
We would like to thank the reviewer for the very helpful and constructive comment on the 

manuscript “Using hydrological and climatic catchment clusters to explore drivers of catchment 

behavior”.  

 

(comments of the reviewer are printed in blue, responses of the authors are held in black, added text 

to the manuscript is in italic) 

 

Response to Reviewer #1 (Anonymous) 

Summary 

The authors attempt to address the question: “where is hydrologic behavior similar across the 

contiguous United States?” They use Principal Component Analysis and quadratic regression to 

cluster catchments in the CAMELS data set located in the Contiguous United States. The variables of 

interest are 6 hydrologic signatures that earlier research has shown to have high spatial predictability 

for this dataset. The authors use 15 catchment attributes that were shown to strongly correlate to 

these 6 signatures to explain the generated clusters in terms of catchment similarity. They discuss 

which attributes are most influential in determining each cluster and take some steps towards 

interpreting this from a hydrological processes point of view. 

I have read this paper with great interest. I find the separate correlation plots between the east and 

west CONUS (Figure 6) very interesting and am curious about the differences in eco-regions and 

hydrologic behavior between the east and west that this might imply.  

We are very happy with the interest of the reviewer in our manuscript and like the idea of including 

the ecoregions in Figure 4. As it turned out, there is a strong correlation and we decided to change 

the background of the cluster map to the level 1 ecoregions of the Environmental Protection Agency.  

 

Figure 4: Locations of the clustered CAMELS catchments and level I ecoregions (Omernik and Griffith, 2014) 

in the continental US. Dotted line marks the 100th meridian. 

 



To put a larger emphasis on the correlation plots between the east and west CONUS we changed 

them from Figure 6 to be Figure 1. Additionally we added a chapter at the beginning of the results 

and discussion, where we describe the correlations between the catchment attributes and the 

ecoregions. We also include the precipitation seasonality as an additional catchment attribute in this 

figure. This section reads as follows: 

3.1 Catchment attribute correlations in the CAMELS data set 

Usually the 100th meridian is seen as the dividing climatic line in the US, splitting the country in a 

semi-arid west and a humid east. We assume that this difference in climate also has implications for 

the hydrology and the overall catchment attributes in those regions. To quantify this we split the 

CAMELS data set into a western and an eastern part, based on the 100th meridian (Figure 1 and 4). 

This shows that many of the catchment attribute correlations do not differ much between the east 

and the west. In most cases (>80%), Pearson correlation coefficients vary by less than 0.4 (Figure 1c). 

Still, there are some catchment attributes with larger differences of up to 0.7 between both regions. 

Most striking are the mean elevation and the fraction of the precipitation falling as snow as well as 

the vegetation attributes LAI maximum and Green vegetation fraction maximum. Even though these 

attributes are directly related to each other through temperature gradients, they differ substantially 

in both parts of the country. In the mountainous western US, elevation is highly correlated with the 

fraction of precipitation falling as snow (r=0.8), while it is not in the eastern US (r=0.4). This, and the 

different correlations between vegetation and elevation are probably caused by the fact that the 

temperature gradients differ in both regions. In the western US it is much more mountainous and thus 

temperatures typically change with elevation. In the more level eastern US, on the other hand, the 

change in temperature is mainly linked to the latitude. Striking are also the changes of correlation 

with regard to the fraction of precipitation falling as snow. Here we find altered directions of the 

correlation, i.e., positive correlations with LAI maximum and frequency of high precipitation events in 

the east turn to negative ones in the west. It also becomes obvious that all three measures of 

vegetation seem to track similar characteristics in the catchments, as they highly correlate with each 

other (especially in the eastern US with r=0.9). In addition, all vegetation attributes depict a large 

negative correlation with aridity. Hence, the vegetation attributes considered are likely good proxies 

for aridity. Overall, we see that the relations between the catchment attributes are quite similar for 

the eastern and western US, with the exception of the mean elevation, snow and the LAI maximum. 



 

Figure 1: Pearson correlation coefficients given for all catchment attributes in western (a) and eastern (b) US. 

Absolute differences of the correlation coefficients between the eastern and western US is given in c). Eastern and 

western is defined by the 100th meridian. Due to rounding effects, correlations with the same Pearson correlation 

coefficient might show slightly varying color codes. 

 

My main concern is that apart from Figure 6, the manuscript mostly seems to confirm earlier work by 

e.g. Addor et al. (2018), Berghuijs et al. (2014), Knoben et al. (2018) and Kuentz et al. (2017). 

Confirming findings is not a bad thing, but I think the authors are missing out on an opportunity to go 

beyond these studies. The authors spend some time in the main manuscript (L219-229; L256-258; 

Table 2 to some extent) speculating about hydrologic behavior in each of their clusters. More of 

these thoughts are hidden in the appendices (L460-511). I believe the manuscript would become 

much stronger if the authors would make this the main topic of the manuscript and spend more time 

on trying to understand the hydrologic behavior each cluster represents in terms of dominant 

processes, as this would be a novel contribution to the field. This could be structured similar to 



Berghuijs et al. (2014) but the CAMELS dataset gives the authors the catchment information needed 

to go beyond that work. Addor et al. (2018) could also help to outline potential changes to the 

manuscript.  

The reviewer is right here. An in depth analysis of the processes within the clusters was missing so 

far. In the revised version, we added a new chapter where we discuss the clusters with their 

processes in depth:  

3.4 Location and properties of the catchment clusters  

The catchment attributes in the CAMELS and similar large scale datasets often show a pattern that 

resembles climatic zones (Addor et al., 2018; Coopersmith et al., 2012; Yaeger et al., 2012). For the 

catchments clusters presented here, we can see that most of the clusters roughly follow ecoregions in 

the US (Figure 4). Especially clusters 1, 4, 6 and 7 are almost entirely located within one ecoregion. 

Cluster 2, 8 and 9 on the other hand follow those ecological boundaries to a lesser degree. 

We can see a split of the clusters along the 100th meridian. Cluster 3, 4, 5, 6 and 7 are located mainly 

in the west, while Cluster 1 and 10 are mainly found in the east. However, the remaining Clusters 2, 8 

and 9 have roughly similar numbers of catchments in both regions. Overall, catchments in the eastern 

half of the United States form large spatial patterns of similar behavior, while the catchments in the 

west are patchier. 

 

Figure 5: Swarm plot of the real world distances of all catchments to the most hydrologically similar catchment (based 

on their distance in the PCA space of the hydrological signatures).  

 

In addition, similar catchments can be quite far away from each other (Figure 5). Sometimes, the 

catchment with the most similar signature was found as far as 4,000 km away (almost the entire 

longitudinal distance of the continental US). This explains why spatial proximity seems to be 

important in some studies that look into explanations of catchment behavior (Andréassian et al., 

2012; Sawicz et al., 2011), but not in others (Trancoso et al., 2017). This also indicates that clustering 

by using spatial proximity might only work in regions like the eastern US, where the behavior of rivers 

only changes gradually. The finding that the most similar catchment (based on their hydrological 

signatures) can be far away, also explains the behavior of clusters that contain catchments quite 

distant from each other (e.g. Cluster 4). Even though the catchments might be far away from each 

other, the interplay of different catchment attributes and driving factors, including sometimes very 

different climates, can lead to similar (equifinal) discharge behavior concerning the overall amount of 

discharge, its distribution in the year, the high flows and the runoff-ratio. This was also found by 

several other studies (e.g. Berghuijs et al. (2014); Knoben et al., 2018; Kuentz et al., 2017)). 

In the following, we describe the catchment clusters in regard to their characteristics in meteorology 

(Figure 6), attributes (Figure 7), hydrology (Figure 8) and location (Figure 4). The main points of this 

description are summarized in Table 2. A list of all catchments with index, position, cluster 

classification and climate indexes is given in the supplementary material. 



Cluster 1 is defined by a dense vegetation cover (Figure 7). The low elevation of those catchments 

results in little annual snow fall. They are mainly located in the southeastern and central plains and 

therefore get relative high rainfall (>1,000 mm per year) (Figure 4), almost uniformly distributed over 

the year (Figure 6). From a hydrological perspective, these catchments produce little discharge. 

Cluster 1 contains the highest number of catchments (n=230). So over one third of the catchments in 

CAMELS show a relatively similar behavior when it comes to the amount of water fluxes and their 

distribution throughout the year. This is particular visible when we look at annual supply of discharge 

(Figure 6). Even though the cluster contains a large number of catchments that also partly differ a lot 

in their potential evapotranspiration, there is only a minor difference in the amount of discharge and 

its seasonality. 

Cluster 2’s most typical attribute is its high precipitation seasonality. However, concerning most other 

catchment attributes, Cluster 2 is undefined as it contains catchments of most regions of the 

continental US (with a concentration in the eastern Great Plains) (Figure 4). The hydrological 

signatures on the other hand show a clearer pattern. Here, the mean winter discharge, Q95 and the 

mean annual discharge have a narrow range (Figure 8). This shows that catchments with very 

different attributes can produce similar discharge characteristics. The different attributes seem to 

cancel each other out in their influence on the discharge. This might be enhanced by the high 

precipitation seasonality with higher precipitation in the summer, which creates a strong climatic 

forcing and thus a narrow range for the hydrological signatures (Figure 6). This cluster differs from 

the first one, by having even lower discharge, with almost no peaks and a higher influence of snow 

melt.  

Cluster 3 is the smallest cluster with only seven catchments. Those are all located in the Northwestern 

Forested Mountains. Their most distinct feature is their strong negative precipitation seasonality 

(indicating a strong precipitation peak in the winter) (Figure 6, 7). They also experience high 

precipitation events mostly in winter falling as snow. Hydrologically, their most distinct features is the 

very high mean summer discharge and high runoff ratio (Figure 8). This is probably caused by the 

large amounts of snow melt in late spring and early summer. The catchments of Cluster 3 have the 

largest overall snow storage with mean maximum value of over 600 mm. Overall, the catchments in 

this cluster seem to be, from a hydrological point of view, the most extreme in the overall CAMELS 

data set. This can be seen in their varying discharge patterns. The uniting pattern is their large peak 

discharge during summer and their extreme values in the PCA space (indicating much higher values 

for the hydrological signatures in comparison with the other catchments) (Figure 3).  

Cluster 4 is, as cluster 3, located in the Northwestern Forested Mountains, with the exception of four 

catchments that are located in Florida (Figure 4). This cluster is another example of different 

catchment attributes being able to create similar discharge characteristics concerning the signatures 

used, while having very different catchment attributes (Figure 6). The catchments have overall low 

discharge and few high flow events, except one large peak in the mid of the summer, which is caused 

by melting snow in the northern catchments and strong rainfalls in Florida. Their catchment 

attributes vary widely, especially in all attributes that are related to elevation (e.g. fraction of 

precipitation falling as snow) (Figure 7), which is to be expected when some of the catchments are 

located close to the sea in the southeast, while others are mountainous. 

Cluster 5 includes only few catchments (n=9). They are all located at regions in the northern part of 

the Marine West Coast Forests (Figure 4). This is the region in the continental US that receives the 

highest precipitation (>2000 mm year), which is reflected in their discharge characteristics (Figure 6, 

8). These catchments have the highest discharge in the whole dataset, especially in the early summer, 

due to a combination of high precipitation and snowmelt. They also experience only few high 



precipitation events as they receive large amounts of rain and snow most of the year, with a distinct 

very high peak in the winter months. The catchments are uniformly covered by almost 100% of forest. 

 

Figure 6: Meteorological attributes of the clustered CAMELS catchments averaged by day of the year. 

Potential Evapotranspiration (Pot. ET) was calculated with Hargreaves-Samani (Samani, 2000). Snow 

storage and melting was calculated using a temperature based approach described (Massmann, 

2019). Black lines indicate the mean of all cluster members. Colored lines represent the individual 

catchments. 

 

Cluster 6 is located in the Marine West Coast Forest, but in contrast to Cluster 5, they cover the whole 

region and not only the northern part (Figure 4). The catchments are very similar in their attributes 

and discharge characteristics to Cluster 5, with the exception of lower discharges and runoff ratios 

(Figure 7, 8). This is caused by slightly lower precipitation in comparison with Cluster 5. Cluster 6 

experiences the most negative precipitation seasonality across all clusters, with almost all 

precipitation falling in the winter month. Due to this seasonality and the lower precipitation in the 

summer, the catchments of this cluster uniformly dry out almost completely in the late summer 

(Figure 6).  



Cluster 7 is also located in the same region as Cluster 5 and 6 (Marine West Coast Forests) (Figure 4). 

Concerning the catchment attributes and the discharge characteristics, it is located between Cluster 5 

and 6. So, Cluster 5 to 7 all cover the same region and differ in their mean summer discharge, which is 

caused by variations in elevation and location (Figure 7). Cluster 7 has higher subsurface 

permeabilities than cluster 6, which might explain the differences in hydrological behavior, even 

though the overall attributes of both clusters are rather similar. For example, Cluster 7 has an overall 

lower discharge than Cluster 5, but does not dry out during the summer as Cluster 6 does (Figure 6). 

