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Abstract.

The behavior of every catchment is unique. Stil, seek for ways to classify them as this helpsriprove hydrological
theories. In this study, we use hydrological signeg that were recently identified as those witfhbst spatial predictability
to clusters 643 catchments from the CAMELS data\&&t analyze the connections between the resulfuigiers and the
catchment attributes and relate this to the coabdliiy of the catchment attributes. To explore thige the observed
differences result from clustering catchments lilyegiclimate or hydrological behavior, we compéueettydrological clusters
to climatic ones. We find that aridity is more innfamt for hydrological behavior in the eastern Wijle it is the amount of
snow in the West. In the comparison of climatic apdrological clusters, we see that the widely useeppen-Geiger climate
classification is unsuitable to find hydrologicalimilar catchments. However, in comparison withoael, hydrologically
based continuous climate classifications, sometaisdollow the climate classification very dirggtivhilst others do not.
From those results, we conclude that the sign#h@fclimatic forcing can be found more explicittythe behavior of some
catchments than in others. It remains uncleaiisfithcaused by a higher intra-catchment variahidftthe climate or a higher
influence of other catchment attributes, overlayhmgclimate signal. Our findings suggest that \bfferent sets of catchment
attributes and climate can cause very similar hgdjioal behavior of catchments - a sort of equiftyeof the catchment

response.

1 Introduction

Every hydrological catchment is composed of a umicgombination of topography and climate, which nsakeir discharge
heterogeneous. This, in turn, makes it hard to gdime behavior beyond individual catchments (Be#900). Catchment
classification is used to find patterns and lawgshie heterogeneity of landscapes and climatic s§8tvapalan, 2003).

Historically, this classification was often done &iyply using geographic, administrative or physapdnic considerations.
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However, those regions proved to be not sufficiehtimogenous (Burn, 1997). Therefore, it was pregds use seasonality
measures with physiographic and meteorologicalagharistics, but it was deemed difficult to obtdinse information for a
large number of catchments (Burn, 1997), even [§ e@mple catchment attributes (e.g. aridity) asedi (Wagener et al.,
2007). Nonetheless, in the last decade datasets twidrologic and geological data were made availabbmprising
information of hundreds of catchments around thedvAddor et al., 2017; Alvarez-Garreton et aD18; Newman et al.,
2014; Schaake et al., 2006). This is a signifistep forward as those large sample datasets camagemew insights, which
are impossible to obtain when only a few catchmargsconsidered (Gupta et al., 2014). Differenttattes have been used
to classify groups of catchments in those kindaibdets: flow duration curve (Coopersmith et &112 Yaeger et al., 2012),
catchment structure (McGlynn and Seibert, 2003)lr&nclimatic regions (Potter et al., 2005), funoti@sponse (Sivapalan,
2005) and more recently, a variety of hydrologisigihatures (Kuentz et al., 2017; Sawicz et al.,1220Dbth, 2013). Quite
often, climate has been identified as the most iad driving factor for different hydrological ba¥ior (Berghuijs et al.,
2014; Kuentz et al., 2017; Sawicz et al., 2011i)l, 8tis also noted that this does not hold tfaeall regions and scales (Ali
et al., 2012; Singh et al., 2014; Trancoso et8l17). In addition, a recent large study of Addpale (2018) has shown that
many of the hydrological signatures often useddassification, are easily affected by data unéatitss and cannot be
predicted using catchment attributes. Another resemly by Kuentz et al. (2017) used an extrenmigd datasets of 35,000
catchments in Europe and classified them using digdical signatures. For their classification, thesed hierarchical
clustering and evaluated the result of the clusteby comparing variance between different numbérdusters. They were
able to find ten distinct classes of catchmentavéi@r, Kuentz et al. (2017) used some of the sigaatidentified to have a
low spatial predictability by Addor et al. (201&). addition, one third of their catchments was aggted in one large class
with no distinguishable attributes. Overall, we clode that no large sample study exists that uslyshydrological signatures
with a good spatial predictability.

