitivity of the simulated profiles to ks when we 

neglect macropores (Figure 7a). Especially in the upper soil part, the differences arising from low and high ks 

values are clearly detectable. Lower values imply that the soil matrix has a smaller infiltration capacity and 

therefore less water is infiltrating the matrix. Consequently, without macropores solutes do not penetrate into 

depths greater than 0.2 m. The presence of macropores significantly alters the sensitivity of the concentration and 

soil moisture profiles (Figures 7b, c). Again, the profile shapes clearly depend on the ks values but now water and 

solutes reach greater depths of down to 0.8 m by flowing through the macropores. At low ks values (red curve) the 

reduced matrix infiltration capacity leads to an increased infiltration of water and solute into the macropores. 

Subsequently, the solutes bypass the matrix until they diffusively mix into the matrix at greater depths.  

In contrast, at high ks values the matrix infiltration capacity is increased. This leads in turn to a reduced infiltration 

into the macropores and instead the majority of water and solute masses infiltrates the matrix and remains in the 

top soil. This effect is reflected by the blue curves in Figure 7 with higher solute concentrations near the soil 

surface and decreased concentrations at greater depths in comparison to low ks values.  

Finally, the yellow curves in Figure 8 show the proportion of solutes within the matrix which originates from the 

macropores. In general, at all ks values and depths below 0.2 m the entire solute amount within the matrix travelled 

through the macropores. Differences are restricted to the upper soil part. Here the largest proportion of solutes has 

directly infiltrated the matrix without having been in the macropores before. The pfd proportion decreases from 

low to high ks values confirming again the important influence of the ks values on the infiltration capacities and 

the distribution of water and solutes. 

4.4.2 Sensitivity to macropore number nmac and diameter dmac 

The model results sensitively respond to a variation of macropore diameters. In the upper soil part, the solute 

concentrations and moisture are slightly higher, when macropores are small (Figures 9a, b). In this case, the 

macropores collect only smaller amounts of water and solutes and the majority has directly infiltrated the soil 

matrix. Wider macropores transport larger amounts of water and solutes to greater depths where they diffusively 

mix into the subsoil matrix. This deep redistribution is reflected by the characteristic profile shapes and the higher 

concentration and moisture values in the deep soil.  

Furthermore, the influence of different macropore numbers on the concentration and moisture profiles is marginal 

(Figures 9c, d). This implies that the model does not respond to every geometrical parameter equally sensitively. 

The macropore number scales less than the diameter at the calculation of the further macropore measures. 

However, this could change when working with higher precipitation intensities. 

Simulations with different macropore depth configurations again reveal a clear sensitivity of the model (Figures 

10a, b). A steady decrease of the deep redistribution of the concentration and moisture values from the deep 

(Configuration 1) to the shallow depth configuration (Configuration 3) is obvious. Shallow macropores distribute 

the total amount of water and solutes mainly in the upper soil part, while deep macropores relocate this distribution 

to greater depths of down to 1 m. The results of the distribution factor configurations again corroborate the previous 

findings (Figures 10c, d). Configuration B produces a homogeneous solute concentration profile from 0.2 m to the 

total depth. Both more realistic Configurations A and D comprise more small than big macropores. This increased 



number of small macropores ensures higher water and solute amounts in the first 0.5 m of the soil matrix due to 

an enhanced mixing in this area. Finally, the rather uncommon Configuration C with more big than small 

macropores shows converse results. Solute concentrations and moisture contents are strongly increased at great 

depths from 0.7 m to 1 m because of increased diffusive mixing fluxes in these parts. 

5 Discussion and Conclusions 

We extend the Lagrangian model of Zehe and Jackisch (2016) with routines to consider transport and linear mixing 

of solutes within the soil matrix as well as preferential flow through macropores and related interactions with the 

soil matrix. The evaluation of the model with data of tracer field experiments, the comparison with results of 

HYDRUS 1-D and the sensitivity analyses reveal the feasibility and physical validity of the model structure as 

well as the robustness of the solute transport and linear mixing approach. The LAST-Model provides a promising 

framework to improve the linkage between field experiments and computer models to reduce working effort, and 

to improve the understanding of preferential flow processes. 

5.1 New routine for solute transport and diffusive mixing 

The initially performed simulations of the bromide mass profiles at the two well-mixed sites 23 and 31 support the 

validity of the straightforward assumptions of the underlying solute transport routine with its perfect mixing 

approach (Figures 5a, b). In the presented version, our mixing routine works with a short mixing time to ensure an 

instantaneous mixing between event and pre-event particles to account for the well-mixed conditions at the selected 

sites. However, the model allows to select longer mixing times or even a distribution of various mixing times to 

consider imperfect mixing among different flow paths. 

The simulation results at the well-mixed sites 23 and 31 are confirmed by the commonly approved HYDRUS 1-D 

model. The simulated tracer mass profiles and RMSE values of both models are in a good accordance at these sites 

(Figure 5). The capability of predicting the solute dynamics is hence a big asset of our approach and it is a solid 

base to realize the second model extension with the implementation of the preferential flow domain.  

5.2 Model extension to account for preferential flow in macropores 

The results of the evaluation of the pfd-extension show that our model is furthermore capable to simulate tracer 

experiments on macroporous soils and to depict well their observed 1-D tracer mass profiles with the typical 

fingerprint of preferential flow (Figure 6a, b). Especially the tracer masses in the subsoil match well between 

simulated and observed data. This corroborates our assumptions concerning the macropore structure and the 

approach to describe macropore-matrix exchange which proved to be feasible to predict solute distribution patterns 

due to preferential flow and related long transport lengths. In this context, we stress that the approach to simulate 

macropore-matrix exchange (cf. Figure 2c) does not rely on an extra leakage parameter but follows the theory of 

deriving an effective diffusive exchange between the domains (cf. Equation 6). 

In contrast, the HYDRUS 1-D model performs clearly inferior and does not match the fingerprints of preferential 

flow in the mass profiles at the sites Spechtacker and 33 (Figures 6c, d). Especially the penetration of bromide 

through macropores into greater depths is ignored by HYDRUS 1-D, although we selected dual-porosity models 

for both water flow and solute transport (cf. section 3.3). The better performance of our LAST-Model at the two 

preferential flow sites compared to HYDRUS is further reinforced by the RMSE values which are significantly 



different. The results imply that, when working with a dual-porosity approach, HYDRUS and the underlying 

theory of two differently mobile domains is indeed able to depict a generally deeper penetration of solutes but it 

is not sufficient to exactly simulate the heterogeneous course and shape of the observed tracer mass profiles in 

preferential flow dominated soil domains. 

 

The results of our LAST-Model mainly deviate from the observations in the upper soil parts. However, these 

deviations are within the uncertainty ranges revealed by the sensitivity analyses (Figures 7, 9). Further, the model 

reveals difficulties at the simulation of bromide masses between 0.15 m and 0.35 m soil depth at the site 

Spechtacker (Figure 6a). Possible reasons could be the influence of a) lateral endogeic worm burrows which are 

completely unknown and not represented in the model and b) a nearby plow horizon. Both reasons result in a 

disturbance of the soil structure leading to an increased uncertainty of soil properties in this region.  

At site 33, our model is not able to sufficiently reproduce the hump of the observed mass profile between 0.25 m 

and 0.45 m soil depth (Figure 6b). A possible explanation for this issue could be the fact that the tracer experiment 

and the examination of the macropore network were performed on different dates. It is likely that uncertainties 

arise from this temporal discrepancy with a mismatch between observed macropore geometries and recovered 

tracer pattern due to natural soil processes as well as anthropogenic soil cultivation during this time lapse. Another 

possible explanation could be the fact that up to now the exchange is only simulated for saturated parts of the pfd 

(cf. section 2.3.4) and hence the transport of solute masses from the pfd into the matrix is delayed. A test of this 

idea requires a refinement of the model in future research. Moreover, varying macropore numbers and diameters 

in the range of the standard deviation reveals just slight effects on the simulated mass profile at site 33 and is thus 

less sensitive compared to the results at the site Spechtacker. The reason for this phenomenon is probably the 

higher total number of macropores (nmac = 46) and thus a larger macropore volume at site 33. In relation to this 

larger volume, the variation of macropore numbers and diameters in the quite narrow range of the standard 

deviation (± 4, ± 1 mm) has only a minor influence on the total water and tracer masses transported through the 

macropore network and thus on the resulting mass profile at site 33.  

 

Note that the conversion of solute masses into an integer number of particles results in small errors, leading to a 

small amount of solutes not entering the system and remaining in the fictive surface storage. To mitigate this model 

effect, a high number of total particles present in the matrix is necessary, at least one million. Beside many 

displacement steps of each particle, the total number of particles is important to render the random walk approach 

statistically valid (Uffink, 1990), although too high particle numbers will decrease the computational efficiency. 

Thus, we conclude that our extension of the Lagrangian particle model of Zehe and Jackisch (2016) is a promising 

tool for a straightforward 1-D estimation of non-uniform solute and water dynamics in macroporous soils. 

However, before the suitability of our model approach to simulate preferential flow of non-interacting tracers is 

generalized, further field experiments on a variety of differently structured soils are necessary. In the presented 

model version, we assume that a macropore distribution with maximal three different depths is a sufficient 

approximation of the observed macropore networks at the study sites Spechtacker and 33 (cf. section 3.2, Figure 

3). Nevertheless, as a variable macropore depth distribution might be observed at other sites, the implementation 

of the macropore depth distribution must be kept flexible for other soils in future model parametrizations. 

 



Some of our assumptions like the macropore geometry, the simple volume filling or the depth distribution of 

macropores were applied in a similar way in dual-porosity models before (Beven and Germann, 1981; Workman 

and Skaggs, 1990; van Dam et al., 2008). Thus, our model extension can be seen as an advancement of double-

domain approaches by assuming simple volume filling for macropore flow and particle tracking for matrix flow 

instead of relying on the Darcy-Richards equation. With these results, our model is one of the first which proves 

that simulations based on a Lagrangian perspective on both solute transport and dynamics of the carrying fluid 

itself are possible and well applicable. Also, the vertically distributed exchange between both domains seems 

feasible and does not rely on extra parameters like a leakage coefficient, e.g. used in dual-models (Gerke, 2006). 

