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Thanks for your comments. Please find our responses for two reviewer’s comments as
follows.

Responses to Reviewer 1’s comments 1. Stability indices: The study performs an anal-
ysis of temporal soil moisture variability. Thus the “Index of Temporal Stability” (ITS)
is introduced. Unfortunately, it is defined in a really counterintuitive and misleading
way: It measures exactly the opposite of what the term suggests (l. 155-158). Please
rename to “Instability index” or the like.
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The term “Index of Temporal Stability (ITS)” had been widely used by many researchers
who had worked on spatial distribution of soil moisture measurements. Following pa-
pers (16) used ITS for soil moisture variability.

Zhao, Y., S. Peth, X. Y. Wang, H. Lin, and R. Horn (2010), Controls of surface soil
moisture spatial patterns and their temporal stability in a semi-arid steppe, Hydrol.
Process, 24, 2507-2519. Zhao, W., Z. Cui, J. Zhang, and J. Jin, 2017, Temporal stability
and variability of soil-water content in a gravel-mulched field in northwestern China, J.
Hydrol., 552, 249-257. Zhang, P., and M. Shao (2013), Temporal stability of surface
soil moisture in a desert area of northwestern China, J.Hydrol., 505, 91-101. Penna,
D., L. Brocca, M. Borga, and G. D. Fontana (2013), Soil moisture temporal stability at
different depths on two alpine hillslopes during wet and dry periods, J. Hydrol. 477, 55-
71. Biswas, A., and B. C. Si (2011), Scales and locations of time stability of soil water
storage in a hummocky landscape, J. Hydrol., 408, (1-2), 100-112. Gao, L., and M.
Shao (2012a) Temporal stability of soil water storage in diverse soil layers, Catena, 95,
24-31. Gao, L., and M. Shao (2012b) Temporal stability of shallow soil water content
for three adjacent transects on a hillslope, Agri. Water Manag., 110, 41-54. Gao, L.,
M. Shao, X. Peng, and D. She (2015) Spatio-temporal variability and temporal stability
of water contents distributed within soil profiles at a hillslope scale, Catena, 132, 29-
36. Gomez-Plaza, A., J. Alvarez-Rogel, J. Albaladejo, and V. Castillo (2000), Spatial
patterns and temporal stability of soil moisture across a range of scales in a semiarid
environment, Hydrol. Process., 14, 1261-1277. Li, D. F., and M. Shao (2014), Temporal
stability analysis for estimating spatial mean soil water storage and deep percolation
in irrigated maize crops, Agric. Water Manage., 144, 140-149. Junquira Junior, J. A.,
C. R. Mello, P. R. Owens, J. M. Mello, N. Curi, and G. J. Alves (2017), Time-stability
of soil water content in an atlantic forest-latosol site, Geoderma, 288, 64-78. Lee, E.,
and S. Kim (2017), Pattern similarity based soil moisture analysis for three seasons on
a steep hillslope, J. Hydrol., 551, 484-494. Vachaud, G., P.P. de Silans, P. Balabanis,
M. Vauclin, 1985, Temporal stability of spatially measured soil water probability density
function, Soil Sci. Soc. Am. J., 49, 822-828. Brocca, L., F. Melone, T. Moramarco, and
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R. Morbidelli, 2009, Soil moisture temporal stability over experimental areas in Central
Italy, Geoderma, 148(3-4), 364-374. Xiaoxu, J., M. Shao, X. Wei, and Y. Wang, 2013,
Hillslope scale temporal stability of soil water storage in diverse soil layers, J. Hydrol.,
498, 254-264. Hu, W., L.K. Tallon, and B.C. Si, 2012, Evaluation of time stability indices
for soil water storage upscaling, J. Hydrol, 475, 229-241. Z. Liu, Y. Wang, P. Yu, A. Tian,
Y. Wang, W. Xiong, and L. Xu, 2018, Spatial pattern and temporal stability of root-zone
soil moisture during growing season on a larch plantation hillslope in Northwest China,
Forests, 9, 68.

Therefore, changing ITS as “instability index” seems not appropriate simply because
majority of hydrology community used ITS for many years.

Secondly, the mathematical definition is unnecessarily complex and hardly compre-
hensible (equation 2). Why do you add squared mean and variance of normalized
differences (δ)? What information does that index provide that would not already given,
e.g., by the mean of normalized differences δ? In addition, both ITS and the normal-
ized difference δ (equation 1) can easily be mixed up with the “soil moisture difference
index” ∆θ (equation 4). The latter seems to have been used only for the SOM classifi-
cation. Why do you need that many different indices for soil moisture variation? This is
very confusing and not comprehensible for the reader.

We referred widely used indices, such as ITS and SDRD, for soil moisture represen-
tation. Of course, we used equation (4) for SOM. We presented Its or other terms
because we will compare the performance of SOM in delineating the representative
point and those of other existing approaches. We think presenting new development
should be done based on the context of existing studies. Of course, we used it for
delineating the representative point for antecedent soil moisture content, which is an
important input for SOM application. Through this way, we may highlight what is new
and how our approach can contribute in analyzing soil moisture data.

2. Classification of hydrological events: Assignment of hydrological events is a crucial
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point in this study, as clusters were assigned to processes. Unfortunately, the clustering
is a very weak point of the study. First of all, I do not understand why an SOM has been
performed prior the cluster analysis. I acknowledge that SOM is a nice tool to visualize
multivariate data sets (cf., Fig. 5). However, assigning data to the nodes of an SOM is
not without loss of information, as even slightly different instances of the data set are
assigned to the same node. Thus I would highly recommend performing the cluster
analysis directly on the data rather than on their aggregated representation in an SOM.

Considering complex soil moisture dynamics for numerous rainfall events in hillslope
area, two primary objectives in applying self-organizing map to rainfall and soil moisture
dataset are as follows; one is the characterization of non-linear relationships among
hydrologic variables and clustering of rainfall events based on trained self-organizing
map.