Therefore, we selected the best six hydrologiaaiaiures with spatial predictability to classifyatanents of the CAMELS
(Catchment Attributes and MEteorology for Large-p@amStudies) dataset (Addor et al.,, 2017). Thogehgdrological
signatures are evaluated together with the fiftm@ohment attributes that were shown to have & laftuence on hydrological
signatures (Addor et al., 2018). The connectiomwbeh the hydrological signatures and the catchaténibutes is determined
by using quadratic regression of the principal congmts (of the hydrological signatures) and thehsaent attributes. This
will help to explore, if a clustering with hydrolimgl signatures that have a high predictabilitgpace, provides hydrologically
meaningful clusters and how those are related tchogent attributes. In addition, we compare therblgdjically derived
clusters with climatic clusters and determine tpatisl distance between the most hydrologicallyilsintatchments. This
will determine if grouping catchments by climateébgrhydrologic behavior will yield the same resultgl explore the validity

of considering spatial distance as a measure odfesity between catchments.
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2 Material and Methods
2.1 Data base

This work is based on a detailed analysis of catattrattributes and information contained in hydgatal signatures. The
CAMELS data set contains 671 catchment in the nental united states (Addor et al., 2017) with &ddal meta information
such as slope and vegetation parameters. Forumly,stre used a selection of the available meta @athle 1). We excluded
all catchments that had missing data, which lefvith 643 catchments. Those catchments come fravida spectrum of
characteristics like different climatic regionsg\etions ranging from 10 to almost 3,600 m a.ed. @atchment areas ranging
from 4 to almost 26,000 km2. To ensure an equatessmtation of the different catchment attributbssses (climate,
topography, vegetation, soil, geology) we usedetatributes per clas€limate: aridity, frequency of high precipitation
events, fraction of precipitation falling as snowggetation: forest fraction, green vegetation fraction maxmulLAl
maximum; Topography: mean slope, mean elevation, catchment a®ei&; clay fraction, depth to bedrock, sand fraction;
Geology: dominant geological class, subsurface porosithssrface permeability. Those catchment attributere chosen
due to their ability to improve the prediction ofdnological signatures (Addor et al., 2018) andause they are relatively
easy to obtain, which will allow a transfer of thigethod to other groups of catchments world-wide.

Hydrological signatures cover different behaviofscatchments. However, many of the published signest have large
uncertainties (Westerberg and McMillan, 2015) aauklin predictive power (Addor et al., 2018). Thiere, we used the six
hydrological signatures with the best predictapilit space (Table 1) (Addor et al., 2018). Thogmaiures were calculated
for all catchments. Due to this selection, no sigres that capture low flow behavior were usedhase signatures have a

very low spatial predictability.

Table 1: Applied hydrological signatures on the didtarge data of the CAMELS data set (Addor et al., 2013

Signature Unit

Mean annual daily discharge mm d?
Mean winter daily discharge (Nov. — Apr.) mm d?
Mean half-flow date; Date on which the cumulativectiarge since October first reaches

half of the annual discharge day of year
95 % Flow quantile (high flow) mm d?
Runoff ratio -

Mean summer daily discharge (May — Oct.) mm d?
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2.3 Data analysis

The workflow of the data analysis considers a datlaction approach with a principal component asialgnd a subsequent
clustering of the principal components, similaKieentz et al. (2017) and McManamay et al. (2014¢. dMly used principal
components that account for at least 80% of thad t@triance of the hydrological signatures, whiebulted in two principal
components. We evaluated the connection betweeprithgpal components and the catchments attributisthe following
procedure:

1) First, we calculated quadratic regressions betwleerwo principal components and the catchmenbates (with
the principal component as the dependent variables resulted in one coefficient of determinat{&?) for each
pair of principal component and catchment attrilfetg. PC 1 and aridity).

2) We then weighted the R2 by the explained variarfi¢beoprincipal components. This addresses therdiffces in the
explained variance of the principal components.{(€¢ 1 explained 75% of the variance, PC 2 expthit9% of
the variance).

3) The weighted coefficients of determination of thingipal components were subsequently added, taimluine
coefficient of regression for every catchment bitité.

