Comments to Editor comments – second round:

Comments to the Author:

Dear Authors,

I have read the reviewer comments (plus my own) and the author responses in detail. I think we are nearly there and I appreciate everyone’s time and effort on this manuscript. Both reviewers were positive about the manuscripts publication (as am I) but we need to make sure the paper has the right context and discussion and is technically sound. Here are some final comments (I will want to check these but the paper will not go out for review again) that I think should be better defined to the reader for clarity. Please do think of these of how interested I am in the paper than just sending the authors more to do!:

Thank you and Yes, this did give us a lot more to do (large parts are now rewritten), but No worries – I am sure this will end up in a better paper. 😊

We have now strengthened the text describing the context, which is mainly to show the communities of (1) global hydrological modellers how methods from catchment modelling can help in river flow predictions globally, and (2) catchment modellers how to apply the methods at the global scale.

Lessons learnt are thus more on the application side and on large scale patterns in model performance across the globe, which we analyse in the text and explain potential causes to failures in the modelling concept (model structure, data and set-up).

1) In the abstract, you end with: “Setting up a global catchment model has to be a long-term commitment of continuous model refinements to achieve more useful results for water management”. - I’m not sure refinement is the right word at this stage, the model has really been more crudely applied to the GRDC data with limited discussion or evaluation of reasons for model failures or refinement or the quality of the GRDC data themselves. So I think this sentence needs to be improved. I’m also not sure there is any proof that these results are ‘more useful’ even to water managers, who would normally not be interested in a global model but one that they understand and is tailored for their local area or have resources to go with it.

This is a misunderstanding: In here we refer to future refinements and not what we did so far – this sentence has now been changed and the end of the Abstract reads:

“Setting up a global catchment model has to be a long-term commitment as it demands many iterations; this paper shows a first version, which will be subjected to continuous model refinements in the future. The WWH is currently shared with regional/local modellers to appreciate local knowledge.”

Perhaps, eventually, such global models may have utility to those users who have limited or no local resources but that is not this model or close to it. Other models, such as WaterWorld are far more focused (including a network of training resources and funded workshops) to help such limited resource managers, see https://iwaponline.com/hr/article/44/5/748/1145/WaterWorld-a-self-parameterising-physically-based. If the authors wish to persue this idea of being relevant to water managers then I think they should cite and discuss such other initiatives that have been around a long time.
Many modelling communities have outreach activities linked to their concept – we know that this doesn’t make us unique. It could still be interesting for the reader to know that we are currently training modellers from different parts of the world and that we have a user community, without going into details (that would demand a separate paper). To better explain the current status, we have added a section on this in the last paragraph of the Discussion chapter, where we also give some examples of publications that has resulted from these efforts. NOTE: most collaboration is more practical and do not result in science.

Thanks for pointing out the WaterWorld concept, however, we find it very different from what we are doing so we chose to just add the reference in the Introduction chapter where we list some global water balance models. (Note that the WaterWorld model does not have the ambition to predict the absolute magnitudes of river flow and has only been compared to observations for 17 catchments in Costa Rica. The paper has been cited 35 times since 2013 according to Web of Science and it is not mentioned in any of the review papers on global hydrological models).

2) I probably agree with one reviewer that certainly the intro is not ideal, in particular the first paragraph is very general and lacks references to prove such statements as “they have high credibility among practitioners and water managers”. The start could be much better developed to discuss where the community is with large sample hydrology, which ultimately this paper sits under (again simply the model is basically calibrated to a global sub-sample of river flow gauges). There are also more recent papers that have made simulations at continental scales and/or involved in large sample hydrology which should be improved.

The introduction is now re-structured with a new first paragraph and some shuffling of the text for the remaining parts. Hopefully it is now more targeted and also got shorter. Some new references are also added. However, the point we try to make here is that methods from catchment modelling can contribute to global hydrological modelling. Large-sample hydrology is one part but more fundamental is the whole calibration procedure for regionalization of parameter values (i.e. predictions in ungauged basins), which is completely lacking in traditional global hydrological modelling, where they don’t even compare the results to river flow (not in publications at least).

3) When addressing the novelty of the current paper the authors should state what they mean by “relatively high resolution” in terms of the first global application on line 125. They should also note here for other ‘lower resolutions’ what has therefore been achieved and thus where this study fits in terms of a resolution development that is novel. I am certainly not clear on what the authors are specifically trying to claim here….

The resolution aspect has been removed from novelty. The novelty is now phrased as: “To our knowledge, this is the first time a catchment model was applied world-wide and evaluated against river flow across the globe.”

We base this statement on recent reviews and compilations of global hydrological models, which were all running on grids (Bierkens et al., 2015; Sood and Smakhtin, 2015). It is not clear if the WaterWorld runs on grid or catchment but anyway it was certainly not evaluated for river flow across the globe.

Regarding resolution, we produced a new global database of catchment delineation and routing also including hydrological features and waterbodies, which are normally not present in global model set-up. The latter is the novelty and not the resolution as such.

4) I think the authors miss-understood my comment about preserving ‘mass balance’, I just want to clarify this. My understanding is that HYPE allows for a flux in the GW stores that (from the WIKI manual) allows “Regional groundwater flow to outside model system”. What I take this to be effectively a ‘loss function’ meaning that this water is never seen again in the model domain. It’s important to understand for such models that such ‘mass balance
losses’ can occur as not every model works on that principle (and really it should be understood for different environments how much water is needing to be lost to gain ‘good’ predictions). Of course I expect the model to maintain ‘mass balance’ in terms of the numeric’s being correct in each store or function, else the model would have coding errors.

You are right on the HYPE function, but this loss function from GW was only applied in endorheic catchments (where 100% of the outflow is lost). The outflows from these catchments are thus part of our boundary conditions, which is now specified in chapter 2 paragraph 2.

5) Please better explain the reasons for the choices of catchments that were involved in calibration and those for independent model evaluation (even if purely random) in lines 242-244,

No, it was not random – we selected calibration gauges based on their representativeness for specific processes during the stepwise calibration. When this is first mentioned in Section 3.3 we now also refer to section 4.2, where we explain this better. A more clarifying sentence is now ending this paragraph, reading:

“In addition, 1181 stations not fulfilling the criteria were added to increase the number of representative gauges to capture spatial variability when estimating parameter values. In total, 6519 gauging stations were used for model calibration and validation.”

The numbers are also coherent now (see upcoming comment No 8).

6) The section on model setup needs to better explain how many parameters are being estimated, or it can be included in the parameter estimation section. It seems that globally if I have this correct there are separate parameter estimations for 36 different classes (plus some others for lakes), but for each of those the text does not state the number of parameters being tuned in each.

Sorry, we missed to refer to Table A1 in the Appendix in a correct way, where we list all parameters that were calibrated in each step. We have now improved this and also added a text explaining the numbers better:

“We estimated parameters for 11 hydrological processes separately, where each process description includes between 2 and 20 parameters (Table A1 in the Appendix). Some processes were calibrated for specific categories, for instance different soil types, land use and elevation zones.”

I would also note that nowhere is it clear that although a 50km grid is being used for the forcing data I don’t believe the paper explains how that is applied to each HRU or catchment size. So is this then ‘averaged’ over the HRU if the HRU is larger and is the forcing data fractionally weighted to properly reflect the catchment boundary delineation compared to the actual gridded data. Lines 277-278 sort of point to an explanation but it isn’t 100% clear.

We have included a sentence explaining this in the Model setup section 4: “Gridded forcing data were linked to catchments using the grid point nearest to the catchment centroid.”

7) In catchment setup please give more statistics beyond the mean as to what catchment sizes are being run (as in say the 5th and 95th catchment size that each HRU is being run, and so to understand better what is meant by a certain resolution and that variation). Lines 320-321 do not resolve the statistics of HRU sizes at all well!

We have included some statistics of catchment size in the text under section 4.1:

“(5th percentile: 64 km²; 50th percentile: 770 km²; 95th percentile: 2185 km²)”
8) With regards to the approach to model calibration and evaluation there is an inconsistency with the stated number of catchments used in the model calibration and evaluation earlier in the paper and then those reported in lines 421-423. At least this is confusing as more catchments are brought into the calibration pool. This needs to be better explained please and this inconsistency removed.

Thanks! The inconsistency has been removed and the procedure better explained. The calibration procedure is step-wise and towards different representative gauges each time. For some steps shorter time-series and smaller catchments than 1000 km2 were allowed to represent the spatial variability. See comment No 5.

9) To me an important part of the paper is to understand why we might treat different ‘physiographic’ areas differently (it basically is core to the whole results) and if this is justified in any hydrologically meaningful way (and of course there will always be multiple ways to do this, none perfect). However the authors only state they made 36 classes using ESA CCI 1.6 data, but no explanation is given as to why/how. I think the reader needs to understand ‘why 36 classes’. For example I appreciate this is a paper which I am a co-author on (sorry) but the authors might be interested in some of the implications of what has recently been shown in Knoben, W.J.M., Woods, R.A. and Freer, J.E. (2018) A Quantitative Hydrological Climate Classification Evaluated With Independent Streamflow Data. Water Resources Research 54(7), 5088-5109 and why Köppen-Geiger may not be the best separator hydrologically - for example.

The discussion on catchment model structure and clusters of similar catchments for calibration is now briefly discussed in the new section of the Discussion (see below).

To improve the understanding of our procedures, the heading of Table 4 is now better described. Note: The HYPE concept is built on the assumption that land cover and soil type affects the hydrological processes. The 36 classes were given by the original land cover product from ESA. We only aggregated for parameter estimation due to lack of observed river flow from all of the ESA land cover types. We then assumed that the hydrological response from similar land cover would be about the same and could be described using the same parameter values. This is already described line 374-376 (section 4.2). The Table caused some confusion but this should be clear now with the new header.

NOTE: Köppen regions were not used in the HRU classification. We have used them broadly for assigning which PET algorithm to apply, for fine tuning calibration of ET (Table 6) and when analyzing physiographical reasons to model performance of flow signatures (Fig 7). We have now included this and a comment in section 5.2 that reads:

“It is rather common to use Köppen when evaluating ET (e.g. Liu et al, 2016) but it may not be the best separator hydrologically (Knoben et al., 2018) so model performance should preferable be evaluated and calibrated in clusters based on other characteristics in the future.”