This might be due to the larger amount of snow it receives in comparison with Cluster 6 and its lower 

evapotranspiration.  

Cluster 8 is the most arid cluster (Figure 7). All of the catchments are located in western parts of the 

Great Plains and in the North American Deserts (Figure 4). They are characterized by an overall low 

water availability and high evaporation, which is shown in the very low mean annual discharge and 

runoff ratio (Figure 6, 8). This also results in low values for the LAI. However, the frequency of high 

precipitation events is high. 

Cluster 9 covers all southern states of the United States (Figure 4). The catchments here are quite 

similar to Cluster 8, but show a lower precipitation seasonality and a higher forest cover and green 

vegetation (Figure 7). In addition, all catchments of this cluster are in relative close proximity to the 

sea. The uniting factor in this cluster seems to be the very low snow fraction and the high 

evapotranspiration (Figure 6, 7).  

Cluster 10 catchments are all located in the Appalachian Mountains (Figure 4). The mean elevation is 

higher than of most other clusters and the catchments also depict a low aridity and a very high forest 

cover (Figure 7). Their discharge characteristics are similar to that of the Marine West Coast Forests 

Clusters 5 to 7 (Figure 6, 8). However, they receive less water than those catchments. Cluster 10 

covers the same ecoregion as Cluster 1, but has a distinct behavior due to its mountainous character, 

which can be seen in the higher seasonality of the discharge. This is probably caused by the larger 

snow cover, with a returning snow melt discharge peak in spring. 

 

Overall, we can see similar trends for some of the cluster. We identified four distinct groups. The 

general similarities of the clusters are also represented by their distance and position in the PCA space 

(Figure 3).  

 Group 1 (Cluster 1, 2, 8, 9): low seasonality in precipitation and discharge; located in 

the eastern US; due to low slope inclinations, water takes a long time to reach the 

outlet. 

 Group 2 (Cluster 3, 4): dominant summer peak of discharge caused by rapid snow 

melt; mostly located in the mountains of the western US; differ in precipitation inputs. 

 Group 3 (Cluster 5, 6, 7): located in the Northwestern Forested Mountains; 

characterized by high precipitation amount and seasonality, but more or less extreme 

versions. 

 Group 4 (Cluster 10): located in the Appalachian mountains; share characteristics 

with Group 1, though influenced by higher elevations and steeper slopes.  

Those groups of clusters are similar to the ones identified by (Berghuijs et al., 2014), even though they 

used a very different method to derive them (based on seasonal water balance and hydro climate). 

The main difference in the groups is probably caused by how we structure the clusters and groups in 

the eastern US, due our clusters being more influenced by the Appalachian Mountains. However, both 

approaches deliver similar results overall.   



 

The question remains: what is the right numbers of clusters? Though even we did find four distinct 

groups, having only four clusters would probably be too little, as the clusters in the groups show a 

wide range of behavior (Figure 3, 7, 8, Table 2). There are catchment attributes, which we did not 

take into account, but which could further split up the clusters (e.g. the shape of the catchments). 

However, this study considered the catchment attributes that are usually considered as being 

important. The fact that the clusters contain different numbers of catchments can be explained by 

their distances in the PCA space (Figure 3). Many of the catchments are rather similar. This produces 

some clusters with most of the catchments. However, we also have some extreme catchments (e.g. 

Cluster 3 and 5), which are very different to the bulk of the catchments in the CAMELS dataset. Thus, 

even though some of our presented clusters are quiet small in number, they are needed to capture 

their extreme hydrological behavior. Our results show that some of the clusters follow the boundaries 

of the ecoregions in the US very directly (Cluster 1), while others do not (Cluster 9). The worlds of 

ecology and hydrology are sometimes shaped by the same forcing, but not always.  

 



 

Figure 7: Boxplots of the catchment attributes of the clusters 



 

Figure 8: Boxplots of the hydrological signatures of the clusters 



 

Table 1: Properties of the catchment clusters. Typical signatures/attributes refers to the signature/attribute of the cluster with 
the lower coefficient of variation scaled by the mean coefficient of variation of the whole dataset. Dominating attribute refers to 
the catchment attribute that has the highest weighted R². 

Cluster n Main Region Typical signature 
Typical attribute and 
their manifestation  

Dominating attribute 

1 230 
Southeastern and 
Central Plains 

Low mean winter 
discharge 

Low aridity Aridity 

2 101 
Central Plains (with 
scattered catchments all 
over western US) 

High mean half-flow 
date 

High precipitation 
seasonality 

Green vegetation 
fraction maximum 

3 7 
Northwestern Forested 
Mountains 

High mean summer 
discharge 

Low precipitation 
seasonality 

Fraction of precipitation 
falling as snow 

4 52 
Northwestern Forested 
Mountains and Florida 

High mean half-flow 
date 

Mid frequency of high 
precipitation events 

Precipitation seasonality 

5 9 
Northern Marine West 
Coast Forests 

High mean summer 
discharge 

Very high forest fraction Forest fraction 

6 18 
Marine West Coast 
Forests 

Mid runoff ratio  
Low precipitation 
seasonality 

Aridity 

7 23 
Western Cordillera (Part 
of Marine West Coast 
Forests) 

High mean winter 
discharge 

Low precipitation 
seasonality 

Fraction of precipitation 
falling as snow 

8 90 
Great Plains and North 
American Deserts 

Mid mean half-flow date 
High frequency of high 
precipitation events 

Precipitation Seasonality 

9 61 
All southernmost states 
of the US 

Low mean half-flow date 
High frequency of high 
precipitation events 

Aridity 

10 52 Appalachian Mountains 
Low mean winter 
discharge 

High forest fraction Mean elevation 

 

I also have a few methodological concerns about the way the signatures and attributes have been 

selected and how the number of clusters has been determined, and how these choices might limit 

the authors’ ability to go beyond these earlier studies (see below). 

Major comments 

1. The authors use the six most predictable signatures from Addor et al. (2018) for analysis here. 

They use 15 catchment attributes that Addor et al. (2018) indicates as having the highest ability to 

explain these signatures, with climatic attributes having the strongest connection to signatures. 

Earlier work (Berghuijs et al., 2014; Kuentz et al., 2017; Knoben et al., 2018) has also shown the 

strong influence climatic conditions have on hydrologic behavior and advocate for further studies 



that investigate the impact of less clear relations between catchment attributes, such as resulting 

from geology or vegetation, and hydrologic behavior. These relations can be seen in well-monitored 

experimental catchments and must logically exist in all other catchments, but in large-sample studies 

this has so far not been conclusively shown (Addor et al., 2018, provides various compelling reasons 

for why that might be the case). Progress towards understanding these relations would be an 

important contribution to the literature and interpreting cluster analysis from a dominant 

hydrological process perspective could be a first step. The authors take some steps in this direction, 

but unfortunately they are limited by their study setup to mostly confirm what has already been 

shown before, without having the necessary information available to go beyond these earlier studies. 

Restructuring of some of the study setup and analysis might be needed (see points 2 and 3 below). 

We agree and have included a more complete description and interpretation of our clusters in 

section 3.4, see previous comment. In addition, we have rewritten section 3.5: 

3.5 Importance of the catchment attributes in the clusters 

The individual importance of the catchment attributes in the clusters is variable and partly deviates 

from the order of importance in the overall dataset (compare Figure 2 and Figure 9). For Cluster 1 

(Southeastern and Central Plains), 6 (Marine West Coast Forests) and 9 (coastal states) aridity has the 

highest weighted coefficient of determination in the clusters. For Cluster 3 (Northwestern Forested 

Mountains) and 7 (Western Cordillera) the highest relevance is found for the fraction of precipitation 

falling as snow. For the remaining clusters it is precipitation seasonality (Cluster 4 (Northwestern 

Forested Mountains), Cluster 8 (Great Plains and Deserts)), the green vegetation fraction maximum 

(Cluster 2 (Central Plains)) and the mean elevation (Cluster 10 (Appalachian Mountains)). We can also 

see that some clusters have one dominating catchment attribute (investigated by the coefficient of 

determination e.g. aridity in Cluster 1, compare Figure 9), while for other clusters, all attributes seem 

equally important (e.g. Cluster 8). Overall, the western clusters (west of the 100th meridian) display 

the highest weighted R² with: 

- Fraction of precipitation falling as snow (Cluster 3, 7) 

- Precipitation seasonality (Cluster 4) 

- Forest fraction (Cluster 5) 

- Aridity (Cluster 6) 

eastern clusters (east of the 100th meridian) with: 

- Aridity (Cluster 1) 

- Mean elevation (Cluster 10) 

clusters equally present in west and east with: 

- Green vegetation fraction maximum (Cluster 2) 

- Aridity (Cluster 9) 

- Precipitation seasonality (Cluster 8) 

 



 

 Figure 9: Importance of the catchment attributes evaluated by the quadratic regression for the catchment clusters. Attributes 
colored according to their catchment attribute class.  

Keeping the correlation coefficients displayed in Figure 1 in mind, we see that climate is the most 

important factor in almost all clusters, as the vegetation attributes are highly correlated with the 

climate attributes. The only exception is Cluster 10 in which mean elevation is the most important 

catchment attribute. However, the catchment attributes in Cluster 10 have overall low R² values and 

the mean elevation is directly followed by the aridity. This again shows that climate seems to be the 

dominating factor for catchment behavior, as found in other large sample studies (e.g. (Berghuijs et 

al., 2014; Kuentz et al., 2017)). Nevertheless, if one takes a closer look at the data set, more detailed, 

regional correlations with regard to individual climate variables can be determined. For example, 

Cluster 1 is defined by the aridity, while Cluster 4 seems to be much more influenced by the 

precipitation seasonality. Overall, it is feasible to link dominating catchment attributes to the 

hydrological behavior. While it is straightforward in some regions of the US, it is more challenging in 

others. We link this to the signal of the climatic forcing being more superimposed by other catchment 

attributes, which results in a less clear connection between its hydrological behavior and the climate. 

This hints that climate and catchment attributes are more intertwined in those areas and indicates 

regions where different types of hydrological runoff generation processes are existing. Furthermore, it 



indicates regions where hydrological predictions in ungauged basins (Hrachowitz et al., 2013) can 

become very challenging, as the interplay of the available meteorological data and catchment 

attributes cannot sufficiently explain the hydrological characteristics. Those findings also highlight 

one current discrepancy between large sample and single catchment studies. While large sample 

studies, especially the very large ones, identify climate as being most important for the hydrological 

behavior (e.g. (Addor et al., 2018; Kuentz et al., 2017)), smaller sample studies (e.g. (Chiverton et al., 

2015; Pfister et al., 2017)) and single catchment studies (e.g. (Floriancic et al., 2018) often identifiy 

the geology or soils as being very important. This might be linked to the overall problem of scales in 

hydrology as different scales of soil/geology and climate have different effects and different data 

accuracy (Addor et al. 2018). In addition to this, the overall scale might also come into play. Smaller 

studies often compare catchments that are not far away from each other and probably have similar 

climate forcings. Thus, the differences in hydrological behavior can only be caused by catchment 

attributes other than climate. Therefore, larger and smaller sample studies might be looking at 

different things. While very large sample studies capture what drives catchments on large scales (the 

climate), smaller studies look at how this climatic signal is transferred to discharge by the catchment 

attributes.  

 

2. Hydrologic interpretation is limited by the choice of signatures. I appreciate that the authors were 

looking for signatures that are easily predictable in space, but this limits the generality of the 

conclusions that can be drawn. The chosen six signatures do not describe the full hydrologic regime, 

focusing mostly on flow magnitude (mean annual, summer and winter flow, runoff ratio, Q95) and 

somewhat on seasonality (half-flow date), with no signatures dedicated to low flows, intermittency 

of flows, or response time of the catchment. Therefore statements such as the following are too 

general for the supporting analysis and should be rephrased to account for the specific conditions 

these 6 signatures describe (please note that this list could be incomplete): 

- L95. “These two principal … overall hydrological behavior.” 

- L188. “ … lead to similar (equifinal) discharge behavior” 

- L464. “So over one third of the catchments in CAMELS show a relatively similar behavior.” 

- L470. “… catchments with very different attributes can produce very similar discharge 

characteristics, …” 

- L480. “an example of different catchment attributes being able to create similar discharge 

characteristics concerning their signatures, while having different catchment attributes” 

We changed those statements to make clearer that they refer to the signatures used in this study. 

 

Related to this, both Addor et al. (2018) and Knoben et al. (2018) show that these particular 

signatures correlate strongly with climatic conditions in the catchment. I doubt whether there is 

much to be learned about the influence of non-climatic attributes on hydrologic behavior by looking 

only at signatures with such strong connections to the prevailing climate. Using a wider range of 

signatures could allow more in-depth analysis of the relation between attributes and signatures. E.g. 

McMillan et al. (2017) could be of use in choosing different signatures: 

McMillan, H., Westerberg, I., & Branger, F. (2017). Five guidelines for selecting hydrological 

signatures. Hydrological Processes, 31(26), 4757–4761. https://doi.org/10.1002/hyp.11300 

 

https://doi.org/10.1002/hyp.11300


We agree that a different set of hydrological signatures might lead to different sets of clusters. 

