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Abstract.  

The behavior of every catchment is unique. Still, we seek for ways to classify them as this helps to improve hydrological 10 

theories. In this study, we use hydrological signatures that were recently identified as those with highest spatial predictability 

to clusters 643 catchments from the CAMELS data set. We analyze the connections between the resulting clusters and the 

catchment attributes and relate this to the co-variability of the catchment attributes. To explore whether the observed 

differences result from clustering catchments by either climate or hydrological behavior, we compare the hydrological clusters 

to climatic ones. We find that aridity is more important for hydrological behavior in the eastern US, while it is the amount of 15 

snow in the West. In the comparison of climatic and hydrological clusters, we see that the widely used Koeppen-Geiger climate 

classification is unsuitable to find hydrologically similar catchments. However, in comparison with a novel, hydrologically 

based continuous climate classifications, some clusters follow the climate classification very directly, whilst others do not. 

From those results, we conclude that the signal of the climatic forcing can be found more explicitly in the behavior of some 

catchments than in others. It remains unclear if this is caused by a higher intra-catchment variability of the climate or a higher 20 

influence of other catchment attributes, overlaying the climate signal. Our findings suggest that very different sets of catchment 

attributes and climate can cause very similar hydrological behavior of catchments - a sort of equifinality of the catchment 

response. 

1 Introduction 

Every hydrological catchment is composed of a unique combination of topography and climate, which makes their discharge 25 

heterogeneous. This, in turn, makes it hard to generalize behavior beyond individual catchments (Beven, 2000). Catchment 

classification is used to find patterns and laws in the heterogeneity of landscapes and climatic inputs (Sivapalan, 2003). 

Historically, this classification was often done by simply using geographic, administrative or physiographic considerations. 
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However, those regions proved to be not sufficiently homogenous (Burn, 1997). Therefore, it was proposed to use seasonality 

measures with physiographic and meteorological characteristics, but it was deemed difficult to obtain those information for a 30 

large number of catchments (Burn, 1997), even if only simple catchment attributes (e.g. aridity) are used (Wagener et al., 

2007). Nonetheless, in the last decade datasets with hydrologic and geological data were made available, comprising 

information of hundreds of catchments around the world (Addor et al., 2017; Alvarez-Garreton et al., 2018; Newman et al., 

2014; Schaake et al., 2006). This is a significant step forward as those large sample datasets can generate new insights, which 

are impossible to obtain when only a few catchments are considered (Gupta et al., 2014). Different attributes have been used 35 

to classify groups of catchments in those kind of datasets: flow duration curve (Coopersmith et al., 2012; Yaeger et al., 2012), 

catchment structure (McGlynn and Seibert, 2003), hydro-climatic regions (Potter et al., 2005), function response (Sivapalan, 

2005) and more recently, a variety of hydrological signatures (Kuentz et al., 2017; Sawicz et al., 2011; Toth, 2013). Quite 

often, climate has been identified as the most important driving factor for different hydrological behavior (Berghuijs et al., 

2014; Kuentz et al., 2017; Sawicz et al., 2011). Still, it is also noted that this does not hold true for all regions and scales (Ali 40 

et al., 2012; Singh et al., 2014; Trancoso et al., 2017). In addition, a recent large study of Addor et al. (2018) has shown that 

many of the hydrological signatures often used for classification, are easily affected by data uncertainties and cannot be 

predicted using catchment attributes. Another recent study by Kuentz et al. (2017) used an extremely large datasets of 35,000 

catchments in Europe and classified them using hydrological signatures. For their classification, they used hierarchical 

clustering and evaluated the result of the clustering by comparing variance between different numbers of clusters. They were 45 

able to find ten distinct classes of catchments. However, Kuentz et al. (2017) used some of the signatures identified to have a 

low spatial predictability by Addor et al. (2018). In addition, one third of their catchments was aggregated in one large class 

with no distinguishable attributes. Overall, we conclude that no large sample study exists that uses only hydrological signatures 

with a good spatial predictability.  