Quadratic regression was selected as interactomstural hydrological systems are known to haveaan patterns and cannot
be fitted with a straight line (Addor et al., 2010gstanza et al., 1993). This was done first ferviinole dataset and then for
all clusters separately. This procedure captureg#itern on the catchment attributes in the PG&kepf the hydrological
signatures (for examples of this pattern see Figile

The principal components were clustered followigglamerative hierarchical clustering with ward kge (Ward, 1963),
similar to previous studies (Kuentz et al., 201i7etal., 2018; Yeung and Ruzzo, 2001). From thsisdies, Kuentz et al.
(2018) provides the largest set with over 35,0G8hraents. They also clustered their catchmentsRCA space of a range
of hydrological signatures. To select the numbeclosters, they used the elbow method (and tworattethods to validate
their results) and found that ten or eleven clgsfdepending on the method) were most appropmattnéir data. Due to the
similarity in the clustered data and the largeatase of Kuentz et al. (2018), we also used tesiaris

For the principal component analysis and the ctirglenve used the Python package sklearn (0.19H6.cbde is available at
GitHub (Jehn, 2018). Validity was checked by a mndelection of 50 and 75 % of all catchments. Wmdl that the overall
picture stayed the same (not shown). In all furtmealysis, we used all catchments to get a sanspli@rge as possible to be

able to make statements that are more general.
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3 Results and Discussion

3.1 Impacts of catchment attributes on discharge @racteristics in the whole dataset

First we examined the weighted R2 of the catchraétributes for the whole dataset. This analysissshioot only differences

in their score between the single attributes, laat between the different classes of catchmernbatés (Figure 1). Attributes

related to climate (aridity) and vegetation (forfeattion) get the highest scores. With the exoeptf the mean slope, the

first seven catchment attributes are all relatedlitnate and vegetation. The last seven attribateshe other hand are all

related to soil and geology, except the catchmesd.al hey also show much lower scores of the wetyR2. This indicates

that soil and geology are less important for theseim hydrological signatures. Similar patterns ve¢se found by (Yaeger et

al., 2012). They stated climate as the most impbdaver for the hydrology.

Aridity

Frequency of high
precipitation events

Forest fraction

Mean slope

Green vegetation
fraction maximum

LAl maximum

Fraction of precipitation
falling as snow

Mean elevation

Catchment Attributes

Area

Dominant geological class

Subsurface porosity

Subsurface permeability

0.0

0.2 0.4 0.6
Weigthed Coefficient of Determination

Climate
Geology
Soil
Topography
Vegetation

Figure 1: Importance of catchment attributes evaluged by quadratic regression for all considered catuments. Attributes colored

according to their catchment attribute class.

However, they also unraveled that low flows arenyacontrolled by soil and geology. The minor imgamrce of soil and

geology in our study might therefore be biasedhgydhoice of hydrological signatures, which exctutiev flow signatures
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due to their low predictability in space. Nevertss, our study probably captures a more general tie we used a larger
dataset and more hydrologically meaningful hydradasignatures (Addor et al., 2018). Addor e{2018) also explored the
influence of different catchment attributes in ®AMELS dataset on discharge characteristics. Thend that climate has
the largest influence on discharge characteristietl,in agreement with Coopersmith et al. (2012je latter also used a large
group of catchments in the continental United Stdtem the MOPEX dataset. They conclude that tlesaeality of the
climate is the most important driver of discharparacteristics. However, Coopersmith et al. (2@iy analyzed the flow
duration curve, which has a mediocre predictabititgpace and it is therefore more unclear whegdtly depicts (Addor et
al., 2018). Overall, this study here is in linetwither literature in the field. Using the weigh®Rdreliably detects climatic
forcing as the most important for the dischargerattaristics for a large group of catchments. Tdas probably be
extrapolated to most catchments in the contined&lwithout human influence, as the CAMELS datasettains large
samples of undisturbed catchments (Addor et al.720n the next step, we will test whether thedations also hold for the
clusters of the catchments.

3.2 Relation of the principal components and the tdrological signatures

The rivers considered in this study show a wideyeaim hydrological signatures. This is visible fire tclusters of principal
components of the hydrological signatures (Figymgl@st of the rivers are opposite of the loadingtees (the loading vectors
are shown as arrows). This shows that most rivave helatively low values for all hydrological saores and only some,
more extreme rivers, have higher values for spebifdrological signatures. Most typical for the mlebehavior of the river
are the hydrological signatures mean annual digehand Q95 (high flows), as they have a strongetation with the first
principal component. For the second principal congpd, the mean half-flow date (an indicator forseeality) has the highest
correlation. Therefore, the first principal compphean be seen as a measure of overall dischatharaount of high flows,

while the second principal component can be seamasasure of seasonality in the discharge.
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Figure 2: Biplot of the principal components (PC).Colors indicate the cluster of the catchment.

