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Abstract Initial condition can impact the forecast precision especially in a real-time 6 

forecasting stage. The discrete linear cascade model (DLCM) and the generalized Nash 7 

model (GNM), expressed in different ways, are both the generalization of the Nash 8 

cascade model considering the initial condition. This paper investigates the relationship 9 

and difference between DLCM and GNM both mathematically and experimentally. 10 

Mathematically, the main difference lies in the way to estimate the initial storage state. 11 

In the case of n=1, it was shown theoretically that the difference between the two 12 

models is whether the current outflow is estimated (DLCM) or observed (GNM). The 13 

GNM is the unique solution of the Nash cascade model with a non-zero initial condition, 14 

while the DLCM is an approximate solution and it can be transformed to the GNM 15 

when the initial storage state is calculated by the approach suggested in the GNM. At 16 

last, a test example obtained by the solution of the Saint-Venant equations is used to 17 

illustrate this difference. The results show that the GNM provides a unique solution 18 

while the DLCM has multiple solutions depending on the estimate accuracy of the 19 

current state. 20 
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1. Introduction 23 

In hydrology, the concept of linear reservoir cascade suggested by Nash (1957) is 24 

widely used in connection with the mathematical modeling of surface runoff. Several 25 

Nash cascade based models have been developed to model the rainfall runoff process 26 

and river flow routing (Yan et al., 2015). In the original linear reservoir cascade model, 27 

the initial storage of each reservoir is assumed to be zero, or equivalently the reservoirs 28 

are empty. The initial state is usually thought to be insignificant in the forecasting as its 29 

effect will vanish after a sufficiently long simulation time. But for some short time 30 

prediction situations, just like the identification of the impulse-response function and 31 

the real-time forecasting, the initial state will produce relatively great impact. Szollosi-32 

Nagy (1982) formulated a state-space description of the Nash cascade model i.e. the 33 

discrete linear cascade model (DLCM) in a matrix form whereby the initial state was 34 

included that can be thought of a generalization of the Nash cascade model. The 35 

determination of the initial state of the DLCM was then proposed by Szollosi-Nagy 36 

(1987) via observability analysis. The DLCM was discretized originally in a pulse-data 37 

system framework which seems more suitable for the irregularly changing precipitation 38 

but not necessarily for the gradually changing streamflow. Under a linear change 39 

assumption of the input, the DLCM was extended by Szilagyi (2003) to a sample-data 40 

system framework. Since then, Szilagyi and his team have made great effort to develop 41 

this model (Szilagyi, 2006; Szilagyi and Laurinyecz, 2014). With so many advantages 42 
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that have been summarized by Szilagyi (2006), the DLCM has been in operational use 43 

for over 30 years in Hungary. However, it has not yet been applied more broadly except 44 

in Hungary, or furthermore by Szilagyi and his team. One possible reason may be due 45 

to the complicated mathematical expression and calculation. The development of a 46 

simpler expression of the DLCM is necessary to make it more popular and applicable 47 

in practice. 48 

2. Relationship between the DLCM and the GNM 62 

In the derivation of the DLCM, a state-space matrix approach was used. The state 63 

and output equations of the Nash cascade model are formulated as follows (Szollosi-64 

49 Recently, Yan et al. (2015) published a paper “The generalized Nash model for river 

50 flow routing” in Journal of Hydrology. In that paper, the Laplace transform and the 

51 principle of mathematical induction were used to solve the nth order nonhomogeneous 

52 linear ordinary differential equation (NLODE) of the Nash cascade model with a non-

53 zero initial condition. The generalized Nash model (GNM), i.e. the analytical solution, 

54 with a simpler expression of the Nash cascade model was obtained. What’s more, the 

55 GNM has been physically interpreted, which makes it to be a conceptual model and not 

56 only a mathematical formulation. The DLCM was also obtained from the Nash cascade 