Firstly, the visualization capability of self-organizing map, which you mentioned above,
is much better than other conventional approaches such as PCA (Principle component
analysis) and MDS (Multi-dimensional scaling) and other alternatives, such as linear
tools which previously frequently used (Reusch et al., 2005; Liu et al., 2006). Espe-
cially, previous researches reported that 2-dimensional space of self-organizing map
provides more reliable data representation compared to the other linear dimension re-
duction approach (Brosse et al., 2001; Chon et al., 1996; Hilton and Salakhutdinov,
2006; Pinto et al., 2008; Reusch et al., 2007).

Secondly, the clustering of rainfall events based on trained self-organizing map is the
other main objective. The representative direct clustering method consists of two parts
like Hierarchical clustering (Single linkage, Average linkage, Centroid method, Ward’s
method, Kth Neighbor) and Non-hierarchical clustering(K-means algorithm, K-median
algorithm).

Comparison of performance between self-organizing map and direct clustering meth-
ods have frequently been reported in previous researches. The self-organizing network
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is superior to hierarchical clustering in both sensitiveness for noisy dataset and accu-
racy aspects (Mangiameli et al., 1996; Vesanto and Alhoniemi, 2000; Samsonova et
al., 2005; Abbas, 2008; Sivasankari et al., 2014). Using hierarchical clustering ap-
proach with dendrogram, it was very difficult to characterize the cluster characteristics
as well as to select optimized cluster number for researcher’s objective (Samsonova et
al., 2005).

The figure (below) is the agglomerative hierarchical clustering results (ward method)
dendrogram which was suggested by reviewer. Extracting or finding any useful ex-
planation from this figure is almost impossible. The cluster number obtained from the
coefficient delta (see Table) was two, which is almost useless in terms of hydrological
interpretation. Therefore, the self-organizing map is comparably feasible to recognize
the relationship among rainfall events. This was pointed out by many researchers
(Mangiameli et al., 1996; Vesanto and Alhoniemi, 2000; Samsonova et al., 2005; Ab-
bas, 2008; Sivasankari et al., 2014).

Figure for cluster dendrogram

Table for cluster number and delta

Furthermore, many previous researches reported that even non-hierarchical ap-
proaches showed worse performances in clustering accuracy compared to self-
organizing map (Jassar and Dhindsa, 2015; Dhingra et al., 2013; Toor and Singh,
2013; Abbas, 2008; Kiang and Kumar, 2001). The performance of non-hierarchical
method is very sensitive to the heuristic selected initial setting (Jassar and Dhindsa,
2015), but self-organizing map is less prone to the change in initial network setting
(Kiang and Kumar, 2001). According to characteristics of dataset, the comparison of
performance among clustering method can be changed, but many relevant scientists
have proved both applicability and higher performance of self-organizing in many dis-
ciplines. This means that the clustering with the SOM instead of directly clustering
the data is not only computationally effective approach but also have better or compa-
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rable performance with significantly reduced uncertainty and much better robustness
compared to direct clustering method (Vesanto and Alhoniemi, 2000).

Brosse, S., J.L. Giraudel, and S. Lek, 2001, Utilisation of non-supervised neural net-
works and principal component analysis to study fish assemblages, Ecological Mod-
elling, 146, 159-166. Reusch, D.B., R.B. Alley, and B.C. Hewitson, 2005, Relative per-
formance of self-organizing maps and principal component analysis in pattern extrac-
tion from synthetic climatological data, Polar Geogr, 29(3), 227-251. Hinton, G.E., and
R.R. Salakhutdinov, 2006, Reducing the dimensionality of data with neural networks,
Science, 313(5786), 504-507. Liu, Y., R.H. Weisberg, and C.N.K. Mooers, 2006, Per-
formance evaluation of the self-organizing map for feature extraction, J. Geophys. Res.,
111, C05018. Pinto, N., D.D. Cox, and J.J. DiCarlo, 2008, Why is real world visual ob-
ject recognition hard?, PLoS Computational Biology, 4(1), 0151-0156. Chon, T.S., Y.S.
Park, K.H. Moon, E. Cha, and Y. Pa, 1996, Patternizing communities by using an artifi-
cial neural network, Ecological Modelling, 90, 1403-1409. Reusch, D.B., R.B. Alley, and
B.C. Hewitson, 2007, North Atlantic climate variability from a self-organizing map per-
spective, Journal of geophysical research, 112, D02104, doi:10.1029/2006JD007460.
Abbas, O.A., 2008, Comparison between data clustering algorithms, the international
arab journal of information technology, 5(3), 320-325. Mangiameli, P., S.K. Chen,
and D. West, 1996, A comparison of SOM neural network and hierarchical cluster-
ing methods, European Journal of Operational Research, 93, 402-417. Toor, A.K. and
A. Singh, 2013, Analysis of clustering algorithms based on number of clusters, error
rate, computation time and map topology on large dataset, International Journal of
Emerging Trends & Technology in Computer Science, 2(6), 94-98. Samsonova, E.,
T. Back, J.N. Kok, and A.P. IJzerman, 2005, Reliable hierarchical clustering with the
self-organizing map, in Proc. 6th International Symposium on Intelligent Data Analy-
sis, 397-413. Dhingra, S., R. Gilhotra, and Ranishanker, 2013, Comparative analysis
of kohonen-SOM and k-means data mining algorithms based on academic activities,
International Journal of Computers & Technology, 6(1), 237-241. Vesanto, J., and E.
Alhoniemi, 2000, Clustering of the self-organizing map, IEEE TRANSACTIONS ON

C6



NEURAL NETWORKS, 11(3), 586-600. Kiang, M.Y., and A. Kumar, 2001, An evalua-
tion of self-organizing map networks as a robust alternative to factor analysis in data
mining applications, Information systems research, 12(2), 177-194. Sivasankari, A.,
S. Sudarvizhi, and S.R.A. Bai, 2014, comparative study of different clustering and de-
cision tree for data mining algorithm, International Journal of Computer Science and
Information Technology Research, 2(3), 221-232. Jassar, K.K., and K.S. Dhindsa,
2015, Comparative study and performance analysis of clustering algorithms, Interna-
tional Journal of Computer Applications, 0975-8887, 1-6.