150 3.3 Exploration of the catchment clusters

The catchment attributes in the CAMELS and sinméage scale datasets often show a pattern thainidee climatic zones
(Addor et al., 2018; Coopersmith et al., 2012; Yaegt al., 2012). The picture is less clear forhigdrological catchment
clusters presented. This is directly observabkfénspatial distribution of the clusters (Figure B3ually the 100th meridian

is seen as the dividing climatic line in the USijtpg the country in a semi-arid west and a humddt.
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Figure 3: Locations of the clustered CAMELS catchmats in the continental US. Dotted line marks the 1@" meridian.

This split can also be found in some of the clsstiEpicted in Figure 3. Cluster 3, 4, 5, 6 anderadirlocated mainly in the
West, while Cluster 1 and 10 are in the East. H@nethe remaining Clusters 2, 8 and 9 have rougimjlar amounts of
catchments in both regions. The catchments in #steen half of the United States form large spataterns of similar
behavior, while the catchments in the west aret @atchier. The descriptions of the catchment ehgsare summarized in
Table 2. A further detailed description of the tdus can be found in the appendix, together wiglures showing the
distribution of hydrological signatures (Figure A#)d catchment attributes (Figure A3) in the cltsstA list of all catchments

with index, position and cluster classificatiorgigen in the supplementary material.
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Figure 4: Swarm plot of the real world distances o&ll catchments to the most hydrologically similarcatchment (based on their
distance in the PCA space of the hydrological sighares).

In addition, similar catchments can be quite faapdWom each other (Figure 4). Sometimes, the ca¢ctt with the most

170 similar signature was found as far as 4000 km afahgost the entire longitudinal distance of thetomntal US). This

8
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explains why spatial proximity seems to be impdrtarsome studies that look into explanations ¢€ltaent behavior
(Andréassian et al., 2012; Sawicz et al., 201) pbtiin others (Trancoso et al., 2017). This abslicates that clustering by
using spatial proximity might only work in regiolilse the eastern US, where the behavior of riveienges gradually. The
finding that the most similar catchment (basedhmirthydrological signatures) can be far away, abgoains the behavior
of clusters that contain catchment quite distaminfeach other (e.g. Cluster 4). Even though thehoag¢nts might be far
away from each other, the interplay of differerttbanent attributes and driving factors, includiryiously different
climates, can lead to similar (equifinal) dischabgdavior.

The derived importance of the catchment attribirteke clusters is highly variable and partly di§férom the order of
importance in the overall dataset (compare Figuead Figure 5). For Cluster 1 (Southeastern andr@ldplains), 6
(Marine West Coast Forests), 8 (Great Plains argbii® and 9 (Southern states) aridity has theedeaonnection to the
clusters. However, this is not the case for theaiamg catchment clusters. For Cluster 3 (NorthesesEorested
Mountains), 4 (Northwestern Forested MountainsElodda) and 7 (Western Cordillera) the clearesingtion is to the
fraction of precipitation falling as snow. Howevéar Cluster 3, and 4 many other catchment atteibiitave a weighted R2,

which is almost as high as the one for the fractibprecipitation falling as snow.
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Figure 5: Importance of the catchment attributes ealuated by the quadratic regression. For the catchent clusters. Attributes
colored according to their catchment attribute clas.
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In addition, all catchment attributes have a higrighted R2 in Cluster 3, while the weighted R2a Ifor all catchment

attributes in Cluster 4. For the remaining clustérs green vegetation maximum (Cluster 2, CdrRtains), forest fraction

(Cluster 5, Northern Marine West Coast Forest)rapdn elevation (Cluster 10, Appalachian Mountai@skrall, the western

clusters (west of the 100th meridian) have the désglveighted R2 with the:

Fraction of precipitation falling as snow (Clus&H, 7)

Forest fraction (Cluster 5)

Aridity (Cluster 6)

The eastern clusters (east of the 100th meridiath)the:

Aridity (Cluster 1)

Mean elevation (Cluster 10)

The clusters equally present in west and easttivih

Green vegetation fraction maximum (Cluster 2)

Aridity (Cluster 8, 9)

In the next step, we linked the abovementionedriigglto the differences between the correlatiorte®tatchment attributes

with each other in the eastern and western pattseeafontinental US (Figure 6). While aridity ietimost important catchment

attribute, when looking at all catchments at thmesaime (Figure 1), this does not hold true for trafsthe single clusters