Therefore, we selected the best six hydrological signatures with spatial predictability to classify catchments of the CAMELS 50 

(Catchment Attributes and MEteorology for Large-Sample Studies) dataset (Addor et al., 2017). Those six hydrological 

signatures are evaluated together with the fifteen catchment attributes that were shown to have a large influence on hydrological 

signatures (Addor et al., 2018). The connection between the hydrological signatures and the catchment attributes is determined 

by using quadratic regression of the principal components (of the hydrological signatures) and the catchment attributes. This 

will help to explore, if a clustering with hydrological signatures that have a high predictability in space, provides hydrologically 55 

meaningful clusters and how those are related to catchment attributes. In addition, we compare the hydrologically derived 

clusters with climatic clusters and determine the spatial distance between the most hydrologically similar catchments. This 

will determine if grouping catchments by climate or by hydrologic behavior will yield the same results and explore the validity 

of considering spatial distance as a measure of similarity between catchments.  
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2 Material and Methods 60 

2.1 Data base 

This work is based on a detailed analysis of catchment attributes and information contained in hydrological signatures. The 

CAMELS data set contains 671 catchment in the continental united states (Addor et al., 2017) with additional meta information 

such as slope and vegetation parameters. For our study, we used a selection of the available meta data (Table 1). We excluded 

all catchments that had missing data, which left us with 643 catchments. Those catchments come from a wide spectrum of 65 

characteristics like different climatic regions, elevations ranging from 10 to almost 3,600 m a.s.l. and catchment areas ranging 

from 4 to almost 26,000 km². To ensure an equal representation of the different catchment attributes classes (climate, 

topography, vegetation, soil, geology) we used three attributes per class. Climate: aridity, frequency of high precipitation 

events, fraction of precipitation falling as snow; Vegetation: forest fraction, green vegetation fraction maximum, LAI 

maximum; Topography: mean slope, mean elevation, catchment area; Soil: clay fraction, depth to bedrock, sand fraction; 70 

Geology: dominant geological class, subsurface porosity, subsurface permeability. Those catchment attributes were chosen 

due to their ability to improve the prediction of hydrological signatures (Addor et al., 2018) and because they are relatively 

easy to obtain, which will allow a transfer of this method to other groups of catchments world-wide. 

Hydrological signatures cover different behaviors of catchments. However, many of the published signatures have large 

uncertainties (Westerberg and McMillan, 2015) and lack in predictive power (Addor et al., 2018). Therefore, we used the six 75 

hydrological signatures with the best predictability in space (Table 1) (Addor et al., 2018). Those signatures were calculated 

for all catchments. Due to this selection, no signatures that capture low flow behavior were used, as those signatures have a 

very low spatial predictability.  

 

Table 1: Applied hydrological signatures on the discharge data of the CAMELS data set (Addor et al., 2018). 80 

Signature Unit 

Mean annual daily discharge  mm d-1 
Mean winter daily discharge (Nov. – Apr.) mm d-1 
Mean half-flow date; Date on which the cumulative discharge since October first reaches 
half of the annual discharge day of year 
95 % Flow quantile (high flow) mm d-1 
Runoff ratio - 
Mean summer daily discharge (May – Oct.)  mm d-1 
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2.3 Data analysis 

The workflow of the data analysis considers a data reduction approach with a principal component analysis and a subsequent 

clustering of the principal components, similar to Kuentz et al. (2017) and McManamay et al. (2014). We only used principal 

components that account for at least 80% of the total variance of the hydrological signatures, which resulted in two principal 85 

components. We evaluated the connection between the principal components and the catchments attributes with the following 

procedure: 

1) First, we calculated quadratic regressions between the two principal components and the catchment attributes (with 

the principal component as the dependent variable). This resulted in one coefficient of determination (R²) for each 

pair of principal component and catchment attribute (e.g. PC 1 and aridity).  90 

2) We then weighted the R² by the explained variance of the principal components. This addresses the differences in the 

explained variance of the principal components (e.g., PC 1 explained 75% of the variance, PC 2 explained 19% of 

the variance).  

3) The weighted coefficients of determination of the principal components were subsequently added, to obtain one 

coefficient of regression for every catchment attribute.  95 

Quadratic regression was selected as interactions in natural hydrological systems are known to have unclear patterns and cannot 

be fitted with a straight line (Addor et al., 2017; Costanza et al., 1993). This was done first for the whole dataset and then for 

all clusters separately. This procedure captures the pattern on the catchment attributes in the PCA space of the hydrological 

signatures (for examples of this pattern see Figure A1). 

The principal components were clustered following agglomerative hierarchical clustering with ward linkage (Ward, 1963), 100 

similar to previous studies (Kuentz et al., 2017; Li et al., 2018; Yeung and Ruzzo, 2001). From those studies, Kuentz et al. 