Secondly, the number of clusters was selected in “a heuristic approach aiming to
achieve a hydrologically meaningful classification of events and parsimonious clus-
tering” (l. 289-290) without any clearly defined and understandable criterion. Likewise,
no criterion is given for deciding on the superiority of one cluster approach compared
to another (l. 211-213). Thus arbitrary decisions seem to have a major effect on
the assignment to clusters, and subsequently to hydrological processes. Thanks for
your comment. One important criterion was the parsimony in clustering with hydro-
logically meaningful event classification. We need to make 7 clusters to identify differ-
ence between cluster 5 and 6. As explained in the context, the identification of cluster
5 provide completely distinct interpretation (preferential flow) in hillslope hydrological
process. We can divide SOM maps into 3 parts or 7 parts depending on the distinction
of vertical flow and lateral flow in upslope and downslope (see Tables in paper). But
classifying SOM maps as 7 numbers was found to extracting a meaningful hydrologic
information about hydrological process characteristics in this hillslope. Further classifi-
cation looks redundancy in terms of physically meaningful interpretation. The criterion
cannot be given as an explicit formula (because natural process can be formulated)
but existences of distinct hydrological processes (vertical flow and lateral flow) either
upslope or downslope as criterion and interpretation for as illustrated in Table

2. The distribution of soil moisture indices and soil water storage (Table 1 and Table
2) and its statistical (volumetric soil moisture) results in Figure 8 were made from soil
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moisture measurements. These are not postulation but evidence. These results are
not arbitrary decision but the summary of comprehensive analysis of soil moisture and
rainfall for 396 events.

Of course, this is heuristic approach, simply because all clustering algorithms are
heuristic approach. As we mentioned, both hierarchical and non-hierarchical method
also need heuristic approach for selecting cluster number in dendrogram and initial
setting.

Last but not least, according to Fig. 5, and except for antecedent soil moisture and
rainfall (?) duration. there is a rather smooth and continuous increase of the soil
moisture difference indices. The only exception concerns cluster 5 and 6. In cluster
5, the soil moisture difference index at the upslope sites below 10 cm depth is clearly
less compared to the downslope sites, whereas the soil moisture difference index is
high both at upslope and downslope sites in cluster 6. Except for these two clusters
the cluster analysis obviously subdivides the data set more or less arbitrarily along a
single continuous gradient rather than identifying clearly distinct groups (cf., Fig. 8).

Thanks for comment. We partially agreed to your comment for continuous increase of
soil moisture difference index. What you pointed out is somewhat natural in SOM clas-
sification simply because the distance between the input vector and weighting vector is
mainly used for SOM classification (Actually this trend is common for all SOM applica-
tion). The response of soil moisture on rainfall events consists of rainfall characteristics,
antecedent soil water condition, and soil moisture difference index. Although compo-
nents in same category have inter-connection, every component individually repre-
sents each characteristic which we would like to show multiple relationships among
components. The dendrogram with dissimilarity matrix among components vectors in
SOM map shows distinctively the available number of clusters. Among every cases
of clusters, our choice considering hydrological processes was also heuristic, but the
optimized number of cluster was 7 for identifying the difference between cluster 5 and
cluster 6.
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Identification of representative soil monitoring points: A major topic of the study is iden-
tification of “representative soil moisture monitoring points” (e.g., l. 30-31). It remains
unclear in what regard these sites should be representative. According to l. 50-51
“high stability is an important criterion for determining the best location for the mon-
itoring spatially averaged soil moisture of a given area”. The study focuses on the
temporal dynamics. But here the term “representativeness” cannot refer to the tem-
poral dynamics because “high stability points” would systematically underestimate that
dynamics. On the other hand, “high stability” points could not be representative for the
spatial mean either. Highest temporal stability likely occurs at sites where the soil is
close to saturation all the time, that is, at sites with the highest soil moisture values.
Or do you mean “representative” in regard to ascription to hydrological event clusters
(L. 114-116, l. 485 et seq., l. 511 et seq.)? But then temporal stability of soil moisture
would not be a relevant criterion.

Following quotations are from one of best papers in this topic (Penna et al. 2013)
“A positive value of MRD for a certain sampling location indicates that the location is
wetter than the hillslope average whereas a negative value of MRD indicates that the
location is drier than the hillslope average. The SDRD specifies how variable such as
estimate is. The sampling location with the highest temporal stability shows the lowest
value of ITS and is selected as representative point. Whereas points with high values
of ITS are identified as the wettest and driest field location (Penna et al., 2013).” Penna,
D., L. Brocca, M. Borga, and G. D. Fontana (2013), Soil moisture temporal stability at
different depths on two alpine hillslopes during wet and dry periods, J. Hydrol. 477,
55-71.

Highest temporal stability is not about least variation of soil moisture but about the
relationships between points. Vachaud et al. (1985) defined the persistence in time
series relationships between measuring locations based on the relative difference of
soil moisture and its mean overall sampling points collected at the same time. This is
an indicator of surface soil moisture variation in the field (Silva Junior et al. 2016). Both
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MRD and SDRD, which are components of ITS, addressed the differences in sptio-
temporal variability among the locations sampled and provided information about the
representative location(Gao et al., 2015). The representative point for the highest tem-
poral stability had been used widely (See Penna et al., 2013) and we expand existing
concept to more general cases to further addressing hillslope hydrological processes.
Several studies also reported that the most temporally stable points were significantly
related to the soil texture (Jacobs et al., 2004; Zhang and Shao, 2013; Xiaoxu et al.,
2013) or topographic indexes (Brocca et al., 2009; Lee and Kim, 2017), and the other
studies also noted that the time-stable points were poorly correlated to topography and
soil properties (Tallon and Si, 2004). These various findings indicate that the control-
ling factors of the time-stable points (the representative points) are very complicated
and dependent on the characteristics of the study area (e.g., climate, soil, and vege-
tation). An increase in temporal stability with depth was expected due to the reduced
dependence on the climatic, biological, and hydrological factors that determined the
SWC dynamics (Martínez-Fernández and Ceballos, 2003; Hu et al., 2009), which was
also observed by Cassel et al. (2000) for cropland and by Lin (2006) for forest wa-
tersheds. Zhang, P., and M. Shao (2013), Temporal stability of surface soil moisture
in a desert area of northwestern China, J.Hydrol., 505, 91-101. Xiaoxu, J., M. Shao,
X. Wei, and Y. Wang, 2013, Hillslope scale temporal stability of soil water storage in
diverse soil layers, J. Hydrol., 498, 254-264. Brocca, L., F. Melone, T. Moramarco, and
R. Morbidelli, 2009, Soil moisture temporal stability over experimental areas in Cen-
tral Italy, Geoderma, 148(3-4), 364-374. Tallon, L.K., and B.C. Si, Representative soil
water benchmarking for environmental monitoring, J. Environ. Inf, 4, 31-39. Jacobs,
J.M., B.P. Mohanty, E.C. Hsu, and M. Choi, 2010, Time stability and variability of elec-
tronically scanned thinned array radiometer soil moisture during Southern Great Plains
hydrology experiments, Hydrol. Process, 24, 2807-2819.