The concept of cubic particle packing within the macropores (cf. Figure 2a, section 2.3.1) is strongly motivated by 

the hydraulic radius and can thus be transferred to flow in further kinds of macropore geometries, including flow 

between two parallel walls like it occurs in soil cracks or corner flow in rills (Germann, 2018). 

 

Another remarkable result is the high model sensitivity towards the saturated hydraulic conductivity ks of the soil 

matrix (Figures 7, 8). Especially its direct influence on the infiltration process is crucial. As ks determines the 

initialisation, infiltration fluxes and the distribution of incoming precipitation masses to the two domains, it has a 

direct impact on the deep displacement of water and solutes. Therewith, our findings highlight the importance of 

infiltration processes on macroporous soils and the challenge to implement them properly into models which have 

also been stressed by other studies (Beven and Germann, 1982; Weiler, 2005; Nimmo, 2016).  

Our model shows further a remarkable sensitivity to the presence of a population of macropores while differences 

in macropore properties comparatively have little impact. Generally, wider macropores collect and transport more 

water and solutes to greater depths than small ones (Figures 9a, b). In contrast, high numbers of macropores do 

not necessarily result in a greater and deeper percolation of solutes (Figures 9c, d). Jackisch and Zehe (2018) also 

reported this aspect and explain it with the distribution of the irrigation supply to all macropores and this supply 

can drop below the diffusive mixing fluxes from the macropores into the matrix. However, this implies that the 

number of macropores becomes more sensitive at much larger irrigation rates. 

Where and to which extent water and solutes are diffusively mixed from the macropores into the matrix clearly 

depends on the depth distribution of the macropores and the distribution of the mixing masses among the various 

depths (Table 2, Figure 10). This concept of the distribution of macropore depths and mixing masses is important 

to meet the natural condition of a high spatial heterogeneity of the macropore network. Generally, the results of 

our sensitivity analyses are in line with the findings of Loritz et al. (2017) as they reveal a significant impact of 

the implementation of macropore flow on the model behaviour and its complexity. 

Please note that we are aware of the fact that some results of the sensitivity analyses are straightforward and 

expectable. Nevertheless, we think that their presentation is necessary to allow the reader to check if our 

Lagrangian approach with the macropore domain reproduces these results as the model concept is new. To this 

end, please also see further sensitivity analyses in the appendix. 

 

We overall conclude that the modified 1-D structure of our model is robust and provides a high computational 

efficiency with short simulation times, which is a big advantage of our model. In line with the underlying 

Lagrangian model of Zehe and Jackisch (2016), we also used the programming language MATLAB to develop 

the two model extensions. The model simulation at the site Spechtacker with the selected parametrization (cf. 

Table 1) only runs for about five minutes, even on a personal computer with moderate computing power. Without 



an active pfd, like it is the case for the simulations at the study sites 23 and 31, the model runs even faster. If 

performing these simulations on a high performance computer or workstation, one could probably also run several 

model simulations in parallel within minutes. 

Moreover, the efficiency allows for the implementation of further routines with yet still appropriate simulation 

times. In this way, the model could prospectively consider retardation and adsorption effects as well as first-order 

reactions during the transport of non-conservative substances like pesticides. Until now, the solute movement of 

conservative tracers like bromide is only determined by the water flow without any consideration of molecular 

diffusion or particle interactions, although some evidence suggests a non-conservative behaviour of bromide 

tracers under certain conditions (e.g. Whitmer et al., 2000; Dusek et al., 2015). In our case, we believe that the 

event scale and the short simulation times allow for the assumption of a conservative behaviour of bromide.  

Moreover, the model can be extended to 2-D for simulations on hillslope or even catchment scales. In this regard, 

our model also offers the promising opportunity to quantify water ages and to evaluate travel and residence times 

of water and solutes by a simple age tagging of particles. This can shed light on the chemical composition and 

generation of runoff fluxes as well as on the “Inverse Storage Effect”. This effect describes a greater discharge 

fraction of recent event water at a high catchment water storage than at low storage  (Hrachowitz et al., 2013; 

Harman, 2015; Klaus et al., 2015; van der Velde et al., 2015; Sprenger et al., 2018). 
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Appendix: Further sensitivity analyses with time series 

We performed additional sensitivity analyses to determine the effect of different ks values and macropore diameters 

on the temporal development of the solute concentration profile. We moved the results of these time series to the 

appendix as they generally provide no new insights but confirm the findings presented in the results section. 

 

Figure A1 generally confirms the findings of the sensitivity analyses with different ks values (cf. section 4.4.1). 

The four temporal snapshots show the development of the concentration profiles at low (1 ∙ 10-6 m/s), medium (2.5 

∙ 10-6 m/s) and high (1 ∙ 10-5 m/s) ks values throughout the simulation time with a) + b) during the rainfall event 

and c) + d) shortly after it and after one day, respectively. It is obvious how rapidly solute concentrations increase, 

especially in the upper soil part at high ks values. Shortly after the rainfall event almost the entire water and solute 

masses have infiltrated the matrix due to the higher infiltration capacity. At low ks values, water and solutes notably 

need more time to infiltrate completely. The differences of the centres of mass and the deeper shift of the mass 

centre at low ks values confirm the increased macropore infiltration and penetration of solutes through them to 

greater depths (cf. Figure 7). 

 

Moreover, the temporal development of the concentrations is similar for all macropore diameters with just 

marginal differences arising shortly after the rainfall event (Figure A2). While the macropore diameter has a minor 

influence in the initial phase, stronger differences occur at the end of the simulation when the residual water and 

solute amounts of the fictive surface storage have finally infiltrated. Thus, mainly at the end of the simulations the 

influence of the macropores on the infiltration and the macropore-matrix mixing processes are remarkable, because 

the storage volume of the preferential flow domain is small and hence it can only collect small amounts of water 

and solutes in relation to the matrix domain. The centres of mass corroborate the results of Figures 9a, b in the way 

that the big macropores have the tendency to transport more solute masses into the subsoil. 

 



 

Figure A1. Time series of bromide tracer concentration profiles and centres of mass at different ks values during the 

rainfall event (a+b), shortly after it (c) and at the end of simulation (d). 

 



 

Figure A2. Time series of bromide tracer concentration profiles and centres of mass at different macropore diameters 

(dmac) during the rainfall event (a+b), shortly after it (c) and at the end of simulation (d). 
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Figure 1. Concept of particle binning. All particles within a grid element are subdivided into bins (= red rectangles) of 

different pore sizes. Dependent on their related bin the particles travel at different flow velocities. 

 

Figure 2. Conceptual visualization of a) the macropore structure and cubic packing of particles in the rectangle of a cut 

open and laid-flat grid element cylinder (cf. section 2.3.1), b) the macropore filling with gradual saturation of grid 

elements, exemplarily shown for three time steps (t1-t3) whereby in each time step new particles (differently coloured 

related to the current time step) infiltrate the macropore and travel into the deepest unsaturated grid element (cf. section 

2.3.3) and c) the macropore depth distribution and diffusive mixing from macropores into matrix (cf. section 2.3.4). 

  



Table 1. Simulation and tracer experiment parameters (average values) as well as soil hydraulic parameters after 

Schäfer (1999) at the sites 23, 31, Spechtacker and 33. Where ks is the saturated hydraulic conductivity of the matrix, 

θs the saturated soil water content, θr the residual soil water content, α the inverse of an air entry value, n a quantity 

characterizing pore size distribution, s the storage coefficient and ρb the bulk density. 

Parameter Site 23 Site 31 Spechtacker Site 33 

Irrigation duration [hh:mm] 02:10 02:10 02:30 02:20 

Irrigation intensity [mm/h] 10.36 10.91 11.1 9.7 

Br-concentration of irrigation 

water [kg/m³] 
0.165 

Recovery rate [%] 77 76 95 96 

Initial soil moisture (15 cm) [%] 20.5 25.3 27.4 22.3 

Initial soil moisture (30 cm) [%] 25.3 15.9 - - 

Initial soil moisture (45 cm) [%] 28.1 13 - - 

Initial soil moisture (60 cm) [%] 29.6 13.4 - - 

Simulation time [s] 86400 (=1 Day) 

Time step [s] 120 

Particle number in matrix [-] 1 Mill. 

Particle number in pfd [-] - - 10 k 10 k 

Soil type Calcaric Regosol Calcaric Regosol Colluvic Regosol Colluvic Regosol 

ks [m/s] 0.50 ∙ 10-7 0.50 ∙ 10-6 2.50 ∙ 10-6 2.50 ∙ 10-6 

θs 0.44 0.44 0.4 0.4 

θr 0.06 0.06 0.04 0.04 

α [1/m] 0.4 0.4 1.9 1.9 

n [-] 2.06 2.06 1.25 1.25 

s [-] 0.26 0.45 0.38 0.38 

ρb [kg/m³] 1300 1300 1500 1500 

nmac [-] - - 16 46 

dmac [m] - - 0.005 0.006 

Length of grid element dzpfd [m] - - 0.05 0.05 

mac. big[m] - - 1 1 

mac. med[m] - - 0.8 0.6 

mac. sml[m] - - 0.5 - 

f big [-] - - 0.13 0.35 

f mid [-] - - 0.19 0.65 

f sml [-] - - 0.68 - 

 

  



 

 

Figure 3. Distribution of macropore numbers with an average diameter of 5 mm (Spechtacker) and 6 mm (site 33) along 

the vertical soil profiles at the two study sites. The arrows highlight the derivation of the macropore numbers in different 

depths (cf. section 3.2), whereby “avg.” means that in these depths the macropore numbers are averaged because there 

was no clear macropore pattern observed. 