(2018) provides the largest set with over 35,000 catchments. They also clustered their catchments in a PCA space of a range 

of hydrological signatures. To select the number of clusters, they used the elbow method (and two other methods to validate 

their results) and found that ten or eleven clusters (depending on the method) were most appropriate for their data. Due to the 

similarity in the clustered data and the larger database of Kuentz et al. (2018), we also used ten clusters.   105 

For the principal component analysis and the clustering we used the Python package sklearn (0.19.1). The code is available at 

GitHub (Jehn, 2018). Validity was checked by a random selection of 50 and 75 % of all catchments. We found that the overall 

picture stayed the same (not shown). In all further analysis, we used all catchments to get a sample as large as possible to be 

able to make statements that are more general.  

 110 
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3 Results and Discussion 

3.1 Impacts of catchment attributes on discharge characteristics in the whole dataset 

First we examined the weighted R² of the catchment attributes for the whole dataset. This analysis shows not only differences 

in their score between the single attributes, but also between the different classes of catchment attributes (Figure 1). Attributes 

related to climate (aridity) and vegetation (forest fraction) get the highest scores. With the exception of the mean slope, the 115 

first seven catchment attributes are all related to climate and vegetation. The last seven attributes on the other hand are all 

related to soil and geology, except the catchment area. They also show much lower scores of the weighted R². This indicates 

that soil and geology are less important for the chosen hydrological signatures. Similar patterns were also found by (Yaeger et 

al., 2012). They stated climate as the most important driver for the hydrology.  

 120 
Figure 1: Importance of catchment attributes evaluated by quadratic regression for all considered catchments. Attributes colored 

according to their catchment attribute class.  

However, they also unraveled that low flows are mainly controlled by soil and geology. The minor importance of soil and 

geology in our study might therefore be biased by the choice of hydrological signatures, which excluded low flow signatures 
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due to their low predictability in space. Nevertheless, our study probably captures a more general trend as we used a larger 125 

dataset and more hydrologically meaningful hydrological signatures (Addor et al., 2018). Addor et al. (2018) also explored the 

influence of different catchment attributes in the CAMELS dataset on discharge characteristics. They found that climate has 

the largest influence on discharge characteristics, well in agreement with Coopersmith et al. (2012). The latter also used a large 

group of catchments in the continental United States from the MOPEX dataset. They conclude that the seasonality of the 

climate is the most important driver of discharge characteristics. However, Coopersmith et al. (2012) only analyzed the flow 130 

duration curve, which has a mediocre predictability in space and it is therefore more unclear what it really depicts (Addor et 

al., 2018). Overall, this study here is in line with other literature in the field. Using the weighted R² reliably detects climatic 

forcing as the most important for the discharge characteristics for a large group of catchments. This can probably be 

extrapolated to most catchments in the continental US without human influence, as the CAMELS dataset contains large 

samples of undisturbed catchments (Addor et al., 2017). In the next step, we will test whether these relations also hold for the 135 

clusters of the catchments.  

 

3.2 Relation of the principal components and the hydrological signatures 

The rivers considered in this study show a wide range in hydrological signatures. This is visible in the clusters of principal 

components of the hydrological signatures (Figure 2).Most of the rivers are opposite of the loading vectors (the loading vectors 140 

are shown as arrows). This shows that most rivers have relatively low values for all hydrological signatures and only some, 

more extreme rivers, have higher values for specific hydrological signatures. Most typical for the overall behavior of the river 

are the hydrological signatures mean annual discharge and Q95 (high flows), as they have a strong correlation with the first 

principal component. For the second principal component, the mean half-flow date (an indicator for seasonality) has the highest 

correlation. Therefore, the first principal component can be seen as a measure of overall discharge and amount of high flows, 145 

while the second principal component can be seen as a measure of seasonality in the discharge.  
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Figure 2: Biplot of the principal components (PC). Colors indicate the cluster of the catchment.  

 

3.3 Exploration of the catchment clusters  150 

The catchment attributes in the CAMELS and similar large scale datasets often show a pattern that resembles climatic zones 

(Addor et al., 2018; Coopersmith et al., 2012; Yaeger et al., 2012). The picture is less clear for the hydrological catchment 

clusters presented. This is directly observable in the spatial distribution of the clusters (Figure 3). Usually the 100th meridian 

is seen as the dividing climatic line in the US, splitting the country in a semi-arid west and a humid east.  



8 
 

 155 

Figure 3: Locations of the clustered CAMELS catchments in the continental US. Dotted line marks the 100th meridian. 