In this study, we expand the representative point from existing definition “the point
showing least variation between points” to the point which address efficient charac-
terization of hydrologic event as well as traditional temporal stability. This is why we
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presented ITS, SDRD as so on.

Assigning clusters to processes: Results from the upslope and downslope sites, re-
spectively, are aggregated (per depth), and differences between these groups are in-
terpreted in terms of systematic differences between these groups. However, it has
not even been tested whether these groups differ significantly at all. Data of all single
sites are presented in Fig. 2 only, revealing substantial heterogeneity even within the
upslope or downslope sites, respectively, and suggesting more small scale variability
(consistent with my own experience) rather than systematic differences.

We afraid that reviewer 1 may not understand the reason of machine learning appli-
cation. We have 30 points soil moisture data for 396 events. One solid reason for
the analysis of this big data is to understand or efficient perform the task about how
the dataset can be simplified through dimensional reduction in a systematic approach.
Exploring local heterogeneity seems completely opposite way will absolutely result into
extremely complex patterns which is impossible to understand (Think about locality of
soil moisture in 30 points multiplied 396 events). Further completely different observa-
tions such as tracer data or stem flow are out of scope of this paper.

The main objective of this study is the analysis of data through SOM under the context
of hillslope hydrological processes. Therefore, the difference of hydrological processes
between upslope and downslope was the main topic and the small scale variability is
associated with the local heterogeneity, which is not the scope of this study. Besides, it
is almost impossible to characterize different non-linear patterns through SOM for ev-
ery single points and interpret complexity and heterogeneity depending on measuring
locations and measuring depths. Characterization of soil moisture for two parts (up-
slope and downslope) is consistent to several previous researches of the study area
and many other hillslope studies (Haga et al., 2005; Kim, 2009, 2016; Lee and Kim.
2017, 2019; Tromp and McDonnell, 2004; Uchida et al., 2004). Thanks for your under-
standing.
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We leave out Figure 2 in revised paper.

Haga, H., Y. Matsumoto, J. Matutani, M. Fujita, K. Nishida, and Y. Sakamoto, 2005:
Flow paths, rainfall properties, and antecedent soil moisture controlling lags to peak
discharge in a granite unchanneled catchment. Water Resour. Res., 41, W12410,
doi:10.1029/2005WR004236. Kim, S.: Characterization of soil moisture responses
on a hillslope to sequential rainfall events during late autumn and spring, Water Re-
sour. Res. 45, W09425, https://doi.org/ 10.1029/2008WR007239, 2009. Kim, S.: Time
series modeling of soil moisture dynamics on a steep mountainous hillside, J. Hy-
drol., 536, 37-49, https://doi.org/ 10.1016/j.jhydrol.2016.02.027, 2016. Lee, E., and
Kim, S.: Pattern Similarity Based Soil Moisture Analysis for Three Seasons on a
Steep Hillslope, J. Hydrol., 551, 484-494, https://doi.org/ 10.1016/jhydrol.2017.06.028,
2017 Lee, E. and Kim, S.: Wavelet analysis of soil moisture measurement for hill-
slope hydrological processes, J. Hydrol, https://doi.org/10.1016/j.jhydrol.2019.05.023
Tromp van Meerveld, I., and McDonnell, J.J.: Comment to “Spatial correla-
tion of soil moisture in small catchments and its relationship to dominant spa-
tial hydrological processes, J.Hydrol., 286, 113-134”, J.Hydrol., 303, 307-312,
https://doi.org/10.1016/j.jhydrol.2004.09.002, 2005. Uchida, T., Y. Asano, T. Mizuyama,
and J. J. McDonnell, 2004: Role of upslope soil pore pressure on lateral subsurface
storm flow dynamics. Water Resour. Res., 40, W12401.

At least there seems to be substantial overlap between upslope and downslope sites.
The study aims at assigning single hydrological events, characterized by meteorolog-
ical and soil moisture data based indices, to clusters, which in turn are interpreted in
terms of hydrological processes (l. 90, l. 111-113). The latter step is of fundamental
importance for the study. Unfortunately, that step remains completely obscure to me
even after having studied the manuscript again and again. There is no clear and com-
prehensible reasoning at all. How do the indices relate to the respective processes?
Relationships are postulated but without sound justification (e.g., l. 317-319, l. 322-
324, l. 334-l.338, l. 402-462). Assigning differences in soil moisture at a scale of a
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few hours to lateral subsurface flow over a distance of roughly 50 m (Fig. 1) would
require fairly high lateral flow velocities. Is there any additional evidence (e.g., tracer
experiments) for that? Did you account for the spatial heterogeneity of throughfall and
stemflow? What about surface runoff that might have re-infiltrated on its way downs-
lope?

This is about interpretation of hydrological processes using results of analysis. Table
1, Table 2 and Figure 8 are not postulation but the evidences obtained from field mea-
surement. The soil moisture difference index is made to present soil moisture variation
impact in terms of normalized impact for antecedent soil moisture. This is an effec-
tive way to express the impact of rainfall to soil moisture for big data (30 points in 396
events).

