Supporting Information: groundwater - meltwater interaction in proglacial aquifers

Brighid É Ó Dochartiagh¹, Alan M. MacDonald¹, Andrew R. Black², Jez Everest¹, Paul Wilson³, W. George Darling⁴, Lee Jones⁵, Mike Raines⁵

1 British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, United Kingdom

2 University of Dundee, School of Social Sciences, Dundee DD1 4HN, United Kingdom

3 Geological Survey of Northern Ireland, Dundonald House, Upper Newtownards Road, Belfast BT4 3SB, United Kingdom

4 British Geological Survey, Maclean Building, Wallingford OX10 8BB, United Kingdom

5 British Geological Survey, Environmental Science Centre, Keyworth NG12 5GG, United Kingdom

Correspondence to: Alan M. MacDonald (amm@bgs.ac.uk)

ID	Easting	Northing	screen depth (m)	Test length (min)	Test yield (m ³ d ⁻¹)	Maximum drawdown (m)	$T(m^2d^{-1})$	Comments
U1	63.959056	-16.836639	10.9–13.9	300	95.04	3.81	100	
U2	63.959417	-16.837833	9.2–10.2; 12.2–13.2	225	138.24	0.7	600	
M1	63.954194	-16.848306	11.4–14.4	300	112.32	3.46	200	
M2	63.955000	-16.848583	12.2–14.2	225	95.04	3.7	150	
M3	63.958028	-16.850083	8.25–14.25	230	120.96	0.85	600	
L1	63.942472	-16.857083	5.5–11.5	360	43.2	7.02	80	Test results affected by poor borehole construction
L2	63.943833	-16.858222	4.8–7.8	244	157.248	0.38	2500	
L3	63.946694	-16.860500	4.9–7.9	215	150.336	0.42	2000	

Table S1 Summary of sandur piezometer locations, construction and test pumping data.

Test ID	Northing	Easting	Hole depth (mm)	Hole diameter (mm)	5 cm head infiltration rate (cm s ⁻¹)	Kfs (m d ⁻¹)
Site 1	63.95299	-16.84898	120	65	0.12	14.83
Site 2	63.95345	-16.84853	140	70	0.85	96.62
Site 3	63.95390	-16.84837	100	60	0.86	109.4
Site 4	63.95451	-16.84773	140	65	1.07	124.4
Site 5	63.95491	-16.84679	120	60	0.3	36.58
Site 6	63.95500	-16.84690	140	60	0.5	59.62
Site 7	63.95700	-16.84710	140	50	0.04	5.47
Site 8	63.95511	-16.84616	100	120	1.2	72.86
Site 9	63.95634	-16.84602	120	60	0.69	77.47
Site 10	63.95759	-16.84697	120	50	0.74	94.46
Site 11	63.95760	-16.84500	150	100	0.45	30.96
28/8(1)	63.94364	-16.85847	110	80	0.21	22.03
28/8(2)	63.94381	-16.85700	140	80	0.45	47.23
30/8(1)	63.94114	-16.85653	150	60	0.08	10.96
30/8(2)	63.93800	-16.85750	150	100	0.7	59.20
30/8(3)	63.94100	-16.85781	150	70	0.12	14.27
30/8(4)	63.94092	-16.85789	150	100	0.25	21.18
30/8(5)	63.94272	-16.85789	150	70	0.42	49.84
7/9(1)	63.94261	-16.85475	110	60	0.8	108.7
7/9(2)	63.94275	-16.85450	120	70	1.07	126.9

Table S2Summary of saturated hydraulic conductivity measurements for sandur aquifer from directinfiltration tests to 0.15 m depth.

Test ID	Northing	Easting	Hole depth	Hole size	d10	K m/d
			(m)	(mm)		
A1.1.1	63.95911	-16.83670	0.46	1000*500	0.67	38.25
A1.1.2	63.95911	-16.83675	0.46	1000*500	0.19	14.13
A1.2.1	63.95914	-16.83667	0.43	800*500	0.27	18.65
A1.2.2	63.95913	-16.83667	0.43	800*500	0.19	14.13
A2.1.1	63.95936	-16.83811	0.45	850*500	0.48	29.39
A2.1.2	63.95936	-16.83811	0.45	850*500	0.4	25.45
A2.2.1	63.95936	-16.83819	0.45	700*400	0.4	25.45
A2.2.2	63.95936	-16.83819	0.45	700*400	0.41	25.95
B1.1.2	63.95614	-16.84236	0.46	450*560	0.7	39.59
B1.2.1	63.95619	-16.84228	0.46	1000*650	1.8	83.50
B1.2.2	63.95619	-16.84228	0.46	1000*650	0.8	44.00
B2.1.1	63.95761	-16.84492	0.4	850*500	0.63	36.43
B2.1.2	63.95761	-16.84492	0.4	850*500	0.63	36.43
B2.2.1	63.95761	-16.84503	0.48	870*660	1.05	54.54
B2.2.2	63.95761	-16.84503	0.48	870*660	0.63	36.43
B3.1.1	63.95867	-16.84628	0.3	960*500	0.32	21.33
B3.1.2	63.95867	-16.84628	0.3	960*500	0.29	19.74
C1.1	63.95419	-16.84831	0.45	600*450	0.7	39.59
C1.2	63.95419	-16.84831	0.45	600*450	0.67	38.25
C2.1	63.95500	-16.84858	0.45		0.65	37.34
C2.2	63.95500	-16.84858	0.45		0.65	37.34
C3.1	63.95803	-16.85008	0.45	500*300	0.35	22.90
D1.1	63.94631	-16.85231	0.45	700*500	0.6	35.05
D1.2	63.94631	-16.85231	0.45	700*500	0.6	35.05
D2.1	63.94758	-16.85486	0.45	750*500	0.58	34.13
D2.2	63.94758	-16.85486	0.45	750*500	0.57	33.66
D3.1	63.94869	-16.85711	0.45	700*650	0.7	39.59
D3.2	63.94869	-16.85711	0.45	700*650	0.6	35.05
E1.1	63.94253	-16.85747	0.45	770*660	0.7	39.59
E1.2	63.94253	-16.85747	0.45	770*660	0.7	39.59
E2.1	63.94383	-16.85808	0.47	600*500	0.4	25.45
E2.2	63.94383	-16.85808	0.47	600*500	0.4	25.45
E3.1	63.94664	-16.86064	0.48	670*550	0.4	25.45
E3.2	63.94664	-16.86064	0.48	670*550	0.4	25.45
F1.1	63.93950	-16.86256	0.44	640*620	0.5	30.35