(Figure 5). Yet, the factors with the highest wagghcoefficient of correlation might simply be pre for aridity. To test this,

we scrutinized the correlation between the catchrattnbutes with each other, separated by EastVdest (Figure 6). The

western US (Figure 6a) and eastern US (Figure 6y $igh differences in the way the catchmentlaites correlate with

each other (Figure 6¢). The main differences athénmean elevation, the fraction of precipitatialiing as snow, and the

LAI maximum. For example, in the western US the megevation has a high correlation (r = 0.8) witle fraction of

precipitation falling as snow. In the eastern US/éweer, this correlation is much smaller (r = Ojis is probably caused by

the overall higher elevation in the western USadidition, in the western US, the fraction of thegipitation falling as snow

does not correlate with the aridity (r = 0.1), whihe forest fraction does (r = -0.8). Thus, thedbfraction is linked very

directly to the climate in this region. Therefoagidity (and the highly correlated forest fractidr@ve the highest weighted R2

in two out of the five clusters in the western @Bly two clusters are mostly located in the easté®n(Cluster 1 and 10).

Here, aridity and the mean elevation have the ligiveighted R2 with the hydrological behavior. Thean elevation has a

medium correlation with the aridity. Hence, the tojdgical behavior in the eastern US is most higidgrelated with aridity,

which is not the case for the western US. Thewe fridction of precipitation falling as snow is mgnevalent. Those results

imply that aridity is a good indicator for the disege characteristics in the eastern US and ontiiaoee in the West.

Overall, we found that it is relatively easy tokithe dominating catchment attributes to the hyalyiwlal behavior, in some

regions of the US. However, it is more challengimgthers. We link this to a less strong climatgnal in those regions. This
11



hints that climate and catchment attributes areenmtertwined in those areas and indicates regidrese different types of
hydrological model structures are needed. Furtheznibindicates regions where hydrological pradits in ungauged basins
(Hrachowitz et al., 2013) can become very challeggis the interplay of the available meteoroldgiead catchment-

attributes data cannot sufficiently explain the toyolgical characteristics.
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Table 2: Properties of the catchment clusters. Typidasignatures/attributes refers to the signature/attibute of the cluster with the
lower coefficient of variation scaled by the meanagfficient of variation of the whole dataset. Domiating attribute refers to the
230 catchment attribute that has the highest weighted R

Typical attribute and

Cluster n Main Region Typical signature their manifestation Dominating attribute
1 230 Sogtheastern and Centrapr mean winter Low aridity Aridity
Plains discharge
Central Plains (with . . .
5 101 scattered catchments all High mean half-flow Mid to low depth to Gregn vegetation
date bedrock fraction maximum
over western US)
3 7 NorthW(_estern Forested H.|gh mean summer High forest fraction Frqcuon of precipitation
Mountains discharge falling as snow
Northwestern Forested High mean half-flow Mid frequency of high  Fraction of precipitation
4 52 ; . Lo .
Mountains and Florida date precipitation events falling as snow
5 9 Northern Marine West H_|gh mean summer Very high forest fraction  Forest fraction
Coast Forests discharge
6 18 Marine West Coast Mid runoff ratio Very high forest fraction  Aridity
Forests
Western Cordillera (Part High mean winter Fraction of precipitation
7 23  of Marin West Coast '9 Very high forest fraction . precip
discharge falling as snow
Forests)
8 90 Great_ Plains and North Mid mean half-flow date H|gh_ fr_quency of high Aridity
American Deserts precipitation events
9 61 All southernmost states Low mean half-flow date H|gh_ f(quency of high Avridity
of the US precipitation events
10 52  Appalachian Mountains Low mean winter High forest fraction Mean elevation

discharge

14
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3.4 Differences in clusters in comparison with othrehydrological clustering studies