Thanks for highlighting this new reference - we might look into your classification when trying different ways to cluster catchment for more optimal calibration (work in progress).

10) Referring to point 5) above the reader has no way of knowing if the model evaluation was truly ‘independent’, in that if sub basins were involved in the calibration then they would not be independent, hence why a clarification of the choice of catchments and how this was separated is needed.

The catchments were independent in the sense that they were not used in calibration, which is mentioned in the text. However, some were part of the same river basin. We know explicitly mention how many that was truly independent. We also mention the metrics of model performance for them specifically in the Result section.

The choice of gauges for calibration is linked to your Comments No 5 and 8 and has been better clarified the Data section and the Step-wise calibration section (see above).
11) It’s great to have flow signatures, please explain why this whole table 5 is being reported and better explain the authors comment that “help the modeler to examine whether the process description and model structure are valid across the landscape or if the regionalization of parameter values must be reconsidered for some parts of a large domain”. This is critical to inform the reader how this is approached.

Table 5 is behind the analysis of Figure 7, which is analysed in section 5.3. The analysis guides the reader and modeler to identify where the model is better and worse. This is now clarified in section 4.3 by inserting two sentences before the statement you refer to:

“In large-sample hydrology it is not possible to examine each hydrograph individually using inspection. As the flow signatures aggregate information about the hydrograph, the model capability to simulate signatures will tell the modeler which part of the hydrograph is better or worse.”

We hope this reads better.

12) I am not clear on what evidence presented the authors can so categorically state “WWH version 1.3 describes major hydrological features globally and important spatial variability in factors controlling the runoff mechanisms”. That seems a little bold for me on the rest of the evidence submitted and the call from one reviewer to be ‘more modest’. In my previous editor comments I stated: I also feel that there needs to be a better evaluation as to why certain regions behave well or not in terms of increasing a scientific interpretation in the paper to be novel for publication… But really the authors have not changed their approach to add any form of evaluation (only a small change to the discussion) but yet still they have this statement in the results. They either need to make some form of analyses that really reflects this concept that they maintain that the flow signatures effectively help diagnostics to understand if the model has the right processes or they change the way that they comment on what the results can (and do) say.

This is probably a matter of interpretation as the sentence should be read as an introduction to the analysis below, and it was an effort to be modest. Anyhow, we have now changed this sentence to read:

“To some extent WWH version 1.3 describes hydrological features globally and spatial variability in factors controlling the runoff mechanisms, although there is still substantial room for improvements over the coming decade(s).”

Please, also note that most of the text analyzing the results talks about model weaknesses and how to improve the model. We are honest with the result and do not pretend to have a perfect model. Yet it is neither absolutely useless. Some further amendments to be clearer on the novelty the paper contributes:

- Section 5.1 is now further elaborated to include more analysis of the results and why certain regions behave better or worse.
- Three paragraphs have been added to the Discussion chapter, to link with the new introduction and the overall discussion on how the results from applying catchment modelling methods (topographic catchment delineation, stepwise calibration, evaluation of several metrics and flow signatures against many observations) can help advancing global hydrological modelling in general. Here we try to answer the question posed in the Introduction “whether it is now possible and timely to apply catchment modelling techniques to advance global hydrological modelling”. This is the focus and novelty of the paper bringing added scientific knowledge to the community. This is now also clarified in the first sentence of the Conclusion chapter.

We all know the GRDC gauges used have major impacts beyond those that are natural and this is bound to cause significant problems in interpreting any results. The authors make very
little mention of this throughout the results and I do think there needs to be improvements to self reflection as to where the model fails (or reasons why it might fail).

Reasons for failures and success are now better interpreted in section 5.1.

Note: We have not only used GRDC and the quality of the database was recently evaluated in another paper by Crochemore et al. (2019). Some reflections on data availability and quality are mentioned in the new Discussion section. However, HYPE is not only simulating natural conditions but also include some reservoir and some irrigation etc. Of course, not at all to the extent necessary, but the (high) ambition is to actually simulate the real river flow.

Figure 7, for example, is not usefully discussed in any way that helps the reader interpret any form of ‘process’ reasons why the model is failing. This does not require some analyses to earth observation, there are more immediate and tangible things that could be explored in the results just to see reasons for main model failures purely on stream flow that would provide some useful insights to the reader! (else this is a numerical fitting exercise only, but that is not what the authors are trying to state).

Section 5.1 is now further elaborated to include more analysis of the results and some more metrics from decomposing the KGE. However, the overall goal is to test if catchment modelling techniques can be applied globally and to examine the model performance. The goal is not yet to fully describe flow process in detail across the globe (but we might get there in a decade or so).

13) Figure 6 shows some lack of understanding of what the KGE metric scales to and needs to be adjusted so that it is technically correct. The current figure title suggests that they believe KGE at zero scales in the same way as Nash-Sutcliffe (all values above zero are better than the long term observed mean). But that is not the case. I’m sorry again to highlight another of our recent papers but it is very pertinent to this comment. See https://www.hydrol-earth-syst-sci-discuss.net/hess-2019-327/ where Knoben et al. show that it is actually -0.41 that is equivalent to the long term observed mean and other matters with interpreting KGE scores.

We have now changed the color scale of Figure 6 and included an explanation in the text with the reference given above. Thank you for pointing this out.

14) I am not sure the authors can state that “the model provides a first platform for catchment modelling to be further refined and experimented with at the global, regional and local scales”. Again I have noted the work of Mark Mulligan and this may well not be the only such platform. Please ensure the correct context is given here….

See previous comments – we don’t claim to be exclusive here - but we now end the paper with some more evidence on our current state:

“Only when using the same methods or data, there is full transparency in the research process so that scientific progress and failures can be clearly understood, shared and learnt from. The WWH could be one stepping stone in such a collaborative process between catchment modellers across the globe. Therefore, SMHI annually offers a free training course since 2011, accompanied with travel grants for participants from developing countries since 2013. Every year about 30 new persons are trained in HYPE and get access to a piece of the modelled world, resulting in model refinements and various regional assessments around the globe e.g. climate-change impact on Hudson Bay (MacDonald et al., 2018), flow forecasts in Niger River (Andersson et al., 2017), hydromorphological evolution of Mackenzie delta (Vesakoski et al., 2017), and water quality in South Africa (Namugize et al., 2017) or England (Hankin et al., 2019).”

Thanks very much to all, Jim Thank you, Jim – from all of us!
Global catchment modelling using World-Wide HYPE (WWH), open data and stepwise parameter estimation

Berit Arheimer1*, Rafael Pimentel1,2, Kristina Isberg1, Louise Crochemore1, Jafet C.M. Andersson1, Abdulghani Hasan1,3, and Luis Pineda1,4

1 Swedish Meteorological and Hydrological Institute (SMHI), Folkborgsvägen 17, 60176 Norrköping, Sweden.
2 University of Cordoba, Edf. Leonardo Da Vinci, Campus de Rabanales, 14071, Córdoba, Spain.
3 Lund University Box 117, SE-221 00, Lund, Sweden.
4 Yachay Tech University, Hacienda San José, Urcuquí, Ecuador.

*Corresponding author: Berit Arheimer (berit.arheimer@smhi.se)

Abstract

Recent advancements in catchment hydrology (such as understanding catchment similarity hydrological processes, accessing new data sources, and refining methods for parameter constraints) make it possible to apply catchment models for ungauged basins over large domains. Here we present a cutting-edge case study applying catchment-modelling techniques with evaluation against river flow at the global scale for the first time. The modelling procedure was challenging but doable and even the first model version showed better performance than traditional gridded global models of river flow. We used the open-source code of the HYPE model and applied it for >130 000 catchments (with an average resolution of 1000 km²), delineated to cover the Earth’s landmass (except Antarctica). The catchments were characterized using 20 open databases on physiographical variables, to account for spatial and temporal variability of the global freshwater resources, based on exchange with the atmosphere (e.g., precipitation and evapotranspiration) and related budgets in all compartments of the land (e.g., soil, rivers, lakes, glaciers, and floodplains), including water stocks, residence times, interfacial fluxes, and the pathways between various compartments. Global parameter values were estimated using a stepwise approach for groups of parameters regulating specific processes and catchment characteristics in representative gauged catchments. Daily and monthly time-series (>10 years) from 5338 gauges of river flow across the globe were used for model evaluation (half for calibration and half for independent validation), resulting in a median monthly KGE of 0.4. However, the world-wide HYPE (WWH) model shows large variation in model performance, both between geographical domains and between various flow signatures. The model performs best (KGE > 0.6) in Eastern USA, Europe, South-East Asia, and Japan, as well as in parts of Russia, Canada, and South America. The model shows overall good potential to capture flow signatures of monthly high flows, spatial variability of high flows, duration of low flows and constancy of daily flow. Nevertheless, there remains large potential for model improvements and we suggest both redoing the calibration parameter estimation and reconsidering parts of the model structure for the next WWH version. The calibration cycle should be repeated a couple of times to find robust values under new fixed parameter conditions. For the next iteration, special focus will be given to precipitation, evapotranspiration, soil storage, and dynamics from hydrological features, such as lakes, reservoirs, glaciers, and floodplains. This first model version clearly indicates challenges in
large-scale modelling, usefulness of open data and current gaps in processes understanding. However, we also found that catchment modelling techniques can contribute to advance global hydrological predictions. Parts of the WWH can be shared with other modellers working at the regional scale to appreciate local knowledge, establish a critical mass of experts and improve the model in a collaborative manner. Setting up a global catchment model has to be a long-term commitment as it demands many iterations; this paper shows a first version, which will be subjected to a series of model refinements in the future to achieve more useful results for water management. The WWH is currently shared with regional/local modellers to appreciate local knowledge.

1. Introduction

Global hydrological models with various properties and structures are provided by several modelling communities (see reviews by e.g. Bierkens et al., 2015 and Sood and Smakhtin, 2015), although it is well recognized that uncertainties associated with existing models are high when simulating the water cycle at the global scale (e.g. Wood et al., 2011). To overcome this, some communities suggest hyper-resolution (Bierkens et al., 2015) while others propose better coupling with earth observations (Sood and Smakhtin, 2015). In this paper, we argue to improve global hydrological-model performance by applying methods from the catchment modelling community.