 

This split can also be found in some of the clusters depicted in Figure 3. Cluster 3, 4, 5, 6 and 7 are all located mainly in the 

West, while Cluster 1 and 10 are in the East. However, the remaining Clusters 2, 8 and 9 have roughly similar amounts of 

catchments in both regions. The catchments in the eastern half of the United States form large spatial patterns of similar 160 

behavior, while the catchments in the west are a lot patchier. The descriptions of the catchment clusters are summarized in 

Table 2. A further detailed description of the clusters can be found in the appendix, together with figures showing the 

distribution of hydrological signatures (Figure A2) and catchment attributes (Figure A3) in the clusters. A list of all catchments 

with index, position and cluster classification is given in the supplementary material. 

 165 
Figure 4: Swarm plot of the real world distances of all catchments to the most hydrologically similar catchment (based on their 
distance in the PCA space of the hydrological signatures).  

 

In addition, similar catchments can be quite far away from each other (Figure 4). Sometimes, the catchment with the most 

similar signature was found as far as 4000 km away (almost the entire longitudinal distance of the continental US). This 170 
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explains why spatial proximity seems to be important in some studies that look into explanations of catchment behavior 

(Andréassian et al., 2012; Sawicz et al., 2011), but not in others (Trancoso et al., 2017). This also indicates that clustering by 

using spatial proximity might only work in regions like the eastern US, where the behavior of rivers changes gradually. The 

finding that the most similar catchment (based on their hydrological signatures) can be far away, also explains the behavior 

of clusters that contain catchment quite distant from each other (e.g. Cluster 4). Even though the catchments might be far 175 

away from each other, the interplay of different catchment attributes and driving factors, including obviously different 

climates, can lead to similar (equifinal) discharge behavior.  

The derived importance of the catchment attributes in the clusters is highly variable and partly differs from the order of 

importance in the overall dataset (compare Figure 1 and Figure 5). For Cluster 1 (Southeastern and Central Plains), 6 

(Marine West Coast Forests), 8 (Great Plains and Deserts) and 9 (Southern states) aridity has the clearest connection to the 180 

clusters. However, this is not the case for the remaining catchment clusters. For Cluster 3 (Northwestern Forested 

Mountains), 4 (Northwestern Forested Mountains and Florida) and 7 (Western Cordillera) the clearest connection is to the 

fraction of precipitation falling as snow. However, for Cluster 3, and 4 many other catchment attributes have a weighted R², 

which is almost as high as the one for the fraction of precipitation falling as snow.  
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 185 
 Figure 5: Importance of the catchment attributes evaluated by the quadratic regression. For the catchment clusters. Attributes 

colored according to their catchment attribute class.  
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In addition, all catchment attributes have a high weighted R² in Cluster 3, while the weighted R² is low for all catchment 

attributes in Cluster 4. For the remaining clusters, it is green vegetation maximum (Cluster 2, Central Plains), forest fraction 190 

(Cluster 5, Northern Marine West Coast Forest) and mean elevation (Cluster 10, Appalachian Mountains). Overall, the western 

clusters (west of the 100th meridian) have the highest weighted R² with the: 

Fraction of precipitation falling as snow (Cluster 3, 4, 7) 

Forest fraction (Cluster 5) 

Aridity (Cluster 6) 195 

The eastern clusters (east of the 100th meridian) with the: 

Aridity (Cluster 1) 

Mean elevation (Cluster 10) 

The clusters equally present in west and east with the: 

Green vegetation fraction maximum (Cluster 2) 200 

Aridity (Cluster 8, 9) 

In the next step, we linked the abovementioned findings to the differences between the correlations of the catchment attributes 

with each other in the eastern and western parts of the continental US (Figure 6). While aridity is the most important catchment 

attribute, when looking at all catchments at the same time (Figure 1), this does not hold true for most of the single clusters 

(Figure 5). Yet, the factors with the highest weighted coefficient of correlation might simply be proxies for aridity. To test this, 205 

we scrutinized the correlation between the catchment attributes with each other, separated by East and West (Figure 6). The 

western US (Figure 6a) and eastern US (Figure 6b) show high differences in the way the catchment attributes correlate with 

each other (Figure 6c). The main differences are in the mean elevation, the fraction of precipitation falling as snow, and the 

LAI maximum. For example, in the western US the mean elevation has a high correlation (r = 0.8) with the fraction of 

precipitation falling as snow. In the eastern US however, this correlation is much smaller (r = 0.4). This is probably caused by 210 

the overall higher elevation in the western US. In addition, in the western US, the fraction of the precipitation falling as snow 

does not correlate with the aridity (r = 0.1), while the forest fraction does (r = -0.8). Thus, the forest fraction is linked very 

directly to the climate in this region. Therefore, aridity (and the highly correlated forest fraction) have the highest weighted R² 

in two out of the five clusters in the western US. Only two clusters are mostly located in the eastern US (Cluster 1 and 10). 