 

Figure 4. Linear regression of the flux rate within the macropore on the macropore radius at the study site Spechtacker 

(Zehe and Flühler, 2001b). This relation was derived from measurements of saturated flow through undisturbed soil 

columns containing worm burrows. 

 

Table 2. Parameter ranges of the sensitivity analyses and configurations of macropore depth distribution and 

distribution factors (cf. Figure 10). 

Parameter Value range 

ks [m/s] 10-6 - 10-5 (step: 1∙10-6) 

dmac [m] 0.0035 – 0.008 (step: 0.0005) 

nmac [-] 11 – 20 (step: 1)  

mac. depth distr. 

config. 
1 2 3 

  

mac. big [m] -1 -0.8 -0.6  

mac. med [m] -0.8 -0.6 -0.4  

mac. sml [m] -0.6 -0.4 -0.2  

distr. factors 

config. 
A B C D 

fbig [-] 0.13 0.3 0 0.5 

fmed [-] 0.19 0.3 0.2 0.3 

fsml [-] 0.68 0.3 0.8 0.2 

 



 

Figure 5. Final simulated and observed vertical bromide mass profiles of the matrix at the two well-mixed sites 23 + 31 

(a+b) with RMSE values simulated with the LAST-Model. In comparison, final simulated and observed vertical 

bromide mass profiles at the two well-mixed sites 23+31 (c+d) with RMSE values simulated with HYDRUS 1-D. The 

rose shaded area shows the uncertainty area of measured ks values. 

 



 
Figure 6. Final simulated and observed vertical bromide mass profiles of the matrix at the two preferential flow sites 

Spechtacker + 33 (a+b) with RMSE values simulated with the LAST-Model. The rose area shows the standard deviation 

of measured macropore numbers and diameters from the mean values at site Spechtacker (nmac = 16, dmac = 5 mm) 

and site 33 (nmac = 46, dmac = 6 mm) (cf. Table 1). In comparison, final simulated and observed vertical bromide mass 

profiles at the two preferential flow sites Spechtacker + 33 (c+d) with RMSE values simulated with HYDRUS 1-D. The 

rose mass profile is simulated with a dual-porosity approach to account for preferential flow (cf. section 3.3) and for 

comparison, the red mass profile is simulated with an equilibrium approach. 

 

 

Figure 7. Final simulated bromide concentration (Cs) and soil moisture (theta) profiles of the soil matrix a) without and 

b+c) with macropores at different ks values. The blue area shows the possible range of simulated profiles with different 

ks values. 

 

  



 

Figure 8. Final bromide concentration profiles at a) low, b) medium and c) high ks values and the proportion of solutes 

which originates from the macropores. 

 

 

Figure 9. Final simulated bromide concentration (Cs) and soil moisture (theta) profiles of the soil matrix at different 

macropore diameters (dmac) (a+b) and macropore numbers (nmac) (c+d).  



 

Figure 10. Final simulated bromide concentration (Cs) and soil moisture (theta) profiles of the soil matrix at three 

different macropore depth distribution configurations (a+b) and at four different distribution factor configurations 

(c+d) (cf. Table 2). 

 

  



Point-by-point response to reviews 

 

Response to Comments of Anonymous Referee #1 

On behalf of all co-authors I sincerely thank the Anonymous Referee #1 for his thoughtful and 

detailed assessment of our work.  

 

Major Comments 

 

R1: The proposed model is introducing a large number of additional parameters that cannot 

be directly related to physical properties of the soil and that require adequate calibration. I 

think that using 16 parameters to retrieve 10 data points (Figure 3c) might introduce a strong 

over-parametrization of of the model. Thus, additional examples of application of the model 

to real data are needed, including calibration procedures and measures of goodness of fit. In 

particular, a fair validation would be to compare LAST with a 1-D Richards-based model that 

considers a simple soil heterogeneity (e.g., hydraulic parameters changing in two or three 

layers of the domain). 

AS: Indeed, the pfd is mainly characterized by 9 parameters (in this case the macropore 

lengths, diameter, distribution factors, grid element length). The other characteristics like the 

volume, lateral area etc. depend on those parameters and the flow rate depends on the 

macropore diameter (compare Fig. 1 of this manuscript, note that this relation was derived by 

measurements of saturated flow through undisturbed soil columns, which were centered 

around worm burrows). Hence, at least for worm burrows, the depth distribution and the 

diameters are observable (compare Fig. 2 of this manuscript) and not arbitrary calibration 

factors. This will be better explained in the revised manuscript by an additional chapter 

presenting the model database with figures and showing which observables we had and how 

we obtained our pfd parameters from these. 

 

Figure 1: Linear Regression to evaluate the relation of macropore radius and flux rate within the macropore the study site 

Spechtacker (Zehe et al. (2001)). This relation was derived from measurements of saturated flow through undisturbed soil 

columns containing worm burrows. 

 



 

 

 

 

  

Figure 2: Patterns of dye tracer (a+d) and worm burrows as well as the measurement of distribution, lengths and diameters 

of those macropores in different horizontal layers (d) at the study site Spechtacker (taken from van Schaik et al. (2014)). 

 

Furthermore, other double domain models also rely on extensive parametrization. In case 

these models rely on the kinematic wave theory, these parameters are for instance the 

maximum flow rate in the macropore system, the exponent characterizing how the actual flow 

rate increases with saturation of the macropore domain, and an exchange length to calculate 

potential gradients driving macropore matrix exchange. The latter two parameters need to be 

calibrated as well.  

Moreover, we generally agree that a comparison with a Richard solver is interesting. In case 

of pure water flow this has already been done by Zehe and Jackisch (2016) who revealed a 

good accordance of both approaches. And in this particular case, the Richards solver and the 

particle model had the same amount of parameters, as the diffusivity and the drift parameter 

of the random walk are derived from the soil water retention and the soil hydraulic 

conductivity curves. In the revised paper, we plan to additionally test our model against a 

Darcy-Richards approach, e.g. re-simulation of our three infiltration tests with HYDRUS 1-D 

and comparison. To this end, please see Figure 3 of this manuscript which shows the results 

of the simulation of our three infiltration tests with HYDRUS 1-D compared to the results of 

our LAST-Model.  

As you can see, at the well-mixed study sites 23 and 31 HYDRUS 1-D performs well in 

accordance to the observed values and it is also similar to our simulation results with just slight 

deviations but which are in the range of uncertainty. In contrast, at the preferential flow study 

site Spechtacker HYDRUS 1-D with its double-domain approach is not able to simulate well the 

highly heterogeneous, observed solute mass profile. Here, our model performs much better 

in comparison. We will discuss these results in our revised paper in more detail. 



 

Figure 3: Solute mass profiles at our three study sites simulated with HYDRUS 1-D (lower part) and compared to the mass 

profiles simulated with our LAST-Model (upper part) 

 

R1: Beside calibration, I find very difficult to apply LAST to different infiltration settings. For 

example, if deeper domains or longer durations of the experiment are considered, would it be 

always sufficient to have three classes for the length of the macropores? Why not having the 

classes of macropores evenly spaced along the domain? Moreover, the sensitivity of model 

results to the number of macropores is very low. Is it possible to consider just one macropore, 

and consequently adapting its diameter and the diffusion fluxes with the soil matrix? 

AS: We assume that a macropore distribution with three different lengths is a sufficient 

approximation of the observed macropore depth distribution at the study site Spechtacker. 

Nevertheless, as a variable macropore depth distribution might be observed at other sites, we 

agree that the model needs to be more flexible in this respect.  

Of course it is possible to represent the macropore network by just one big pore. But please 

note that the macropore diameter is limited in reality, in case of worm burrows usually up to 

a maximum of 4-5 mm. As we use a linear regression to estimate the flux rate based on the 

macropore geometry, we restrict the diameters of macropores to a realistic range to avoid 

extrapolations to unrealistic flow rates (Figure 1 of this manuscript). In an early stage of the 

development of the pfd we tested the idea of representing the entire macropore network as 

just one big macropore. In relation to volumes, masses and particle masses this would not 

make any difference but due to the large diameter of the one macropore the diameter-

dependent flux density would be unrealistically high. 



Secondly, a large macropore has a different relation of macropore cross section to the 

perimeter compared to many small macropores. This relation is important to calculate the 

fraction of particles which contribute to the exchange with the matrix and this was also the 

reason why we used a more realistic representation of the macropore network with a certain 

amount of smaller macropores. We will better explain this in the revised manuscript. 

 

R1: The authors present three real infiltration tests, but compare the new LAST model with 

respect to the previous infiltration model in only the third example. Why not applying the LAST 

model also to the other two infiltration tests? Can you please show that proper calibration of 

the LAST model is suggesting to not consider the pfd component in those tests? 

AS: Sorry, if our explanations were unclear and led to misunderstanding. We applied our LAST-

Model on all three presented infiltration experiments. We will stress this more properly in our 

revised paper. 

But de facto at the first two well-mixed study sites there are no or just a little active pfd 

because observed tracer patterns and the excavation of soil profiles did not reveal any 

considerable macropore network, therefore we assume well-mixed flow conditions without a 

considerable influence of macropores at these two sites. 

We plan to perform a simulation of an additional infiltration experiment at another 

preferential flow site to provide more comparable model results in our revised manuscript. 

 

Minor Comments 

 

R1: Page 2, line 20: please insert a reference for the ‘Double domain model’. 

AS: Thanks, we will add a reference. 

 

R1: Page 5, line 10: the caption of Figure 2 is not sufficient to understand the figure. The figure 

should be better explained in the text. In particular, which is the relation between the grid 

element and the macropores? 

AS: We will edit Figure 2 and its caption to make it easier to understand. In general, grid 

elements are vertical sub-elements of a macropore, similar to the grid elements of the matrix. 

The grid elements of both matrix and pfd are necessary to create small spatial discretizations 

for the calculation of the new state variables (soil moisture, solute concentration, hydraulic 

conductivity) in each time step and in this way to register even slight spatial and temporal 

alterations of the state variables. 