In catchment modelling the water balance and fluxes are calculated within water divides. The geographic unit for process descriptions is thus a polygon defined by topography instead of a grid cell defined by size, instead of without physical boundaries. Recently, new topographic data with high resolution (Yamazaki et al., 2017) enables definition of catchments globally. Having catchments as a calculation unit makes it possible to apply an ecosystem approach and account for co-evolution of processes at the landscape scale (e.g. Bloeschl et al., 2013). Model parameters can thus be linked to catchment state from interacting entities and not only to aggregation of separated building blocks (grids) of the catchment. The structure of the catchment model is usually a function of the modelers’ hydrological understanding and it is admitted that model parameters cannot be measured directly in many cases, but have to be estimated (Wagener, 2003).

Catchment modelers’ have a long tradition of evaluating model performance against observations of river flow (e.g. Bergström and Forsman, 1973; Beven and Kirkby, 1979; Lindström et al., 1997) as this is the integrated result of hydrological processes at the catchment scale and moreover, is relatively easy to monitor. In the early 1970’s, model parameters were calibrated using rather simple curve fitting towards observed time-series of river flow in a specific catchment outlet (e.g. Bergström and Forsman, 1973). Since then the methods for parameter estimation have become more sophisticated with focus on uncertainties in parameter values. The catchment models themselves are normally quick to run even on a personal computer, which has allowed the methods for evaluating and calibrating catchment models to become computationally heavy, such as GLUE (Beven and Binley, 1992), DREAM (Laloy and Vrugt, 2012), or methods in the SAFE toolbox (Pianosi et
Nevertheless, with increasing computational capacity, these methods should be possible to apply also across large domains with numerous river gauges.

The catchment community advocates the potential to advance science by addressing a larger domain with multiple gauged catchments than just exploring one single catchment at a time (Falkenmark and Chapman, 1989; Bloschel et al., 2013; Hrachowitz et al., 2013; Gupta et al., 2014). One current trend among catchment modelers is thus to test their methods also at the continental scale (e.g. Pechlivanidis and Arheimer, 2015; Abbaspour et al., 2015; Donnelly et al., 2016), where traditionally other types of hydrological models were applied, using other modeling procedures and showing other advantages than the methods used by the catchment modeling community (see e.g. Archfield et al., 2015). Traditional global hydrological models are for instance water-balance and -allocation models (e.g. Arnell, 1999; Vorosmarty et al., 2000; Döll et al., 2003; Mulligan, 2013) or meteorological land-surface models (e.g. Liang et al., 1994; Woods et al., 1998; Pitman, 2003; Lawrence et al., 2011) sometimes with more advanced routing schemes (e.g. Alferi et al., 2013). With current evolution of catchment models, their performance can now be compared to more traditional global and continental modeling approaches in the large-scale applications (Fig. 1).

Figure 1. Different modelling communities who can now start comparing their results.

Bierkens et al., (2015) pose the question “how, if at all, it is possible to calibrate models at the global scale”. In fact, the catchment modelling community have developed several approaches to regionalize parameter values for large domains, for instance by using: (i) the same parameters based on geographic proximity (e.g. Merz and Blöschl, 2004; Oudin et al., 2008); (ii) regression models between parameter values and catchment characteristics (Hundecha and Bárdossy, 2004; Samaniego et al., 2010; Hundecha et al., 2016); (iii) simultaneous calibration in multiple representative catchments with similar climatic and/or physiographic characteristics (e.g. Arheimer and Brandt, 1998; Fernandez et al., 2000; Parajka et al., 2007). Theoretically, these methods should be possible to apply also on the global scale.

In this paper we test a variety of the latter method, using a stepwise approach (e.g. Strömqvist et al., 2012; Pechlivanidis and Arheimer, 2015; Donnelly et al, 2016; Andersson et al., 2017) trying to isolate hydrological processes and calibrate them separately against observed river flow in selected representative basins across the entire globe (although, some hydrological features such as large lakes and floodplains were calibrated individually). This is an example of how to use the catchment ecosystem approach assuming that hydrological processes are similar across the globe wherever the catchments have evolved under similar conditions and have similar physiographic conditions.
Hydrological models are useful tools to better understand processes behind observation, to reconstruct past events and to predict future events, as well as to explore the impact of various scenarios of change in flow controlling factors, such as climate or human activities. Catchment models were traditionally often applied in small well-monitored rivers under pristine conditions, to understand mechanisms in flow generation (e.g. Bergström and Forsman, 1973; Beven and Kirby, 1979; Lindström et al., 1997) or to support flow forecasts at warning services (e.g. Arheimer et al., 2011). However, a combination of societal requests and scientific initiatives has changed this context for catchment modelling recently. As catchment models are mimicking observation through calibration procedures, they have high credibility among practitioners and water managers. Hence, they are used operationally in many societal sectors, to provide for instance design values for infrastructure, water allocation schemes, navigation routes, flood warnings, environmental status indices or optimal industrial water use. Currently, all these users of catchment model outputs also face climate change and seek data and information to best implement climate adaptation for their specific business. Hence, catchment models are also used to estimate climate change impact.

The catchment research community has embraced this applied focus and, at the same time, expanded the geographical domain to multi-catchments. The applied focus is illustrated by the new decade of the International Association of Hydrological Sciences (IAHS) called “Panta Rhei”, which addresses change in hydrology and society (Montanari et al., 2013) and focuses on the human impact on the water cycle instead of traditional pristine conditions. The spatial expansion, on the other hand, is driven by accelerating advances in hydrological research as described by Archfield et al. (2015). For instance, comparative hydrology (Falkenmark and Chapman, 1989) or large sample hydrology (Gupta et al., 2014) show the potential to advance science by addressing a larger domain with multiple catchments than just exploring one single catchment at a time. Similarly, the previous scientific decade of IAHS “Predictions in Ungauged Basins”, PUB (Hrachowitz et al., 2013; Bloeschl et al., 2013), resulted in methods to maintain the procedures typical for catchment modelling when parameters are transferred to areas without observed time-series of river flow, such as regionalization, parameter constraints, and Monte Carlo approaches for empirical quality control, to ensure that the process description is realistic and account for uncertainties. This opened up for catchment models to be tested and applied also at the continental scale (e.g. Pechlivanidis and Arheimer, 2015; Abbaspour et al., 2015; Donnelly et al., 2016), where normally other types of hydrological models were applied, using other modelling procedures and showing other advantages than the methods used by the catchment modelling community (see e.g. Archfield et al., 2015). Such large-scale models are for instance water allocation models (e.g. Arnell, 1999; Vörösmarty et al., 2000; Doll et al., 2003) or meteorological land-surface models (e.g. Liang et al., 1994; Woods et al., 1998; Pitman, 2003; Lawrence et al., 2011) sometimes with more advanced routing schemes (e.g. Alfieri et al., 2013). These more traditional global and continental modelling approaches can now be compared to hydrological catchment models in large-scale applications (Fig. 1).
Other important factors, which nowadays allow catchment modelling at the global scale, are computational capacity and open global data sources. The methods for applying and evaluating catchment models are computationally heavy. The advances in application routines and evaluation frameworks, such as GLUE (Beven and Binley, 1992), DREAM (Laloy and Vrugt, 2012), or methods in the SAFE toolbox (Pianosi et al., 2015) have become possible due to the fact that the catchment models themselves are normally quick to run even on a personal computer. With increasing computational capacity, these methods are now possible to apply also in a multi-catchment approach for a large domain (i.e. nested catchment units instead of grids, and entire landmass coverage instead of isolated catchments). Most important for catchment modelling, however, is the recent explosion of open and readily available data sources globally, which makes it possible to delineate the catchment borders, find input data at relevant scale to set up the catchment models, and to assign time-series of observed flow at some catchment outlets. This enables the use of recognised methods in catchment modelling for parameter estimation and model evaluation, as described in the following paragraphs. Using catchments instead of grids as a calculation unit also makes it possible to apply an ecosystem approach and account for spatial co-evolution of processes at the landscape scale (e.g. Blöschl et al., 2013). Model parameters can thus be linked to catchment state from interacting entities and not only to aggregation of separated building blocks of the catchment.

In the early 1970's, model parameters were calibrated using a rather simple curve fitting towards observed time-series of river flow in a specific catchment outlet (e.g. Bergström and Forsman, 1973). Since then the methods for parameter estimation have become more sophisticated, especially when the objective is regionalisation across many catchments at large scale (e.g. Beck et al., 2016). Some common approaches use: (i) the same parameters based on geographic proximity (e.g. Merz and Blöschl, 2004; Oudin et al., 2008); (ii) regression models between parameter values and catchment characteristics (Hundecha and Bardossy, 2004; Samaniego et al., 2010; Hundecha et al., 2016); (iii) simultaneous calibration in multiple representative catchments with similar climatic and/or physiographic characteristics (e.g. Arheimer and Brandt, 1998; Fernandez et al., 2000; Parajka et al., 2007). In this study, we apply a variety of the latter, using a stepwise approach (e.g. Strömqvist et al., 2012; Pechlivanidis and Arheimer, 2015; Donnelly et al., 2016; Andersson et al., 2017) trying to isolate hydrological processes and calibrate them separately against observed river flow in selected representative basins across the entire globe, although, some hydrological features as large lakes and floodplains were calibrated individually.

The hypothesis tested in the present study states that, it is now possible and timely to apply catchment modelling techniques at the global scale, for which only gridded approaches have been reported so far (Bierkens et al., 2015; Sood and Smakhtin, 2015). We address this hypothesis by applying a catchment model world-wide and then evaluating the results, using statistical metrics for...
Streamflow time-series and flow signatures. To our knowledge, this is the first time a catchment model was applied world-wide and evaluated against river flow covering the entire across the globe, with relatively high resolution, providing an average subbasin. The catchments were delineated and routed based on high-resolution topography (90 m) resulting in an average size of ~1000 km² (WWH version 1.3). Our specific objective is to provide a harmonized way to predict hydrological variables (especially river flow and the water balance) globally, which and then the model set-up can also be shared for further regional refinement to assist in regional and local water management wherever hydrological models are currently lacking. To address this objective, we (i) compile open global data from >30 sources, including for instance topography and river routing, meteorological forcing, physiographic land characteristics and in total some 20 000 time-series of river flow world-wide, (ii) apply the open-source code of the Hydrological Predictions for the Environment, HYPE model (Lindström et al., 2010), (iii) estimate model parameter values using a new stepwise calibration technique addressing the major hydrological processes and features world-wide, and (iv) compute metrics and flow signatures, and compare model performance with physiographic variables to judge model usefulness. We then pose the scientific question: How far can we reach in predicting river flow globally, using integrated catchment modelling, open global data and readily available time-series for calibration?

