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Response to Reviewer #2 (Andrew Newman) 

General comments: This paper examines the CAMELS catchments and clusters them using 
hydrologic signatures that have been previously found to have high spatial predictability. 
Overall this study is somewhat unsatisfying. Little new physical insight is gained in 
understanding how we determine similarity across catchments. The results do agree with 
past studies, which is a good test of the previous work. However, what does this specific 
study bring to us? Previous results discussed here, e.g. Addor et al. (2018) (Fig. 4), and 
Newman et al. (2015) (Fig. 12) found the same results. Aridity is the primary driver of basin 
behavior given the catchment scale attributes used, followed by other climate indices (e.g. 
snow). Finally, one of the primary conclusions drawn from the clustering results needs to be 
reexamined (specific comment #2).  
 
First of all, we would like to thank the Reviewer herein to provide his very constructive 
comments. We tried to pick up all points, which lead to a revised version of this manuscript, 
which provides from our point of view now a clearer insight into the gained understanding 
and the novelty of this research.  
   
Specific comments: 
1) Is 10 clusters necessary? Why does 10 make this study similar to others? Did those 
studies arbitrarily pick 10 also? I wonder if a similar cluster selection method is better, rather 
than the same number of clusters. A more detailed justification in the methods section is 
necessary. 
 
To further elaborate on our choice of 10 clusters, we added a more detailed explanation of 
our decision in section 2.3: 
From those studies, Kuentz et al. (2018) provides the largest set with over 35,000 
catchments. They also clustered their catchments in a PCA space of a range of hydrological 
signatures. To select the number of clusters, they used the elbow method (and two other 
methods to validate their results) and found that ten or eleven clusters (depending on the 
method) were most appropriate for their data. Due to the similarity in the clustered data and 
the larger database of Kuentz et al. (2018), we also used ten clusters.  
 
2) Many of the attributes have high co-variability. For example, elevation and 
temperature/fraction of snowfall, elevation and mean slope, forest fraction and elevation (in 
the western US) are likely candidates. Addor et al. (2018) discusses this briefly, but much 
more could be done here. It would be good to understand this co-variability and modify the 
discussion accordingly, particularly the conclusions on lines 173-180. Spatial proximity or the 
attributes defined as climate by the authors are bad predictors in areas with heterogeneous 
topography precisely because topography and climate are intertwined. That does not mean 
that climate is a poor predictor of catchment behavior in those same regions. 
 
In light of the reanalysis of our data, we have mostly rewritten section 3.3 and added a 
discussion of the co-variability of the catchment attributes. This also changes our discussion 
of the connection between the topography and the climate.  
 



3.3 Exploration of the catchment clusters  

The catchment attributes in the CAMELS and similar large scale datasets often show a 

pattern that resembles climatic zones (Addor et al., 2018; Coopersmith et al., 2012; Yaeger 

et al., 2012). The picture is less clear for the hydrological catchment clusters presented. This 

is directly observable in the spatial distribution of the clusters (Figure 3). Usually the 100th 

meridian is seen as the dividing climatic line in the US, splitting the country in a semi-arid 

west and a humid east.  

 

Figure 3: Locations of the clustered CAMELS catchments in the continental US. Dotted line marks the 100th 

meridian. 

 

This split can also be found in some of the clusters depicted in Figure 3. Cluster 3, 4, 5, 6 

and 7 are all located mainly in the West, while Cluster 1 and 10 are in the East. However, the 

remaining Clusters 2, 8 and 9 have roughly similar amounts of catchments in both regions. 

The catchments in the eastern half of the United States form large spatial patterns of similar 

behavior, while the catchments in the west are a lot patchier. The descriptions of the 

catchment clusters are summarized in Table 2. A further detailed description of the clusters 

can be found in the appendix, together with figures showing the distribution of hydrological 

signatures (Figure A2) and catchment attributes (Figure A3) in the clusters. A list of all 

catchments with index, position and cluster classification is given in the supplementary 

material. 

 

Figure 4: Swarm plot of the real world distances of all catchments to the most hydrologically similar catchment (based 

on their distance in the PCA space of the hydrological signatures).  