We will add a revised version of Figure 2 and a better explanation to the revised manuscript. 

Figure 4 of this manuscript gives an idea of the revised figure. 



 

Figure 4 (i.e. Figure 2 of the revised paper): Conceptual visualization of a) macropore structure and cubic packing of particles 

within the rectangle of a cut open and laid-flat grid element cylinder, b) macropore filling with gradual saturation of grid 

elements, exemplarily shown for three time steps (t1-t3) whereby in each time step new particles (differently coloured related 

to the current time step) infiltrate the macropore and travel into the deepest unsaturated grid element c) macropore depth 

distribution and diffusive mixing from macropores into matrix. 

We will shorten the caption and explain the single parameters presented in the figure within 

the text of the methods section.  

 

R1: Page 5, line 15: also the concept of cubic storage is really vague from the text and the 

figure and it is not in agreement with the cylindrical shape of the macropores. 

AS: Maybe cubic packing is a better wording, as the macropore is cylindrical but the water 

particles are spheres. The particle diameter is determined by the stored water mass, the 

density of water and the number of particles in the pfd. The amount of spheres which can be 

packed into a macropore cylinder is calculated from the cubic packing. This means that the 

particles are arranged in the way that the centers of the particles form the corners of a cube. 

The concept of cubic packing facilitates the calculation of the proportion of particles having 

contact to the lateral surface of a grid element. The rectangle in Figure 4a (i.e. Figure 2a in the 

revised manuscript) of this manuscript describes such a lateral surface of a grid element, with 

the height dz and the circumference C as length, which can be obtained when a macropore 

grid element is cut open and laid-flat. The number of particles which fit into this rectangle 

have then contact to the lateral surface. 

 

R1: Page 5, line 33: in Case 3 the accumulated water should create a ponding volume for both 

the soil matrix and the macropores. Why this is not taken into account in equations (3) and 

(4)? 

AS: As the infiltration rate into the matrix is based on Darcy’s law we are generally able to 

account for an additional hydrostatic pressure due to a ponded surface. This will indeed 

increase the infiltration rate into the matrix domain and we will implement this into the 

model. But given our investigated cases with a precipitation rate of roughly 10 mm/h we 

suggest only small ponding heights with marginal effect. This might be of relevance when the 

model is used to calculate double-ring infiltrometer experiments with related great ponding 



heights. In other cases, we expect that the water will runoff as overland flow. Up to now this 

is not within the scope of the model and we will better explain this in the revised manuscript. 

 

R1: Page 5, line 36: mmatrix and mpfd described in equations (3) and (4) should be the 

infiltration capacities, not the mass of water that infiltrates as stated in line 36. 

AS: Yes and no! As the model works with particles with a discrete mass, the infiltrating fluxes 

of water (m3/(m2 *s)) needs to be transferred into a mass to calculate the number of 

infiltrating particles per time. This is the reason why we present the infiltrating masses in both 

equations. We will better explain this in the text. 

 

R1: Page 6, eq. 3: at my understanding, this equation is approximating the infiltration capacity 

for the first grid element. Why does it involve the potential gradient in the second grid 

element? 

AS: Sorry, for the misunderstanding. The first grid element belongs to the soil surface (z = 0) 

and the second actually to the first grid element right beneath the soil surface (z = 5 cm). 

Maybe this is not clear enough within the text. We will clarify this. 

 

R1: Page 6, eq. 4: the power 2 should be outside the parenthesis. 

AS: Absolutely true. Many thanks, we will correct that. 

 

R1: Page 6, lines 20-23: does this mean that the time step changes at each temporal iteration? 

In fact the deepest unsaturated grid element changes in time. Do the macropores fill at the 

same speed? From what I understand at lines 10 and 11, the water reaches different depths 

during the same time step, depending on the depth of the pdf. I think this should be clarified. 

AS: Generally, our model can work with variable time stepping as it is not subject to numerical 

stability criteria. In fact, we select the time step such that the particle displacement per time 

step equals the maximum depth of the pfd and subsequently we shift excess particles to the 

deepest unsaturated grid element. In this way we gradually fill the macropores from the 

bottom to the top (see Fig. 4b of this manuscript) and this further implies that particles reach 

the bottom of shallow macropores even faster.  

 

R1: Page 6, line 25: what is the boundary condition at the bottom of the macropores? From 

this description, the model can handle only no-flow condition, which is a big limitation. 

AS: In this case, we indeed used a no-flow lower boundary. Generally, we agree that it is of 

course important to allow flow at the lower macropore boundary. This can be achieved by 

using the same formula as for the lateral exchange but we have to account for the hydrostatic 

pressure in the saturated parts of the macropores. We will revise the model accordingly.   



 

R1: Page 6, line 14: what does the term ‘coupled’ means here? Does this mean that the water 

in these grid elements entered the system at the same time (and thus have the same tracer 

concentration)? 

AS: Yes, you are right, and it also means that at the pfd-matrix mixing the diffusive flow from 

the coupled grid elements happens simultaneously (please, see also our response to your 

comment below). 

 

R1: Page 7, line 10: why three depths? This seems a very arbitrary choice without areal physical 

meaning. 

AS: Please see the response to your second major comment as we think we already answered 

your question there. 

 

R1: Page 7, line 15: how can the diffusive water flow be simultaneous? The water in the small 

macropores reaches the deepest unsaturated level much faster than the water in the big 

macropores, thus it should start the diffusive flow before. 

AS: We agree with you, that there might be cases where a temporarily resolved treatment is 

necessary. In the presented cases and the selected time stepping, particles travel along the 

maximum vertical depth of the pfd within one time step (dt = max. length/vmak). So, the 

different arrival times are not resolved in this case due to the high advective velocity in the 

macropores and the relatively small distances. The difference of arrival times and the 

saturation velocities of the different macropores can be assumed as marginal.   

When assuming the particles travel along the minimum vertical depth of the pfd within one 

time step (dt = min. length/vmak) it would also have just a marginal effect on the different 

arrival times as the diffusive flow from the big macropores would then probably start just one 

time step later due to the general high velocities within the macopores. 

 

R1: Page 7, line 20: Why are the Authors using a harmonic mean in (6) and an arithmetic mean 

in (3)? 

AS: Good question. We use the harmonic mean here because we assume a row configuration 

at the calculation of the lateral diffusive mixing fluxes between macropore and matrix as there 

is a vertical interface between the two domains. We will justify the use of the different means 

in the revised paper. 

 

R1: Page 7, line 24: it is still not clear what are C and DM and their meaning is the opposite of 

what is defined in the caption of Figure 2. 



AS: Yes, you are generally right with your criticism on Figure 2 and its caption. Please see our 

revision of Figure 2 above (Fig. 4). As you can see, we added the equation for the 

circumference of a macropore grid element which shows that the circumference is a function 

of the macropore diameter. We will also describe the underlying concept of the pfd in more 

detail in the methods section. 

 

R1: Page 8, Lines 4, 7: what is the depth of the soil samples? Please specify also the initial soil 

saturation used in the model. 

AS: We will explain this in our revised paper in more detail. There was a 1 m² plot which was 

subdivided into 10 depths (every 10 cm vertically) and in each of the depths, there were ten 

samples taken (every 10 cm horizontally) (in total 100 soil samples). 

Furthermore, you can see the sampled depths at the observed mass profile in Figure 3c of our 

paper. And the initial soil moistures at the three sites are listed in Table 1. 

 

R1: Page 9:, eq 7: how was this coefficient computed? 

AS: Please see Figure 1 and our response to your first major comment. The relation of the flux 

rate of a macropore or the kpfd with the radius of a macropore was measured by Zehe et al. 

(2001) at the Spechtacker site. Flow experiments with soil cores containing differently sized 

macropores were conducted to determine the hydraulic conductivity of macropores with 

different radii assuming macropore flow is dominating in these soil cores. We will clarify this 

context within our revised paper.  

 

R1: Page 9, section2.4.3: the proposed macropore structure has many degrees of freedom. Is 

it possible to calibrate / validate such a model with infiltration measurements? 

AS: Thanks for this comment. As stated above, several of our parameters are observable in 

the field and in the presented case we were able to derive them from detailed data. If these 

data are not available, but we still work at sites where anecic worm burrows are the dominant 

macropore type, we still rely on the regression shown in Figure 1 because its functional form 

is in line with the law of Hagen-Poiseuille. We would of course remain with the macropore 

diameter distribution and the depth distribution as unknown, which need to be calibrated on 

tracer data. This will however be a subject to equifinality (because this is a generic problem), 

as shown in e.g. Wienhöfer and Zehe (2014). We will better explain this in the discussion of 

the revised manuscript. 

 

R1: Page 9, line 20: Which kind of sensitivity analyses is performed? Sensitivity of which output 

of the model? From table 2 I understand that the parameters used in the sensitivity analysis 

are evenly spaced in the parameter space. Usually in MC approaches the parameters are 

randomly selected from the parameter space. 



AS: Good point, we indeed used evenly spaced parameters within the presented range in 

Table 2. We will therefor rename our sensitivity analyses and leave out the label 

“MonteCarlo”. Generally, to check the sensitivity of our model to various input parameters 

we used the simulated solute mass profiles and checked if they show explainable behaviours 

in relation to the input parameters. 

 

R1: Page 9, lines 31 – 33: this part should go in the discussion. 

AS: We think that a short introduction and explanation why we especially chose these three 

parameters (ks, dmac, nmac) is important for the understanding of the presented sensitivity 

analyses and thus, we will leave this short passage in the methods section. 

 

R1: Page 10, line 1: This sentence is not clear here. I suggest to describe the observations (and 

the possible difference with the mode outputs) in the methods section. Please provide more 

information about how these observations are obtained. The real process is three-

dimensional. How are these concentrations obtained? Are they an average of the 

concentrations in different layers? 

AS: Yes, we think you are right here. We will replace this sentence to the methods section and 

will provide further details on the underlying field experiments (please, see also our responses 

above). But yes, bromide concentrations were averaged over each sample depth to compare 

them with our 1-D results. 