2. The HYPE model

The development of the HYPE model was initiated in 2002, primary to support the implementation of the EU Water Framework Directive in Sweden (Arheimer and Lindström, 2013). It was originally designed to estimate water quality status, but is now also used operationally at the Swedish hydrological warning service at SMHI for flood and drought forecasting (e.g. Pechlivanidis et al., 2014). The water and nutrient model is applied nationally for Sweden (Strömqvist et al., 2012), the Baltic Sea basin (Arheimer et al., 2012) and Europe (Donnelly et al., 2013). It also provides operational hydrological forecasts for Europe at short-term and seasonal scale and it has been subjected to several large-scale applications across the world, e.g. the Indian subcontinent (Pechlivanidis and Arheimer, 2015) and the Niger River (Andersson et al., 2017). One of the main drivers for HYPE applications has been climate-change impact assessments, for which its results have been compared to other models in selected catchments across the globe (Geflan et al., 2017; Gosling et al., 2017; Donnelly et al., 2017).

The HYPE model code (Lindström et al., 2010) represents a rather traditional integrated catchment model, describing major water pathways and fluxes in a catchment ensuring that the mass of water is conserved at each time step. Parameters values are often linked to physiographic properties and the values regulate the fluxes between water storages in the landscape and interaction with boundary condition of the atmosphere, the oceans, and outlets of endorheic catchments, so called sinks (see section 4.1 and deep ground water aquifers (see-detailed model documentation at hypeweb.smhi.se). It is forced by precipitation and temperature at daily or hourly time-step, and start by calculating the water balance of Hydrological Response Units (HRUs), which is the finest calculation unit in each catchment. In the WWH set-up, the HRUs were defined by land-cover,
elevation and climate, without specific consideration to further definition of soil properties. This was
guided by recent studies indicating that soil water storage and fluxes well related to vegetation type
and climate conditions rather than soil properties (e.g. Troch et al., 2009; Gao et al., 2014). HYPE has
maximum three layers of soil and these were all applied in the WWH, with a different hydrological
response from each one for each HRU. The first layer corresponds to some 25 cm, the second to
some 1-2 meters and the third can be deep also accounting for ground water. A specific routine can
account for deep aquifers, but this was not applied in the WWH due to lack of local or regional
information of aquifer behavior. HYPE has a snow routine to account for snow storage and
melt, while a glacier routine accounts for ice storage and melt. Mass balances of glaciers were based
on the observations provided in the Randolph Glacier Inventory (Arendt et al., 2015) and fixed
separately in the model set-up.

There are a number of algorithms available to calculate potential evapotranspiration (PET) in HYPE.
For the WWH we used the algorithms that had been judged most appropriate in previous HYPE
applications, giving Jensen-Haise (Jensen and Haise, 1963) in temperate areas, modified Hargreaves
(Hargreaves and Samani, 1982) in arid and equatorial areas, and Priestly Taylor (Priestly and Taylor,
1972) in polar and snow /ice dominated areas. River flow is routed from upstream catchments to
downstream along the river network, where lakes and reservoirs may dampen the flow according to
a rating curve. A specific routine is used for floodplains to allow the formation of temporary lakes,
which may be crucial especially in inland deltas (Andersson et al., 2017). Evaporation takes place
from all water surfaces, including snow and canopy. The HYPE source code, documentation and user
guidance are freely available at http://hypecode.smhi.se/.

3. Data

3.1 Physiographic data

For catchment delineation and routing, topographical data is needed, but none of the hydrologically
refined databases cover the entire land surface of Earth and therefore we had to merge several
sources of information (Table 1). Most of the globe (from 60S to 80N) is covered by GWD-LR (Global
Width Database of Large Rivers) 3 arc sec (Yamazaki et al. 2014 and 2017), apart from the very
northern part close to the Arctic Sea, for which HYDRO1K 30 arc sec (USGS) is used. For Greenland,
we used GIMP-DEM (Greenland Ice Mapping Project) 3 arc sec (Howat et al. 2014) and for Iceland the
National data from the meteorological office. For the latter we merged the catchments to better fit
the overall resolution, going from 27 000 catchments to 253. Each of the above datasets was used
independently in the delineation.

Additional data was gathered to help with defining catchments as the delineation of catchments can
be difficult in some environments. In flat areas we consulted previous mapping and hydrographical
information of floodplains, prairies and deserts (Table 1). Karstic areas are unpredictable due to lack
of subsurface information of underground channels crossing surface topography and thus needed to
be defined and evaluated separately. Finally, flood risk areas (UNEP/GRID-Europe ; Table 1) were
recognized as potentially important, enabling the use of model results in combination with hydraulic
models, and thus also had to be identified so that model results can be extracted for such applications.

Table 1. Databases used for catchment delineation, routing and elevation in WWH version 1.3.

<table>
<thead>
<tr>
<th>Type</th>
<th>Dataset/Link</th>
<th>Provider/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography (Flow accumulation, flow direction, digital elevation, river width)</td>
<td>GWD-LR (3 arcsec) http://hydro.iies.u-; tokyo.ac.jp/~yamazaki/GWD-LR/ [2017]; GIMP-DEM (3 arcsec) https://bpcc.osu.edu/gdg/data/gimpdem; HYDRO1K (30 arcsec) [Geological Survey – USGS] https://lta.cr.usgs.gov/HYDRO1K</td>
<td>Yamazaki et al., 2014; United State; USGS</td>
</tr>
<tr>
<td>Non-contributing areas in Canada</td>
<td>Areas of Non-Contributing Drainage AAFC</td>
<td>Government Canada</td>
</tr>
<tr>
<td>Desert areas</td>
<td>World Land-Based Polygon Features</td>
<td>https://geo.ny.usu.edu/catalog/stanford York; bh326sc0899.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Dataset/Link</th>
<th>Provider/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land cover characteristics</td>
<td>[ESA CCI Landcover v 1.6.1 epoch 2010 (300 m)] https://www.esa-cci; https://www.esa-cci/?q=node/169</td>
<td>[ESA Climate Change Initiative - Land]; https://www.esa-cci; Cover project</td>
</tr>
<tr>
<td>Glaciers</td>
<td>Randolph Glacier Inventory (RGI) v 5.0 https://www.glims.org/RGI; https://www.glims.org/RGI/randolph50.html</td>
<td>https://www.glims.org/RGI Consortium</td>
</tr>
<tr>
<td>Greenland ice sheet</td>
<td>Greenland Glacier Inventory; Rastner et al, 2012</td>
<td>https://www.glims.org/RGI Consortium</td>
</tr>
<tr>
<td>Lakes</td>
<td>ESA CCI-LC Waterbodies 150 m 2000 v 4.0</td>
<td>https://www.esa-cci; https://www.esa-cci/?q=node/169</td>
</tr>
</tbody>
</table>

For catchment characteristics governing the hydrological processes in HYPE, the ESA CCI Landcover version 1.6.1 epoch 2010 (300 m) was the baseline for HRUs, but several other data sources were used to adjust and add information to some hydrologically important features, such as glaciers, lakes, reservoirs, irrigated crops, and climate zone (Table 2).
3.2 Meteorological data

The WWH model uses time-series of daily precipitation and temperature to make calculations on a daily time-step. All catchment models require initializations of the current state of the snow, soil and lake (and sometimes river) storages. At the global scale, a seamless dataset for several decades is necessary for consistent model forcing, to also cover hydrological features with large storage volumes. For WWH version 1.3 precipitation and temperature were achieved from the Hydrological Global Forcing Data (HydroGFD; Berg et al., 2018), which is an in-house product of SMHI that combines different climatological data products across the globe. This global dataset spans a long climatological period up to near-real-time and forecasts (from 1961 to 6 months ahead). The period used in this study, is primarily based on the global (50 km grid) re-analysis product ERA-interim (Dee et al., 2011) from ECMWF, which is further bias adjusted versus other products using observations, e.g. versions of CRU (Harris and Jones, 2014) and GPCC (Schneider et al, 2014). The HydroGFD dataset is produced using a method for bias adjustment, which is similar to the method by Weedon et al. (2014) but additionally uses updated climatological observations, and, for the near-real-time, interim products that apply similar methods. This means that it can run operationally in near-real-time. The dataset is continuously upgraded and in the present study, we used the HydroGFD version 2.0.

3.3 Observed river flow

Catchment models need time-series of hydrological variables for parameter estimation and model evaluation. Metadata and daily and monthly time-series from gauging stations were collected from readily available open data sources globally (Table 3). In total, information from 21 704 gauging stations could be assigned to a catchment outlet. Of these, time-series could be downloaded for 11 369 while 10 336 could only assist with metadata, such as upstream area, river name, elevation or natural of regulated flow. The time-series were screened for missing values, inconsistency, skewness, trends, inhomogeneity, and outliers (Crochemore et al., 2019). Only stations representing the resolution of the model (≥1000 km²) and with records of at least 10 consecutive years between 1981 and 2012 were considered for model evaluation. With these criteria, 5338 time-series were finally
used for evaluating overall model performance, of which 2863 represented completely independent model validation and 2475 were also involved when estimating some of the model parameters. In the stepwise model calibration (see section 4.2), in addition, 1181 stations not fulfilling the criteria were added to increase the number of representative gauges to capture spatial variability when estimating parameter values. In total, 6519 gauging stations were used for model calibration and validation.

Table 3. Databases used for time-series of water discharge and location of gauging station when estimating parameters and evaluating the model performance of WWH version 1.3.