I 317-319: The soil moisture difference index was made from soil moisture measure-
ments. Table 1 showed the vertical distribution of soil moisture difference indices are
different between upslope and downslope. In case of upslope, UP10 > UP30 > UP60
for clusters 1 to 6 indicating dominance in vertical infiltration, but DO10 > DO60 > DO30
for clusters 3, 4 and 7 and DO60 > DO10 > DO30 for clusters 5 and 6 in downslope.
This indicated that the generation of lateral subsurface flow in downslope. Table 1 is
not a postulation but the evidence of different hydrological processes between upslope
and downslope.

I 322-324: The soil moisture difference index (192.6%) was obtained from saturation
data of soil moisture (48% - 50 %) in surface of downslope during rainfall event. This is
the evidence of surface saturation for extreme events (cluster 7) which most likely intro-
duce overland flow in downslope. This analysis was done based on field measurement
of 64 events.

I 334-339: The analysis appeared in Table 2 was based on field measurements. The
water storage analysis for clusters 5, 6 and 7 showed that the storage changes (47,40,
116mm) in deeper depth(60cm) were greater than those (19.6, 11.6, 49.4 mm) for in-
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termediate depth (30cm) at downslope area. Considering scales of throughflow (20,
35, 85.5), the storage changes in deeper depth (60cm) can be only explained by sub-
surface lateral flow over bedrock from upslope. Again this is not postulation but results
from field measurements.

We did not measured the stem flow for table 2 but there is no systematic difference in
vegetation between upslope and downslope and throughfall can be assumed to almost
uniform. Furthermore, the impact of canopy interception for significant events (clusters
5,6 and 7) can be negligible.

I 402-462: The generation of lateral flow in deep soil layers was supported by re-
sults from Table 1 and Table 2, which were obtained from soil moisture measurements.
Supplementary explanations of component planes (Figure 5) also support spatial dis-
tributions of hydrological processes between upslope and downslope. Discussion with
Figure 8(made from measurements) and other references (Kim, 2009; Lai et al., 2016;
Uchida et al., 2001; Weinjofer and Zehe 2013; Haga et al., 2001; Feng and Liu, 2015)
also support hydrological process interpretation for significant events (cluster 5, 6, and
7). Reviewer asked further field measurements (tracer experiment and stem flow). The
evidence of soil moisture analysis (Table 1, Table 2 and Figure 8) indicated distinct
hydrological processes between upslope and downslope. Unfortunately, we did not
collect tracer data and stem flow for 396 events and presentation or analysis of these
additional data seems not the scope of this paper. Besides data like stem flow and
tracer are not the scope this study. The scope of paper is the application of SOM into
big dataset of rainfall and soil moistures and interpretations of hillslope hydrological
processes about classification. Thanks for your understanding.

The manuscript requires substantial language editing. Technical corrections:

we corrected English from native speaker. Thanks,

L. 23: Please be more precise. According to Fig. 2 soil moisture was measured at 10
sites but at three different depths each.
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=> We corrected it into “30 points (three depths in 10 locations)”

L. 142: Were the trenches re-filled after installation of the soil moisture probes? If not,
how to deal with resulting artefacts?

=> Of course, we refilled all locations. Otherwise, how can 10 years monitoring can be
sustainable?

L. 186-188: Please be more precise. Logarithm transformation is one out of a set of
Box-Cox transformations. Did you apply other Box-Cox transformations as well? If so,
for which observables, and how? Besides, neither the logarithm nor other Box-Cox
transformations centralize the means of the variables to zero. Instead, these transfor-
mations are usually applied when Gaussian distribution is required. However, that is
not the case for any of the applied approaches.

=> Of course, we explored Box-Cox transformation and we adapted logarithmic trans-
formation simply because it provides the best result in terms of centralization (such as
smallest skewness). This is widely used transformation for centralization (see Salas
et al., 1988). Salas, J. D., Delleur, J. W., Yevjeuch, V., Lane, W. L., 1988. Applied
Modeling of Hydrologic Time Series. Water Resource Publication. Chelsea, Michigan.

L. 279-281: I do not understand why you select soil moisture measured at one single
point “as the representative soil moisture before the event for the SOM analysis”. That
introduces an unnecessary bias. Why not taking the mean of the values measured at
the different sites?

=> The selection of representative points based on temporal stability method had been
widely used and applied in the relationship among soil moisture points in many pa-
per. The measurement data for 10 years cannot be 100% perfect, there can be some
missing data and the perfect mean of every soil moisture points is not available for all
rainfall events. Therefore, the soil moisture of representative point was replaced for cal-
culating antecedent soil water condition. Again the temporal stability analysis is widely
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accepted approach for evaluation of mean soil moisture variation. However, we used
to this concept to delineate the representative point for antecedent soil moisture.

L. 574: “https://www.re3data.org/” is not a repository but gives an overview over nu-
merous repositories. Please be more precise: Where will the data be published?

Of course, if the paper is accepted, the data will be uploaded in open repository.

References: Some references are out of alphabetical order (Minet et al. 2013, Montero
and Vilar 2014, Zhu et al. 2014).

=> We corrected it. Thanks.

Fig. 5: Figure caption: Missing explanation of the lower panels (cf., caption of Tab. 1).

=> We largely revised captions in many figures. Figures 5. (a)–(j) Component planes of
variable weightings for the rainfall amount (a), antecedent soil moisture (b), soil mois-
ture difference indices for the upslope at depths of 10(c), 30(d), and 60 cm(e), rainfall
duration(f), rainfall intensity(g), and soil moisture difference indices for the downslope
at depths of 10(h), 30(i), and 60 cm(j).