Here, aridity and the mean elevation have the highest weighted R² with the hydrological behavior. The mean elevation has a 215 

medium correlation with the aridity. Hence, the hydrological behavior in the eastern US is most highly correlated with aridity, 

which is not the case for the western US. There, the fraction of precipitation falling as snow is more prevalent. Those results 

imply that aridity is a good indicator for the discharge characteristics in the eastern US and only mediocre in the West.  

Overall, we found that it is relatively easy to link the dominating catchment attributes to the hydrological behavior, in some 

regions of the US. However, it is more challenging in others. We link this to a less strong climatic signal in those regions. This 220 
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hints that climate and catchment attributes are more intertwined in those areas and indicates regions where different types of 

hydrological model structures are needed. Furthermore, it indicates regions where hydrological predictions in ungauged basins 

(Hrachowitz et al., 2013) can become very challenging, as the interplay of the available meteorological- and catchment-

attributes data cannot sufficiently explain the hydrological characteristics.  
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 225 

Figure 6: Correlation of all catchment attributes for western (a) and eastern (b) US and absolute differences in correlation 
between the eastern and western US. Eastern and western is defined by the 100th meridian.   
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Table 2: Properties of the catchment clusters. Typical signatures/attributes refers to the signature/attribute of the cluster with the 
lower coefficient of variation scaled by the mean coefficient of variation of the whole dataset. Dominating attribute refers to the 
catchment attribute that has the highest weighted R². 230 

Cluster n Main Region Typical signature 
Typical attribute and 
their manifestation  

Dominating attribute 

1 230 
Southeastern and Central 
Plains 

Low mean winter 
discharge 

Low aridity Aridity 

2 101 
Central Plains (with 
scattered catchments all 
over western US) 

High mean half-flow 
date 

Mid to low depth to 
bedrock 

Green vegetation 
fraction maximum 

3 7 
Northwestern Forested 
Mountains 

High mean summer 
discharge 

High forest fraction 
Fraction of precipitation 
falling as snow 

4 52 
Northwestern Forested 
Mountains and Florida 

High mean half-flow 
date 

Mid frequency of high 
precipitation events 

Fraction of precipitation 
falling as snow 

5 9 
Northern Marine West 
Coast Forests 

High mean summer 
discharge 

Very high forest fraction Forest fraction 

6 18 
Marine West Coast 
Forests 

Mid runoff ratio  Very high forest fraction Aridity 

7 23 
Western Cordillera (Part 
of Marin West Coast 
Forests) 

High mean winter 
discharge 

Very high forest fraction 
Fraction of precipitation 
falling as snow 

8 90 
Great Plains and North 
American Deserts 

Mid mean half-flow date 
High frequency of high 
precipitation events 

Aridity 

9 61 
All southernmost states 
of the US 

Low mean half-flow date 
High frequency of high 
precipitation events 

Aridity 

10 52 Appalachian Mountains 
Low mean winter 
discharge 

High forest fraction Mean elevation 
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3.4 Differences in clusters in comparison with other hydrological clustering studies 

Compared to the clustering results of Kuentz et al. (2017), who derived their cluster from European catchments by an analogous 

method, some similarities can be found. Like them, this study here also found one cluster (Cluster 2) that does not have any 

distinct character. However, only around one sixth of the CAMELS catchments belongs to this Cluster 2, while Kuentz et al. 235 

(2017) had one third of their catchments in a cluster without distinct features. Therefore, our selection of hydrological 

signatures seems to allow a better identification of hydrological similarities. However, all catchments in CAMELS are mostly 

without human impact (Addor et al., 2017), while many catchments in the study of Kuentz et al. (2017) are under human 

influence. This influence might overlay potentially apparent patterns. Kuentz et al. (2017) also found two clusters that contain 

mostly mountainous catchments. These show a similar behavior to Cluster 3 (Northwestern Forested Mountains) and Cluster 240 

10 (Appalachian Mountains) found in Figure 3. The main difference between their findings and this study here is Cluster 8, as 

it contains very arid catchments (with some being located in deserts). Obviously, this cluster cannot be found in Europe as 