<table>
<thead>
<tr>
<th>Data type + metadata</th>
<th>Short Name/Link</th>
<th>Coverage</th>
<th>Provider/References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-series</td>
<td>GRDC</td>
<td></td>
<td>Global Runoff Data Center</td>
</tr>
<tr>
<td></td>
<td>https://www.bafg.de/GRDC/EN/Home/homepage_node.html</td>
<td>Europe</td>
<td>GRDC – EURO-FRIEND-Water</td>
</tr>
<tr>
<td></td>
<td>EWA</td>
<td></td>
<td>GRDC – EURO-FRIEND-Water</td>
</tr>
<tr>
<td></td>
<td>https://www.bafg.de/GRDC/EN/04_spcidt</td>
<td>Europe</td>
<td>Union</td>
</tr>
<tr>
<td></td>
<td>Russian River data by Bodo, ds553.2</td>
<td>Former Soviet</td>
<td>Bodo, 2000</td>
</tr>
<tr>
<td></td>
<td>https://irda.ucar.edu/datasets/ds553.2/</td>
<td>Union</td>
<td>Arctic region Pan-Arctic Project Consortium</td>
</tr>
<tr>
<td></td>
<td>R-ArcticNet v 4.0</td>
<td>Arctic region</td>
<td>Pan-Arctic Project Consortium</td>
</tr>
<tr>
<td></td>
<td>RIVDIS v 1.1</td>
<td>Global</td>
<td>Vörösmarty et al., 1998</td>
</tr>
<tr>
<td></td>
<td>HYDAT</td>
<td>Canada</td>
<td>Water Survey of Canada (WSC)</td>
</tr>
<tr>
<td></td>
<td>Chinese Hydrology Data Project</td>
<td>China</td>
<td>Henck et al., 2011</td>
</tr>
<tr>
<td></td>
<td>https://depts.washington.edu/shuiwen/index.html</td>
<td>China</td>
<td>Henck et al., 2011</td>
</tr>
<tr>
<td></td>
<td>Spanish Water Authorities</td>
<td>Spain</td>
<td>Ecological Transition Ministry</td>
</tr>
<tr>
<td></td>
<td>WISKI</td>
<td>Sweden</td>
<td>Swedish Meteorological and Hydrological Institute</td>
</tr>
<tr>
<td></td>
<td>https://vattenwebb.smhi.se/station/</td>
<td>Sweden</td>
<td>Swedish Meteorological and Hydrological Institute</td>
</tr>
<tr>
<td>Metadata</td>
<td>CLARIS-project</td>
<td>La Plata Basin</td>
<td>CLARIS LPB- project FP7 Grant agreement 212492</td>
</tr>
<tr>
<td></td>
<td>http://www.claris-eu.org/</td>
<td>La Plata Basin</td>
<td>CLARIS LPB- project FP7 Grant agreement 212492</td>
</tr>
<tr>
<td></td>
<td>CWC handbook</td>
<td>India</td>
<td>Central Water commission (CWC)</td>
</tr>
<tr>
<td></td>
<td>http://cwc.gov.in/main/webpages/publications.html</td>
<td>India</td>
<td>Central Water commission (CWC)</td>
</tr>
<tr>
<td></td>
<td>SIEREM</td>
<td>Africa</td>
<td>Boyer et al., 2006</td>
</tr>
<tr>
<td></td>
<td>http://www.hydrosciences.fr/sierem/</td>
<td>Africa</td>
<td>Boyer et al., 2006</td>
</tr>
<tr>
<td></td>
<td>Regional data</td>
<td>Congo Basin</td>
<td>International Commission for Congo-Ubangui-Sangha Basin</td>
</tr>
<tr>
<td></td>
<td>National data</td>
<td>Australia</td>
<td>BOM (Bureau of Meteorology)</td>
</tr>
<tr>
<td></td>
<td>Red Hidrometrica SNHN 2013</td>
<td>Bolivia</td>
<td>Servicio Nacional de Hidrografia Naval</td>
</tr>
<tr>
<td></td>
<td>http://geo.gob.bo/geonetwork/srv/dt/ca/taleng/search#metadata/f38e57-9abh-</td>
<td>Bolivia</td>
<td>Servicio Nacional de Hidrografia Naval</td>
</tr>
</tbody>
</table>
4. Model setup

The WWH is developed incrementally, and the current version 1.3 was based on previous versions, where version 1.0 only included the most basic functions to run a HYPE model and was forced by MSWEP (Beck et al., 2017) and CRU (Harris and Jones, 2014). Version 1.2 included distributed geophysical and hydrographical features, and finally, version 1.3 (described below) included estimated parameter values and was forced by the meteorological dataset Hydro-GFD, which also provides operational forecasts at a 50 km grid (Berg et al., 2017). Gridded forcing data were linked to catchments using the grid point nearest to the catchment centroid. Dynamic catchment models need to be initialized to account for adequate storage volumes, which may, for instance, dampen or supply the river flow based on catchment memory (e.g. Iliopoulou et al., 2019). The WWH was initialized by running for a 15-year warm-up period 1965-1980, which was judged to be enough for more than 90% of the catchments by checking the time it takes for runs initialized 20 years apart to converge. Long initialization periods are needed for large lakes with small catchments, large glaciers, and sinks or rarely-contributing areas.

The current model runs at a Linux cluster (using nodes of 8 processors and 16 threads) with calculations in approximately 1 800 000 hydrological response units (HRUs) and 130 000 catchments.
covering the world’s land surface, except for Antarctica. The model runs in parallel in 32
hydrologically-independent geographical domains with a run time of about 3 hours for 30-year daily
simulations. The methods applied for modelling and evaluation mostly follow common procedures
used by the catchment modelling community, as described below.

4.1 Catchment delineation and characteristics

Catchment borders were delineated using the World Hydrological Input Set-up Tool (WHIST;
developed at SMHI that is linked to the Geographic Information System (GIS) Arc-GIS from ESRI. By
defining force-points for catchment outlets in the resulting topographic database (c.f. Table 1) and
criteria for minimum and maximum ranges in catchment size, the tool delineates catchments and the
link (routing) between them. By adding information from other types of databases, WHIST also
aggregates data or uses the nearest grid for assigning characteristics to each catchment. WHIST
handles both gridded data and polygons, and was used to link all data described in Section 2, such as
land-cover, river width, precipitation, temperature, and elevation, to each delineated catchment.
WHIST then compiles the input data files to a format that can be read by the HYPE source code. The
software runs automatically, but also has a visual interface for manual corrections and adjustments.
It may also adjust the position of the gauging stations to match the river network of a specific
topographic database.

When setting up WWH, force-points for catchment delineation were defined according to:

- **Locations of gauging stations in the river network**: in total, catchments were defined for all
 21 704 gauging stations which had an upstream area greater than 1000 km² (except for data
 sparse regions (500 – 1000 km²). Their coordinates were corrected to fit with the river
 network of the topographic data, using WHIST and manually. Quality checks of catchment
delineation were done towards station metadata and 88% of the estimated catchment areas
 were within +/-10% discrepancy towards metadata. These catchments were used in further
 analysis for parameter estimation or model evaluation; however, not all of these sites
 provided open access to time-series (see Section 2.3).

- **Outlets of large lakes/reservoirs**: New lake delineation was done to solve the spatial
 mismatch between data of the water bodies from various sources (c.f. Table 2). The centroid
 of the lakes included in GLWD and GRanD was used as initialization points for a Flood Fill
 algorithm, applied over the ESA CCI Water Bodies, followed by manual quality checks. The
 outlet location was defined using the maximum upstream area for each lake. In total, around
 13 000 lakes and 2500 reservoirs > 10 km² were identified globally. The new dataset was
 tested against detailed lake information for Sweden, which represents one of the most lake-
dense regions globally. Merging data from the two databases and adjusting to the
topographic data used was judged more realistic for the global hydrological modelling than
only using one dataset.
• Large cities and cities with high flood risk: The UNEP/GRID-Europe database (Table 1) was used to define flood-prone areas for which the model may be useful in the future. The criteria for assigning a force point was city areas of > 100 km\(^2\) (regardless of the risks on the UNEP scale) or city areas of 10-100 km\(^2\) with risk 3-5 and an upstream area > 1000 km\(^2\). This was only considered if there was no gauging station within 10 km from the city. This gave another 2 439 forcing points to the global model.

• Catchment size: the goal was to reach an average size of some 1000 km\(^2\), for practical (computational) and scientific reasons, reflecting uncertainty in input data. Criteria in WHIST were set to reach maximum catchment size of 3000 km\(^2\) in general and 500 km\(^2\) in coastal areas with < 1000 m elevation (to avoid crossing from one side to another of a narrow and high island or peninsula). Post-processing was then done for the largest lakes, deserts, and floodplains, following specific information on their character (see data sources in Table 2).

Using this approach, the land surface of the Earth (i.e. 135 million km\(^2\) when excluding Antarctica) was divided into 131 296 catchments with an average mean size of 1020 km\(^2\). (5\(^{th}\) percentile: 64 km\(^2\); 50\(^{th}\) percentile: 770 km\(^2\); 95\(^{th}\) percentile: 2185 km\(^2\)). Flat land areas of deserts and floodplains ended up with somewhat larger catchments, about 4500 km\(^2\) and 3500 km\(^2\), respectively. Around 23.8% of the land surface did not drain to the sea but to sinks (Fig. 2), the largest single one being the Caspian Sea. This water was evaporated from water surfaces but also percolated to groundwater reservoirs. Moreover, several areas across the globe are of Karstic geology with wide underground channels, which does not follow the land-surface topography. Sinks within Karst areas according to the World Map of Carbonate Rock outcrops (Table 1) were linked to “best neighbour” and inserted to the river network. The Canadian prairie also encompasses a large number of sinks due to climate and topography, and there existed a national dataset from Canada with well-defined noncontributing areas to adjust the routing in this area.

Figure 2. Major river basins and areas not contributing to river flow from land to the sea.