57 model with the same initial condition. But whether the expressions or the simulation 

58 results of these two models are differently exhibited. There may be some confusions to 

59 the model users. It is necessary to distinguish these two models for the users. Hence, 

60 this paper try to investigate the relationship and difference between DLCM and GNM 

61 both mathematically and experimentally.  
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Nagy, 1982; Szilagyi, 2003) 65 
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where S(t) is the storage state vector and denotes the stored water volumes of the n 68 

linear cascade reservoirs,  69 
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           (3) 70 

is the state transition matrix, t0 is the initial time, K is the storage coefficient, 71 

G=[1,0,……,0]T, I(.) is the instantaneous inflow of the first reservoir, O (t) is the 72 

outflow, and H=[0,0,……,1/K].  73 

Combining Eqs. (1) and (2) and assuming t0=0, one obtains (Szilagyi, 2006) 74 

0
( ) ( ,0) (0) ( ) ( )

t

O t t u t I d    HΦ S                 (4) 75 

where u(.) is the instantaneous unit hydrograph.  76 

Eq. (4) is the basic formula for DLCM. For the discrete streamflow data system, 77 

assuming that both input and output are sampled at equidistant sampling intervals t , 78 

the recursive form of the DLCM can be written as follows (Szilagyi, 2006) 79 

 ( ) ( ,0) ( ) ( ) ( )
t t

t
O t t t t u t t I d  



     HΦ S          (5) 80 

Once the initial storage state vector S(0) is obtained, the outflow can be estimated 81 

recursively by using Eqs. (1) and (5). The identification of S(0) is an inverse problem, 82 

which can be computed by inverting Eq. (4) and from the first n input-output pairs, as 83 
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originally proposed by Szollosi-Nagy (1987) and Szilagyi (2003), i.e. 84 
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That’s the complete procedure of the DLCM. It is a discrete solution of the Nash 90 

cascade model. Actually, the initial storage state vector S(0) can be calculated by 91 

another simpler approach that has been proposed by Yan et al. (2015). From the linear 92 

storage-outflow relationship suggested in the Nash cascade model, we have 93 

 1 2(0) (0), (0), , (0)
T

nKO KO KOS                 (9) 94 

where (0) ( 1, , )jO j n  is the initial outflow of the jth reservoir and can be 95 

computed by (Yan et al., 2015) 96 
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where ( )(0) iO is the ith derivative of (0)O , and 98 
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is the combination formula. Note that (0)nO  is equal to the initial downstream outflow 100 

(0)O . Then  101 
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Note that ( ,0) (0)tHΦ S  is just equal to R0(t) that has been defined in the GNM (Yan 104 

et al., 2015). Substituting Eqs. (3) and (9) into Eq. (4) gives  105 
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That’s just the GNM that has been proposed by Yan et al. (2015). Hence, the DLCM 107 

can be transformed to the GNM when the initial storage state is calculated by the linear 108 

storage-outflow relationship.  109 

3. Difference between the DLCM and the GNM 110 

The main difference between the two models lies in the estimation of the initial 111 

storage state. In the DLCM, the initial storage state S(0) is expressed as a function of 112 

the first n input-output pairs, while in the GNM, it is expressed as a function of the ith 113 

derivative of the initial outflow.  114 

To further illustrate this difference, take the special case of n=1 as an example. In 115 

the DLCM, the initial storage S(0) can be estimated by (Szollosi-Nagy, 1987) 116 
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It is suggested that the initial storage is estimated by the input/output pair [I(0), 118 

( )O t ]. In fact, when n=1, the river flow routing system can be described by the 119 

following NLODE (Szollosi-Nagy, 1982; Yan et al., 2015) 120 

'( ) ( ) ( )KO t I t O t                           (15) 121 

It is easy to get the solution of this NLODE with a result of 122 

0
( ) (0) ( ) ( ) .
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t
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Provided that I(t) is taken to be constant at the value it obtains at time t, in the [t, t+124 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-115
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 28 March 2019
c© Author(s) 2019. CC BY 4.0 License.