Compared to the clustering results of Kuentz €28117), who derived their cluster from Europeatcitaents by an analogous
method, some similarities can be found. Like th#ns study here also found one cluster (Clusteaha) does not have any
distinct character. However, only around one softthe CAMELS catchments belongs to this Clustewiile Kuentz et al.
(2017) had one third of their catchments in a elustithout distinct features. Therefore, our setectof hydrological
signatures seems to allow a better identificatibhyorological similarities. However, all catchmsim CAMELS are mostly
without human impact (Addor et al., 2017), whilerpacatchments in the study of Kuentz et al. (204r8) under human
influence. This influence might overlay potentiadlgparent patterns. Kuentz et al. (2017) also fadwadclusters that contain
mostly mountainous catchments. These show a sitmilaavior to Cluster 3 (Northwestern Forested Maims) and Cluster
10 (Appalachian Mountains) found in Figure 3. Theimdifference between their findings and this gthdre is Cluster 8, as
it contains very arid catchments (with some beopted in deserts). Obviously, this cluster catm@found in Europe as
Europe has no real deserts. Still, there is somaasity with their cluster of Mediterranean catohimts as both are dominated
by aridity. Summarizing, in their study and thisdyt catchments are mainly clustered in groups sédérid catchments,
mountainous catchments, mid height mountains wih forest shares, wet lowland catchments and luster of catchments
that do not show a very distinct behavior and tfeeeedo not fit in the other clusters (Table 2).eQuossible explanation for
this unspecific behavior might that many catchméatge one or two important attributes that dictatest of their behavior,
but which are different from other cluster membé&iw. example, desert catchments are relatively Easlentify, as they are
dominated by heat and little precipitation. A Ewap upland catchment on the other hand have saveralinfluences such
as snow in the winter, heat in the summer, varjamgl use and strong impact of seasonality. Her@ym#luences overlap
each other and make it thus difficult to identifgiagle causes, see also the discussion by Tramtado(2017) that goes in
a similar direction. Those overlapping influences probably also the reason why catchment claasific studies often find
clusters where one or two cluster that includergelanumber of catchments, while most other clustdy contain few
catchments (Coopersmith et al., 2012; Kuentz et28117). Therefore, it is quite difficult to confirthe ‘wish’ of the
hydrological community to have homogenous catchnggoups with only a few outliers (e.g. (Burn, 199Mecause
catchments are complex systems with a high levaeletff-organization arising from co-evolution ofnelite and landscape
properties, including vegetation (Coopersmith gt2012). Accordingly, it requires many separatestdrs to separate those
multi-influence catchments into homogenous gro@hdl, the cluster found here might capture muckhefvariety present in
the United States, as they roughly follow ecololgiegions (McMahon et al., 2001), which has beatest as a hint of a good
classification (Berghuijs et al., 2014). In additighis study shows that using clusters derivethfprincipal components of
hydrological signatures create meaningful groupsad€hments with similar attributes (Figure A2, ABhose clusters also

show distinct spatial patterns (Figure 3). Simiksults were also found in other studies that tisedame method (Kuentz et
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al., 2017; McManamay et al., 2014), but based tlenpartly different hydrological signatures. Theref the principal
components of hydrological signatures can be used aeasure of similarity between catchments. Tiepyesent the
“essence” of all hydrological signatures used. @sults also show that it is difficult to link trsatchment clusters to simple
averaged measures of catchment attributes. Whihe stusters have very clear connections to théatés, others have no
catchment attribute that could easily explain teeavior of the catchments. This hints, that sontehcaents are easier to
explain (in a hydrological sense) than others. €hdifficulties might be an artifact of the averagatchment attributes or be
caused by complex catchment reaction, forced lgytimined climate and catchment attributes. Whictuin, might indicate

an equifinality of catchment response.

3.5 Comparing catchment clusters based on hydrologal behavior and climate

Besides hydrological behavior, climate is oftendugesort catchments into similar groups (e.g. Beijg et al., 2014; Knoben
et al., 2018). Therefore, we are interested if tagghroaches deliver comparable results. To evath&ewe contrasted our
results to the commonly used Koeppen-Geiger clinstssification (Beck et al., 2018) (Figure 7) aedently published

approach of Knoben et al. (2018), who sorted cknabng three continuous axis of aridity, seasonalhd fraction of

precipitation falling as snow (Figure 8). The réisig clusters based on climate and hydrology shbelthe same, if climate
is the dominating driver of hydrological behavior évery catchment. Yet, this is not the case fer Kloeppen-Geiger
classification. In every hydrological cluster atdeast two different climates regarding the Koapf@iger classification,
ranging up to eight different climatic regions foluster 2 and 8 (those even include deserts andoadd regions). Thus, the
Koeppen-Geiger classification seems unable to caphe essential drivers of hydrological behaviocritique also raised in
other studies (e.g. Haines et al. (1988); Knobeal.€2018)).

150

100

Number of Catchments

50

1 2 3 4 5 6 7 8 9 10
Hydrological Cluster

Figure 7: Membership of Koeppen-Geiger clusters (B et al. (2018)) in the hydrological clusters.