In addition, similar catchments can be quite far away from each other (Figure 4). Sometimes, 

the catchment with the most similar signature was found as far as 4000 km away (almost the 

entire longitudinal distance of the continental US). This explains why spatial proximity seems 

to be important in some studies that look into explanations of catchment behavior 

(Andréassian et al., 2012; Sawicz et al., 2011), but not in others (Trancoso et al., 2017). This 

also indicates that clustering by using spatial proximity might only work in regions like the 

eastern US, where the behavior of rivers changes gradually. The finding that the most similar 



catchment (based on their hydrological signatures) can be far away, also explains the 

behavior of clusters that contain catchment quite distant from each other (e.g. Cluster 4). 

Even though the catchments might be far away from each other, the interplay of different 

catchment attributes and driving factors, including obviously different climates, can lead to 

similar (equifinal) discharge behavior.  

The derived importance of the catchment attributes in the clusters is highly variable and 

partly differs from the order of importance in the overall dataset (compare Figure 1 and 

Figure 5). For Cluster 1 (Southeastern and Central Plains), 6 (Marine West Coast Forests), 8 

(Great Plains and Deserts) and 9 (Southern states) aridity has the clearest connection to the 

clusters. However, this is not the case for the remaining catchment clusters. For Cluster 3 

(Northwestern Forested Mountains), 4 (Northwestern Forested Mountains and Florida) and 7 

(Western Cordillera) the clearest connection is to the fraction of precipitation falling as snow. 

However, for Cluster 3, and 4 many other catchment attributes have a weighted R², which is 

almost as high as the one for the fraction of precipitation falling as snow.  

 

 Figure 5: Importance of the catchment attributes evaluated by the quadratic regression. For the catchment clusters. Attributes 
colored according to their catchment attribute class.  



 

In addition, all catchment attributes have a high weighted R² in Cluster 3, while the weighted 

R² is low for all catchment attributes in Cluster 4. For the remaining clusters, it is green 

vegetation maximum (Cluster 2, Central Plains), forest fraction (Cluster 5, Northern Marine 

West Coast Forest) and mean elevation (Cluster 10, Appalachian Mountains). Overall, the 

western clusters (west of the 100th meridian) have the highest weighted R² with the: 

- Fraction of precipitation falling as snow (Cluster 3, 4, 7) 

- Forest fraction (Cluster 5) 

- Aridity (Cluster 6) 

The eastern clusters (east of the 100th meridian) with the: 

- Aridity (Cluster 1) 

- Mean elevation (Cluster 10) 

The clusters equally present in west and east with the: 

- Green vegetation fraction maximum (Cluster 2) 

- Aridity (Cluster 8, 9) 

In the next step, we linked the abovementioned findings to the differences between the 

correlations of the catchment attributes with each other in the eastern and western parts of 

the continental US (Figure 6). While aridity is the most important catchment attribute, when 

looking at all catchments at the same time (Figure 1), this does not hold true for most of the 

single clusters (Figure 5). Yet, the factors with the highest weighted coefficient of correlation 

might simply be proxies for aridity. To test this, we scrutinized the correlation between the 

catchment attributes with each other, separated by East and West (Figure 6). The western 

US (Figure 6a) and eastern US (Figure 6b) show high differences in the way the catchment 

attributes correlate with each other (Figure 6c). The main differences are in the mean 

elevation, the fraction of precipitation falling as snow, and the LAI maximum. For example, in 

the western US the mean elevation has a high correlation (r = 0.8) with the fraction of 

precipitation falling as snow. In the eastern US however, this correlation is much smaller (r = 

0.4). This is probably caused by the overall higher elevation in the western US. In addition, in 

the western US, the fraction of the precipitation falling as snow does not correlate with the 

aridity (r = 0.1), while the forest fraction does (r = -0.8). Thus, the forest fraction is linked very 

directly to the climate in this region. Therefore, aridity (and the highly correlated forest 

fraction) have the highest weighted R² in two out of the five clusters in the western US. Only 

two clusters are mostly located in the eastern US (Cluster 1 and 10). Here, aridity and the 

mean elevation have the highest weighted R² with the hydrological behavior. The mean 

elevation has a medium correlation with the aridity. Hence, the hydrological behavior in the 

eastern US is most highly correlated with aridity, which is not the case for the western US. 