7 

 

t ] interval (Szilagyi, 2003), for one step ahead, we obtain 125 

( ) (0) (1 ) (0)
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Then the initial outflow can be estimated by 127 
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                  (18) 128 

where (0)estO  is the estimated initial outflow. 129 

Combing equations (14) and (18), yields 130 

(0) (0)estS KO                            (19) 131 

On contrary, in the GNM, the initial state is directly obtained by equation (9) based 132 

on the concept of linear reservoir with a result of  133 

(0) (0)obsS KO                           (20) 134 

where (0)obsO  is the observed initial outflow. 135 

Comparison of Eqs. (19) and (20) shows that the difference between the two models 136 

in the case of n=1 lies in the fact that whether the initial outflow is estimated or observed. 137 

In the DLCM, the initial outflow O(0) is estimated by the observed input/output pair 138 

[I(0), ( )O t ], as shown in Eq. (18). In fact, at initial time, the outflow for the next time 139 

step ( )O t  is still unknown, while the observed initial outflow O(0) is available at 140 

that time and doesn’t need to be estimated. Instead, this observed value is directly used 141 

in the GNM. Theoretically, they are equivalent with the same numerical values if no 142 

predict error exists. However, the predict error is virtually inevitable. Though this error 143 

may be ignored in some cases, it’s at least a truth for a real-time forecasting that the 144 

estimation of the current state S(t) depends on the current inflow I(t) and the outflow 145 

for the next time step ( )O t t   when the recursive DLCM is employed according to 146 
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Eq. (5). It seems paradoxical because the outflow for the next time step ( )O t t   is 147 

still unknown at the current time and is to be predicted by using the current state S(t). 148 

The approach used in the DLCM to deal with this paradox is to estimate the current 149 

state S(t) by applying the transition matrix to the initial state from Eq. (1). In the case 150 

of n=1, S(t) calculated from Eq. (1) can be simplified as follows 151 

0
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where S(0) is estimated by Eq. (14). Then the recursive DLCM can be written as 153 
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It is suggested from Eq. (21) that the current state S(t) depends to some extent on 157 

the initial state S(0), or equivalently, the current state is not unique since any time before 158 

current time can be taken as the initial time. As a result, the outflow for the next time 159 

step ( )O t t   determined by S(t) and I(t) from Eq. (22) will have multiple solutions. 160 

While in the recursive GNM, the current state is uniquely determined by the current 161 

outflow O(t) according to Eq. (9) in which the initial time is set to the current time. In 162 

this case, the recursive GNM has the following unique expression 163 

( ) ( ) (1 ) ( )
t t
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Comparison of Eqs. (22) and (23) suggests that the only difference between the 165 

recursive form of the two models in the case of n=1 lies in whether the current outflow 166 

is estimated or observed. Similarly, for n>1, the current outflow of the last reservoir 167 
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(i.e. nth reservoir) in the Nash model is also estimated rather than observed in the 168 

DLCM. Hence, the DLCM is an approximate solution but not the exact solution of the 169 

Nash cascade model. As an analytical solution, the GNM is applicable to the natural 170 

continuous streamflow system. However, in practice, the streamflow data are usually 171 

discretely measured. The derivative term in the GNM doesn’t exist in the discrete 172 

streamflow data system. To make the GNM practically applicable, the numerical 173 

calculation approach such as the finite difference method is often used. While the 174 