Response to comments from Anonymous Referee #2

The authors propose the use of machine learning methods to identify clusters in hills-
lope scale recharge patterns during rainfall events at forested hillslope in Korea. The
idea is to explain those by different hydrological process patterns and to identify mon-
itoring sites which are most representative for the recharge clusters. The latter are
defined as those with the highest potential for unsupervised machine learning. The
underlying data base consists of 10 years hourly through fall and half hourly soil mois-
ture observations in 10, 30 and 60 cm depths in five replicated upslope and downslope
profiles. While I am very positive about the core idea underlying this study, I regret
to say that present implementation leaves quite a few open doors. These need to be
closed by improving the presentation quality of the manuscript but also the scientific
quality of the underlying analysis.
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1) The title should better reflect that manuscript content. The focus is on soil moisture
recharge events, not on rainfall runoff events, which was my initial expectation.

Thanks for your comments on title. “Characterization of hillslope soil moisture recharge
events using machine learning algorithm”

2) Sorry to be pedantic, but I think authors need to define a recharge event in their soil
moisture data set. Particularly, the endpoint is not so easy to define. And I would love
to see the soil water content time series to get a feeling for the events, and how they
look like.

Thanks for your suggestion. The time series of representative rainfall event of 7 clusters
are shown in following figures. We assumed the endpoint of recharge event when soil
moisture was varied less than 2 % (error bound of measurement) after the rainfall
events. This is not noted in the paper because this was not used in SOM application.

These figures will be posted supplementary part.

Figure for representative recharge events for 7 clusters

3) Is a dataset of roughly 400 events observed at 30 different locations big enough for
machine learning? In this respect I wonder how the inferred clusters will change when
reducing the length of their data set?

In section for Results 3.5, we showed the robustness of cluster delineation in SOM
algorithm with partial dataset except for each year. More than 90% agreements were
found between the projected cluster number in the SOM of the complete dataset and
that of the partial dataset (Figure 6). Cross-validation is a widely used method for
the validation of SOM classification(Chang et al., 2013; Huang et al., 2015; Kim et al,
2015).

Chang, F. W. Tsai, H. Chen, R. Yam, and E.E. Herricks, 2013, A self-organizing radial
basis network for estimating riverine fish diversity, Journal of Hydrology, 476, 280-289,
doi:10.1016/j.jhydrol.2012.10.038.
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Huang, J., J. Gao, and Y. Zhang, 2015, Combination of artificial neural network and
clustering techniques for predicting phytoplankton biomass of lake Poyang, China, Lim-
nology, 16, 179-191, doi: 10.1007/s10201-015-0454-7.

Kim, M., S. Baek, M. Ligaray, J. Pyo, M. Park, and K. Cho, 2015, Comparative studies
of different imputation methods for recovering streamflow observation, water, 7(12),
6847-6860, doi:10.3390/w7126663

The clustering SOM maps of yearly partial dataset were found to similar to the pattern
of SOM map with total dataset.

What important is not the number of events but whether the dataset was made with
similar portions of 7 clusters of total data set. For example, if we made a dataset delib-
erately leaving out events for cluster 6 out of total dataset (371 events), then obviously
the classification can be different to total dataset. In other words, the important matter
is whether the sample well represents the population or not. As shown in following
figure, if we made identical percentage of 7 clusters in samples, the classification of 7
clusters were identical even in 50 number of events.

Figure for SOM with different numbers of samples

Additionally, we also check the robustness in the patterns of component plane depend-
ing on the length of dataset. There are no significant pattern changes in duration,
intensity, amount, antecedent soil moisture, soil moisture variation at 30cm and 60cm
on down- and up- slope area even in 50 samples.

Figure for patterns of component planes with 50 samples

Therefore, if the events in sample is composed of identical portion of 7 cluster events to
those of population, the machine learning clustering of different samples (50<n<350)
provide identical results to those of population.

We added in the context “Further validation practices for various number of events,
SOM with small event numbers (n=100) provided very similar classification results to
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the that of 396 events, if the portions of 7 clusters in dataset are identical. .”

4) I am not sure whether I properly understood Eq.1. Does the spatial average relate to
a constant depth? In this case it describes spatial fluctuations around a spatial average
at a fixed time based on a sample size of 10. The estimation variance of the average
still pretty large. Do the authors regard this sample as large enough to characterize the
average soil water content of the hillslope?

Equation 1 is used for calculation of all sensors in all depths. Of course, more data
will be better (Ran et al., 2017). We actually have more data but they cannot be used
simply we leave out other data because reliable data quality control for 10 years for
only 30 points. Actually, there were several studies for representative point with similar
numbers of data point (n=10) (Wei et al., 2017; Jia et al., 2013).

Wei, L., J. Dong, M. Gao, and X. Chen, 2017, Factors controlling temporal stability
of surface soil moisture: a watershed-scale modelling study, Vadose zone, 16(10),
doi:10.2136/vzj2016.12.0132.

Jia, Y., M. Shao, and X. Jia, 2013, Spatial pattern of soil moisture and its temporal
stability within profiles on a loessial slope in northwestern china, Journal of Hydrology,
495, 150-161, doi: 10.1016/j.jhydrol.2013.05.001.

Ran, Y., X. Li, R. Jin, J. Kang, and M.H. Cosh, 2017, Strengths and weaknesses of
temporal stability analysis for monitoring and estimating grid-mean soil moisture in a
high-intensity irrigated agricultural landscape, Water Resources Research, 53, 283-
301, doi:10.1002/2015WR018182.

5) Or does Eq. 1 relate to all sensors in all depth? This makes for me not too much
sense as the soil water content in different depths belongs to different ensembles! The
soil is a low pass filter. I also wonder whether up and downslope soil water content be-
long to the same ensemble. As water flows downslope, downslope sensors might ex-
perience wetting by subsurface flow and infiltration, the upslope ones not. This speaks
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for different ensembles. This also comes into my mind when looking at Figure 3. DO
5-30 is surely another ensemble than UP 3-10.

As reviewer point out, ensemble of soil moisture for temporal stability depend on depth
and seasonal feature. Actually, we had selected the representative points for three
different depths and the representative points for antecedent moisture were delineated
and their component planes for ASM-10, ASM-30, and ASM-60 were evaluated (see
Figure below). As you can see in this figure, no systematic difference between different
depths of ASM can be found. In other words, implementation of 3 ASM for machine
learning algorithm can be redundant. Considering the purpose of ASM for machine
learning application, one ASM with least RMSE and lowest ITS is more appropriate for
ASM consideration. Again, this is not for finding mean soil moisture but to delineate
the most appropriate point for ASM evaluation

Figure for component planes for three different depths.