However, we did focus on the signatures, as we wanted to know if the signatures identified by Addor 

et al. (2018) can be used to create meaningful hydrological clusters, which is part of the main 

research question in this manuscript. Changing the signatures now would lead to an entirely different 

paper. Consequently, we removed statements in the manuscript, which might have implied a too 

general picture of the captured hydrological behavior.  

Despite not re-clustering with additional signatures, we picked up the idea of investigating the 

clusters performance with regard to low flows. The new figure 6 provides information how the 

different discharge patterns are captured by our clusters. Interestingly, it turns out that the 

catchment’s behavior during low flow conditions is very similar in the individual clusters, although we 

have not included signatures that are concerned with low flows. We conclude that the hydrological 

signatures we used contain already sufficient information to present in the discharge patterns.   

 

3. Hydrologic interpretation is also limited by the choice of attributes, because the selected 

attributes are strongly correlated with one another. I had already written a few comments on this 

before reaching Figure 6, which shows that the authors are aware of these correlations. This 

knowledge should play a much larger role in the earlier parts of the paper, where the study setup is 

decided (i.e. which attributes to use) and where the importance of attributes for clustering is 

discussed (for example, the 5 most important attributes in cluster 3 are essentially 2 factors spread 

out over 5 attributes: snow & elevation are the first (r = 0.8), and various aspect of vegetation are the 

second group (r=0.7, r=1 and r =0.8). A different selection of attributes might be needed. I also 

believe that enforcing 3 attributes per attribute category is unnecessarily limiting and ignores some 

of the current understanding of drivers of hydrologic behavior, such as not using a climate 

seasonality metric (further details below). 

In line with comments and replies above, we now focus on the former figure 6 (which is now figure 1) 

in this manuscript. A new in-depth analysis on the correlations in the data set is given (section 3.1). 

Further, we include the precipitation seasonality as a climate seasonality metric that is provided in 

the CAMELS dataset.  

Further missing catchment attributes, which are present in the CAMELS dataset, such as the fraction 

of carbonate rocks or the water fraction in the soil, have not been mentioned in any of the literature 

we have reviewed as being very important for hydrological behavior.  

 

Minor comments 

L45. Addor et al. (2018) identified these signatures as having low spatial predictability in the US. Is it 

correct to assume that these conclusions also apply to the study domain of Kuentz et al. (2017), i.e. 

Europe? 

To be honest, we do not know. Obviously, Europe and the continental US are different in many 

aspects, but we would be surprised if they are so different that hydrological findings cannot be 

transferred between those regions, especially when they are derived from large data sets.   

 

L68. Is there a reason to assume that the most diverse total information is retained by using 3 

attributes each from climate, topography, vegetation, soil and geology? To what extent are all 



CAMELS attributes correlated and to what extent is the subset of 15 attributes correlated with one 

another?  

This point is captured in our answer to the main point 3 of the reviewer.  

 

L69. [Adding to the previous comment] Among others, Berghuijs et al. (2014), Addor et al. (2018) and 

Knoben et al. (2018) have found that climatic seasonality is an important control on hydrologic 

behavior. The authors have included ‘frequency of high precipitation events’ over a climate 

seasonality metric. I agree that there can be good reasons to include the frequency of high P events 

metric but because the authors limit themselves to 3 attributes per attribute category, they cannot 

include a seasonality attribute even though current theory indicates that seasonality can be an 

important control on hydrologic behavior. Given this, I think the choice of 15 attributes and how they 

are distributed between the different categories needs to be better justified and possibly changed. 

As suggested by the reviewer, we included precipitation seasonality in our analysis and the revised 

version of the manuscript. See further replies to this issue in the main points raised. 

 

L95-97. I don’t think the two PCA’s of the six signatures can be seen as “describers of the overall 

hydrologic behavior”. This sentence and the next one need to be more nuanced, because the authors 

state in section 2.1 that no low flow signatures are part of their selection. Other possibly relevant 

aspects of the flow regime, such as baseflow or flashiness, are also not covered in this selection of 

signatures. 

Changed as proposed.  

 

L119. Kuentz et al. (2017) use 10 clusters to group >35000 catchments using 16 different signatures. I 

expect that choosing to use 10 clusters in this study with >600 catchments and 6 signatures might 

provide unnecessary granularity. Can the authors somehow quantify the difference between each 

pair of clusters to show that 10 is an appropriate number? If such quantification is not possible, did 

the authors investigate the impact of using fewer or more clusters?  

[additional note] Seeing that cluster 3 only contains 7 catchments and that cluster 5 only has 9, but 

that cluster 1 has 230 catchments in it, I think that some more discussion of the number of clusters is 

warranted. Cluster 5, 6 and 7 also look very similar, possibly indicating that too many clusters have 

been used. Some questions that come to mind:  

- What is the explanatory power of a cluster with only a handful of catchments in it?  

We also tried to use the elbow method (that was used by Kuentz et al (2017)) to find the right 

amount of clusters. However, this did not produce a clear cut answer on how many clusters should 

be used in our study. Therefore, we assumed that the larger database of Kuentz et al (2017) gives a 

more reliable estimate of the right amount of clusters. In addition, Berghuisj et al (2014) also found 

that 10 clusters are a good number to capture the differences in hydrology in the continental US. 

However, this number of clusters still remains discussable, which is why we provide in the revised 

version of the manuscript the choice of our number of clusters (section 3.4).  

 



- Is the distribution between clusters so skewed because the catchment sample is not uniformly 

distributed across the selected attributes? 

We think the skewed distribution can be explained quite well with the distance in PCA space: The 

small clusters are just very different to the bigger clusters (Figure 3). We see no reason, why 

hydrological behavior in rivers should be uniformly distributed. Many other kinds of natural 

phenomenon are shaped in bell curves. For example the size of humans is based on a large set of 

factors and follows a bell curve. The extreme ends of the curve can only be reached if many factors 

align in the same direction. This is probably true for rivers as well. “Normal” behavior can probably 

be reached by all kinds of combinations of catchment attributes, while more extreme behavior needs 

to have several attributes that force it into that direction.  

 

- Would more and/or different attributes provide more balanced clustering results? 

The clustering is not based on the catchment attributes, only on the hydrological signatures.  

 

- If the catchment sample is not uniformly distributed across attribute space, does this influence the 

PCA results? 

The attributes do not affect the clustering and with this also not the PCA results.  

 

L126. That aridity and forest fraction score highest could possibly relate to the high correlation 

between these two attributes. Investigating the correlations between the 15 catchment attributes 

could show how much independent information is contained in each. The same could be said about 

fractional snowfall and elevation. – Note: upon further reading I see that these correlations are in 

Figure 6. This information should be part of the text here. 

We now discuss the correlations earlier (see answer to main point 1). 

 

L137. I don’t think calling these six signatures “more hydrologically meaningful” is supported by the 

findings of Addor et al. (2018). “more gradually varying in space” perhaps. 

Changed as proposed.  

 

L144. “This can probably be extrapolated to most catchments in the continental US without human 

influence, as the CAMELS dataset contains large samples of undisturbed catchments”. This sentence 

is speculation and should be removed. If the authors want to keep this statement it could for 

example be supported by calculating the climate attributes used by Knoben et al. (2018) and 

comparing these to the range of values for these attributes found across the CONUS. This would 

show how climatically representative the CAMELS catchments are for the wider CONUS.  

We removed this sentence.  

 

L185. See also Berghuijs et al. (2014) who find hydrologic similarity across comparable distance in the 

CONUS; or Kuentz et al. (2017) who find hydrologic similarity across comparable distances in Europe; 



or Knoben et al. (2018) who find catchments with similar hydrologic regime on different continents, 

using only climate indicators to describe similarity. 

We reference those studies now and mention their similar findings.  

 

L189-195. I suspect that if correlations between attributes are taken into account, many of the 

attributes that are of high importance in each cluster turn out to be quite directly related one 

another. For example, (cluster 1) high aridity and low forest fraction & green vegetation fraction 

maximum will be inversely correlated; (cluster 3) precipitation and snow and elevation will be 

correlated, as will forest fraction and LAI maximum and green vegetation fraction maximum. 

Therefore I expect that this part of the analysis will be more instructive if these correlations are 

accounted for, either in selection of the attributes or by lumping correlated attributes into groups in 

some fashion. Changes to Figure 5 might be needed. 

We discuss the correlations now at several places throughout the manuscript.  

 

L214. “While aridity … single clusters (Figure 5).” Implying that aridity is not important in most of the 

clusters seems a bit of a stretch. Aridity is the most important attribute in 4 out of 10 clusters, and 

the second-most important in another 2. It appears in the top 5 of important attributes in 8 out of 10 

clusters (and in the remaining 2 clusters the correlated forest fraction appears), more often than any 

other attribute.  

We have rewritten this whole section (3.5), see earlier answers.  

 

L248. “Therefore, our selection of hydrological signatures seems to allow a better identification of 

hydrological similarities.” Unfortunately I think this argument can be reversed as well, in the sense 

that this selection of signatures might not capture enough of the details of the individual regimes to 

give the clustering approach any trouble. Because these 6 signatures are strongly related to climate 

(e.g. Addor et al., 2018; Knoben et al. 2018), and the relevant climate indices are (mostly) included in 

the clustering approach, it is not surprising that these signatures cluster easily. The fact that the 

authors don’t use a climate seasonality attribute, which has been shown to be an important driver of 

hydrologic differences, could potentially explain why their Cluster 2 does not seem to have any 

distinct character. Instead of making this statement and moving on, a strong contribution would be if 

the authors can determine how to make hydrologic sense of all the catchments that don’t seem to 

follow any obvious pattern. Would different attributes solve this? 

We included the climate seasonality metric given in the CAMELS data set and discuss it in sections 3.4 

and 3.5. This improved the distinctions for some of the cluster. However, for the mentioned cluster 2 

the climate seasonality did not provide much additional information.  

 

L301. I’d argue that Cluster 4 seems to be firmly placed in the non-arid & snow-dominated region of 

the climate space. There are more catchments in this climate region that belong to different clusters 

but this is (1) inherent to imposing binary boundaries (catchments are either cluster X or Y, even if 

they are 49% similar to X and 51% similar to Y) and (2) because the climate plots in Figure 8 only look 

at a limited selection of possibly influential attributes (climatic or otherwise).  

The reviewer is right. Accordingly, we removed the sentence.  



 

L310-315. This connection between signatures and climate can also be seen in Knoben et al. (2018) 

and Kuentz et al. (2017). Addor et al. (2018), Knoben at al. (2018) and Kuentz et al. (2017) (among 

others) acknowledge that using climate alone is not sufficient to produce a catchment classification 

system. This should probably be mentioned as part of this section (or in the introduction of the 

paper, because it provides a compelling reason for investigating catchment attributes). 

We reference this now at the end of the mentioned chapter.  

 

Figure 8. Is the aridity axis upside down in these plots? More arid catchments seem to have higher 

flows. 

It seems that we accidently switched the sign of the aridity values during the extraction from the 

climate maps of Knoben et al. (2018). We fixed this and the figure should be correct now.  

 

Figure A2. I like the way violin plots look, but kernel density smoothing does not respect physical 

boundaries very well and distorts the data being plotted. See for example cluster 3 and the mean 

winter discharge signature, which is, according to the violin, a negative flux for some of the 

catchments in this cluster. Histograms or box-and-whisker plots would more accurately reflect the 

data. 

As recommended by the reviewer, we now display this information as boxplots.  

 

Figure A3. See comment above. 

Changed as proposed. 

 

Figure A4. Is the aridity axis upside down in these plots? More arid catchments seem to have higher 

flows. 

Fixed. 

 

Typographical 

30. “those” > “this”? 

119. Kuentz et al. (2018) > Kuentz et al. (2017) 

P11. Caption of Figure 5. “For the catchment clusters.” should not be a stand-alone sentence. 

215. “single” > “individual”? 

251. I understand what this sentence is meant to say but it doesn’t quite work. Is “This human 

influence might mask otherwise apparent patterns.” better? 

261. “have” > “has” 

265. “cluster” > “clusters” 



463. “… the low elevation those catchments are located, …” > “… the low elevation those catchments 

are located at, …” 

500. “cluster catchments”. Should the word “catchments” be here? 

All changed as proposed. 

 

In addition to the changes mentioned above, we also rewrote parts of the abstract and the summary 

to accommodate for the changes made on the manuscript.  