Europe has no real deserts. Still, there is some similarity with their cluster of Mediterranean catchments as both are dominated 

by aridity. Summarizing, in their study and this study catchments are mainly clustered in groups of desert/arid catchments, 

mountainous catchments, mid height mountains with high forest shares, wet lowland catchments and one cluster of catchments 245 

that do not show a very distinct behavior and therefore do not fit in the other clusters (Table 2). One possible explanation for 

this unspecific behavior might that many catchments have one or two important attributes that dictate most of their behavior, 

but which are different from other cluster members. For example, desert catchments are relatively easy to identify, as they are 

dominated by heat and little precipitation. A European upland catchment on the other hand have several more influences such 

as snow in the winter, heat in the summer, varying land use and strong impact of seasonality. Here, many influences overlap 250 

each other and make it thus difficult to identify a single causes, see also the discussion by Trancoso et al. (2017) that goes in 

a similar direction. Those overlapping influences are probably also the reason why catchment classification studies often find 

clusters where one or two cluster that include a large number of catchments, while most other cluster only contain few 

catchments (Coopersmith et al., 2012; Kuentz et al., 2017). Therefore, it is quite difficult to confirm the ‘wish’ of the 

hydrological community to have homogenous catchment groups with only a few outliers (e.g. (Burn, 1997)), because 255 

catchments are complex systems with a high level of self–organization arising from co-evolution of climate and landscape 

properties, including vegetation (Coopersmith et al., 2012). Accordingly, it requires many separate clusters to separate those 

multi-influence catchments into homogenous groups. Still, the cluster found here might capture much of the variety present in 

the United States, as they roughly follow ecological regions (McMahon et al., 2001), which has been stated as a hint of a good 

classification (Berghuijs et al., 2014). In addition, this study shows that using clusters derived from principal components of 260 

hydrological signatures create meaningful groups of catchments with similar attributes (Figure A2, A3). Those clusters also 

show distinct spatial patterns (Figure 3). Similar results were also found in other studies that used the same method (Kuentz et 
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al., 2017; McManamay et al., 2014), but based them on partly different hydrological signatures. Therefore, the principal 

components of hydrological signatures can be used as a measure of similarity between catchments. They represent the 

“essence” of all hydrological signatures used. Our results also show that it is difficult to link those catchment clusters to simple 265 

averaged measures of catchment attributes. While some clusters have very clear connections to the attributes, others have no 

catchment attribute that could easily explain the behavior of the catchments. This hints, that some catchments are easier to 

explain (in a hydrological sense) than others. Those difficulties might be an artifact of the averaged catchment attributes or be 

caused by complex catchment reaction, forced by intertwined climate and catchment attributes. Which in turn, might indicate 

an equifinality of catchment response.   270 

3.5 Comparing catchment clusters based on hydrological behavior and climate 

Besides hydrological behavior, climate is often used to sort catchments into similar groups (e.g. Berghuijs et al., 2014; Knoben 

et al., 2018). Therefore, we are interested if both approaches deliver comparable results. To evaluate this, we contrasted our 

results to the commonly used Koeppen-Geiger climate classification (Beck et al., 2018) (Figure 7) and recently published 

approach of Knoben et al. (2018), who sorted climate along three continuous axis of aridity, seasonality and fraction of 275 

precipitation falling as snow (Figure 8). The resulting clusters based on climate and hydrology should be the same, if climate 

is the dominating driver of hydrological behavior in every catchment. Yet, this is not the case for the Koeppen-Geiger 

classification. In every hydrological cluster are at least two different climates regarding the Koeppen-Geiger classification, 

ranging up to eight different climatic regions for Cluster 2 and 8 (those even include deserts and very cold regions). Thus, the 

Koeppen-Geiger classification seems unable to capture the essential drivers of hydrological behavior. A critique also raised in 280 

other studies (e.g. Haines et al. (1988); Knoben et al. (2018)). 

 
Figure 7: Membership of Koeppen-Geiger clusters (Beck et al. (2018)) in the hydrological clusters.  