Following table showed RMSEs to mean soil moisture for all points. The point UP3-10
showed the minimum RMSE and ITS. We used UP3-10 as a representative point for
ASM in machine algorithm in the paper. .

Table for RMSE for all points

6) The robustness of this index requires that the measurement errors of individual
observations and the error of the average do not overlap? This is also important for
judging whether clusters are properly separated or not.

We used the MiniTRASE system(TDR) (probably one of most delicate and expensive
TDR machines in market) for soil moisture observation having 2% error bound. We
did not move the waveguide and the measurement seems consistent during mea-
surement period. Of course, we did some experimental validation in the beginning
of measurement campaign. There are more than 10 publications about soil moisture
measurements and analysis for this hillslope (hydrological processes, journal of hydrol-
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ogy, water resources research). Soil moisture equipment corporation, 2005, TRASE
operating instruction. Santa Barbara, CA.

7) I am not sure, whether the MRDi does what it should. It can be zero for a sensor if
it alternately shows positive and negative deviation from the spatial average, which are
of the same magnitude. This surrogates stability, which is not there.

It could be zero in your case. But it is rarely happens in temporal stability processes
with long time series datasets. The ITS with MRD and SDRD had been used for repre-
senting temporal stability in soil moisture measuring systems(Zhao et al., 2010). The
contribution of MRD and SDRD in ITS can be changed depending on soil moisture
measuring environmental characteristics. There seemed not many studies for only use
MRD. That’s why we select ITS as temporal stability.

Jia et al., 2013 indicated that “The value of the mean relative difference(MRD) for a
point at a particular depth quantified whether that point was wetter or drier than the
areal mean at the same depth. The standard deviation of the relative difference(SDRD)
characterized the variability of relative difference at that point within the experimental
period”

Jia, Y, M. Shao, X. Jia, 2013, Spatial pattern of soil moisture and its temporal stability
within profiles on a loessial slope in northwestern China, Journal of Hydrology, 495,
150-161, http://dx.doi.org/10.1016/j.jhydrol.2013.05.001.

Following table showed MRD, SDRD and ITS for our dataset.

Table for MRD SDRD ITS for all points

8) For me the most stable sensor has the smallest dTheta/dt. The presented indices are
tailored to pick the sensor closed to the spatial mean. This is not the same, particularly
if the average is seasonally changing. As said, it would be very helpful to provide soil
moisture time series for the observation period. This would also allow the reader to
judge the temporal stability of soil water content visually.
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As far as we understand about the temporal stability from existing studies, it is not
about local temporal variation but the relative variability to the spatial mean of soil
moisture(Penna et al., 2013).

We agree your opinion that the temporal stability depends on seasonal feature and
soil condition. However, the purpose of this paper is not about prediction of mean soil
moisture but the most appropriate point for ASM.

The main reason to apply temporal stability to our sampling site is selection of repre-
sentative point. Because there were some missing measurements in the time series of
soil moisture, the average of antecedent soil moisture was changed depending on the
missing measurements in our sampling sites. Since the representative point based on
temporal stability have shown the point can follow the trend of average soil moisture
and higher estimation ability about soil moisture average in previous researches, we
used the UP3-10 for as an indicator for antecedent wetness without the missing data
impacts. RMSE between mean of soil moisture and UP3-10 was minimum out of all
points. Therefore, the reason why we select UP3-10 as the representative value of
antecedent wetness condition. Table(above) showed RMSE for all points.

In order to clarify the paper on the context of ASM, the Figure 2 in previous version of
paper is removed. Thanks for your understanding

Regrading to the raw data, we are welcome to share our data for possible co-work.

Penna, D., L. Brocca, M. Borga, and G. Dalla Fontana, 2013, Soil moisture temporal
stability at different depths on two alpine hillslopes during wet and dry periods, Journal
of Hydrology, 477(16), 55-71, doi:10.1016/j.jhydrol.2012.10.052.

9) Reusser et al. (2009) used SOMS to cluster error measures into groups. What was
very helpful to interpret the SOMS areas was their use of well-defined errors, which
were classified into different parts of the SOM. Based on that the authors came up with
a prosaic description of the errors/clusters (peak to small, recession to long, negative
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volume bias etc). Maybe the authors can show typical events in the different cluster, to
make those much more intuitive to the readers.

Reusser et al., gave us insight of applying the self-organizing map(SOM) to hydrolog-
ical time series data in diagnostics and evaluation of model prediction. This method
could help in classifying the rainfall events with small amounts. However, it is difficult to
identify whether the slight increase in soil moisture is due to rainfall input or measure-
ment error.

The measurement error before and after the rainfall event cannot be different. We
interested the variation of soil moisture through the soil moisture different index and
the measurement error will not be influence equation (4). In equation (4), we make
difference between maximum soil moisture and antecedent moisture. Assuming the
measurement error for these two terms is identical (from same machine), the impact
of measurement error can be neglected. The measurement error of machine is less
than 2 % in Vol. soil moisture. We attached the typical events of different cluster in
supplementary material.

Technical points: - Line 64: “can be differently appeared”- please reformulate.

It is corrected as “can be different”.

- Line 64: “The functional relationship between 64 rainfall and soil water storage had
been studied (Brocca et al., 2005; Castillo et al., 2003; Xie and Yang, 2013), but how
the rainfall features such as rainfall amount, intensity, duration and antecedent soil
moisture condition influence hydrological processes and their distributions at the hills-
lope scale had not been explored yet”. Please be precise hydrological processes is too
broad.

It is corrected as “the generation of hillslope flow paths such as vertical flow and lateral
flow”

- Line 69: This is Wienhöfer and Zehe (2014),
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We changed into 2014.

- Machine learning techniques, particularly SOMS have been extensively used in the
field of model diagnostics (e.g. Herbst and Casper HESS 2008; Reusser et al. HESS
2009).