Table S3 Summary of hydraulic conductivity measurements from particle size analysis of sandur aquifer sediment samples to 0.5 m depth. Hydraulic conductivity calculated using MacDonald et al. (2012).

Northing	Easting	Hole depth	Hole size	d10	K m/d
		(m)	(mm)		
63.93950	-16.86256	0.44	640*620	0.65	37.34
63.94044	-16.86561	0.52	610*490	0.55	32.73
63.94044	-16.86561	0.52	610*490	0.55	32.73
63.94142	-16.86928	0.43	560*410	0.05	4.92
63.94142	-16.86928	0.43	560*410	0.65	37.34
63.94197	-16.87069	0.4	440*360	0.25	17.55
63.94197	-16.87069	0.4	440*360	0.25	17.55
	Northing 63.93950 63.94044 63.94044 63.94142 63.94142 63.94197 63.94197	NorthingEasting63.93950-16.8625663.94044-16.8656163.94044-16.8656163.94142-16.8692863.94142-16.8692863.94197-16.8706963.94197-16.87069	Northing Easting Hole depth (m) 63.93950 -16.86256 0.44 63.94044 -16.86561 0.52 63.94044 -16.86561 0.52 63.94044 -16.86561 0.52 63.94044 -16.86561 0.43 63.94142 -16.86928 0.43 63.94142 -16.87069 0.4 63.94197 -16.87069 0.4	Northing Easting Hole depth Hole size (m) (mm) 63.93950 -16.86256 0.44 640*620 63.94044 -16.86561 0.52 610*490 63.94044 -16.86561 0.52 610*490 63.94044 -16.86561 0.52 610*490 63.94142 -16.86928 0.43 560*410 63.94142 -16.86928 0.43 560*410 63.94197 -16.87069 0.4 440*360 63.94197 -16.87069 0.4 440*360	Northing Easting Hole depth Hole size d10 (m) (mm) (mm) (mm) 0.65 63.93950 -16.86256 0.44 640*620 0.65 63.94044 -16.86561 0.52 610*490 0.55 63.94044 -16.86561 0.52 610*490 0.55 63.94044 -16.86561 0.52 610*490 0.55 63.94044 -16.86928 0.43 560*410 0.05 63.94142 -16.86928 0.43 560*410 0.65 63.94197 -16.87069 0.4 440*360 0.25 63.94197 -16.87069 0.4 440*360 0.25

Figure S1. Log H/V from Tromino passive seismic surveys (see Methods). (a) Upper Sandur (b) Lower Sandur and (c) transect away from the glacier margin at the neighbouring sandur at Svinafellsjokul

Table S4 Summary of selected chemical parameters, temperature and stable isotopes of river water and of groundwater in sandur aquifer in individual piezometers (piezometer locations in Fig. 1) and all springs grouped together. Data from six sampling campaigns (three summer and three winter); annual means calculated by weighting seasonal means to season length (summer = 0.42; winter = 0.58), except temperature data for piezometer groundwater: data derived from continuous monitoring in piezometers at 15 minute intervals for 34 months, at 7–8.4 m depth; annual mean unweighted. sd – standard deviation of whole dataset; n – number of samples.

	SEC µS cm ⁻¹		HCO ₃ mg l ⁻¹			Temperature °C			δ ¹⁸ O‰			δ2Η‰			
	Mean ¹	sd	n	Mean ¹	sd	n	Mean ²	sd	n	Mean ¹	sd	n	Mean ¹	sd	Maean ¹
U1	62.58	14.10	6	28.77	6.23	5	2.35	0.75	115274	-10.2	0.2	6	-72.0	2.1	6
U2	98.85	10.53	5	44.42	1.03	4	4.94	0.10	115169	-8.0	0.04	5	-59.1	0.7	5
M1	69.59	8.91	5	31.49	1.71	4	5.01	1.30	115209	-9.4	0.3	5	-67.4	2.6	5
M2	78.37	13.04	5	36.51	3.13	4	5.26	1.06	115095	-8.7	0.4	5	-63.5	3.9	5
M3	78.21	13.99	5	37.03	4.02	4	4.69	1.06	114905	-8.3	0.6	5	-60.0	4.2	5
L1	62.75	6.21	5	27.33	2.72	4	3.39	0.98	114841	-10.6	0.1	5	-74.2	1.0	5
L2	55.39	6.10	5	25.59	0.3	4	3.19	1.39	114866	-10.7	0.4	5	-75.2	3.4	5
L3	96.14	6.98	5	47.68	3.58	4	4.65	0.17	114671	-8.9	0.2	5	-63.5	1.3	5
Springs	68.18	21.34	23	32.64	7.16	4	6.05	3.55	21	-9.1	1.0	23	-64.8	7.0	23
River	43.00	10.51	19	20.66	5.43	9	1.69	0.65	16	-10.9	0.4	19	-76.1	2.6	19

¹Weighted annual mean

² Weighted annual mean for springs and river; unweighted for piezometers