Abstract: 

The behavior of every catchment is unique. Still, we seek for ways to classify them as this helps to 

improve hydrological theories. In this study, we use hydrological signatures that were recently 

identified as those with highest spatial predictability to clusters 643 catchments from the CAMELS 

data set. We describe the resulting clusters concerning their behavior, location and attributes. We 

then analyze the connections between the resulting clusters and the catchment attributes and relate 

this to the co-variability of the catchment attributes in the eastern and western US. To explore 

whether the observed differences result from clustering catchments by either climate or hydrological 

behavior, we compare the hydrological clusters to climatic ones. We find that for the overall data set 

climate is the most important factor for the hydrological behavior. However, depending on the 

location, either aridity, snow or seasonality has the largest influence. The clusters derived from the 

hydrological signatures partly follow eco regions in the US and can be grouped into four main 

behavior trends. In addition, the clusters show consistent low flow behavior, even though the 

hydrological signatures used describe high and mean flows only. We can also show that most of the 

catchments in the CAMELS dataset have a low range of captured hydrological behaviors, while some, 

more extreme catchments, derivate form that trend. In the comparison of climatic and hydrological 

clusters, we see that the widely used Koeppen-Geiger climate classification is not suitable to find 

hydrologically similar catchments. However, in comparison with a novel, hydrologically based 

continuous climate classifications, some clusters follow the climate classification very directly, whilst 

others do not. From those results, we conclude that the signal of the climatic forcing can be found 

more explicitly in the behavior of some catchments than in others. It remains unclear if this is caused 

by a higher intra-catchment variability of the climate or a higher influence of other catchment 

attributes, overlaying the climate signal. Our findings suggest that very different sets of catchment 

attributes and climate can cause very similar hydrological behavior of catchments - a sort of 

equifinality of the catchment response. 

 

Summary and conclusions 

This study explored differences in the catchment characteristics between the eastern and western US, 

the properties and location of catchment clusters based on hydrological signatures, the importance of 

catchment attributes for those clusters and how this study relates to other clustering studies and 

methods. We found that the correlations catchment characteristics are quite similar for the eastern 

and western US with the exception of mean elevation, snow, geology and the leaf area index. For the 

overall CAMELS data set climate seems to be the most important factor for the hydrological behavior. 

However, depending on the location either aridity, snow or seasonality were most important. The 

clusters derived from the hydrological signatures partly follow the eco regions in the US and can be 

combined into four groups of general behavior trends. Still, similar catchments can be quite far away 

from each other. We also found that most of the catchments have a rather similar discharge 



behavior, while only some, more extreme catchments, derivate from that main trend. This might be a 

hint why it is so difficult to clusters catchments, as those single extreme catchments are quite unique 

and do not fit together well with other catchments. We also found, that there are differences of how 

directly the signal of forcing climate can be found again in the hydrological behavior. This explains 

why catchments often show a surprisingly similar behavior across many different climate and 

landscape properties (Troch et al., 2013) and why the most hydrologically similar catchment can be 

hundreds of kilometers away. Those findings also relate to the paradox that small scales/single 

catchment studies identify geology/soils as most important for the hydrological behavior, while large 

sample studies usually find the climate as most important. This might simply be influenced by spatial 

proximity. Small scale studies look at catchment which all have a similar climatic forcing and thus only 

the other catchment attributes can be the cause of differences in hydrological behavior. Large sample 

studies on the other hand consider catchment from a wider area and thus attribute the differences in 

behavior to climate.  

The aggregated data used in this study might level out the variability of the catchment attributes in 

the single catchment, but it also indicates that there is a kind of equifinality in the behavior of 

catchments. Different sets of intertwined climate forcing and catchment attributes could lead to a 

very similar overall behavior, not unlike to hydrological models that produce the same discharge with 

different sets of parameters.  

We acknowledge that the results are dependent on the amount and size of the clusters, the 

catchment attributes considered and the hydrological signatures used. Still, we think that the CAMELS 

dataset offers an excellent overview of different kinds of catchments in contrasting climatic and 

topographic regions. In addition, this study shows that using hydrological signatures with high spatial 

predictability results in hydrological meaningful clusters, which show consistent low flow behavior, 

even though those low flows were not explicitly considered. However, it seems that even a 

comprehensive dataset like CAMELS, does not allow an easy way to find a conclusive set of clusters 

for catchments. For future research, we recommend to include measures of spatial variability of the 

climate in the single catchments and to look into the single clusters in more depth. This might help to 

prove, if a less clear climatic signal is caused by intra-catchment variability of the climate or a larger 

influence of other catchment attributes. 
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Abstract.  

The behavior of every catchment is unique. Still, we seek for ways to classify them as this helps to improve hydrological 10 

theories. In this study, we use hydrological signatures that were recently identified as those with highest spatial predictability 

to clusters 643 catchments from the CAMELS data set. We describe the resulting clusters concerning their behavior, location 

and attributes.  We thenWe analyze the connections between the resulting clusters and the catchment attributes and relate this 

to the co-variability of the catchment attributes in the eastern and western US. To explore whether the observed differences 

result from clustering catchments by either climate or hydrological behavior, we compare the hydrological clusters to climatic 15 

ones. We find that for the overall data set climate is the most important factor for the hydrological behavior. However, 

depending on the location, either aridity, snow or seasonality has the largest influence. The clusters derived from the 

hydrological signatures partly follow eco regions in the US and can be grouped into four main behavior trends. In addition, 

the clusters show consistent low flow behavior, even though the hydrological signatures used describe high and mean flows 

only. We can also show that most of the catchments in the CAMELS dataset have a low range of hydrological behaviors, while 20 

some, more extreme catchments, derivate form that trend. We find that aridity is more important for hydrological behavior in 

the eastern US, while it is the amount of snow in the West. In the comparison of climatic and hydrological clusters, we see that 

the widely used Koeppen-Geiger climate classification is unsuitable not suitable to find hydrologically similar catchments. 

However, in comparison with a novel, hydrologically based continuous climate classifications, some clusters follow the climate 

classification very directly, whilst others do not. From those results, we conclude that the signal of the climatic forcing can be 25 

found more explicitly in the behavior of some catchments than in others. It remains unclear if this is caused by a higher intra-

catchment variability of the climate or a higher influence of other catchment attributes, overlaying the climate signal. Our 

findings suggest that very different sets of catchment attributes and climate can cause very similar hydrological behavior of 

catchments - a sort of equifinality of the catchment response. 
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1 Introduction 30 

Every hydrological catchment is composed of a unique combination of topography and climate, which makes their discharge 

heterogeneous. This, in turn, makes it hard to generalize behavior beyond individual catchments (Beven, 2000). Catchment 

classification is used to find patterns and laws in the heterogeneity of landscapes and climatic inputs (Sivapalan, 2003). 

Historically, this classification was often done by simply using geographic, administrative or physiographic considerations. 

However, those regions proved to be not sufficiently homogenous (Burn, 1997). Therefore, it was proposed to use seasonality 35 

measures with physiographic and meteorological characteristics, but it was deemed difficult to obtain those this information 

for a large number of catchments (Burn, 1997), even if only simple catchment attributes (e.g. aridity) are used (Wagener et al., 

2007). Nonetheless, in the last decade datasets with hydrologic and geological data were made available, comprising 

information of hundreds of catchments around the world (Addor et al., 2017; Alvarez-Garreton et al., 2018; Newman et al., 

2014; Schaake et al., 2006). This is a significant step forward as those large sample datasets can generate new insights, which 40 

are impossible to obtain when only a few catchments are considered (Gupta et al., 2014). Different attributes have been used 

to classify groups of catchments in those kind of datasets: flow duration curve (Coopersmith et al., 2012; Yaeger et al., 2012), 

catchment structure (McGlynn and Seibert, 2003), hydro-climatic regions (Potter et al., 2005), function response (Sivapalan, 

2005) and more recently, a variety of hydrological signatures (Kuentz et al., 2017; Sawicz et al., 2011; Toth, 2013). Quite 

often, climate has been identified as the most important driving factor for different hydrological behavior (Berghuijs et al., 45 

2014; Kuentz et al., 2017; Sawicz et al., 2011). Still, it is also noted that this does not hold true for all regions and scales (Ali 

et al., 2012; Singh et al., 2014; Trancoso et al., 2017). In addition, a recent large study of Addor et al. (2018) has shown that 

many of the hydrological signatures often used for classification, are easily affected by data uncertainties and cannot be 

predicted using catchment attributes. Another recent study by Kuentz et al. (2017) used an extremely large datasets of 35,000 

catchments in Europe and classified them using hydrological signatures. For their classification, they used hierarchical 50 

clustering and evaluated the result of the clustering by comparing variance between different numbers of clusters. They were 

able to find ten distinct classes of catchments. However, Kuentz et al. (2017) used some of the signatures identified to have a 

low spatial predictability by Addor et al. (2018). In addition, one third of their catchments was aggregated in one large class 

with no distinguishable attributes. Overall, we conclude that no large sample study exists that uses only hydrological signatures 

with a good spatial predictability. In addition, if the climate is the dominant driver of catchment behavior, clustering catchments 55 

based on their hydrological behavior should result in clusters with a uniform climate.  

Therefore, we selected the best six hydrological signatures with spatial predictability to classify catchments of the CAMELS 

(Catchment Attributes and MEteorology for Large-Sample Studies) dataset (Addor et al., 2017). Those six hydrological 

signatures are evaluated together with the fifsixteen catchment attributes that were shown to have a large influence on 

hydrological signatures (Addor et al., 2018). The connection between the hydrological signatures and the catchment attributes 60 
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is determined by using quadratic regression of the principal components (of the hydrological signatures) and the catchment 

attributes. This will help to explore, if a clustering with hydrological signatures that have a high predictability in space, provides 

hydrologically meaningful clusters and how those are related to catchment attributes. In addition, we compare the 

hydrologically derived clusters with climatic clusters and determine the spatial distance between the most hydrologically 

similar catchments. This will determine if grouping catchments by climate or by hydrologic behavior will yield the same results 65 

and if the signatures identified by Addor et al. (2018) as having the highest spatial predictability can be used to delineate 

hydrologically meaningful clusters, even though they do not consider low flows. explore the validity of considering spatial 

distance as a measure of similarity between catchments.  

2 Material and Methods 

2.1 Data base 70 

This work is based on a detailed analysis of catchment attributes and information contained in hydrological signatures. The 

CAMELS data set contains 671 catchment in the continental united states (Addor et al., 2017) with additional meta information 

such as slope and vegetation parameters. For our study, we used a selection of the available meta data. We excluded all 

catchments that had missing data, which left us with 643 catchments. Those catchments come from a wide spectrum of 

characteristics like different climatic regions, elevations ranging from 10 to almost 3,600 m a.s.l. and catchment areas ranging 75 

from 4 to almost 26,000 km². To ensure an equal representation of the different catchment attributes classes (climate, 

topography, vegetation, soil, geology) weWe used three the following attributes per class. Climate: aridity, frequency of high 

precipitation events, fraction of precipitation falling as snow; precipitation seasonality, Vegetation: forest fraction, green 

vegetation fraction maximum, LAI maximum; Topography: mean slope, mean elevation, catchment area; Soil: clay fraction, 

depth to bedrock, sand fraction; Geology: dominant geological class, subsurface porosity, subsurface permeability. Those 80 

catchment attributes were chosen due to their ability to improve the prediction of hydrological signatures (Addor et al., 2018) 

and because they are relatively easy to obtain, which will allow a transfer of this method to other groups of catchments world-

wide.  

Hydrological signatures cover different behaviors of catchments. However, many of the published signatures have large 

uncertainties (Westerberg and McMillan, 2015) and lack in predictive power (Addor et al., 2018). Therefore, we used the six 85 

hydrological signatures with the best predictability in space (Table 1) (Addor et al., 2018). Those signatures were calculated 

for all catchments. Due to this selection, no signatures that capture low flow behavior were used, as those signatures have a 

very low spatial predictability.  
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Table 1: Applied hydrological signatures on the discharge data of the CAMELS data set (Addor et al., 2018). 90 

Signature Unit 

Mean annual daily discharge  mm d-1 

Mean winter daily discharge (Nov. – Apr.) mm d-1 

Mean half-flow date; Date on which the cumulative discharge since October first reaches 

half of the annual discharge day of year 

95 % Flow quantile (high flow) mm d-1 

Runoff ratio - 

Mean summer daily discharge (May – Oct.)  mm d-1 

 

2.2 Data analysis 

The workflow of the data analysis considers a data reduction approach with a principal component analysis and a subsequent 

clustering of the principal components, similar to Kuentz et al. (2017) and McManamay et al. (2014). For the principal 

component analysis and the clustering, we used the Python package sklearn (0.19.1). The code is available at GitHub (Jehn, 95 

2018). Validity was checked by a random selection of 50 and 75 % of all catchments. We found that the overall picture stayed 

the same (not shown). In all further analysis, we used all catchments to get a sample as large as possible to be able to make 

statements that are more general.  

 

Calculation of the principal component analysis  100 

The principal components were calculated from the six hydrological signatures described above (Table 1). We used a principal 

component analysis on the hydrological signatures to remove correlations between the single hydrological signatures. We only 

used principal components that together account for at least 80% of the total variance of the hydrological signatures, which 

resulted in two principal components. Those two principal components contain the uncorrelated information of all hydrological 

signatures used and thus can be seen as describers of the overall hydrological behavior in regard to the overall amount of 105 

discharge, its distribution throughout the year, high flows and runoff-ratio. Therefore, catchments with similar principal 

components have similar hydrological behavior along those signatures.  