The land-cover data from ESA CCI LC v1.6 (Table 2) was used as the base-line for HRUs. It has 36 classes and subclasses and three of these were adjusted using additional data to improve the quality;
(1) by using glacier delineated by the RGI v5 and comparing spatially the outlines of both sources, we avoided overestimation of the glacier area; (2) by using GMIA and MIRCA in a data fusion algorithm to create a more robust new irrigation database, we added irrigation information where is was missing and underestimated; (3) by combining several sources of water bodies (see Table 2) and spatial analyses (e.g. a flood fill algorithm and geospatial tools) we differentiated one general class of waterbodies into four: large lakes, small lakes, rivers, and coastal sea, which makes more sense in catchment modelling. Five elevation zones were derived to differentiate land-cover classes with altitude (0-500 m, 500-1000 m, 1000-2000 m, 2000-4000 m and 4000–8900 m) as the hydrological response may be very different at different altitude due to vegetation growth and soil properties. The land-cover at these elevations was thus treated as a specific HRU globally. In total, this resulted in 169 HRUs.

All catchments were characterized according to Köppen-Geiger (Table 2) to assign a PET algorithm (see section 3.2) but the characteristics did not include soil properties, which is common in catchment hydrology. The approach when setting up HYPE was to use the possibility to assign hydrologically active soil depth for the HRUs instead (see Section 2 on HYPE model), based on the variability in precipitation, climate and elevation they represent as suggested by Troch et al. (2009) and Gao et al. (2014). However, a few distinct soil properties were unavoidable beside the general soil to describe the hydrological processes; these were impermeable conditions of urban and rock environments, and infiltration under water and rice fields.

4.2 Step-wise parameter estimation

The method to assign parameter values for the global model domain aimed at finding (i) robust values also valid for ungauged basins, as well as (ii) reliable process description of dominating flow generation processes and water storage along the flow paths. The first aim was addressed by simultaneous calibration in multiple representative catchments world-wide. Spatial heterogeneity was accounted for by separate calibration of catchments representing different climate, elevation, and land-cover globally. The second aim was addressed by applying a step-wise approach following the HYPE process description along the flow paths, only calibrating a few parameters governing a specific process at a time (Arheimer and Lindström, 2013). The estimated parameter values were then applied wherever relevant in the whole geographical domain, i.e. world-wide. We estimated parameters for 11 hydrological processes separately, where each process description includes between 2 and 20 parameters (Table A1 in the Appendix). Some processes were calibrated for specific categories, for instance different soil types, land use and elevation zones.

Different catchments were selected globally to best represent each process calibrated (Fig. 3). Processes were assumed to be linked to different physiographic characteristics (Kuentz et al., 2017) and catchments with gauging stations where these characteristics were most prominent in the upstream area were selected (i.e. the representative gauged basin method). For HRUs, separate calibration was done for the snow-dominated areas (>10% of precipitation falling as snow), as the snow processes give such strong character to the runoff response and simultaneous calibration with catchments lacking snow may thus underestimate other flow-controlling processes. The HRUs based on the ESA CCI 1.6 data was aggregated from 36 classes into 10 (Table 4) for more efficient
calibration and to ensure that some 50% of the gauged catchments were selected representing the appointed land-cover. Some local hydrological features such as large lakes and floodplains were calibrated individually. When evaluating the effect of this, we discovered some major bias for the Great Lakes in North America and Malawi and Victoria lakes in Africa. Finally, we introduced the 11th step to calibrate the evaporation of these separately (Fig 3).

Figure 3. Number of gauging stations and their location that was used in each step of the stepwise parameter estimation procedure and evaluation against in-situ observations world-wide.

In total, 6519 river gauges were used in the calibration process for evaluating model performance. Among these, 3656 were used in the calibration but normally each gauge only affected a few model parameters in the stepwise procedure. 1181 of these gauges did not meet the ambition to represent the average catchment resolution and 10 consecutive years between 1981 and 2012, but was still included in some step due to lack of data. Automatic calibration was applied for each subset of parameters and representative catchments in each step, using the Differential Evolution Markov Chain (DEMC) approach (Ter Braak, 2016) to obtain the optimum parameter value in each case. The advantage of DEMC versus plain DE is both the possibility to get a probability-based uncertainty estimate of the global optimum and a better convergence towards it. The DEMC requires several parameters to be fixed and the choice of these parameters was based on a compromise between convergence speed and the accuracy of the resulting parameter set. Global PET parameter values
were fixed first, before starting the step-wise procedure, using the MODIS global evapotranspiration product (MOD16) by Mu et al., (2011) for parameter constraints. The parameter ranges were defined as the median and the 3rd quartile of the 10% best agreements between HYPE and MODIS in terms of RE. The first selection was done with 400 runs and then repeated for a second round. In addition, a priori parameters (Table SA1 in the Appendix) were set for glaciers and soils without calibration, taken from previous applications (e.g. Donnelly et al., 2016; MacDonald et al., 2018). The bare desert soil was manually calibrated only using 4 stations in the Sahara desert. The area and volume of glaciers were evaluated in 296 glaciers and soil parameters in some 30 catchments. The root zone storage of soils was further calibrated in the parameter setting of each HRU (in step No 4 and 5).

While the calibration period was 1981-2012, it was always preceded by 15 years of initialization. Different metrics were chosen as calibration criteria, depending on the character of the parameter and how it influences the model. For instance, Relative Error (RE) was used as a metric in the calibration of precipitation and PET parameters, since the aim was to correctly represent water volumes. On the contrary, Correlation Coefficient (CC) was used when the timing was the main goal (i.e. for river routing or dampening in lakes). If both water volume and timing were required, Kling-Gupta Efficiency (KGE; Gupta et al., 2009) was used (i.e. for soil discharge from HRUs). Wherever possible, calibration was made using a daily time-step, while overall model evaluation on the global scale was made on a monthly time-step.

Table 4. Aggregated land covers used for calibrating HRUs, their representation in the upstream catchment and the number of gauges available for each land cover when estimating parameter values of WWH v1.3.
fresh/saline/brackish water

<table>
<thead>
<tr>
<th>Sparse</th>
<th>Lichens and mosses</th>
<th>35%</th>
<th>40</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse vegetation (tree, shrub, herbaceous cover)</td>
<td>(<15%) Sparse shrub (<15%) Sparse herbaceous cover (<15%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TreeBrDecMix</td>
<td>Tree cover, broadleaved, deciduous, closed to open 50% 26 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TreeBrDecMix</td>
<td>Tree cover, broadleaved, deciduous, closed (>40%) Tree cover, broadleaved, deciduous, open (15-40%) Tree cover, mixed leaf type (broadleaved and needle-leaved)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TreeBrEvFlood</td>
<td>Tree cover, broadleaved, evergreen, closed to open 50% 37 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TreeNeDec</td>
<td>Tree cover, flooded, fresh or brackish water Tree cover, flooded, saline water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TreeNeDec</td>
<td>Tree cover, needle-leaved, deciduous, closed to open 50% 46 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TreeNeEv</td>
<td>Tree cover, needle-leaved, deciduous, closed (>40%) Tree cover, needle-leaved, deciduous, open (15-40%) Tree cover, needle-leaved, evergreen, closed to open 50% - 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>Urban</td>
<td>50% 21 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Model evaluation

The model was evaluated against independent observed river flow by using remaining gauges, which were not chosen for the calibration procedure. The agreement between modelled and observed time-series was evaluated using the statistical metric KGE and its components r, β and α, which are directly linked with CC (Pearson Correlation Coefficient), RE (Relative Error) and RESD (Relative Error of Standard Deviation), respectively (Gupta et al., 2009). KGE is defined as:

$$KGE = 1 - \sqrt{(r-1)^2 + (\alpha-1)^2 + (\beta-1)^2} \quad (Eq. 1)$$

where:

$$r = CC = \frac{\text{cov}(x_o, x_s)}{\sigma_o \sigma_s} \quad (Eq. 2)$$

$$\beta = \frac{\mu_s}{\mu_o}; \quad RE = (\beta - 1) \cdot 100 \quad (Eq. 3)$$

$$\alpha = \frac{\sigma_s}{\sigma_o}; \quad RESD = (\alpha - 1) \cdot 100 \quad (Eq. 4)$$

x represents the discharge time series, μ the mean value of the discharge time series, and σ the standard deviation of the discharge time series. The sub-indexes o and s represent observed and simulated discharge time series, respectively. Thus CC represents how well the model dynamics...
agree between observations and simulations, i.e. the timing of events but not the magnitude; RE represents the agreement in volume over time; RESD represents how well the model captures the amplitude of the hydrograph. KGE was chosen as performance metric to analysis all these aspects and because it has been found good in capturing both mean and extremes during calibration (Mizukami et al., 2019). We used the original version so that our results can easily be compared to other studies reported in the literature, even though non-standard variants may be more efficient (e.g. Mathevet et al., 2006; Mizukami et al., 2019).

In addition, a number of flow signatures (Table 5) was calculated to explore which part of the hydrograph is well captured by the model. Flow signatures are used by the catchment modelling community to condense the hydrological information from time-series (Sivapalan, 2005) and the choice of flow signatures was guided by previous studies by Olden and Poff (2003) and Kuentz et al. (2017). In this study, flow signatures were calculated at 5338 gauging stations globally, based on catchment size and at least 10 years of continuous time-series (see section 2.3).