The picture is less clear concerning the climatétex space of Knoben et al. (2018) (Figure 8a). iduke continuous nature

of the approach of Knoben et al. (2018), therenarelear boundaries as in the Koeppen-Geiger fileesson. Still, there are
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some emerging patterns. For example, accordingeti@pproach of Knoben et al. Cluster 1 is mainfnéée by a relatively
arid climate, with some seasonal variability arttlelito no snow. This is in line with our analysisthe most influential
catchment attributes for this cluster, as we idieatiaridity as the main driver. Contrastingly, s@uld not identify a clear
dominating catchment attribute, if we look at Céust (located in the Northwestern Forested Moustaimd Florida) (Figure
5). Catchments with this hydrological behavior t@nfound in the space of the climatic indices obKen et al. with very
different aridity, seasonality and fraction of firecipitation falling as snow. There seem to béoregywere the forcing signal
of the climate is transferred more directly to @amflow response than in others. However, thisdmt mean that climate
is unimportant in those regions. Either the clinfateing signal is changed more through otherlaites of the catchment, or
the mean values describing the climate do not phppeflect the variability of the climate in thangle catchments. This leads
to less clear correlation between the climate dwl htydrological behavior. Interestingly, when weWloat the single
hydrological signatures in the climate index spéégure 8b, A4) we see a very clear connection betwthe single
hydrological signatures and the climate. This dimmnection of the signatures used was also ftyynélddor et al. (2018).
Our results and the comparison show that the cowiipidrological behavior, captured in a range ofrbjagical signatures,
does not simply follow the climate only, even thbufe individual signatures do. This is even mamarkable, as the
signatures used are linked to climate directly. &ample, the signature “mean half flow date” carsben as a measure of
seasonality. Still, all signatures combined seemafuture a dynamic, which is climatic in origin.t lisi shaped through the
attributes of the catchments (like vegetation amith §Berghuijs et al., 2014)). Therefore, to fitndly similar catchments,
using climate characteristics only, is probably swuificient.
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a) Hydrological clusters in climate index space of Knoben et al. (2018) b) Mean annual discharge in climate index space of Knoben et al. (2018)
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4 Summary and conclusion

This study explored the influence of catchmenitaites on the discharge characteristics in the CABIHataset. We found
that over the whole dataset climate (especiallgligni is the most important factor for the discharcharacteristics. This
changes when we take a closer look at clustersatieatlerived from specific hydrological signaturésr the clusters in the
eastern US, aridity is still the most importantcbabent attribute. In the western US however, thewarof snow is more
important. In addition, in the western catchmehts liydrological behavior is less correlated with ttmaining catchment
attributes. It seems like the clear climatic signahe east is dampened in the west. This migltalsed by a higher influence
of other catchment attributes like elevation angetation. A similar effect can be found, when wenpare how catchment
align along hydrological and climatic axes. Whiteve hydrological clusters align along a relativedyrow range of values
of the climatic indices, others are found in veoptrasting climates. Summarizing, there are diffees of how directly the
signal of forcing climate can be found again in thglrological behavior. This explains why catchnseaften show a
surprisingly similar behavior across many differelinate and landscape properties (Troch et all32@nd why the most
hydrologically similar catchment can be hundredkilmimeters away.

The aggregated data used in this study might lewethe variability of the catchment attributeghe single catchment, but it
also indicates that there is a kind of equifinalitythe behavior of catchments. Different setsndéiitwined climate forcing
and catchment attributes could lead to a very amoiVerall behavior, not unlike to hydrological retslthat produce the same
discharge with different sets of parameters.

We acknowledge that the results are dependenteoarnttount and size of the clusters, the catchmgiitiaes considered and
the hydrological signatures used. Still, we thihiittthe CAMELS dataset offers an excellent overvidéwifferent kinds of
catchments in contrasting climatic and topograpbgions. Nevertheless, it seems that even a compsele dataset like
CAMELS, does not allow an easy way to find a cositl@ set of clusters for catchments. For futureassh, it might be a
worthwhile pathway to include measures of spataiability of the climate in the single catchmeritkis might help to prove,
if a less clear climatic signal is caused by imtaachment variability of the climate or a largefiuence of other catchment

attributes.