 

Evaluating the connection between the principal components and the catchment attributes 

1) First, we calculated quadratic regressions between the two principal components and the catchment attributes (with 110 

the principal component as the dependent variable). This resulted in one coefficient of determination (R²) for each 

pair of principal component and catchment attribute (e.g. PC 1 and aridity).  
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2) We then weighted the R² by the explained variance of the principal components. This addresses the differences in the 

explained variance of the principal components (e.g., PC 1 explained 75% of the variance, PC 2 explained 19% of 

the variance).  115 

3) The weighted coefficients of determination of the two principal components were subsequently added to obtain one 

coefficient of determination for every catchment attribute.  

Quadratic regression was selected as interactions in natural hydrological systems are known to have unclear patterns and can 

therefore often not be fitted with a simple straight line (Addor et al., 2017; Costanza et al., 1993). This was done first for the 

whole dataset and then for all clusters separately. This procedure captures the pattern on the catchment attributes in the PCA 120 

space of the hydrological signatures (for examples of this pattern see Figure A1). 

 

Clustering the principal components  

The principal components of the hydrological signatures were clustered following agglomerative hierarchical clustering with 

ward linkage (Ward, 1963), similar to previous studies (Kuentz et al., 2017; Li et al., 2018; Yeung and Ruzzo, 2001). Therefore, 125 

the clusters are based on the hydrological signatures of the catchments. From those the previous studies, Kuentz et al. (20178) 

provides the largest set with over 35,000 catchments. They also clustered their catchments in a PCA space of a range of 

hydrological signatures.  To select the number of clusters, they used the elbow method (and two other methods to validate their 

results) and found that ten or eleven clusters (depending on the method) were most appropriate for their data. Due to the 

similarity in the clustered data and the larger database of Kuentz et al. (20187), we also used ten clusters. (Berghuijs et al., 130 

2014) also found that ten clusters captured the distinct hydrological behaviors for the continental US. Those ten clusters 

represent groups of catchments with distinctly different hydrological behavior.  

 

3 Results and Discussion 

3.1 Catchment attribute correlations in the CAMELS data set 135 

Usually the 100th 100th meridian is seen as the dividing climatic line in the US, splitting the country in a semi-arid west and a 

humid east. We assume that this difference in climate also has implications for the hydrology and the overall catchment 

attributes in those regions. To quantify this we split the CAMELS data set into a western and an eastern part, based on the 

100th meridian (Figure 1 and 4). This shows that many of the catchment attribute correlations do not differ much between the 

east and the west. In most cases (>80%), Pearson correlation coefficients vary by less than 0.4 (Figure 1c). Still, there are some 140 

catchment attributes with larger differences of up to 0.7 between both regions. Most striking are the mean elevation and the 

fraction of the precipitation falling as snow as well as the vegetation attributes LAI maximum and Green vegetation fraction 
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maximum. Even though these attributes are directly related to each other through temperature gradients, they differ 

substantially in both parts of the country. In the mountainous western US, elevation is highly correlated with the fraction of 

precipitation falling as snow (r=0.8), while it is not in the eastern US (r=0.4). This, and the different correlations between 145 

vegetation and elevation are probably caused by the fact that the temperature gradients differ in both regions. In the western 

US it is much more mountainous and thus temperatures typically change with elevation. In the more level eastern US, on the 

other hand, the change in temperature is mainly linked to the latitude. Striking are also the changes of correlation with regard 

to the fraction of precipitation falling as snow. Here we find altered directions of the correlation, i.e., positive correlations with 

LAI maximum and frequency of high precipitation events in the east turn to negative ones in the west. It also becomes obvious 150 

that all three measures of vegetation seem to track similar characteristics in the catchments, as they highly correlate with each 

other (especially in the eastern US with r=0.9). In addition, all vegetation attributes depict a large negative correlation with 

aridity. Hence, the vegetation attributes considered are likely good proxies for aridity. Overall, we see that the relations between 

the catchment attributes are quite similar for the eastern and western US, with the exception of the mean elevation, snow and 

the LAI maximum. 155 
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Figure 16: Pearson Ccorrelation coefficients given forof all catchment attributes infor western (a) and eastern (b) US. and 

aAbsolute differences c) in of the correlation coefficients between the eastern and western US is given in c). Eastern and western is 

defined by the 100th meridian.  Due to rounding effects, correlations with the same Pearson correlation coefficient might show 160 
slightly varying color codes.  
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3.21 Impacts of catchment attributes on discharge characteristics in the whole dataset 

First weNext we examined the weighted R² of the catchment attributes for the whole dataset. This analysis shows not only 

differences in their score between the single attributes, but also between the different classes of catchment attributes (Figure 165 

12). Attributes related to climate (aridity) and vegetation (forest fraction) get the highest scores. With the exception of the 

mean slope, the first seven catchment attributes are all related to climate and vegetation. The last seven attributes on the other 

hand are all related to soil and geology, except the catchment area. They also show much lower scores of the weighted R². This 

indicates that soil and geology are less important for the chosen hydrological signatures. Similar patterns were also found by 

(Yaeger et al., 2012). They stated climate as the most important driver for the hydrology. As the correlations between the 170 

catchment attributes showed that the climate and the vegetation attributes are highly correlated (Figure 1), it can be assumed 

that climate is the overall most important factor, with aridity and high precipitation events being most important.  
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Figure 12: Importance of catchment attributes evaluated by quadratic regression for all considered catchments. Attributes colored 

according to their catchment attribute class.  175 

However, they also unraveled that low flows are mainly controlled by soil and geology. The minor importance of soil and 

geology in our study might therefore be biased by the choice of hydrological signatures, which excluded low flow signatures 

due to their low predictability in space. Nevertheless, our study probably captures a more general trend as we used a larger 

dataset and more hydrologically meaningful hydrological signatures that vary more gradually in space (Addor et al., 2018). 

Addor et al. (2018) also explored the influence of different catchment attributes in the CAMELS dataset on discharge 180 

characteristics. They found that climate has the largest influence on discharge characteristics, well in agreement with 

Coopersmith et al. (2012). The latter also used a large group of catchments in the continental United States from the MOPEX 

dataset. They conclude that the seasonality of the climate is the most important driver of discharge characteristics, which seems 
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to be less important for the overall data set in our analysis. However, Coopersmith et al. (2012) only analyzed the flow duration 

curve, which has a mediocre predictability in space and it is therefore more unclearless clear what it really depicts (Addor et 185 

al., 2018). Overall, this study here is in line with other literature in the field. Using the weighted R² reliably detects climatic 

forcing as the most important for the discharge characteristics for a large group of catchments. This can probably be 

extrapolated to most catchments in the continental US without human influence, as the CAMELS dataset contains large 

samples of undisturbed catchments (Addor et al., 2017). In the next step, we will test whether these relations also hold for the 

clusters of the catchments.  190 

 

3.23 Relation of the principal components and the hydrological signatures 

The rivers considered in this study show a wide range in hydrological signatures. This is visible in the clusters of principal 

components of the hydrological signatures (Figure 23).Most of the rivers are opposite of the loading vectors (the loading 

vectors are shown as arrows). This shows that most rivers have relatively low values for all hydrological signatures and only 195 

some, more extreme rivers, have higher values for specific hydrological signatures. Most typical for the overall behavior of 

the river are the hydrological signatures mean annual discharge and Q95 (high flows), as they have a strong correlation with 

the first principal component. For the second principal component, the mean half-flow date (an indicator for seasonality) has 

the highest correlation. Therefore, the first principal component can be seen as a measure of overall discharge and amount of 

high flows., while the second principal component can be seen as a measure of seasonality in the discharge. Overall, it can 200 

also be seen that most of the rivers show a relatively similar behavior (cluster 1, 2, 8, 9, 10), while smaller groups of rivers 

tend to derivate from that by having a more extreme behavior (cluster 3, 5, 7). The remaining clusters 4 and 6 are located 

between those extremes. This pattern also explains the different sizes of the clusters. While most catchments behave relatively 

similar, only some show extreme behavior and thus the clusters with extreme catchments are smaller.  
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  205 
Figure 23: Biplot of the principal components (PC). Colors indicate the cluster of the catchment.  

 

 

3.43 Location and properties of the catchment clusters Exploration of the catchment clusters  

The catchment attributes in the CAMELS and similar large scale datasets often show a pattern that resembles climatic zones 210 

(Addor et al., 2018; Coopersmith et al., 2012; Yaeger et al., 2012). The picture is less clear for the hydrological catchment 

clusters presented. This is directly observable in the spatial distribution of the clusters (Figure 3). For the catchments clusters 

presented here, we can see that most of the clusters roughly follow ecoregions in the US (Figure 4). Especially clusters 1, 4, 6 

and 7 are almost entirely located within one ecoregion. Cluster 2, 8 and 9 on the other hand follow those ecological boundaries 

to a lesser degree. 215 



12 

 

 

Figure 34: Locations of the clustered CAMELS catchments and level I ecoregions (Omernik and Griffith, 2014) in the 

continental US. Dotted line marks the 100th meridian. 

 

We can see a split of the clusters along the 100th meridian. This split can also be found in some of the clusters depicted in 220 

Figure 3. Cluster 3, 4, 5, 6 and 7 are all located mainly in the Wwest, while Cluster 1 and 10 are mainly found in the Eeast. 

However, the remaining Clusters 2, 8 and 9 have roughly similar amounts numbers of catchments in both regions. Overall,T 

the catchments in the eastern half of the United States form large spatial patterns of similar behavior, while the catchments in 

the west are a lot patchier. The descriptions of the catchment clusters are summarized in Table 2. A further detailed description 

of the clusters can be found in the appendix, together with figures showing the distribution of hydrological signatures (Figure 225 

A2) and catchment attributes (Figure A3) in the clusters. A list of all catchments with index, position and cluster classification 

is given in the supplementary material. 
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Figure 5: Swarm plot of the real world distances of all catchments to the most hydrologically similar catchment (based on their 

distance in the PCA space of the hydrological signatures).  230 

 

In addition, similar catchments can be quite far away from each other (Figure 5). Sometimes, the catchment with the most 

similar signature was found as far as 4,000 km away (almost the entire longitudinal distance of the continental US). This 

explains why spatial proximity seems to be important in some studies that look into explanations of catchment behavior 

(Andréassian et al., 2012; Sawicz et al., 2011), but not in others (Trancoso et al., 2017). This also indicates that clustering by 235 

using spatial proximity might only work in regions like the eastern US, where the behavior of rivers changes only gradually. 

The finding that the most similar catchment (based on their hydrological signatures) can be far away, also explains the 

behavior of clusters that contain catchments quite distant from each other (e.g. Cluster 4). Even though the catchments might 

be far away from each other, the interplay of different catchment attributes and driving factors, including sometimes very 

different climates, can lead to similar (equifinal) discharge behavior, concerning the overall amount of discharge, its 240 

distribution in the year, the high flows and the runoff-ratio. This was also found by several other studies (e.g. (Berghuijs et 

al., 2014; Knoben et al., 2018; Kuentz et al., 2017)).  

 

In the following, we describe the catchment clusters in regard to their characteristics in meteorology (Figure 6), attributes 

(Figure 7), hydrology (Figure 8) and location (Figure 4). The main points of this description are summarized in Table 2. A list 245 

of all catchments with index, position, and cluster classification and climate indices is given in the supplementary material. 

 

Cluster 1 is defined by a dense vegetation cover (Figure 7). The low elevation of those catchments results in little annual snow 

fall. They are mainly located in the southeastern and central plains and therefore get relative high rainfall (>1,000 mm per 

year) (Figure 4), almost uniformly distributed over the year (Figure 6). From a hydrological perspective, these catchments 250 

produce little discharge. Cluster 1 contains the highest number of catchments (n=230). So over one third of the catchments in 

CAMELS show a relatively similar behavior when it comes to the amount of water fluxes and their distribution throughout 

the year. This is particular visible when we look at annual supply of discharge (Figure 6). Even though the cluster contains a 

large number of catchments that also partly differ a lot in their potential evapotranspiration, there is only a minor difference in 

the amount of discharge and its seasonality.is defined by a high cover of vegetation. In addition, most catchments are located 255 
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at low elevations, experience little snow and have a deep bedrock. Hydrologically these catchments have little discharge. They 

are mainly located in the Southeastern and Central Plains and therefore get relative high rainfall (> 1000 mm year). Their low 

discharge is probably caused by the low elevation those catchments are located, groundwater discharge and the high 

evaporation of the forests. Cluster 1 also contains the largest amount of catchments from all cluster (n = 230). So over one 

third of the catchments in CAMELS show a relatively similar behavior.  260 

 

Cluster 2’s most typical attribute is its high precipitation seasonality. However, concerning most other catchment attributes, 

Cluster 2 is undefined as it contains catchments of most regions of the continental US (with a concentration in the eastern 

Great Plains) (Figure 4). The hydrological signatures on the other hand show a clearer pattern. Here, the mean winter discharge, 

Q95 and the mean annual discharge have a narrow range (Figure 8). This shows that catchments with very different attributes 265 

can produce similar discharge characteristics. The different attributes seem to cancel each other out in their influence on the 

discharge. This might be enhanced by the high precipitation seasonality with higher precipitation in the summer, which creates 

a strong climatic forcing and thus a narrow range for the hydrological signatures (Figure 6). This cluster differs from the first 

one, by having even lower discharge, with almost no peaks and a higher influence of snow melt. Cluster 2 most typical attribute 

in comparison with the other catchments is its depth to the bedrock. However, concerning the catchment attributes cluster 2 is 270 

undefined as it contains catchments of most regions of the continental United States (with a focus on the Central Plains). The 

hydrological signatures on the other hand show a clearer pattern. Here, the mean winter discharge, Q95 and the mean annual 

discharge have a narrow range. This shows that catchments with very different attributes can produce very similar discharge 

characteristics, as the different attributes seems to cancel each other out in their influence on the discharge.  