 

R1: Page 10, line12: change ‘suggest’ with ‘suggests’ 

AS: Thanks, we will correct that. 

 

R1: Page 11 , line 3: please specify which are the three values of ks considered 

AS: low ks: 1 ∙ 10-6 m/s; medium ks: 2,5 ∙ 10-6 m/s; high ks: 1 ∙ 10-5 m/s. Actually, the range of 

these values is also listed in Table 2 but we will also insert these values into the text. 

 

R1: Page 11, Section 3.3.2: please discuss why in figures 7a and 8d the concentration increases 

between depths -0.15 and -0.4 for all the macropores diameters considered. 

AS: Thank you very much for pointing this out. A prerequisite for exchange between the pfd 

and the matrix is saturation in the grid elements of the pfd and this occurs at first in the 

shallowest macropores. The exchange is then driven by two concurring factors a) the potential 

gradient which increases with depth, reflecting the decline of the soil water content with 

to a tradeoff and likely to a maximum. We will further explore this and show the concurring 

controls in an appropriate figure of the revised manuscript. 



 

R1: Page 12, line 30: This sentence in not correct: to prove this sentence, the sensitivity 

analysis should be performed by perturbing the parameters of the real-case experiment. 

However the parameters of the real-case experiment are not among the ranges considered in 

the sensitivity analysis. 

AS: Thank you. At the revision of the parameters we have found a mistake in the values of the 

macropore diameter. We correct it and now the parameters of the study site Spechtacker are 

indeed within the range used in the sensitivity analyses (Table 1). 

Table 1: Value range of saturation conductivity (ks), diameter of macropores (dmac) and number of macorpores (nmac) 

 

Table 1 shows the revised parameter ranges of the sensitivity analyses. The parameters at the 

study site Spechtacker are within the same ranges: ks = 2.50 ∙ 10-6 m/s; dmac = 0,005 m, nmac 

= 16. 

 

R1: Page 12, lines 31-33: this modelling detail should be specified in the model setup. Which 

is the computational cost of the model when using 2 million particles? 

AS: Sorry, but the 2 million particles here were a mistake. It should have been 1 million. The 

simulation of the Spechtacker experiment with 1 million particles runs about five minutes. 

 

R1: Page 13, line 18: From figure 5, the sensitivity of the results with respect the considered 

variation of ks is quite small. What are the differences when changing kpfd? 

AS: Sorry, but we do not really see that the sensitivity of the model towards different ks values 

is small. There are significant differences in the solute concentration profiles at the end of 

simulation (24h) as shown in Figure 5 of our paper. You are right when referring to earlier 

simulation times. In the first few hours, there is indeed just a slight difference between the 

different ks values but we also discuss this issue. 

Changing kpfd would probably have just a marginal effect because the hydraulic conductivity 

and velocity of macropores are always so high and the distances small that particles get 

instantaneously transported to the bottom of the macropores or to the last unsaturated grid 

element, respectively.  

 

R1: Figure 2, caption: the saturated hydraulic conductivity of a macropore here is indicated 

with ks, while in the main text (page 5, line 8) it is indicated with kpfd. I think the same notation 



should be used for these two variables. From the figure I am not sure to understand the 

difference between the diameter of macropore (DM) and the circumference of a grid element 

(C ). Why the length of a grid element is expressed as dz(z) ? 

AS: Yes, you are right. Figure 2 of the original paper has some weaknesses. Please see our 

revised Figure 4 above and its caption and also our previous responses. We hope that the 

difference between macropore diameter and the circumference are now obvious. Further, we 

will use a consistent notation for the parameters. 

 

R1: Figure 2b: this figure is really not clear and not well explained in the caption. Do the three 

cylinders correspond to three different time-steps? The times should be better indicated in 

the figure and the caption should describe what is happening in the three steps. 

AS: The revised figure also contains a new and better understandable presentation of the 

macropore filling (Figure 4b). Yes, the three cylinders correspond to three exemplary time 

steps and we also indicate and explain these time steps in the figure caption. 

 

R1: Table 2: please consider using a parameter range that covers the parameters used in the 

Spechtacker test. Not only it is important to see the sensitivity of the model in this test, but I 

think the results obtained for the Spechtacker are quite interesting, having a very deep 

infiltration. 

AS: Thanks, and as already mentioned above we revised the parameter ranges.  

 

R1: References: please check the references: Zehe and Bloshl in not in the correct place. 

Sometimes there is an ‘and’ before the last author, sometimes not. 

AS: Thank you, that is right. We will correct that. 

 

Thank you very much, 

 

Alexander Sternagel on behalf of all authors 
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Response to Comments of Anonymous Referee #2 

On behalf of all co-authors I sincerely thank the Anonymous Referee #2 for his thoughtful and 

detailed assessment of our work.  

 

Major Comments 

 

R2: As mentioned in the Introduction and in the Conclusions this model is similar to a double-
continuum one. In my opinion, it would be interesting if you could elaborate this similitude, 
ideally linking the parameter of your model with the ones of a classical double approach (with 
appropriate references) 

AS: This similarity arises from the fact that both the LAST-Model and double-domain models 

work with two different domains. But apart from that, the two domains of our model and 

these of the double-domain models have not much in common because we really established 

a separate, physically and geometrically described macropore domain with the particle-based 

Lagrangian approach to simulate water flow and solute transport. The other double-domain 

models rely on separated overlapping continua and in some of these models water flow is 

again simulated by the Darcy-Richards equation assuming immobile water fractions or 

different hydraulic conductivities. 

Both, our Lagrangian approach and double-domain models such as HYDRUS 1-D by Šimůnek 

and van Genuchten (2008) use, however, the same standard parameters like a spatial 

description of the soil domain with total length and grid element lengths, simulation time and 

time stepping, initial soil moisture and also soil hydraulic properties. 

As proposed by you and the other reviewers, we now additionally compared LAST with 

HYDRUS 1-D using the same three infiltration experiments. As you can see in Figure 1, at the 

well-mixed study sites 23 and 31 HYDRUS 1-D performs well in accordance to the observed 

values and its model results are similar to our simulation results with just slight deviations but 

which are in the range of uncertainty. In contrast, at the preferential flow site Spechtacker 

HYDRUS 1-D with its double-domain approach is not able to simulate well the highly 

heterogeneous, observed solute mass profile. Here, our model performs much better in 

comparison. We will discuss these results in our revised paper in more detail. 



 

Figure 1: Solute mass profiles at our three study sites simulated with HYDRUS 1-D (lower part) and compared to the mass 

profiles simulated with our LAST-Model (upper part) 

 

R2: Pag.4, line 23: here I am a bit confused about how do you compute the diffusive mixing: it 

is not the entire solute mass in a grid element given by the mass of all the present water 

particles? 

AS: Absolutely true and sorry for the confusion. We will revise this part. Generally, diffusive 

mixing among all particles is calculated after each displacement step by summing up the entire 

solute mass in a grid element and dividing it by the amount of all present water particles. In 

this way, each particle gets a new solute mass in every time step. 

R2: Pag.4, line 26: do you have some criteria to define a “sufficiently fine” grid? 

AS: Generally, the grid elements of both matrix and pfd are necessary to create small spatial 

discretizations for the calculation of the new state variables (soil moisture, solute 

concentration, hydraulic conductivity) in each time step and in this way to register even slight 

spatial and temporal alterations of the state variables So, the grid elements have to be fine 

enough to ensure this proper registration of changes of the state variables and to ensure that 

the system remains stable without oscillations during simulation but also not too fine so that 

simulation times increase exorbitantly.  Please also see the study of Zehe and Jackisch (2016) 

who determined the influences and sensitivities of different grid element sizes to the particle-

based Lagrangian approach. 

 



R2: Pag.5 line 10: could you please list all the parameters of the model and do not only refer 

to Figure 2 in order to better clarify how many parameters the model counts? Is the pfd 

characterized by the 17 parameters given in the caption of Figure 2? Is the macropore 

diameter “dmac” (in the text) equal to “D_M” (in Figure 2 and in Section 2.3.i)? In Table 1 we 

have 16 parameter for the soil description (7 for the soil type and 9 for the macropores 

domain) + 8 for the experiment conditions + 4 for the numerical implementation. 

AS: We apologize for Figure 2 in our original paper which is indeed hard to understand. We 

already revised the figure and its caption, please see Figure 2 below. In general, the pfd is 

characterized by 9 parameters (the macropore lengths, diameter, distribution factors, grid 

element length). The other characteristics like the volume, lateral area etc. depend on these 

9 parameters and the flow rate depends on the macropore diameter (compare Fig. 3 of this 

response below). 

In our revised paper we will better describe how we obtained observable parameters and how 

we calculated or derived other parameters from those observables. And yes, dmac is equal to 

DM, we will clarify this notation. 

 

Figure 2 (i.e. Figure 2 of the revised paper): Conceptual visualization of a) macropore structure and cubic packing of particles 

within the rectangle of a cut open and laid-flat grid element cylinder, b) macropore filling with gradual saturation of grid 

elements, exemplarily shown for three time steps (t1-t3) whereby in each time step new particles (differently coloured related 

to the current time step) infiltrate the macropore and travel into the deepest unsaturated grid element c) macropore depth 

distribution and diffusive mixing from macropores into matrix. 

 

 

Figure 3: Linear Regression of the flux rate within the macropore on the macropore radius at the study site Spechtacker (Zehe 

et al. (2001)). This relation was derived from measurements of saturated flow through undisturbed soil columns containing 

worm burrows. 



R2: Pag. 6, line 6: how is the matrix potential gradient between the first two grid elements 

computed? 

AS: It is calculated as the difference of psi between the first two grid elements in each time 

step at the beginning of the infiltration routine. Please note, that the first grid element belongs 

to the soil surface (z = 0) and the second actually to the first grid element right beneath the 

soil surface (z = 5 cm). We will revise the explanation of this calculation. 