We added “, hydrological model performance diagnostics (Herbst and Casper, 2008;
Reusser et al., 2009” to line 80.

Reusser, D.E., T. Blume, B. Schaefli, and E. Zehe, 2009, Analysing the temporal dy-
namics of model performance for hydrological models, Hydrol Earth Syst. Sci., 13,
999-1018, https://doi.org/10.5194/hess-13-999-2009. Herbst, M., and M.C. Casper,
2008, Towards model evaluation and identification using self-organizing maps, Hydrol
Earth Syst. Sci., 12, 657-667, https://doi.org/10.5194/hess-12-657-2008.

- Please make sure that figure captions are informative, currently the information con-
tent is often too low. .

Thanks. we corrected captions as follows;

Figure 2. Soil moisture measurements for representative points (UP3-10) and the least
temporally stable point (DO5-30) for the average soil moisture from 30 measurement
points. RMSE and R2 were 1.72 and 0.90 for UP3-10 and 9.0 and 0.45 for DO5-60,
respectively.

Figure 3. Structure of the (a) dendrogram for seven clusters using Ward’s method and
(b) SOM classifications in 96 neurons through a 16 × 6 matrix.

Figures 4. (a)–(j) Component planes of variable weightings with SOM clustering for
the rainfall amount (a), antecedent soil moisture (b), soil moisture difference indices
for the upslope at depths of 10 cm(c), 30 cm(d), and 60 cm(e), rainfall duration(f),
rainfall intensity(g), and soil moisture difference indices for the downslope at depths of
10 cm(h), 30 cm(i), and 60 cm(j).
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Figure 5. 2D array expression of k-fold ciess validation (k=10 years) by event projec-
tions for the summation of 10 SOMs of partial datasets to the SOM of the complete
dataset.

Figure 6. A C4.5 decision tree of soil moisture difference indices (numbers in boxes)
for hydrologic event classification. Depending on the threshold of soil moisture at a
specific point noted in each box, the decision tree either go to left (Y) and right (N).

Figure 7. Statistical distributions in box plot of component vectors for (a) rainfall char-
acteristics and antecedent soil moisture, (b) upslope volumetric soil moisture, and (c)
downslope volumetric soil moisture for the SOM classification.

- Line 272: typo higher Thanks. we corrected it.

- Figure 3: DO5 30 has soil moisture values larger than 50%, what is the porosity of the
soil? The soil moisture time series were measured using a multiplex based time domain
reflectometer for 10 locations upslope (UP1âĂŠUP5) and downslope (DO1âĂŠDO5).
At each location, three TDR sensors were inserted parallel to the surface at depths of
10, 30, and 60 cm at the upslope side of an installation trench. Average of soil porosi-
ties in the study area were 48.85% for upslope and 47.87% for downslope. Also the
bulk density is 1.375 g/cm3 for upslope and 1.371 g/cm3 for downslope. Soil moisture
greater than 50 % was rarely found under extreme events in rainy season. We believe
this may be associated with development of substantial pipeflow in downslope part in
extreme events.

We sincerely express our deep appreciation to two reviewers and editorial members of
HESS.

Sincerely,

Sanghyun Kim, Prof. Dept. of Environmental Engineering Pusan National University
kimsangh@pusan.ac.kr
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Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-
121, 2019.
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Fig. 1. Figure for cluster dendrogram
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# of clusters Sum of square Coefficient delta 

1 8767491  

2 4455593 4311897.58 

3 3207137 1248456.58 

4 2395312 811824.39 

5 1988096 407216.49 

6 1688206 299889.83 

7 1521255 166950.81 

8 1383726 137529.06 

9 1285079 98647.41 

10 1212425 72653.42 

 

Fig. 2. Table for cluster number and delta
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Cluster 1 Cluster 5 

  

Cluster 2 Cluster 3 

  

Cluster 4 Cluster 6 

 

 

Cluster 7  

 

Fig. 3. Figure for representative recharge events for 7 clusters
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Fig. 4. Figure for SOM with different numbers of samples
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Fig. 5. Figure for patterns of component planes with 50 samples
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Fig. 6. Figure for component planes for three different depths.
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30 

UP2-
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30 

UP3-

60 

UP4-

10 

UP4-

30 

UP4-

60 

UP5-

10 

UP5-

30 

UP5-

60 

RMSE 5.93 6.19 4.99 3.38 3.56 4.67 1.72 3.18 4.28 7.33 4.61 4.31 2.37 2.18 2.16 

 DO1

-10 

DO1

-30 

DO1

-60 

DO2

-10 

DO2

-30 

DO2

-60 

DO3

-10 

DO3

-30 

DO3
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DO4

-10 

DO4

-30 

DO4

-60 

DO5

-10 

DO5

-30 

DO5

-60 

RMSE 6.39 3.21 7.88 3.58 4.96 5.77 4.95 4.49 3.14 1.98 1.82 6.07 3.32 8.73 9.00 

 

Fig. 7. Table for RMSE for all points

C33

 

 

 UP1-

10 

UP1-

30 

UP1-

60 

UP2-

10 

UP2-

30 

UP2-

60 

UP3-

10 

UP3-

30 

UP3-

60 

UP4-
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UP5-

10 
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60 

MRD(%) -37 -40 -30 -17 -25 -31 4 5 -28 -49 -29 -26 12 5 -5 

SDRD(%) 12 10 18 17 12 18 13 20 15 15 13 16 19 15 16 

ITS(%) 39 42 34 24 28 35 13 21 32 51 32 31 22 16 17 

 DO1
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DO1
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DO3

-60 

DO4

-10 

DO4

-30 

DO4

-60 

DO5

-10 

DO5

-30 

DO5

-60 

MRD(%) 39 10 45 -12 29 42 -17 27 15 -9 -4 36 -6 39 55 

SDRD(%) 22 18 21 18 20 25 26 15 16 12 14 24 22 52 32 

ITS(%) 45 21 50 22 35 48 31 31 22 15 14 43 23 65 64 

 

 

 

Fig. 8. Table for MRD SDRD ITS for all points
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