 275 

Cluster 3 is the smallest cluster with only seven catchments. Those are all located in the Northwestern Forested Mountains. 

Their most distinct feature is their strong negative precipitation seasonality (indicating a strong precipitation peak in the winter) 

(Figure 6, 7). They also experience high precipitation events mostly in winter falling as snow. Hydrologically, their most 

distinct features is the very high mean summer discharge and high runoff ratio (Figure 8). This is probably caused by the large 

amounts of snow melt in late spring and early summer. The catchments of Cluster 3 have the largest overall snow storage with 280 

mean maximum value of over 600 mm. Overall, the catchments in this cluster seem to be, from a hydrological point of view, 

the most extreme in the overall CAMELS data set. This can be seen in their varying discharge patterns. The uniting pattern is 

their large peak discharge during summer and their extreme values in the PCA space (indicating much higher values for the 

hydrological signatures in comparison with the other catchments) (Figure 3).is the smallest cluster with only seven catchments. 

Those are all located in the Northwestern Forested Mountains. Their most distinct feature is their uniform high cover with 285 

forest. They also experience high precipitation events only seldom and precipitation is snow half of the time. Hydrologically 
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their most distinct features is their very high mean summer discharge and high runoff ratio, which is probably caused by the 

large amounts of snow these catchments receive.  

 

Cluster 4 is, as cluster 3, located in the Northwestern Forested Mountains, with the exception of four catchments that are 290 

located in Florida (Figure 4). This cluster is another example of different catchment attributes being able to create similar 

discharge characteristics concerning the signatures used, while having very different catchment attributes (Figure 6). The 

catchments have overall low discharge and few high flow events, except one large peak in the mid of the summer, which is 

caused by melting snow in the northern catchments and strong rainfalls in Florida. Their catchment attributes vary widely, 

especially in all attributes that are related to elevation (e.g. fraction of precipitation falling as snow) (Figure 7), which is to be 295 

expected when some of the catchments are located close to the sea in the southeast, while others are mountainous.is also 

located in the Northwestern Forested Mountains, with the exception of four catchments that are located in Florida. This again 

is an example of different catchment attributes being able to create similar discharge characteristics concerning their signatures, 

while having different catchment attributes. The catchments have overall low discharge and few high flow events, while their 

catchment attributes vary widely, especially in all attributes that are related to elevation (e.g. fraction of precipitation falling 300 

as snow).  

 

Cluster 5 includes only few catchments (n=9). They are all located at regions in the northern part of the Marine West Coast 

Forests (Figure 4). This is the region in the continental US that receives the highest precipitation (>2000 mm year), which is 

reflected in their discharge characteristics (Figure 6, 8). These catchments have the highest discharge in the whole dataset, 305 

especially in the early summer, due to a combination of high precipitation and snowmelt. They also experience only few high 

precipitation events as they receive large amounts of rain and snow most of the year, with a distinct very high peak in the 

winter months. The catchments are uniformly covered by almost 100% of forest., has only few catchments (n = 9). They are 

all located at regions in the northern part of the Marin West Coast Forests. This is the region in the continental US that receives 

the highest precipitation (> 2000 mm year). This is mirrored in their discharge characteristics. These catchments have the 310 

highest discharge in the whole dataset, especially in the summer. They are also uniformly covered by almost 100 % of forest. 

They also experience only few high precipitation events as they get rain and snow more or less constantly in the same amount. 
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Figure 6: Meteorological attributes of the clustered CAMELS catchments averaged by day of the year. Potential 315 
Evapotranspiration (Pot. ET) was calculated with Hargreaves-Samani (Samani, 2000). Snow storage and melting was calculated 

using a temperature based approach described (Massmann, 2019). Black lines indicate the mean of all cluster members. Colored 

lines represent the individual catchments. 
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Cluster 6 is located in the Marine West Coast Forest, but in contrast to Cluster 5, they cover the whole region and not only 

the northern part (Figure 4). The catchments are very similar in their attributes and discharge characteristics to Cluster 5, with 320 

the exception of lower discharges and runoff ratios (Figure 7, 8). This is caused by slightly lower precipitation in comparison 

with Cluster 5. Cluster 6 experiences the most negative precipitation seasonality across all clusters, with almost all precipitation 

falling in the winter month. Due to this seasonality and the lower precipitation in the summer, the catchments of this cluster 

uniformly dry out almost completely in the late summer (Figure 6).catchments are also located in the Marine West Coast 

Forest, but cover the whole region and not only the northern part like Cluster 5. The catchments are very similar in their 325 

attributes and discharge characteristics to Cluster 5, with the exception of a lower discharge and runoff ratio. This might be 

caused by a slightly lower precipitation in comparison with Cluster 5.  

 

Cluster 7 is also located in the same region as Cluster 5 and 6 (Marine West Coast Forests) (Figure 4). Concerning the 

catchment attributes and the discharge characteristics, it is located between Cluster 5 and 6. So, Cluster 5 to 7 all cover the 330 

same region and differ in their mean summer discharge, which is caused by variations in elevation and location (Figure 7). 

Cluster 7 has higher subsurface permeabilities than cluster 6, which might explain the differences in hydrological behavior, 

even though the overall attributes of both clusters are rather similar. For example, Cluster 7 has an overall lower discharge 

than Cluster 5, but does not dry out during the summer as Cluster 6 does (Figure 6). This might be due to the larger amount of 

snow it receives in comparison with Cluster 6 and its lower evapotranspiration.is also located in the same region as Cluster 5 335 

and 6 (Marine West Coast Forests). Concerning the catchment attributes and the discharge characteristics, it is located between 

Cluster 5 and 6. So, Cluster 5 to 7 all cover the same region and differ in their mean summer discharge, which is caused by 

slight variations in elevation and location. 

 

Cluster 8 is the most arid cluster (Figure 7). All of the catchments are located in western parts of the Great Plains and in the 340 

North American Deserts (Figure 4). They are characterized by an overall low water availability and high evaporation, which 

is shown in the very low mean annual discharge and runoff ratio (Figure 6, 8). This also results in low values for the LAI. 

However, the frequency of high precipitation events is high.is the overall most arid cluster catchments. All of the catchments 

are located in western parts of the Great Plains and in the North American Deserts. They are shaped by an overall little 

availability of water and high evaporation, which is shown in the very low mean annual discharge and runoff ratio. This also 345 

results in low values for the LAI. However, the frequency of high precipitation events is high. 

 

Cluster 9 covers all southern states of the United States (Figure 4). The catchments here are quite similar to Cluster 8, but 

show a lower precipitation seasonality and a higher forest cover and green vegetation (Figure 7). In addition, all catchments 

of this cluster are in relative close proximity to the sea. The uniting factor in this cluster seems to be the very low snow fraction 350 
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and the high evapotranspiration (Figure 6, 7).covers all southern states of the United States. The catchments here are quite 

similar to Cluster 8, but show a lower seasonality (as indicated by their lower half flow date) and a higher forest cover and 

green vegetation.  

 

Cluster 10 catchments are all located in the Appalachian Mountains (Figure 4). The mean elevation is higher than of most 355 

other clusters and the catchments also depict a low aridity and a very high forest cover (Figure 7). Their discharge 

characteristics are similar to that of the Marine West Coast Forests Clusters 5 to 7 (Figure 6, 8). However, they receive less 

water than those catchments. Cluster 10 covers the same ecoregion as Cluster 1, but has a distinct behavior due to its 

mountainous character, which can be seen in the higher seasonality of the discharge. This is probably caused by the larger 

snow cover, with a returning snow melt discharge peak in spring.catchments are located in the Appalachian Mountains. The 360 

mean elevation higher than most other clusters and the catchments also have low aridity and a very high forest cover. Their 

discharge characteristics is similar to the Marine West Coast Forests of Cluster 5 to 7. However, they receive less water than 

those catchments and experience a higher seasonality (as indicated by the higher mean half-flow date).  

 

Overall, we can see similar trends for some of the cluster. We identified four distinct groups. The general similarities of the 365 

clusters are also represented by their distance and position in the PCA space (Figure 3).  

 

 Group 1 (Cluster 1, 2, 8, 9): low seasonality in precipitation and discharge; located in the eastern US; due to low slope 

inclinations, water takes a long time to reach the outlet. 

 Group 2 (Cluster 3, 4): dominant summer peak of discharge caused by rapid snow melt; mostly located in the 370 

mountains of the western US; differ in precipitation inputs. 

 Group 3 (Cluster 5, 6, 7): located in the Northwestern Forested Mountains; characterized by high precipitation amount 

and seasonality, but more or less extreme versions. 

 Group 4 (Cluster 10): located in the Appalachian mountains; share characteristics with Group 1, though influenced 

by higher elevations and steeper slopes.  375 

 

Those groups of clusters are similar to the ones found by (Berghuijs et al., 2014), even though they used a very different 

method to derive them. The main difference in the groups is probably caused by how we structure the clusters and groups in 

the eastern US, due our clusters being more influenced by the Appalachian Mountains. However, both approaches deliver 

similar results overall.   380 
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The question remains: what is the right numbers of clusters? Though even we did find four distinct groups, having only four 

clusters would probably be too little, as the clusters in the groups show a wide range of behavior (Figure 3, 7, 8, Table 2). 

There are catchment attributes, which we did not take into account, but which could further split up the clusters (e.g. the shape 

of the catchments). However, this study considered the catchment attributes that are usually considered as being important. 385 

The fact that the clusters contain different numbers of catchments can be explained by their distances in the PCA space (Figure 

3). Many of the catchments are rather similar. This produces some clusters with most of the catchments. However, we also 

have some extreme catchments (e.g. Cluster 3 and 5), which are very different to the bulk of the catchments in the CAMELS 

dataset. Thus, even though some of our presented clusters are quiet small in number, they are needed to capture their extreme 

hydrological behavior. Our results show that some of the clusters follow the boundaries of the ecoregions in the US very 390 

directly (Cluster 1), while others do not (Cluster 9). The worlds of ecology and hydrology are sometimes shaped by the same 

forcing, but not always. 
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Figure 7: Boxplots of the catchment attributes of the clusters 
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 395 

Figure 8: Boxplots of the hydrological signatures of the clusters. 
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Table 2: Properties of the catchment clusters. Typical signatures/attributes refers to the signature/attribute of the cluster with the 

lower coefficient of variation scaled by the mean coefficient of variation of the whole dataset. Dominating attribute refers to the 

catchment attribute that has the highest weighted R². 400 

Cluster n Main Region Typical signature 
Typical attribute and 

their manifestation  
Dominating attribute 

1 230 
Southeastern and Central 

Plains 

Low mean winter 

discharge 
Low aridity Aridity 

2 101 

Central Plains (with 

scattered catchments all 

over western US) 

High mean half-flow 

date 

Mid to low depth to 

bedrockHigh 

precipitation seasonality 

Green vegetation 

fraction maximum 

3 7 
Northwestern Forested 

Mountains 

High mean summer 

discharge 

High forest fractionLow 

precipitation seasonality 

Fraction of precipitation 

falling as snow 

4 52 
Northwestern Forested 

Mountains and Florida 

High mean half-flow 

date 

Mid frequency of high 

precipitation events 

Fraction of precipitation 

falling as 

snowPrecipitation 

seasonality 

5 9 
Northern Marine West 

Coast Forests 

High mean summer 

discharge 
Very high forest fraction Forest fraction 

6 18 
Marine West Coast 

Forests 
Mid runoff ratio  

Very high forest 

fractionLow 

precipitation seasonality 

Aridity 

7 23 

Western Cordillera (Part 

of Marine West Coast 

Forests) 

High mean winter 

discharge 

Very high forest 

fractionLow 

precipitation seasonality 

Fraction of precipitation 

falling as snow 

8 90 
Great Plains and North 

American Deserts 
Mid mean half-flow date 

High frequency of high 

precipitation events 

AridityPrecipitation 

Seasonality 

9 61 
All southernmost states 

of the US 
Low mean half-flow date 

High frequency of high 

precipitation events 
Aridity 

10 52 Appalachian Mountains 
Low mean winter 

discharge 
High forest fraction Mean elevation 
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The derived importance of the catchment attributes in the clusters is highly variable and partly differs from the order of 

importance in the overall dataset (compare Figure 1 and Figure 5). For Cluster 1 (Southeastern and Central Plains), 6 

(Marine West Coast Forests), 8 (Great Plains and Deserts) and 9 (Southern states) aridity has the clearest connection to the 

clusters. However, this is not the case for the remaining catchment clusters. For Cluster 3 (Northwestern Forested 

Mountains), 4 (Northwestern Forested Mountains and Florida) and 7 (Western Cordillera) the clearest connection is to the 405 

fraction of precipitation falling as snow. However, for Cluster 3, and 4 many other catchment attributes have a weighted R², 

which is almost as high as the one for the fraction of precipitation falling as snow.  