 

R2: Pag. 7, line 11: why does your model “generally” divide the total amount of macropores 

into 3 parts? Could you please explain the meaning and the effect distribution factor? 

AS: We assume that a macropore distribution with three different depths is a sufficient 

approximation of the observed macropore depth distribution at the study site Spechtacker. 

Nevertheless, as a variable macropore depth distribution might be observed at other sites we 

think that the model needs to be more flexible in this respect. 

The distribution factors distribute the total amount of macropores among the three defined 

depths and determine in this way in which depths and to which extent water and solute 

masses are diffusively exchanged between the macropore and the matrix. This distribution is 

based on real-observed data of the macropore network at the Spechtacker site. As already 

mentioned, we will implement an additional section/paragraph to properly explain the model 

database and the derivation of all the parameters.  

 

R2: Pag. 7, line 20: why do you use the harmonic mean to compute a sort of “effective” 

hydraulic conductivity? Usually, the effective hydraulic conductivity for heterogeneous media 

in parallel configuration is computed as the arithmetic mean of the 2 conductivities…is your 

model sensitive to this choice? 

AS: Yes, you are of course right for parallel configurations. But here we use the harmonic mean 

because we assume a row configuration at the calculation of the lateral diffusive mixing fluxes 

between macropore and matrix as there is a vertical interface between the two domains. We 

will add this explanation to the revised paper. 

 

R2:  Eq(7): is the number “2884.2” result of a calibration? Could you please provide some 

details about it? Have you calibrate some parameter of your model to fit the experimental 

data? Could you please provide some details about how to use the model to interprete 

experimental data? 

AS: The relation of the macropore flux rate or the kpfd to the radius of a macropore was 

measured by Zehe and Flühler (2001) at the Spechtacker site. This relation was derived by 

measurements of saturated flow through undisturbed soil columns which were centered 

around worm burrows with the assumption that flow through these macropores dominated. 

When normalizing the measured flow with the cross sectional area of the macropores, they 

obtained a linear dependence of the average flow rate with the macropore radius which is in 



line with Hagen-Poiseuille. Please see Figure 3 of this response which shows the linear 

regression to determine this dependence. We will explain this relation in our revised paper in 

more detail. 

 

R2: Pag.9, line 21: in my opinion, the way you describe your sensitivity analysis is a bit vague.. 

how do you conclude that ks, dmac (=Dm?), nmac are the most sensitive parameters? How do 

you conclude that ks is “probably the most sensitive parameter” (Pag.9, line 31) ? 

AS: Sorry, that our description is unclear. We will explain our sensitivity analyses more 

properly in the revised paper. In general, due to the model structure we early assumed that it 

would be logical if these parameters were most sensitive because dmac and nmac mainly 

define the new macropore domain and ks plays a crucial role in the infiltration process, the 

particle displacement within matrix and even the macropore-matrix diffusion. 

 

R2: Pag. 10: Result section: I am sorry, but for me it is not clear how do you select the 

parameters of your model to simulate the tracer mass in the respective depths, could you 

please state more clearly which observables you had, which parameters you compute from 

measurements etc. 

AS: We agree that this needs to be better explained. We will implement an additional chapter 

to properly explain the model database and the derivation of all the parameters. Due to the 

extensive mapping of the macropore network at our study site Spechtacker, we had a detailed 

database containing information on macropore numbers, depths and diameter distributions. 

From these data it was able to derive our nmac, dmac, depth distribution and the distribution 

factors. Please see the following Figure 4 to get an idea of these observations. 

 

Figure 4: Patterns of dye tracer (a+d) and worm burrows as well as the measurement of distribution, lengths and diameters 

of those macropores in different horizontal layers (d) at the study site Spechtacker (taken from van Schaik et al. (2014)). 

 

R2: Pag. 10, line 23: do you have an explanation about the greatest difference in profiles 

between 0.15 and 0.35m depth? 



AS: Good question. We think that simulation in this region is difficult a) because of the lateral 

network of endogeic worm burrows which are completely unknown and not represented in 

the model and b) due to the influence of the nearby plow horizon in 30 - 35 cm depth. We will 

stress that soil properties are uncertain in this region. 

 

R2: Pag. 10, line 32: here, as in Figure 9, it looks that the results are sensitively depending on 

the Configuration (1,2,3) … there is a way to parametrize the different configurations in order 

to study and quantify the sensitivity of the model to the different configurations? 

AS: Yes, there is again the problem with the imprecision of our description of the database 

and model parametrization. As already mentioned, we will implement an additional 

section/paragraph to address this issue and to explain how the different configurations were 

parametrized. 

 

R2: Pag.12, line 28: here, you conclude that macropore-matrix exchange should be modelled 

deriving an “effective conductance”, even if it is the first time you introduce this term. I 

suppose you refer to the coefficient in Eq.6, but I would specify it. 

AS: Yes, you are right. We indeed refer to the diffusive mixing flux calculated by equation 6. 

We think we will introduce this term at the presentation of equation 6 in the methods section. 

 

R2: Pag. 13, line 3: I agree that “further field experiments on a variety of differently structured 

soil is necessary”, however, from my point of view, it is not clear how do you parametrize 

these differently structured soils as well as do you parametrize the spatial heterogeneity of 

the macropores network (Pag. 13, line 35) 

AS: In general, our model is able to consider also several, differently structured soil layers with 

different soil parameters and not just one homogeneous soil type. As stated above, several of 

our parameters are observable in the field and in the presented case we were able to derive 

them from detailed data. If these data are not available, but we still work at sites where anecic 

worm burrows are the dominant macropore type, we still rely on the regression shown in 

Figure 3 because its functional form is in line with the law of Hagen-Poiseuille. We would of 

course remain with the macropore diameter distribution and the depth distribution as 

unknown, which need to be calibrated on tracer data. This will however be a subject to 

equifinality (because this is a generic problem), as shown in e.g. Wienhöfer and Zehe (2014). 

We will better explain this in the discussion of the revised manuscript. 

 

R2: Pag. 13, line 13: in my opinion it is not so straightforward how do you transfer the concept 

of cubic particle storage and hydraulic radius to any kind of macropore geometry. 

AS: Good point, we agree that these concepts have certain limitations especially for complex 

geometries. This is a generic problem with respect to frictional loss and exchange. Such 

complex geometries could be expected when dealing with soil cracks but when referring to 



biologically generated macropores like worm burrows, degraded plant roots or even for 

example ant channels, we think that the resulting macropore geometries would be simple 

enough to apply the concept of cubic packing and hydraulic radius. 

 

Minor Comments 

 

R2: Eq. (1): please check this equation. I suppose a "+ z_i(t)" after the equal is missing and the 

format is different from the other equation in the manuscript. 

AS: Yes, you are absolutely right. Thank you. We will correct that. 

 

R2: Pag. 4 line 5: could you provide some details about the soil water retention curve used to 

compute the diffusivity from the hydraulic conductivity? 

AS: It is a typical soil water retention curve with the relation 
𝜕𝛹

𝜕𝜃
. Multiplied with the hydraulic 

conductivity you can obtain the diffusivity. Thus, in each time step in the particle displacement 

routine we compute this relation with the current values for psi and theta to obtain the 

diffusivity for each particle. 

 

R2: Pag. 4, line 6: I guess that Z is a random uniformly distributed number "between 0 and 1"; 

AS: Actually, it is between -1 and 1. But thanks for calling our attention. We will clarify this in 

the text. With this range the particles are allowed to move vertically up- and downward. 

 

R2: Pag.4, line 21: could you please provide some details about the numerical implementation 

of the model (e.g. programming language etc)? 

AS: Yes, you are right. This is something that is still missing in our paper. We will add some 

information on this issue. The programming language is MATLAB and the model runs were 

performed on a casual personal computer with moderate computational power (e.g. Intel i3, 

4 GB RAM). 

 

R2: Pag. 6, line 4: typo: please write consistently k_m1 with Eq.(3) as well as n_mac introduced 

in Pag.5, line 6. 

AS: Sorry, yes. We will revise the text for a consistent notation. 

 

R2: Pag 6, line 8: is the simulation time step “dt” or “Delta t”? 

AS: Again, we will look for a consistent notation. Simulation time step will be “Delta t”. 



 

R2: Pag 7, line 22: please correct a typo: “matric” potential 

AS: Thank you, we will correct that. 

 

R2: Pag. 12, line 33: Here you say that you need at least two million particles, but I suppose 

the minimum number of particles you need is proportional to the observation area, isn’t it? 

AS: We are sorry, because there is a mistake. We have to correct the particle number to 1 

million. 

Further, we think that the total amount of particles does not necessarily depend on the 

domain extent. We think that it instead depends on the total amount of water stored within 

the domain. Particles must have a sufficient volume and mass, and to scale these 

measurements you can adjust the total particle number, e.g. at high water masses within a 

domain you have to select a higher particle number to avoid that a single particle carries an 

immense water mass and consequently has also a too large volume. This case can also arise 

in small domains. 

But yes, when simulating a hillslope you generally need more particles because the large 

spatial extent of the hillslope usually implies also a high number of stored water masses. 

 

R2: Pag. 13 line 38: you conclude that your model provides high computational efficiency with 

short simulation times, could you please provide further details? 

AS: The simulation of the infiltration experiment at the study site Spechtacker with the 

selected parametrization runs for about 5-10 minutes on a casual personal computer with 

moderate computing power. Without an active pfd (e.g. at the other two infiltration tests) the 

model runs even faster (couple of minutes). When performing these simulations on a high 

performance computer or work station, you probably could also run several model simulations 

in parallel within minutes. 

And further as mentioned in the introduction of our paper, the comparable echoRD model of 

Jackisch and Zehe (2018) has simulation times 10 -200 longer than real time.  

We will expand our discussion to provide this information in the revised paper. 

 

Thank you very much, 

 

Alexander Sternagel on behalf of all authors 
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Response to Comments of Anonymous Referee #3 

On behalf of all co-authors I sincerely thank the Anonymous Referee #3 for his thoughtful and 

detailed assessment of our work.  