The picture is less clear concerning the climatic index space of Knoben et al. (2018) (Figure 8a). Due to the continuous nature 

of the approach of Knoben et al. (2018), there are no clear boundaries as in the Koeppen-Geiger classification. Still, there are 285 
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some emerging patterns. For example, according to the approach of Knoben et al. Cluster 1 is mainly defined by a relatively 

arid climate, with some seasonal variability and little to no snow. This is in line with our analysis of the most influential 

catchment attributes for this cluster, as we identified aridity as the main driver. Contrastingly, we could not identify a clear 

dominating catchment attribute, if we look at Cluster 4 (located in the Northwestern Forested Mountains and Florida) (Figure 

5). Catchments with this hydrological behavior can be found in the space of the climatic indices of Knoben et al. with very 290 

different aridity, seasonality and fraction of the precipitation falling as snow. There seem to be regions were the forcing signal 

of the climate is transferred more directly to a streamflow response than in others. However, this does not mean that climate 

is unimportant in those regions. Either the climate forcing signal is changed more through other attributes of the catchment, or 

the mean values describing the climate do not properly reflect the variability of the climate in the single catchments. This leads 

to less clear correlation between the climate and the hydrological behavior. Interestingly, when we look at the single 295 

hydrological signatures in the climate index space (Figure 8b, A4) we see a very clear connection between the single 

hydrological signatures and the climate. This direct connection of the signatures used was also found by Addor et al. (2018). 

Our results and the comparison show that the complex hydrological behavior, captured in a range of hydrological signatures, 

does not simply follow the climate only, even though the individual signatures do. This is even more remarkable, as the 

signatures used are linked to climate directly. For example, the signature “mean half flow date” can be seen as a measure of 300 

seasonality. Still, all signatures combined seem to capture a dynamic, which is climatic in origin, but is shaped through the 

attributes of the catchments (like vegetation and soils (Berghuijs et al., 2014)). Therefore, to find truly similar catchments, 

using climate characteristics only, is probably not sufficient. 
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Figure 8: a) Comparison of the hydrological clustering of this study with the climate index space of Knoben et al. (2018). Single dots 305 
show the catchments and are colored by their hydrological clusters. b) Mean annual discharge for all catchments in the climate index 
space of Knoben et al. (2018). Single dots show the catchments and are colored according to the value of the mean annual discharge. 
The log of the mean annual discharge is used to show the relative differences between the catchments. For a depiction of all 
hydrological signatures used, see Figure A4.  
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4 Summary and conclusion 310 

This study explored the influence of catchment attributes on the discharge characteristics in the CAMELS dataset. We found 

that over the whole dataset climate (especially aridity) is the most important factor for the discharge characteristics. This 

changes when we take a closer look at clusters that are derived from specific hydrological signatures. For the clusters in the 

eastern US, aridity is still the most important catchment attribute. In the western US however, the amount of snow is more 

important. In addition, in the western catchments the hydrological behavior is less correlated with the remaining catchment 315 

attributes. It seems like the clear climatic signal in the east is dampened in the west. This might be caused by a higher influence 

of other catchment attributes like elevation and vegetation. A similar effect can be found, when we compare how catchment 

align along hydrological and climatic axes. While some hydrological clusters align along a relatively narrow range of values 

of the climatic indices, others are found in very contrasting climates. Summarizing, there are differences of how directly the 

signal of forcing climate can be found again in the hydrological behavior. This explains why catchments often show a 320 

surprisingly similar behavior across many different climate and landscape properties (Troch et al., 2013) and why the most 

hydrologically similar catchment can be hundreds of kilometers away.  

The aggregated data used in this study might level out the variability of the catchment attributes in the single catchment, but it 

also indicates that there is a kind of equifinality in the behavior of catchments. Different sets of intertwined climate forcing 

and catchment attributes could lead to a very similar overall behavior, not unlike to hydrological models that produce the same 325 

discharge with different sets of parameters.  

We acknowledge that the results are dependent on the amount and size of the clusters, the catchment attributes considered and 

the hydrological signatures used. Still, we think that the CAMELS dataset offers an excellent overview of different kinds of 

catchments in contrasting climatic and topographic regions. Nevertheless, it seems that even a comprehensive dataset like 

CAMELS, does not allow an easy way to find a conclusive set of clusters for catchments. For future research, it might be a 330 

worthwhile pathway to include measures of spatial variability of the climate in the single catchments. This might help to prove, 

if a less clear climatic signal is caused by intra-catchment variability of the climate or a larger influence of other catchment 

attributes. 

Data availability 

The CAMELS dataset can be found at https://ncar.github.io/hydrology/datasets/CAMELS_timeseries and is described in 335 

Addor et al. (2017). 
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 Appendix 

 
Figure A1: Patterns of catchment attributes in the PCA space of the hydrological signatures.  