3.5 Importance of the catchment attributes in the clusters 

The individual importance of the catchment attributes in the clusters is variable and partly deviates from the order of importance 

in the overall dataset (compare Figure 2 and Figure 9). For Cluster 1 (Southeastern and Central Plains), 6 (Marine West Coast 410 

Forests) and 9 (coastal states) aridity has the highest weighted coefficient of determination in the clusters. For Cluster 3 

(Northwestern Forested Mountains) and 7 (Western Cordillera) the highest relevance is found for the fraction of precipitation 

falling as snow. For the remaining clusters it is precipitation seasonality (Cluster 4 (Northwestern Forested Mountains), Cluster 

8 (Great Plains and Deserts)), the green vegetation fraction maximum (Cluster 2 (Central Plains)) and the mean elevation 

(Cluster 10 (Appalachian Mountains)). We can also see that some clusters have one dominating catchment attribute 415 

(investigated by the coefficient of determination e.g. aridity in Cluster 1, compare Figure 9), while for other clusters, all 

attributes seem equally important (e.g. Cluster 8). Overall, the western clusters (west of the 100th meridian) display the highest 

weighted R² with:The derived importance of the catchment attributes in the clusters is variable and  differs from the order of 

importance in the overall dataset (compare Figure 1 and Figure 5). For Cluster 1 (Southeastern and Central Plains), 6 (Marine 

West Coast Forests), 8 (Great Plains and Deserts) and 9 (Southern states) aridity has the clearest connection to the clusters. 420 

However, this is not the case for the remaining catchment clusters. For Cluster 3 (Northwestern Forested Mountains), 4 

(Northwestern Forested Mountains and Florida) and 7 (Western Cordillera) the clearest connection is to the fraction of 

precipitation falling as snow. However, for Cluster 3, and 4 many other catchment attributes have a weighted R², which is 

almost as high as the one for the fraction of precipitation falling as snow. In addition, all catchment attributes have a high 

weighted R² in Cluster 3, while the weighted R² is low for all catchment attributes in Cluster 4. For the remaining clusters, it 425 

is green vegetation maximum (Cluster 2, Central Plains), forest fraction (Cluster 5, Northern Marine West Coast Forest) and 

mean elevation (Cluster 10, Appalachian Mountains). Overall, the western clusters (west of the 100th meridian) have the 

highest weighted R² with the: 

- Fraction of precipitation falling as snow (Cluster 3, 7) 

- Precipitation seasonality (Cluster 4) 430 

- Forest fraction (Cluster 5) 



24 

 

- Aridity (Cluster 6) 

eastern clusters (east of the 100th meridian) with: 

- Aridity (Cluster 1) 

- Mean elevation (Cluster 10) 435 

clusters equally present in west and east with: 

- Green vegetation fraction maximum (Cluster 2) 

- Aridity (Cluster 9) 

- Precipitation seasonality (Cluster 8) 

- Fraction of precipitation falling as snow (Cluster 3, 4, 7) 440 

- Forest fraction (Cluster 5) 

- Aridity (Cluster 6) 

The eastern clusters (east of the 100th meridian) with the: 

- Aridity (Cluster 1) 

- Mean elevation (Cluster 10) 445 

The clusters equally present in west and east with the: 

- Green vegetation fraction maximum (Cluster 2) 

- Aridity (Cluster 8, 9) 
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 450 

 Figure 95: Importance of the catchment attributes evaluated by the quadratic regression. Ffor the catchment clusters. Attributes 

colored according to their catchment attribute class.  

Keeping the correlation coefficients displayed in Figure 1 in mind, we see that climate is the most important factor in almost 

all clusters, as the vegetation attributes are highly correlated with the climate attributes. The only exception is Cluster 10 in 

which mean elevation is the most important catchment attribute. However, the catchment attributes in Cluster 10 have overall 455 

low R² values and the mean elevation is directly followed by the aridity. This again shows that climate seems to be the 
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dominating factor for catchment behavior, as found in other large sample studies (e.g. (Berghuijs et al., 2014; Kuentz et al., 

2017)). Nevertheless, if one takes a closer look at the data set, more detailed, regional correlations with regard to individual 

climate variables can be determined. For example, Cluster 1 is defined by the aridity, while Cluster 4 seems to be much more 

influenced by the precipitation Overallseasonality. Overall, it is feasible to link dominating catchment attributes to the 460 

hydrological behavior. While it is straightforward in some regions of the US, it is more challenging in others. We link this to 

the signal of the climatic forcing being more superimposed by other catchment attributes, which results in a less clear 

connection between its hydrological behavior and the climate. This hints that climate and catchment attributes are more 

intertwined in those areas and indicates regions where different types of hydrological runoff generation processes are existing. 

Furthermore, it indicates regions where hydrological predictions in ungauged basins, we found that it is relatively easy to link 465 

the dominating catchment attributes to the hydrological behavior, in some regions of the US. However, it is more challenging 

in others. We link this to the signal of the climatic forcing being more influenced by other catchment attributes, which results 

in a less clear connection between hydrological behavior and climate. This hints that climate and catchment attributes are more 

intertwined in those areas and indicates regions where different types of hydrological model structures are needed. 

Furthermore, it indicates regions where hydrological predictions in ungauged basins (Hrachowitz et al., 2013) can become 470 

very challenging, as the interplay of the available meteorological -data and catchment-attributes data cannot sufficiently 

explain the hydrological characteristics. Those findings also highlight one current discrepancy between large sample and single 

catchment studies. While large sample studies, especially the very large ones, identify climate as being most important for the 

hydrological behavior (e.g. (Addor et al., 2018; Kuentz et al., 2017)), smaller studies (e.g. (Chiverton et al., 2015; Pfister et 

al., 2017)) and single catchment studies (e.g. (Floriancic et al., 2018) often identifiy the geology or soils as being very 475 

important. This might be linked to the overall problem of scales in hydrology as different scales of soil/geology and climate 

have different effects and different data accuracy  (Addor et al. 2018)(Addor et al., 2018; Blöschl, 2001). In addition to this, 

the overall scale might also come into play. Smaller sample studies often have compare catchments that are not far away from 

each other and probably receive have similar climate forcings. Thus, the differences in hydrological behavior can only be 

caused by catchment attributes other than climate. Therefore, larger and smaller sample studies might be looking at different 480 

things. While very large sample studies capture what drives catchments on large scales (the climate), smaller studies look at 

how this climatic signal is transferred to discharge by the catchment attributes.  

 

In the next step, we linked the abovementioned findings to the differences between the correlations of the catchment attributes 

with each other in the eastern and western parts of the continental US (Figure 6). While aridity is the most important catchment 485 

attribute, when looking at all catchments at the same time (Figure 1), this does not hold true for most of the single clusters 

(Figure 5). Yet, the factors with the highest weighted coefficient of correlation might simply be proxies for aridity. To test this, 

we scrutinized the correlation between the catchment attributes with each other, separated by East and West (Figure 6). The 
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western US (Figure 6a) and eastern US (Figure 6b) show high differences in the way the catchment attributes correlate with 

each other (Figure 6c). The main differences are in the mean elevation, the fraction of precipitation falling as snow, and the 490 

LAI maximum. For example, in the western US the mean elevation has a high correlation (r = 0.8) with the fraction of 

precipitation falling as snow. In the eastern US however, this correlation is much smaller (r = 0.4). This is probably caused by 

the overall higher elevation in the western US. In addition, in the western US, the fraction of the precipitation falling as snow 

does not correlate with the aridity (r = 0.1), while the forest fraction does (r = -0.8). Thus, the forest fraction is linked very 

directly to the climate in this region. Therefore, aridity (and the highly correlated forest fraction) have the highest weighted R² 495 

in two out of the five clusters in the western US. Only two clusters are mostly located in the eastern US (Cluster 1 and 10). 

Here, aridity and the mean elevation have the highest weighted R² with the hydrological behavior. The mean elevation has a 

medium correlation with the aridity. Hence, the hydrological behavior in the eastern US is most highly correlated with aridity, 

which is not the case for the western US. There, the fraction of precipitation falling as snow is more prevalent. Those results 

imply that aridity is a good indicator for the discharge characteristics in the eastern US and only mediocre in the West.  500 

Table 2: Properties of the catchment clusters. Typical signatures/attributes refers to the signature/attribute of the cluster with the 

lower coefficient of variation scaled by the mean coefficient of variation of the whole dataset. Dominating attribute refers to the 

catchment attribute that has the highest weighted R². 

Cluster n Main Region Typical signature 
Typical attribute and 

their manifestation  
Dominating attribute 

1 230 
Southeastern and Central 

Plains 

Low mean winter 

discharge 
Low aridity Aridity 

2 101 

Central Plains (with 

scattered catchments all 

over western US) 

High mean half-flow 

date 

Mid to low depth to 

bedrock 

Green vegetation 

fraction maximum 

3 7 
Northwestern Forested 

Mountains 

High mean summer 

discharge 
High forest fraction 

Fraction of precipitation 

falling as snow 

4 52 
Northwestern Forested 

Mountains and Florida 

High mean half-flow 

date 

Mid frequency of high 

precipitation events 

Fraction of precipitation 

falling as snow 

5 9 
Northern Marine West 

Coast Forests 

High mean summer 

discharge 
Very high forest fraction Forest fraction 

6 18 
Marine West Coast 

Forests 
Mid runoff ratio  Very high forest fraction Aridity 



28 

 

7 23 

Western Cordillera (Part 

of Marin West Coast 

Forests) 

High mean winter 

discharge 
Very high forest fraction 

Fraction of precipitation 

falling as snow 

8 90 
Great Plains and North 

American Deserts 
Mid mean half-flow date 

High frequency of high 

precipitation events 
Aridity 

9 61 
All southernmost states 

of the US 
Low mean half-flow date 

High frequency of high 

precipitation events 
Aridity 

10 52 Appalachian Mountains 
Low mean winter 

discharge 
High forest fraction Mean elevation 

 

3.46 Differences in clusters in comparison with other hydrological clustering studies 505 

Compared to the clustering results of Kuentz et al. (2017), who derived their cluster from European catchments by an analogous 

method, some similarities can be found. Like them, this study here also found one cluster (Cluster 2) that does not have any 

distinct character. However, only around one sixth of the CAMELS catchments belongs to this Cluster 2, while Kuentz et al. 

(2017) had one third of their catchments in a cluster without distinct features. Therefore, our selection of hydrological 

signatures seems to allow a better identification of hydrological similarities. However, all catchments in CAMELS are mostly 510 

without human impact (Addor et al., 2017), while many catchments in the study of Kuentz et al. (2017) are under human 

influence. This influence might overlay potentially apparent patternsThis human influence might mask otherwise apparent 

patterns. Kuentz et al. (2017) also found two clusters that contain mostly mountainous catchments. These show a similar 

behavior to Cluster 3 (Northwestern Forested Mountains) and Cluster 10 (Appalachian Mountains) found in Figure 34. The 

main difference between their findings and this study here is Cluster 8, as it contains very arid catchments (with some being 515 

located in deserts). Obviously, this cluster cannot be found in Europe as Europe has no real deserts. Still, there is some 

similarity with their cluster of Mediterranean catchments as both are dominated by aridity. Summarizing, in their study and 

this study catchments are mainly clustered in groups of desert/arid catchments, mountainous catchments, mid height mountains 

with high forest sharesfraction, wet lowland catchments and one cluster of catchments that do not show a very distinct behavior 

and therefore do not fit in the other clusters (Table 2). One possible explanation for this unspecific behavior might that many 520 

catchments have one or two important attributes that dictate most of their behavior, but which are different from other cluster 

members. For example, desert catchments are relatively easy to identify, as they are dominated by heat and little precipitation. 
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A European upland catchment on the other hand have has several more influences such as snow in the winter, heat in the 

summer, varying land use and strong impact of seasonality. Here, many influences overlap each other and make it thus difficult 

to identify a single causes, see also the discussion by Trancoso et al. (2017) that goes in a similar direction. Those overlapping 525 

influences are probably also the reason why catchment classification studies often find clusters where one or two clusters that 

include a large number of catchments, while most other cluster only contain few catchments (Coopersmith et al., 2012; Kuentz 

et al., 2017). Therefore, it is quite difficult to confirm the ‘wish’ of the hydrological community to have homogenous catchment 

groups with only a few outliers (e.g. (Burn, 1997)), because catchments are complex systems with a high level of self–

organization arising from co-evolution of climate and landscape properties, including vegetation (Coopersmith et al., 2012). 530 

Accordingly, it requires many separate clusters to separate those multi-influence catchments into homogenous groups. Still, 

the cluster found here might capture much of the variety present in the United States, as they roughly follow ecological regions 

(McMahon et al., 2001), which has been stated as a hint of a good classification (Berghuijs et al., 2014). In addition, this study 

shows that using clusters derived from principal components of hydrological signatures create meaningful groups of 

catchments with similar attributes (Figure A2, A36, 7, 8). Those clusters also show distinct spatial patterns (Figure 43). Similar 535 

results were also found in other studies that used the same method (Kuentz et al., 2017; McManamay et al., 2014), but based 

them on partly different hydrological signatures. Therefore, the principal components of hydrological signatures can be used 

as a measure of similarity between catchments. They represent the “essence” of all hydrological signatures used. Our results 

also show that it is difficult to link those catchment clusters to simple averaged measures of catchment attributes. While some 

clusters have very clear connections to the attributes, others have no catchment attribute that could easily explain the behavior 540 

of the catchments. This hints, that some catchments are easier to explain (in a hydrological sense) than others. Those difficulties 

might be an artifact of the averaged catchment attributes or be caused by complex catchment reaction, forced by intertwined 

climate and catchment attributes. Which in turn, might indicate an equifinality of catchment response.   