The model capability in capturing observed flow signatures was then related to upstream physiographical and climatological factors, such as area, mean elevation, drainage density, landcover, climatic region or aridity index. Catchment modellers tend to study differences and similarities in flow signatures as well as in catchment characteristics to improve understanding of hydrological processes (e.g. Sawicz et al., 2014; Berghuijs et al., 2014; Pechlivanidis and Arheimer, 2015; Rice et al., 2015). In large-sample hydrology it is not possible to examine each hydrograph individually using inspection. As the flow signatures aggregate information about the hydrograph, the model capability to simulate signatures will tell the modeller which part of the hydrograph is better or worse. Linking catchment descriptors and model performance in hydrological responseflow signatures help the modeler to examine whether the process description and model structure are valid across the landscape or if the regionalization of parameter values must be reconsidered for some parts of a large domain. In addition, this exercise will guide the users to judge under which conditions the model is reliable and thus of any use for decision making. In the present study, the physiographic characteristics of catchments were all extracted from the input data files of the WWH version 1.3. For each gauging station with calculated flow signatures, the catchment characteristics were accumulated for all upstream catchments to account for any potential physiographical influence on the flow signal at the observation site (Table 3). Gauging stations were grouped according to the distribution of each physiographic characteristic and model performances in flow signature representation were computed for each of these groups.

| Table 5. Flow signatures (FS) from observed time-series and physiographic descriptors (T: topography; LC: Land cover; C: climate) from databases in Section 2.1. |
| --- | --- | --- |
| Variable name | Description | Range |
| skew (FS) | Skewness = mean/median of daily flows | (0.63 - 70000) |
| MeanQ (FS) | Mean specific flow in mm | [0 - 1024.41] |
| CVQ (FS) | Coef. of variation = standard deviation/mean of daily flows | [0.01 - 46.4] |
| BFI (FS) | Base Flow Index: 7-day minimum flow divided by mean annual daily flow |
| Q5 (FS) | averaged across years | [0 - 0.84] |
| Q5 (FS) | 5% percentile of daily specific flow in mm | [0 - 218.04] |
| HFD (FS) | High Flow Discharge: 10^- percentile of daily flow divided by median daily flow | [0 - 1] |
5. Results

5.1 Global river flow and general model performance

To some extent WWH version 1.3 describes major hydrological features globally and important spatial variability in factors controlling the runoff mechanisms, although there is still substantial room for improvements over the coming decade(s). The catchment modelling approach with careful consideration to hydrography resulted in a new database with delineated hydrographical features (e.g. Fig. 4) of major importance for hydrological modelling. The merging of several data sources resulted in consistency between available information on water bodies, topographic data and the river network (e.g. for glaciers, floodplains, lakes, and gauging stations) so that this information can be used in catchment modelling and provide results of river flow at a resolution of some 1000 km² globally.
Figure 4. Some examples of WWH version 1.3 details in describing hydrography at local and regional scale from supporting GIS layers: A) subbasins of the Orinoco river defined as a connected floodplain; B) adjustment of lake areas (New) from merging several data sources (see Section 2.1 and 3.1) and the original GLWD in the Canadian Prairie; C) river routing and access to flow gauges in the Congo river basin.

The WWH version 1.3 resulted in a realistic spatial pattern of river flow world-wide, clearly identifying desert areas and the largest rivers (Fig. 5). Compared to other global estimates of average water flow in major rivers, HYPE gives results in the same order of magnitude, but of course, comparisons should be based on the same time period to account for natural variability due to climate oscillations. The Amazon, Congo and Orinoco rivers came out as the three largest ones, where the river flow of the Amazon river is almost 6 times larger than any other river. Compared to recent estimates by Milliman and Farnsworth (2011), HYPE estimated a higher annual average of river flow in Mississippi, St Lawrence, Amur, and Ob, but less in the rest of the top-ten largest rivers of the world, especially relatively lower values were noted for Ganges-Brahmaputra. For World-Wide HYPE, Yangtze river came out as No 11 and Mekong as No 12, and it should be noted that the river flow to Río de la Plata was separated into Paraná River and Uruguay river (the former ranked as No 13 of the largest rivers).

Figure 5. Annual mean of river discharge across the globe for the period 1981-2015 estimated with the catchment model WWH version 1.3 (on average 1020 km² resolution).
On average, for the whole globe and 5338 gauging stations with validated catchment areas and at least ten years of data, the model performance was estimated to a median monthly KGE of 0.40 (Fig. 6). When decomposing the KGE, we found a median correlation coefficient of 0.76 and a median relative error of -15%. This means that the model captures the temporal dynamics of the hydrographs reasonable well in many sites while it generally underestimates the river flow. This underestimation could be resulting from using MODIS when setting calibration ranges. The bluer in Figure 6, the better is the model performance; hence, the model performs best in central Europe, North-East America, Upper Amazon, North Russia (KGE > 0.6). These regions are mostly lowlands and one explanation to good model performance could be that the precipitation from the global meteorological dataset is more correct at lower altitudes with smooth orography. It could also be that the seasonality is more regular and easier to capture.

Model performance was surprisingly similar for the gauges used in parameter estimation and independent ones, with median KGE of 0.41 (2475 stations) and 0.39 (2863 stations), respectively. Among the validation stations, 498 were completely independent without any influence from calibration in any branch of the upstream river network. Also here the model showed similar performance (median KGE = 0.45; median CC = 0.79; median RE = -17). This indicates that the model results are robust and the same similar model performance can be assumed also in ungauged basins.

If KGE is below -0.41 the model does not contribute with more information than the long-term average of observations (Knoben et al., 2019), however to judge whether the model performance is good or bad, the model purpose and use of results must be considered. Most catchment modellers who come from engineering would normally probably judge these the KGE of 0.40 results as poor, but given that global open input data was used for model setup and rough assumptions were made when generalizing hydrological processes across the globe, the overall model performance meets the expectations of a first version.

Global hydrological modellers rarely compare their results to gauged river flow (e.g. Zhao et al., 2017) but similar results were recently achieved when Beck et al. (2016) was testing a scheme for global parameter regionalization world-wide; in an ensemble of ten global water allocation or land surface models, the median performance of monthly KGE was found to be 0.22 using 1113 river gauges for mesoscale catchments globally (median size 500 km²). The best median monthly KGE was then 0.32 for catchment scale calibration of regionalized parameters, using a gridded HBV model with a daily time-step globally (Beck, 2016). It is difficult to compare results when not using the same validation sites or time-period and more concerted actions for model inter-comparison are needed at this scale. Nevertheless, the catchment modelling approach of the present study seems to have better performance than other gridded global modelling concepts of river flow (see results from more models in Beck et al., 2016).

The red spots in Figure 6 indicate where the HYPE model fails (KGE < -1), such as in the US mid-west (especially Kansas), north-east of Brazil and parts of Africa, Australia and central Asia. When decomposing the KGE, it was found that the correlation was in general fine. However, the relative error in standard deviation was causing the main problems showing that the HYPE model does not capture the variations of the hydrograph, and instead, generates a too even flow. The relative error also seemed problematic, which indicates problems with the water balance. The model has severe
problems with dry regions and areas with large impact from human alteration and water management, where the model underestimates the river flow. Such regions are known to be more difficult for hydrological modelling in general (Bloeschl et al., 2013), but in addition, precipitation data do not seem to fully capture the influence of topography and mountain ranges. The patterns in model performance were further investigated in the analysis of model performance versus flow signatures and physiographic factors (Section 4.3).

Figure 6. Model performance of WWH version 1.3 using the KGE metric of monthly values of ≥ 10 years in each of the 5338 gauging sites for the period 1981-2012. Blue and green indicates that the model provides more information than the long-term observed mean value.

5.2 Global parameter values from step-wise stepwise calibration

Both model performance in representative catchments and improvement achieved through calibration varied a lot for each hydrological process considered in the step-wise stepwise parameter estimation (Table 6). Although, a large number of river gauges was collected for parameter estimation, only a few could be considered as representative with enough quality assurance. More gauges in the calibration procedure would probably have given another result. Nevertheless, the results show promising potential in applying the process descriptions of catchment models also at the global scale.

In spite of the wide spread in geographical locations across the globe, a priori values were reasonable for hydrological processes describing glaciers and soils. As shown in Table 6, the water balance (RE)
was improved considerably by first calibrating PET globally, and then precipitation vs altitude of
catchment and land-cover type. Simultaneous calibration of soil storage and discharge in HRUs
increased the KGE both in areas with and without snow by 0.1 on average. For calibration of river
routing and rating curves of lake outflows, the correlation coefficient was used to avoid erroneous
compensation of the water balance, as the parameters involved should only set the dynamics of flow
and not volume. Especially lake processes benefited from calibration. Less convincing was the
metrics from calibration of the floodplains, which were not always improved by the floodplain
routine applied. Overall, the results indicate that global parameters are to some extent possible for
describing hydrological processes world-wide, using a catchment model and globally available data of
physiographic characteristics to describe spatial variability. Nevertheless, the WWH v.1.3 model has
still considerable potential for improvements and to really make use of more advanced calibration
techniques, the water balance needs to be improved first as too much volume error makes the
tuning of dynamics difficult.

<table>
<thead>
<tr>
<th>Hydrological Process</th>
<th>No. gauges</th>
<th>Median value of metric(s)</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Evapo-Transpiration (3 PET-algorithms: median of ranges constrained with MODIS)</td>
<td>0</td>
<td>RE: 11.5%</td>
<td>RE: 0.5%</td>
<td></td>
</tr>
<tr>
<td>Glaciers (only evaluated vs mass balance data)</td>
<td>296</td>
<td>RE: 0.38%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Soils (average, rock, urban, water, rice)</td>
<td>25</td>
<td>CC: 0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bare soils in deserts (calibrated manually)</td>
<td>4</td>
<td>RE: 236.1%</td>
<td>RE: -18.9</td>
<td></td>
</tr>
<tr>
<td>1. Precipitation: catchment elevation</td>
<td>147</td>
<td>RE: -6.7%</td>
<td>RE: 4.4%</td>
<td></td>
</tr>
<tr>
<td>2. Precipitation: land-cover altitude</td>
<td>1041</td>
<td>RE: 24.3%</td>
<td>RE: 10.1%</td>
<td></td>
</tr>
<tr>
<td>3. HRUs in areas without snow</td>
<td>318</td>
<td>KGE: 0.16</td>
<td>KGE: 0.27</td>
<td></td>
</tr>
<tr>
<td>4. HRUs in areas with snow: ET, recession and active soil depth</td>
<td>225</td>
<td>KGE: 0.16</td>
<td>KGE: 0.24</td>
<td></td>
</tr>
<tr>
<td>5. Upstream lakes</td>
<td>731</td>
<td>CC: 0.71</td>
<td>CC: 0.72</td>
<td></td>
</tr>
<tr>
<td>6. Regionalised ET (in 12 Köppen climate regions)</td>
<td>458</td>
<td>KGE: 0.58</td>
<td>KGE: 0.62</td>
<td></td>
</tr>
<tr>
<td>7. River routing</td>
<td>302</td>
<td>CC: 0.70</td>
<td>CC: 0.71</td>
<td></td>
</tr>
<tr>
<td>8. Lake rating curve</td>
<td>945</td>
<td>CC: 0.50</td>
<td>CC: 0.59</td>
<td></td>
</tr>
<tr>
<td>9. Floodplains (partly calibrated manually)</td>
<td>32</td>
<td>KGE: -0.03</td>
<td>KGE: 0.03</td>
<td></td>
</tr>
<tr>
<td>10. Evaporation from water surface</td>
<td>201</td>
<td>RE: -20.7%</td>
<td>RE: -12.2%</td>
<td></td>
</tr>
<tr>
<td>11. Specific lake evaporation</td>
<td>16</td>
<td>RE: 24.8%</td>
<td>RE: 4.8%</td>
<td></td>
</tr>
</tbody>
</table>