 445 

A 1.1  Detailed description of the catchment clusters 

 

Cluster 1 is defined by a high cover of vegetation. In addition, most catchments are located at low elevations, experience little 

snow and have a deep bedrock. Hydrologically these catchments have little discharge. They are mainly located in the 

Southeastern and Central Plains and therefore get relative high rainfall (> 1000 mm year). Their low discharge is probably 450 

caused by the low elevation those catchments are located, groundwater discharge and the high evaporation of the forests. 

Cluster 1 also contains the largest amount of catchments from all cluster (n = 230). So over one third of the catchments in 

CAMELS show a relatively similar behavior.  

 

Cluster 2 most typical attribute in comparison with the other catchments is its depth to the bedrock. However, concerning the 455 

catchment attributes cluster 2 is undefined as it contains catchments of most regions of the continental United States (with a 

focus on the Central Plains). The hydrological signatures on the other hand show a clearer pattern. Here, the mean winter 

discharge, Q95 and the mean annual discharge have a narrow range. This shows that catchments with very different attributes 

can produce very similar discharge characteristics, as the different attributes seems to cancel each other out in their influence 

on the discharge.  460 
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Cluster 3 is the smallest cluster with only seven catchments. Those are all located in the Northwestern Forested Mountains. 

Their most distinct feature is their uniform high cover with forest. They also experience high precipitation events only seldom 

and precipitation is snow half of the time. Hydrologically their most distinct features is their very high mean summer discharge 

and high runoff ratio, which is probably caused by the large amounts of snow these catchments receive.  465 

 

Cluster 4 is also located in the Northwestern Forested Mountains, with the exception of four catchments that are located in 

Florida. This again is an example of different catchment attributes being able to create similar discharge characteristics 

concerning their signatures, while having different catchment attributes. The catchments have overall low discharge and few 

high flow events, while their catchment attributes vary widely, especially in all attributes that are related to elevation (e.g. 470 

fraction of precipitation falling as snow).  

 

Cluster 5, has only few catchments (n = 9). They are all located at regions in the northern part of the Marin West Coast Forests. 

This is the region in the continental US that receives the highest precipitation (> 2000 mm year). This is mirrored in their 

discharge characteristics. These catchments have the highest discharge in the whole dataset, especially in the summer. They 475 

are also uniformly covered by almost 100 % of forest. They also experience only few high precipitation events as they get rain 

and snow more or less constantly in the same amount. 

 

Cluster 6 catchments are also located in the Marine West Coast Forest, but cover the whole region and not only the northern 

part like Cluster 5. The catchments are very similar in their attributes and discharge characteristics to Cluster 5, with the 480 

exception of a lower discharge and runoff ratio. This might be caused by a slightly lower precipitation in comparison with 

Cluster 5.  

 

Cluster 7 is also located in the same region as Cluster 5 and 6 (Marine West Coast Forests). Concerning the catchment 

attributes and the discharge characteristics, it is located between Cluster 5 and 6. So, Cluster 5 to 7 all cover the same region 485 

and differ in their mean summer discharge, which is caused by slight variations in elevation and location. 

 

Cluster 8 is the overall most arid cluster catchments. All of the catchments are located in western parts of the Great Plains and 

in the North American Deserts. They are shaped by an overall little availability of water and high evaporation, which is shown 

in the very low mean annual discharge and runoff ratio. This also results in low values for the LAI. However, the frequency 490 

of high precipitation events is high. 
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Cluster 9 covers all southern states of the United States. The catchments here are quite similar to Cluster 8, but show a lower 

seasonality (as indicated by their lower half flow date) and a higher forest cover and green vegetation.  

 495 

Cluster 10 catchments are located in the Appalachian Mountains. The mean elevation higher than most other clusters and the 

catchments also have low aridity and a very high forest cover. Their discharge characteristics is similar to the Marine West 

Coast Forests of Cluster 5 to 7. However, they receive less water than those catchments and experience a higher seasonality 

(as indicated by the higher mean half-flow date).  
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 500 
Figure A2: Violin plot of the hydrological signatures sorted by catchment clusters. Single dots in the violins indicate the single 

catchments. 
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Figure A3: Violin plots of the catchment attributes sorted by catchment clusters. Single dots in the violins indicate the single 

catchments. 505 
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Figure A4: Hydrological signatures for all catchments in the climate index space of Knoben et al. (2018). Single dots show the 
catchments and are colored according to the value of the mean annual discharge. The log of the signatures is used to show the relative 
differences between the catchments.  