3.57 Comparing catchment clusters based on hydrological behavior and climate 

Besides hydrological behavior, climate is often used to sort catchments into similar groups (e.g. Berghuijs et al., 2014; Knoben 545 

et al., 2018). Therefore, we are interested if both approaches deliver comparable results. To evaluate this, we contrasted our 

results to the commonly used Koeppen-Geiger climate classification (Beck et al., 2018) (Figure 710) and recently published 

approach of Knoben et al. (2018), who sorted climate along three continuous axis of aridity, seasonality and fraction of 

precipitation falling as snow (Figure 118). The resulting clusters based on climate and hydrology should be the same, if climate 

is the dominating driver of hydrological behavior in every catchment. Yet, this is not the case for the Koeppen-Geiger 550 

classification. In every hydrological cluster are at least two different climates regarding the Koeppen-Geiger classification, 

ranging up to eight different climatic regions for Cluster 2 and 8 (those even include deserts and very cold regions). Thus, the 
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Koeppen-Geiger classification seems unable to capture the essential drivers of hydrological behavior. A critique also raised in 

other studies (e.g. Haines et al. (1988); Knoben et al. (2018)). 

 555 

Figure 710: Membership of Koeppen-Geiger clusters (Beck et al. (2018)) in the hydrological clusters.  

The picture is less clear concerning the climatic index space of Knoben et al. (2018) (Figure 118a). Due to the continuous 

nature of the approach of Knoben et al. (2018), there are no clear boundaries as in the Koeppen-Geiger classification. Still, 

there are some emerging patterns. For example, according to the approach of Knoben et al. (2018) Cluster 1 is mainly defined 

by a relatively arid climate, with some seasonal variability and little to no snow. This is in line with our analysis of the most 560 

influential catchment attributes for this cluster, as we identified aridity as the main driver. Contrastingly, clusters where we 

could not identify a clear dominating catchment attribute, e.g. Cluster 4 (located in the Northwestern Forested Mountains and 

Florida) (Figure 5), also have no clear clustering in the climate index space. The catchments of those clusters can be found in 

the space of the climatic indices of Knoben et al. (2018) with very different aridity, seasonality and fraction of the precipitation 

falling as snow. There seem to be regions were the forcing signal of the climate is transferred more directly to a streamflow 565 

response than in others. However, this does not mean that climate is unimportant in those regions. Either the climate forcing 

signal is changed more through other attributes of the catchment, or the mean values describing the climate do not properly 

reflect the variability of the climate in the single catchments. This leads to less clear correlation between the climate and the 

hydrological behavior. Interestingly, when we look at the single hydrological signatures in the climate index space (Figure 

118b, A42) we see a very clear connection between the single hydrological signatures and the climate. This direct connection 570 

of the signatures used was also found by Addor et al. (2018). Our results and the comparison show that the complex 

hydrological behavior, captured in a range of hydrological signatures, does not simply follow the climate only, even though 

the individual signatures do. Still, all signatures combined seem to capture a dynamic, which is climatic in origin, but is shaped 

through the attributes of the catchments (like vegetation and soils (Berghuijs et al., 2014)). Therefore, to find truly similar 

catchments, using climate characteristics only, is probably not sufficient (see also (Addor et al., 2018; Knoben et al., 2018; 575 

Kuentz et al., 2017)).  
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Figure 118: a) Comparison of the hydrological clustering of this study with the climate index space of Knoben et al. (2018). Single 

dots show the catchments and are colored by their hydrological clusters. b) Mean annual discharge for all catchments in the climate 

index space of Knoben et al. (2018). Single dots show the catchments and are colored according to the value of the mean annual 580 
discharge. The log of the mean annual discharge is used to show the relative differences between the catchments. For a depiction of 

all hydrological signatures used, see Figure A42.  
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4 Summary and conclusion 

This study explored differences in the catchment characteristics between the eastern and western US, the properties and 

location of catchment clusters based on hydrological signatures, the importance of catchment attributes for those clusters and 585 

how this study relates to other clustering studies and methods. We found that the correlations catchment characteristics are 

quite similar for the eastern and western US with the exception of mean elevation, snow, geology and the leaf area index. For 

the overall CAMELS data set climate seems to be the most important factor for the hydrological behavior. However, depending 

on the location either aridity, snow or seasonality were most important. The clusters derived from the hydrological signatures 

partly follow the eco regions in the US and can combined into four groups of general behavior trends. Still, similar catchments 590 

can be quite far away from each other. We also found that most of the catchments have a rather similar discharge behavior, 

while only some, more extreme catchments, derivate from that main trend. This might be a hint why it is so difficult to clusters 

catchments, as those single extreme catchments are quite unique and do not fit together well with other catchments. This study 

explored the influence of catchment attributes on the discharge characteristics in the CAMELS dataset. We found that over the 

whole dataset climate (especially aridity) is the most important factor for the discharge characteristics. This changes when we 595 

take a closer look at clusters that are derived from specific hydrological signatures. For the clusters in the eastern US, aridity 

is still the most important catchment attribute. In the western US however, the amount of snow is more important. In addition, 

in the western catchments the hydrological behavior is less correlated with the remaining catchment attributes. It seems like 

the clear climatic signal in the east is dampened in the west. This might be caused by a higher influence of other catchment 

attributes like elevation and vegetation. A similar effect can be found, when we compare how catchments align along 600 

hydrological and climatic axes. While some hydrological clusters align along a relatively narrow range of values of the climatic 

indices, others are found in very contrasting climates. SummarizingWe also found, that there are differences of how directly 

the signal of forcing climate can be found again in the hydrological behavior. This explains why catchments often show a 

surprisingly similar behavior across many different climate and landscape properties (Troch et al., 2013) and why the most 

hydrologically similar catchment can be hundreds of kilometers away. Those findings also relate to the paradox that small 605 

scales/single catchment studies identify geology/soils as most important for the hydrological behavior, while large sample 

studies usually find the climate as most important. This might simply be influenced by spatial proximity. Small scale studies 

look at catchment which all have a similar climatic forcing and thus only the other catchment attributes can be the cause of 

differences in hydrological behavior. Large sample studies on the other hand consider catchment from a wider area and thus 

attribute the differences in behavior to climate.  610 

The aggregated data used in this study might level out the variability of the catchment attributes in the single catchment, but it 

also indicates that there is a kind of equifinality in the behavior of catchments. Different sets of intertwined climate forcing 
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and catchment attributes could lead to a very similar overall behavior, not unlike to hydrological models that produce the same 

discharge with different sets of parameters.  

We acknowledge that the results are dependent on the amount and size of the clusters, the catchment attributes considered and 615 

the hydrological signatures used. Still, we think that the CAMELS dataset offers an excellent overview of different kinds of 

catchments in contrasting climatic and topographic regions. In addition, this study shows that using hydrological signatures 

with high spatial predictability results in hydrological meaningful clusters, which show consistent low flow behavior, even 

though those low flows were not explicitly considered. However, it seems that even a comprehensive dataset like CAMELS, 

does not allow an easy way to find a conclusive set of clusters for catchments. For future research, we recmonnedit might be 620 

a worthwhile pathway to include measures of spatial variability of the climate in the single catchments and to look into the 

single clusters in more depth. This might help to prove, if a less clear climatic signal is caused by intra-catchment variability 

of the climate or a larger influence of other catchment attributes. 
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 Appendix 

 830 

Figure A1: Patterns of catchment attributes in the PCA space of the hydrological signatures, with decreasing strength of the observed 

pattern from left (aridity) to right (subsurface porosity)..  

 

A 1.1  Detailed description of the catchment clusters 

 835 

Cluster 1 is defined by a high cover of vegetation. In addition, most catchments are located at low elevations, experience little 

snow and have a deep bedrock. Hydrologically these catchments have little discharge. They are mainly located in the 

Southeastern and Central Plains and therefore get relative high rainfall (> 1000 mm year). Their low discharge is probably 

caused by the low elevation those catchments are located, groundwater discharge and the high evaporation of the forests. 

Cluster 1 also contains the largest amount of catchments from all cluster (n = 230). So over one third of the catchments in 840 

CAMELS show a relatively similar behavior.  

 

Cluster 2 most typical attribute in comparison with the other catchments is its depth to the bedrock. However, concerning the 

catchment attributes cluster 2 is undefined as it contains catchments of most regions of the continental United States (with a 

focus on the Central Plains). The hydrological signatures on the other hand show a clearer pattern. Here, the mean winter 845 

discharge, Q95 and the mean annual discharge have a narrow range. This shows that catchments with very different attributes 

can produce very similar discharge characteristics, as the different attributes seems to cancel each other out in their influence 

on the discharge.  
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Cluster 3 is the smallest cluster with only seven catchments. Those are all located in the Northwestern Forested Mountains. 850 

Their most distinct feature is their uniform high cover with forest. They also experience high precipitation events only seldom 

and precipitation is snow half of the time. Hydrologically their most distinct features is their very high mean summer discharge 

and high runoff ratio, which is probably caused by the large amounts of snow these catchments receive.  

 

Cluster 4 is also located in the Northwestern Forested Mountains, with the exception of four catchments that are located in 855 

Florida. This again is an example of different catchment attributes being able to create similar discharge characteristics 

concerning their signatures, while having different catchment attributes. The catchments have overall low discharge and few 

high flow events, while their catchment attributes vary widely, especially in all attributes that are related to elevation (e.g. 

fraction of precipitation falling as snow).  

 860 

Cluster 5, has only few catchments (n = 9). They are all located at regions in the northern part of the Marin West Coast Forests. 

This is the region in the continental US that receives the highest precipitation (> 2000 mm year). This is mirrored in their 

discharge characteristics. These catchments have the highest discharge in the whole dataset, especially in the summer. They 

are also uniformly covered by almost 100 % of forest. They also experience only few high precipitation events as they get rain 

and snow more or less constantly in the same amount. 865 

 

Cluster 6 catchments are also located in the Marine West Coast Forest, but cover the whole region and not only the northern 

part like Cluster 5. The catchments are very similar in their attributes and discharge characteristics to Cluster 5, with the 

exception of a lower discharge and runoff ratio. This might be caused by a slightly lower precipitation in comparison with 

Cluster 5.  870 

 

Cluster 7 is also located in the same region as Cluster 5 and 6 (Marine West Coast Forests). Concerning the catchment 

attributes and the discharge characteristics, it is located between Cluster 5 and 6. So, Cluster 5 to 7 all cover the same region 

and differ in their mean summer discharge, which is caused by slight variations in elevation and location. 

 875 

Cluster 8 is the overall most arid cluster catchments. All of the catchments are located in western parts of the Great Plains and 

in the North American Deserts. They are shaped by an overall little availability of water and high evaporation, which is shown 

in the very low mean annual discharge and runoff ratio. This also results in low values for the LAI. However, the frequency 

of high precipitation events is high. 

 880 
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Cluster 9 covers all southern states of the United States. The catchments here are quite similar to Cluster 8, but show a lower 

seasonality (as indicated by their lower half flow date) and a higher forest cover and green vegetation.  

 

Cluster 10 catchments are located in the Appalachian Mountains. The mean elevation higher than most other clusters and the 

catchments also have low aridity and a very high forest cover. Their discharge characteristics is similar to the Marine West 885 

Coast Forests of Cluster 5 to 7. However, they receive less water than those catchments and experience a higher seasonality 

(as indicated by the higher mean half-flow date).  
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Figure A2: Violin plot of the hydrological signatures sorted by catchment clusters. Single dots in the violins indicate the single 

catchments. 890 
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Figure A3: Violin plots of the catchment attributes sorted by catchment clusters. Single dots in the violins 

indicate the single catchments. 
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Figure A42: Hydrological signatures for all catchments in the climate index space of Knoben et al. (2018). Single dots show the 895 
catchments and are colored according to the value of the mean annual discharge. The log of the signatures is used to show the relative 

differences between the catchments.  