Data availability

The CAMELS dataset can be found hdtps://ncar.github.io/hydrology/datasets/ CAMEL $heseriesand is described in
Addor et al. (2017).
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Appendix

0.05

Figure Al: Patterns of catchment attributes in thePCA space of the hydrological signatures.

445

A 1.1 Detailed description of the catchment cluste

Cluster 1is defined by a high cover of vegetation. In aiddit most catchments are located at low elevatiexyerience little
snow and have a deep bedrock. Hydrologically themtehments have little discharge. They are maiobated in the
450 Southeastern and Central Plains and thereforeetmtve high rainfall (> 1000 mm year). Their loischarge is probably
caused by the low elevation those catchments amgdd, groundwater discharge and the high evaporati the forests.
Cluster 1 also contains the largest amount of cagetis from all cluster (n = 230). So over one tlifdhe catchments in

CAMELS show a relatively similar behavior.

455 Cluster 2 most typical attribute in comparison with the otbatchments is its depth to the bedrock. Howewmicerning the
catchment attributes cluster 2 is undefined aerntains catchments of most regions of the contalddnited States (with a
focus on the Central Plains). The hydrological atignes on the other hand show a clearer patterre, ttee mean winter
discharge, Q95 and the mean annual discharge haaea@v range. This shows that catchments with défgrent attributes
can produce very similar discharge characteristisghe different attributes seems to cancel ett@r out in their influence

460 on the discharge.
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Cluster 3 is the smallest cluster with only seven catchmentese are all located in the Northwestern Forektedntains.
Their most distinct feature is their uniform higbver with forest. They also experience high préatn events only seldom
and precipitation is snow half of the time. Hydgitmally their most distinct features is their véaigh mean summer discharge

and high runoff ratio, which is probably causedtigy large amounts of snow these catchments receive.

Cluster 4 is also located in the Northwestern Forested Maostavith the exception of four catchments thatlacated in

Florida. This again is an example of different batent attributes being able to create similar disgh characteristics
concerning their signatures, while having differeatchment attributes. The catchments have overaltlischarge and few
high flow events, while their catchment attributesy widely, especially in all attributes that aetated to elevation (e.g.

fraction of precipitation falling as snow).

Cluster 5, has only few catchments (n = 9). They are alltedat regions in the northern part of the Marinst\@oast Forests.
This is the region in the continental US that reegithe highest precipitation (> 2000 mm year) sTikimirrored in their

discharge characteristics. These catchments havkighest discharge in the whole dataset, espgamthe summer. They
are also uniformly covered by almost 100 % of for€hey also experience only few high precipitatiments as they get rain

and snow more or less constantly in the same amount

Cluster 6 catchments are also located in the Marine WesttGeaasst, but cover the whole region and not ohéyriorthern
part like Cluster 5. The catchments are very simiatheir attributes and discharge characteristic€luster 5, with the
exception of a lower discharge and runoff ratioisTiight be caused by a slightly lower precipitatin comparison with
Cluster 5.

Cluster 7 is also located in the same region as Cluster 56(darine West Coast Forests). Concerning thehcagnt
attributes and the discharge characteristics,|@tdated between Cluster 5 and 6. So, Cluster/atl cover the same region

and differ in their mean summer discharge, whiaoteissed by slight variations in elevation and limcat

Cluster 8is the overall most arid cluster catchments. Aliref catchments are located in western parts dbtbat Plains and
in the North American Deserts. They are shapedvarall little availability of water and high guaration, which is shown
in the very low mean annual discharge and rundid.rd his also results in low values for the LAloWever, the frequency

of high precipitation events is high.
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Cluster 9 covers all southern states of the United Stathe.Chtchments here are quite similar to ClustbuBshow a lower

seasonality (as indicated by their lower half fldate) and a higher forest cover and green vegatatio

Cluster 10 catchments are located in the Appalachian Moustdihe mean elevation higher than most other asted the
catchments also have low aridity and a very higkdbcover. Their discharge characteristics islamo the Marine West
Coast Forests of Cluster 5 to 7. However, theyivecess water than those catchments and expergehigher seasonality

(as indicated by the higher mean half-flow date).
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Figure A3: Violin plots of the catchment attributessorted by catchment clusters. Single dots in théaolins indicate the single
505 catchments.
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Figure A4: Hydrological signatures for all catchmens in the climate index space of Knoben et al. (28). Single dots show the
catchments and are colored according to the valud the mean annual discharge. The log of the signatas is used to show the relative
differences between the catchments.
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