 

Major Comments 

 

R3: The modelling strategy have been proposed to overcome challenges related to dual 

domain models, however, there no quantitative comparison between the dual domain 

methods proposed in Seven and Germann, (1981) or Nezhad et all (2010), and the model 

proposed by authors in this manuscript. A further analyses is required to compare the results 

achieved from the extended work and the original LAST model as well as results that can be 

achieved via dual domain theory. These quantitative comparisons are required, particularly, 

for clarification of discussions in lines 25-30 if the page 12. 

AS: We thank the reviewer for this comment. The main objective of our study is to propose 

an alternative approach to model the interplay of water flow and solute transport in 

structured heterogeneous soils containing macropores using a full Lagrangian approach. With 

their study, Zehe and Jackisch (2016) have already successfully tested this particle-based 

Lagrangian approach with the linear mixing assumption against a 1-D Richards solver.  



Further, in the revised paper version we will additionally test the solute transport routine of 

our model with HYDRUS 1-D. To this end, please see Figure 1 of this response which shows 

the results of the simulation of our three infiltration tests with HYDRUS 1-D compared to the 

results of our LAST-Model.  

As you can see, at the well-mixed study sites 23 and 31 HYDRUS 1-D performs well in 

accordance to the observed values and it is also similar to our simulation results with just slight 

deviations but which are in the range of uncertainty. In contrast, at the preferential flow site 

Spechtacker HYDRUS 1-D with its double-domain approach is not able to simulate well the 

highly heterogeneous, observed solute mass profile. Here, our model performs much better 

in comparison. We will discuss these results in our revised paper in more detail. 

 

Figure 1: Solute mass profiles at our three study sites simulated with HYDRUS 1-D (lower part) and compared to the mass 

profiles simulated with our LAST-Model (upper part) 

 

R3: Some new parameters have been introduced in the new model, which may not be 

physically measurable such as dimension of the micropores and considering the authors effort 

for simulation of field data, it has not been proposed/specified how values of these 

parameters can be identified. 

AS: We thank the reviewer for this comment. Several parameters of the pfd like the number 

of macropores, their diameter and dephts are directly measurable in the field. We will better 

explain this in an additional section/paragraph in the revised manuscript and clarify how we 



obtained our model parameters from these observables, e.g. also with further figures (see 

Figure 2 below). With this Figure 2, we can explain that the dimensions of macropores (depth, 

diameter) are indeed physically measurable in field experiments. As you can see, horizontal 

soil profiles were excavated in different depths and the number of macropores, their lengths 

and diameters were measured. From this dataset we derived the parameters of the pfd with 

dmac, nmac, macropore depths and also the distribution factors. Note that also the flow rate 

in macropores is based on measurements of saturated flow through undisturbed soil columns, 

which were centered around worm burrows. These measurements revealed a clear linear 

dependence of the flow rate on the macropore radius, which is in line with Hagen-Poiseuille’s 

law (Figure 3). 

 

 

Figure 2: Patterns of dye tracer (a+d) and worm burrows as well as the measurement of distribution, lengths and diameters 

of those macropores in different horizontal layers (d) at the study site Spechtacker (taken from van Schaik et al. (2014)). 

 

Figure 3: Linear Regression of the flux rate within the macropore on the macropore radius at the study site Spechtacker (Zehe 

et al. (2001)). This relation was derived from measurements of saturated flow through undisturbed soil columns containing 

worm burrows. 

 

 

R3: Discussion regarding computational efficiency of the proposed model has not been 

presented sufficiently, and for example in page 13 line 39 duration of simulation has been 



presented without identifying which machine have been used and also duration of simulation 

with other possible model have not been compared. With our such complete comparisons, 

discussions on efficiency of the method would not add any scientific knowledge to the readers. 

AS: Yes, you are right. We will add some more information about the computational setup and 

efficiency. We used the programming language MATLAB on a casual personal computer with 

moderate computational power (e.g. Intel i3, 4 GB RAM). Further, we compared our model 

efficiency at least against one other model, the echoRD model (see page 3, line 8) which has 

simulation times up to 10 – 200 longer than real time.  

The simulations of the first two well-mixed cases without considering an active pfd run even 

faster in a couple of minutes. When performing these simulations on a high performance 

computer or work station, you probably could also run several model simulations in parallel 

within minutes. Further, the amount of total particles has a major impact on the 

computational efficiency: A double amount of particles results in a more than double increase 

of the simulation time. 

 

R3: Some of the results presented in the paper are obvious and do not need complex 

modelling methods to be implemented. For example discussions presented in page 12 lines 

15-20, can be achieved using other methods and perhaps developing proposed model was not 

required to understand these. Perhaps if authors compare their results with other results 

achieved using other methods which capture the effects of macropores, more valuable finding 

will be presented. Authors should make the results section more focused on the capacity of 

new strategy used for modelling micropores and their interactions with soil matrix. 

AS: We agree with the reviewer that some results of the sensitivity analyses are 

straightforward. Nevertheless, we think their presentation is necessary to allow the reader to 

check if our Lagrangian approach with the macropore domain reproduces these results as the 

model concept is new and the exchange between both domains does not rely on an extra 

parameter like a leakage coefficient, e.g. used in dual models (Gerke, 2006). 

We agree that the ability of our LAST-Model to reproduce the fingerprint of macropore flow 

observed in the tracer profile at the Spechtacker site is the main part of the results section 

and we will put more emphasis on this. In this respect, we are not aware of many other model 

studies which reproduce preferential flow fingerprints using a model structure relying on 

observed data. We think that the comparison with HYDRUS 1-D corroborates the feasibility of 

the model. 

 

Minor comments 

 



R3: Simulation domains have not been explained sufficiently in the text, and mainly some 

figures have been presented which are not enough to understand the problem being 

simulated. 

AS: Yes, you are right. Your criticism is in line with the other reviews. We will add further 

information on the simulation domains in the text and also revise the Figure 2 of our paper 

and its caption, e.g. with this revised Figure 4 and caption: 

 

Figure 4 (i.e. Figure 2 of the revised paper): Conceptual visualization of a) macropore structure and cubic packing of particles 

within the rectangle of a cut open and laid-flat grid element cylinder, b) macropore filling with gradual saturation of grid 

elements, exemplarily shown for three time steps (t1-t3) whereby in each time step new particles (differently coloured related 

to the current time step) infiltrate the macropore and travel into the deepest unsaturated grid element c) macropore depth 

distribution and diffusive mixing from macropores into matrix. 

We think the revised figure is now easier to understand. The explanation of all pfd parameters 

was moved from the caption to the text. 

 

R3: A complete description of boundary conditions and initial conditions for simulation 

domains are required. 

AS: We will add more information on the boundary conditions. At the upper boundary we 

have a variable flux boundary describing infiltration of precipitation water into the soil with a 

Darcy flux and at the lower boundary we assume no-flux conditions.  

The initial soil moisture of the matrix is listed in Table 1 of our paper. Further, there is no 

solute initially stored within the soil and the macropres as well as the surface storage are also 

completely empty at simulation begin. We will add more information on the boundary 

conditions in the revised paper. 

 

R3: discussion on time step in page 6 lines 20-25 is vague and needs to be clarified. It will be 

helpful that author visualise the discussion and king it more understandable. 

AS: Yes, we have to revise the section about the time stepping and macropore filling. 

Generally, our model can work with variable time stepping as it is not subject to numerically 

stability criteria. In fact, we select the time step such that the particle displacement per time 



step equals the maximum depth of the pfd and subsequently we shift excess particles to the 

deepest unsaturated grid element. In this way we gradually fill the macropores from the 

bottom to the top (see Fig. 4b of this response above). 

 
 
R3: )If I understood correctly LAST model is the same as the model developed by Zehe and 

Jackisch (2016). I suggested that author call it as their model or the model developed by Zehe 

and Jackisch (2016), i.e., rewrite lines 9-11, I suggest "Our LAST-Model (Lagrangian Soil Water 

and Solute Transport) developed by Zehe and Jackisch (2016) relies on the movement of water 

particles carrying a solute mass through the soil matrix and macropores. We advance this 

model by two main extensions: a)..." 

AS: Sorry, if there is a misunderstanding. We try to make it clearer in the revised paper. Zehe 

and Jackisch (2016) just developed the basic idea of using a particle-based Lagrangian 

approach to simulate water flow in well-mixed soil domains. Now, with this study we extended 

this basic model by solute transport and a macropore domain and also developed the name 

of this new model: “LAST-Model”. As this name already suggests, it is mainly about solute 

transport and therewith essentially different to the original model of Zehe and Jackisch (2016) 

only treating water flow. 

 

 
Thank you very much, 

 

Alexander Sternagel on behalf of all authors 
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Response to Comments of Michael W. I. Schmidt, Sandra Werthmüller and Jasmin Kesselring 

On behalf of all co-authors I sincerely thank Prof. Schmidt and his students for their thoughtful 

and detailed assessment of our work. We appreciate the idea that students work on reviews 

of scientific papers and contribute to the discussion process. We think that it is a great 

opportunity for them to get an idea of the scientific publishing process and insights into the 

work of a researcher. 

 

General Comments 

 

R4: In general, we think that the manuscript has a good structure and one can follow the 

development of the model the way it is described in the paper. However, we think that the 

introduction is slightly too long compared to the rest of the manuscript. 

AS: Thank you for your general positive assessment of our work. We think that after the 

revision of our paper with the addition of further text passages and figures, the relation 

between introduction and the other chapters will be better balanced. 

 

R4: For us as beginners in the field, it is hard to understand why your model is innovative. 

Could you explain at the beginning of the paper what makes your model innovative compared 

to others in the field? And how your work is embedded in the broader work of soil water 

modelling? We understand that the paper is about discussing the development of a new 

model and is thus theoretical. However, we think a more practical description of the use of 

the model would be nice. For instance: For which studies is this model a must have addition? 