There, the fraction of precipitation falling as snow is more prevalent. Those results imply that 

aridity is a good indicator for the discharge characteristics in the eastern US and only 

mediocre in the West.  

Overall, we found that it is relatively easy to link the dominating catchment attributes to the 

hydrological behavior, in some regions of the US. However, it is more challenging in others. 

We link this to a less strong climatic signal in those regions. This hints that climate and 

catchment attributes are more intertwined in those areas and indicates regions where 

different types of hydrological model structures are needed. Furthermore, it indicates regions 

where hydrological predictions in ungauged basins (Hrachowitz et al., 2013) can become 

very challenging, as the interplay of the available meteorological- and catchment-attributes 

data cannot sufficiently explain the hydrological characteristics.  



 

Figure 6: Correlation of all catchment attributes for western (a) and eastern (b) US and absolute differences in 

correlation between the eastern and western US. Eastern and western is defined by the 100th meridian.   



3) Could more explanation be given as to how the clusters contain basins from very different 
locations (e.g. cluster 4)? There is some discussion in the appendix, which is good, but this 
cluster highlights limitations in our current clustering methods or application of those 
methods. How could other hydrologic signatures be used to provide more discriminatory 
power? Is predictability in space the best metric to determine which signatures to use in a 
study like this?  
 
This is now discussed in section 3.3:  
 
[…] 

This indicates that clustering by using spatial proximity might only work in regions like in the 

eastern US, where the behavior of rivers changes gradually. The finding that the most similar 

catchment (based on their hydrological signatures) can be far away, also explains the 

behavior of clusters that contain catchment quite far away from each other (e.g. Cluster 4). 

The catchments might be far away from each other, but the interplay of different catchment 

attributes and driving factors can lead to similar discharge behavior 

[…] 

 
Also, it seems like more discussion on the issues/benefits of using this method (clustering on 
principle components) using already aggregated data (signatures and catchment averaged 
attributes) would be useful. This could help the community learn more from these various 
clustering studies. The authors already provide a summary discussion relating these results 
to other studies, so I do not feel like this is out of scope.  
 
We added a short discussion of this to section 3.4: 
In addition, this study shows that using clusters derived from principal components of 
hydrological signatures create meaningful groups of catchments with similar attributes 
(Figure A2, A3). Those clusters also show distinct spatial patterns (Figure 3). Similar results 
were also found in other studies that used the same method (Kuentz et al., 2017; 
McManamay et al., 2014), but based them on partly different hydrological signatures. 
Therefore, the principal components of hydrological signatures can be used as a measure of 
similarity between catchments. They represent the “essence” of all hydrological signatures 
used. Our results also show that it is difficult to link those catchment clusters to simple 
averaged measures of catchment attributes. While some clusters have very clear 
connections to the attributes, others have no catchment attribute that could easily explain the 
behavior of the catchments. This hints, that some catchments are easier to explain (in a 
hydrological sense) than others. Those difficulties might be an artifact of the averaged 
catchment attributes or be caused by complex catchment reaction, forced by intertwined 
climate and catchment attributes. Which in turn, might indicate an equifinality of catchment 
response.   
 
Minor comments:  

The sentence starting on line 55 and ending on line 59 is a very long run-on sentence. It is 
hard to follow and should be reworked. I suggest checking the manuscript for other instances 
of run-on sentences. 
 
Changed as proposed.  
 
Figures: 1) Please consider increasing the contrast in the cluster colors in Figures 1and 3. 
Specifically clusters 1-3, and 4-6 are hard to visually separate. 
 



Changed as proposed. We changed all figures with clusters to a more easily distinguishable 
color scheme. We also changed Figure A2 and A3 from swarm plots to violin plots, to make 
them easier to interpret.  