DLCM, as a discrete solution, can be directly applied to the discrete streamflow data 175 

system. 176 

4. An illustrative example 177 

A test example was used to further illustrate this difference. This example was 178 

obtained by numerically integrating the Saint-Venant equations of open channel flow 179 

over a rectangular channel of L=120 km in length, B = 20 m in width and a constant 180 

channel slope S0 = 0.0002. The Manning’s roughness parameter n0 was set to 0.004 for 181 

the entire length of the channel. The upstream boundary condition was defined by the 182 

following inflow hydrograph (Camacho and Lees, 1999) 183 

1

1 1 /
( ) ( ) exp

1

p

b p b

p

t tt
I t I I I

t
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                (23) 184 

where Ib is the initial steady flow (100 m3/ s) in the reach; Ip is the peak flow (300 m3/ 185 

s); tp is the time to peak (20 h) and γ is the skewness factor (1.2). The downstream 186 

boundary condition, fixed at 120 km downstream, was defined by a looped-rating curve 187 

based on the Manning equation for normal flow.  188 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-115
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 28 March 2019
c© Author(s) 2019. CC BY 4.0 License.



10 

 

The hydrograph was routed to distances of 20, 40, 60, 80, 100 and 120 km from the 189 

inflow section. To minimize somewhat artificial nature of the upper and lower boundary 190 

conditions (Szilagyi, 2006), the middle reach between 40 km and 80 km was selected 191 

for flow routing, i.e. the flowrate values given by the Saint-Venant equations at 40 km 192 

and 80 km served as the “observed” upstream and downstream flow values, respectively. 193 

The SCE-UA global optimization algorithm (Duan et al., 1994) was used to optimize 194 

parameters in the two models by directly minimizing the root mean squared error, with 195 

same optimized values of n = 1 and K = 4.6 h. In the real-time forecasting, for example, 196 

take t=16 h as the current time, then any time before t=16 h can be taken as the initial 197 

time t0 in the DLCM. If t0 =1 h, the current state can be estimated by combing Eq. (14) 198 

and (21), and further the current outflow, i.e. O (t=16 h) can be calculated by linear 199 

storage-outflow relationship, with a result of 126.13 m3/s. If t0 =15 h, the current 200 

outflow O (t=16 h) was estimated by the same procedure with a result of 118.58 m3/s. 201 

Then this value was used to estimate the following outflow by using the Eq. (22). While 202 

for the GNM, the “observed” value of O (t=16 h) =113.92 m3/s was directly used to 203 

estimate the outflow recursively by using the Eq. (23). The hydrographs obtained by 204 

the DLCM with different initial time as well as the GNM were illustrated in Fig. 1. 205 

With different current outflow, the DLCM correspondingly provided different 206 

forecasted discharge values, especially the first few ones. The Nash–Sutcliffe efficiency 207 

coefficient (ENS) values for t0 =1 h and t0 =15 h were 0.9882 and 0.9919, respectively. 208 

The GNM provided the unique and also the best forecasted results, with a result of ENS 209 

= 0.9928. It is shown from this example that the DLCM has multiple solutions and the 210 
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forecast precision depends upon the estimate accuracy of the current state. 211 

 212 

Figure 1. Routing results for the DLCM and the GNM 213 

5. Conclusion 214 

The DLCM formulated the continuous Nash cascade model in a matrix form based 215 

on the principles of state space analysis. The identification of the initial state is required 216 

when performing the DLCM. There is a paradox in the identification process that the 217 

outflow at the next time step used to estimate the initial storage is still unknown at initial 218 

time. To deal with this paradox in the real-time forecasting stage, the current state is 219 

estimated by applying the transition matrix to the initial state. Due to the nonuniqueness 220 

of the initial time, the DLCM will have multiple solutions. So the DLCM is an 221 

approximate solution of the Nash cascade model but not the exact solution. The GNM 222 

has been derived theoretically by solving the nth order NLODE of the Nash routing 223 

theory. It’s the unique analytical solution of the Nash cascade model. With an analytical 224 

expression, the initial state is implicitly written in a form of derivative, and it does not 225 
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need to be estimated separately. Besides, the DLCM can be transformed to the GNM 226 

when the initial storage state is calculated by the approach used in the GNM.  227 
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