We also think that the model would have to be compared to more than one practical study to 

fully be called a valid model. […] 

AS: Sorry, if this was not clear to you. We will revise the introduction. In short, commonly used 

hydrological models use the Darcy-Richards equation to simulate subsurface water flow. Many 

studies have shown the validity of this approach under well-mixed conditions in homogeneous 

soils. But also several studies have proven that the Darcy-Richards approach frequently fails 

when it comes to preferential flow through macropores in heterogeneous soils and due to 

rainfall-driven flow conditions. To overcome this weakness we propose our alternative 

particle-based Lagrangian approach. The differences are that we represent water masses as 

distinct particles and we are able to follow and describe the trajectory of each single particle 

through the system. We think that this until now only rarely applied approach is very 

promising to address the preferential flow issue and also the associated solute transport. With 

our study we want to evaluate and prove the validity of particle-based Lagrangian models. 

And yes, you are right with your suggestion that our work is theoretical. As we are still just at 

the beginning of the development of our model it is difficult to describe its practical use in the 

future. When further adding a reactive transport routine and extending the model to 2-D it 

could be a practical tool to assess the risk of pesticide leaching on field sites or even on entire 

hillslopes. 



Moreover, we consider to perform another simulation of an infiltration test and also to 

compare our model against the commonly used hydrological model HYDRUS 1-D in the revised 

version of our paper. 

To this end, please see Figure 1 of this response below which shows the results of the 

simulation of our three infiltration tests with HYDRUS 1-D compared to the results of our LAST-

Model.  

As you can see, at the well-mixed study sites 23 and 31 HYDRUS 1-D performs well in 

accordance to the observed values and it is also similar to our simulation results with just slight 

deviations but which are in the range of uncertainty. In contrast, at the preferential flow site 

Spechtacker HYDRUS 1-D with its double-domain approach is not able to simulate well the 

highly heterogeneous, observed solute mass profile. Here, our model performs much better 

in comparison. We will discuss these results in our revised paper in more detail. 

 

Figure 1: Solute mass profiles at out three study sites simulated with HYDRUS 1-D (lower part) and compared to the mass 

profiles simulated with our LAST-Model (upper part) 

 

R4: Page 3 Line 36 ff: How is the number of bins i and the subdivision into N bins defined? 

What exactly is the difference between those two and how do you choose the ‘perfect’ 

number of bins? 

AS: Sorry, this is indeed a bit confusing. We will revise that. N is the total amount of bins and 

can be predefined. Please see also the study of Zehe and Jackisch (2016), who tested how the 



number of bins influences the model results. In our model, we use 800 bins. And in contrast, i 

is the number of the current bin (between 0 - 800) within the displacement routine. 

R4: Page 4 Line 30-33: Here, you list four subchapters that will follow in the next paragraph. 

Why not name the actual subchapters according to this list? 

AS: Yes, you are right. We will adjust the list of the four subchapters. 

 

R4: Page 9 Line 31ff: You already start the interpretation of results, why not in the dedicated 

section (discussion and conclusion)? 

AS: Yes, sometimes we already started discussing some results in the results section. We did 

that, because the discussion and conclusion of these results are obvious and logical. Thus, we 

shortly mention them within the results section and do not come back to them in the 

discussion. In the discussion, we concisely refer to the main objectives of our study mentioned 

in the introduction.  

 

R4: The layout of your references makes it hard to differentiate references. We also noticed 

that a lot of citations and references you used are from the same authors. We were 

wondering, if there are other scientists that are working on the same problem to which you 

could compare your results with. 

AS: Indeed, a differentiation of the references is difficult. We consider to revise the layout. 

Further, there are not many studies and researchers dealing with the still relatively new 

particles-based approach and we think that we referenced all the crucial studies related to 

our topic. 

 

Detailed comments 

 

R4: The abbreviation for confer is cf.  not c.f.  It is used inconsistently in the manuscript 

AS: Yes, thanks. We will correct that. 

 

R4: Page 1 Line 34: become a major issue (change an to a) 

AS: Thanks, we will correct that. 

 

R4: Page 4 Line 24ff:  This sentence is a bit difficult to understand. Maybe make two sentences 

e.g. ...corresponding to the molecular diffusion coefficient. Additionally, this needs to be 

smaller than... 

AS: Ok, we will consider to revise this passage. 



 

R4: Page 6 Line 4: k_m1 or k_m1 with a subscript 1 as in the formula above? 

AS: Thanks, it should be k_m1. We will use a consistent notation.  

 

R4: Page 8: Has unnecessary empty space 

AS: Thanks, you are right. We will revise the layout. 

 

R4: Page 9 Line 21ff: In this sentence you suggest that the parameter hydraulic conductivity 

of the matrix ks, diameter of macropores dmac and the amount of macropores nmac are the 

most sensitive for the model behaviour and simulation results. Please elaborate why and give 

a reference for it. 

AS: Sorry, that our description is unclear. We will explain our sensitivity analyses more 

properly in the revised paper. In general, due to the model structure we early assumed that it 

would be logical if these parameters are most sensitive because dmac and nmac mainly define 

the new macropore domain and ks plays a crucial role in the infiltration process, the particle 

displacement within matrix and even in the macropore-matrix diffusion. 

 

R4: Page 9 Line 24ff:  In this paragraph you mentioned different configurations for depth 

distribution and distribution factors.  They have the same numbers, which is confusing and 

makes the text hard to understand. If possible, clarify the difference between depth 

distribution and distribution factors. 

AS: Yes, we indeed used the same numbers for two different distributions. We will revise this 

issue and change the notation, e.g. macropore depth distribution with configurations 1-3 and 

distribution factors with configurations a-d. 

 

R4: Page 13 Line 37 ff:  You mention that your model is highly computational efficient and with 

a short simulations time (about five minutes). How does this short simulation time compare 

to other similar models?  Could you give a reference time?  And could you explain how this 

new model increased computational efficiency? 

AS: The simulation of the infiltration experiment at the study site Spechtacker with the 

selected parametrization runs for about 5-10 minutes on a casual personal computer with 

moderate computing power (e.g. Intel i3, 4 GB RAM). Without an active pfd (e.g. at the other 

two infiltration tests) the model runs even faster (couple of minutes). When performing these 

simulations on a high performance computer or work station, you probably could also run 

several model simulations parallel within minutes. 

And further, as mentioned in the introduction of our paper, the comparable echoRD model of 

Jackisch and Zehe (2018) has simulation times 10 -200 longer than real time. 



The reason for the computational efficiency of our model is the fact that we tried to keep the 

model structure as simple as possible using a combination of appropriate assumptions and 

basic physical rules. 

R4: Figure 1: Why are pore size and soil water content equal to each other? (x-axis) Maybe 

mention in the figure caption how the bin width is calculated. 

AS: Good question. Related to the velocity or hydraulic conductivity of the matrix (y-axis) the 

water content and pore size can be seen as equal because big pores contain more water and 

also the binding forces in these big pores are reduced. Both facts lead to a higher flow velocity. 

The calculation of the bin width is explained in the text but we will consider to also mention it 

in the figure caption. 

 

R4: Figure 2: In line 3 of the caption: describe DM, LM, dz separately like the other parameters 

and not as a group.  We do not understand what figure b) means.  What do the different 

colours stand for? Describe it better in the text where you reference it as well as in the figure 

caption 

AS: Thank you. Your criticism on Figure 2 of our paper is adequate and in line with the other 

referee comments. We will add a revised version of Figure 2 and a better explanation to the 

revised manuscript. Figure 2 of this manuscript gives an idea of the revised figure. We will 

move the definitions of the parameters of Figure 2 to the text. 

 

Figure 2: Conceptual visualization of a) macropore structure and cubic packing of particles within the rectangle of a cut open 

and laid-flat grid element cylinder, b) macropore filling with gradual saturation of grid elements, exemplary shown for three 

time steps (t1-t3) whereby in each time step new particles (differently coloured related to the current time step) infiltrate the 

macropore and travel into the deepest unsaturated grid element c) macropore depth distribution and diffusive mixing from 

macropores into matrix. 

 

R4: Figure 3/4: Is the coloured in area the uncertainty range? Are these different parameters 

in figures 3 and 4 or why do they have different colours?  For us the graphics are also a bit 

small which makes it difficult to read them.  It would be better if the graphics were a bit bigger. 

AS: Sorry, if this is unclear. Figure 3 of our discussion paper shows the simulated mass profile 

at the three study sites compared to the obtained data of the real infiltration tests. The rose 

area shows the model uncertainty/ -changes to different model setups. And Figure 4 of our 



discussion paper is part of the sensitivity analyses and the blue area shows the range of 

different model results dependent on different ks values. Thus, as both figures relate to 

different issues (Figure 3: re-simulation of real infiltration test, Figure 4: sensitivity analyses 

with different ks values), we used different colours to emphasize the difference.  

R4: Figure 9: In all four plots use the same colour for the same configuration number. This 

makes it easier to see the influence of the different factors on the configurations. 

AS: Sorry, if there is a misunderstanding. We deliberately used different colours in Figure 

9a+b) and 9c+d) as they relate to two different configuration setups (Figure 9a+b): distribution 

of macropore depths with three different configurations 1-3; Figure 9c+d): Four different 

configurations 1-4 of distribution factors). We will revise Figure 9 of our paper and the 

explanation of the different configurations in the text. Please see also our response to your 

previous comments. 

 

Thank you very much, 

 

Alexander Sternagel on behalf of all authors 

 

References 

Jackisch, C., Zehe, E.: Ecohydrological particle model based on representative domains, 

Hydrol.  Earth Syst.  Sci. 22 (7), 3639–3662, doi:10.5194/hess-22-3639-2018,  2018. 

Zehe, E. and Jackisch, C.: A Lagrangian model for soil water dynamics during rainfall-driven 

conditions, Hydrol. Earth Syst. Sci., 20, 3511–3526, https://doi.org/10.5194/hess-20-3511-

2016, 2016. 

 