5.3 Model evaluation against flow signatures
The WWH1.3 is more prone to success or failure in simulating specific flow signatures than to specific physiographic conditions, which is visualized by vertical rather than horizontal stripes in Figure 7. In general, the model shows reasonable KGE and CC for spatial variability of flow signatures across the globe (i.e. a lot of blue in the two panels to the left in Fig. 7). However, the RE and the standard deviation of the RE (RESD) are less convincing (i.e. the two panels to the right). This means that the model can capture the relative difference in flow signature and the spatial pattern globally, but not always the magnitudes, nor the spread between highest and lowest values. The relative errors are mostly due to underestimations, except for skewness, low flows and actual potential evapotranspiration; the two latter are always over-estimated when not within ±25% bias. Overall, the model shows good potential to capture spatial variability of high flows (Q95), duration of low flows (LowDurVar), monthly high flows (Mean30dMax) and constancy of daily flows (Const). These results were found robust and independent of metrics or physiography. The results implies that the overall process understanding behind the HYPE model structure and the assumptions of catchment similarities in the set-up may be relevant at the global scale, but that the estimation of parameter values or quality of forcing data are not optimal for capturing the flow dynamics.

The model shows most difficulties in capturing skewness in observed time-series (skew), the number of high flow occurrences (HighFrVar), and base flow as average (BFI), or absolute low flows (Q5). Short-term fluctuations (RevVar and RBFlash) are also rather difficult for the model to capture. Some results are not consistent between metrics; for coefficient of variation (CVQ) the RE was good while the RESD was poor. This indicates that the model does not capture the amplitude in variation between sites even if the bias is small. The opposite was found for high flow discharge (HFD) and low-flow spells (LowFr), i.e. poor performance in volumes but RESD showing that the variability is captured.

For the remaining flow signatures studied, it was interesting to note that the model performance could be linked to physiographic characteristics, indicating that the model structure and global parameters are valid for some environments but not for others. For instance, the volume of mean specific flow (RE of MeanQ) is especially difficult to capture in regions with needle-leaved, deciduous trees (TreeNeDec) and for medium and large flows in the Köppen region B (Arid), large flows in D (Cold-continental) and small flows in E (Polar). Moreover, the analysis shows that the model tends to fail with the mean flow in catchments with high elevation, high slope, small fraction water and urban land-cover, and little or much of snow and ice. This shows where efforts need to be taken to improve the model in its next version.

For other water-balance indices, it was interesting to note that the ratio between precipitation and river flow (RunoffCo) show good results (RE ± 25%) all over Köppen region C (Temperate) but otherwise is often underestimated for some parts of the quartile range of physiographic variables studied. On the contrary, precipitation minus flow (ActET) is over-estimated in parts of the quartile range, except for the good results in Köppen region C, needle-leaved, deciduous trees (TreeNeDec) and regions with snow and ice (i.e. where mean specific runoff failed). Figure 7 clearly shows the compensating errors between processes governing the runoff coefficient and actual evapotranspiration, with one being over-estimated when the other is underestimated for the same specific physiographic conditions. This indicates the need for recalibrating the HRUs of WWH in its next version, but also reconsidering the initial parameters for evapotranspiration and the quality of the precipitation grid and its linkage with the catchments. It is rather common to use Köppen when...
evaluating ET (e.g. Liu et al., 2016) but it may not be the best separator hydrologically (Knoben et al., 2018) so model performance should preferably be evaluated and calibrated in clusters based on other characteristics in the future.

Figure 7. Matrix showing the relation between model capacity to capture flow signatures (colors, where blue is good and yellow/red/purple is poor performance) and physiography of catchments, divided into quartiles (Q1-Q4) for characteristics of the total area upstream each gauging station with more than 10 years of continuous data (5338 catchments). Description of flow signatures and physiographic characteristics are found in Table 4-5 and metrics used for model performance in Eq. 1-4.

6. Discussion

This test showed whether it is now possible and timely to apply catchment modelling techniques to advance global hydrological modelling gave some diverse results. Regarding physiographic data, it is now possible to delineate catchments thanks to high-resolution topographic data (Yamazaki et al., 2017) and there are many global datasets readily available with necessary physiographic input data for catchment modelling also including local hydrological features and waterbodies (e.g. sinks and floodplains) that are normally not included in the traditional global models (e.g. Zhao et al., 2017). Nevertheless, before merging the databases we found that they need to be harmonized and quality assured, which has already been notified in previous studies (e.g. Kauffeld et al., 2013). For meteorological data, global precipitation from re-analysis products are well known to contribute a lot to the output uncertainty in traditional global modelling (e.g. Döll and Fiedler, 2008; Biemans et al., 2009) and this was still the case when applying catchment modelling; although the precipitation grid was bias-adjusted against observations (Berg et al., 2018) and further adjusted with elevation during calibration, the density of stations at the global scale was not
enough for the resolution of catchments. New high-resolution products from the meteorological community have potential to become a game-changer in global hydrological modelling.

The test whether parameter estimation methods from the catchment modelling community could improve model performance in global hydrological predictions resulted in better metrics than previously reported by e.g. Beck et al. (2016). Despite the large sample of river gauges, however, we experienced that it was not distributed well enough to cover the large domain. Screening of the gauged data quality showed that most regions worldwide have access to some high-quality time series of river flow (Crochemore et al., 2019) but for the stepwise procedure applied here this was still not enough for many of the pre-defined calibration steps. Even when merging the original ESA landcover classes before calibration (Table 4) sufficient gauged data was missing. As the structure of the catchment model reflects the modellers’ process understanding and as parameters must be estimated (Wagener, 2003) a better compromise must be made between the HYPE structure or set-up and flow gauges available for the global calibration scheme. Hence, the ecosystem approach needs to be elaborated with better defined clusters for catchment similarity across the globe to be truly helpful at this scale.

With current computational resources it was possible to use automatic iterative calibration techniques from the catchment community (i.e. DEMC, Ter Braak, 2016) to obtain the optimum parameter values from several iterations, also across large samples of gauges. However, enough computational resources were still lacking for advanced uncertainty analysis, such as using the GLUE (Beven and Binley, 1992).

To sum up, we found that the catchment model application at global scale could be considered timely because it was doable and now there is potential for improvements, although, even at this stage the model might be useful for some purposes in some regions, as discussed below.

6.1 Potential for improvements

The results from evaluating model performance using several metrics, several thousand gauges and numerous flow signatures, gave clear indication on regions where the model most urgently needs improvements. A thorough analysis of spatial patterns would also benefit from evaluation against independent data of spatial patterns of hydrological variables, for instance from Earth Observations. In general, the WWH model has severe problems with dry regions and base flow conditions where the flow is sporadic (e.g. red areas in Fig. 5). The flow generating processes in such areas are known to be difficult to model (Bloschl et al., 2013). For instance, most model concepts, and also the WWH, have problems with the great plains of US (e.g. Mizukami et al., 2017; Newman et al., 2017), where the terrain is complex with prairie potholes, which are disconnected from the rivers, and precipitation comprise a major source of hydrologic model error (e.g. Clark and Slater, 2006). Poor model performance were also found for the tundra and deserts, but it should then be recognized that the parameters for these regions were estimated using only four time-series for bare soils (Table 6); including more gauging stations would be a way to improve the model here. In large parts of Africa, however, model errors could be linked to the soil-runoff parameters and local calibration.
based on catchment similarities has already been found to improve the performance a lot in West Africa.

In the snow-dominated part of the globe, extensive hydropower regulation change the natural variability of river discharge (Déry et al., 2016; Arheimer et al., 2017) but the global databases miss out of all medium and small dams that may affect discharge along these river networks. A general problem with modelling river regulation is that reservoirs can have multi-purposes and must be examined individually to understand the regulation schemes applied. Such analyses have started and shown potential to improve the global model a lot as the poorest model results are often linked to river regulations. However, individual reservoir calibration will be very time-consuming, so instead, we suggest starting with improvements that can be undertaken relatively quickly and easily. These mainly focus on the overall water balance. Firstly, the global water balance can be improved through re-calibration but some basic concepts need to be adjusted accordingly: (i) more careful analyses indicate that the choice of climate regions based on Köppen’s classification for applying the different PET algorithms was not optimal and needs some adjustments, (ii) linking the centroid of the catchments to the nearest precipitation grid seems to remove a lot of the spatial variation and instead an average of nearest grids should be tried. Secondly, the HRUs can be recalibrated and reconsidered, and we suggest (i) testing a calibration scheme based on regionalized parameters rather than global, using clustering based on physiographic similarities (e.g. Hundecha et al., 2016), (ii) including soil properties in the HRU concept again (as in the original version of HYPE, see Lindström et al., 2010) to account for spatial variability in soil-water discharge linked to porosity in addition to vegetation and elevation. Thirdly, the behaviour of hydrological features, such as lakes, reservoirs, glaciers, and floodplains can be evaluated and calibrated separately, after categorizing them more carefully or from individual tuning. Finally, more observations can be included, both in-situ by adding more gauges to the system and from global Earth Observation products, for instance on water levels and storage. Hence, each step in Fig. 3 still has potential for model improvements.

The stepwise parameter-estimation approach should ideally be cycled a couple of times to find robust values under new fixed parameter conditions. However, as the model was carefully evaluated during the calibration, there were a lot of bug fixing, corrections and additional improvements resulting between the steps and time was rather spent on this than on several full-filled iterations. Therefore, the stepwise calibration was subjected to several re-takes and shifts between steps until it eventually could full-fill all the calibration steps in one entire sequence (Fig. 8). Hence, only one loop was done for parameter estimations in this study. The procedure was judged as very useful for the model to be potentially right for the right reason, but also very time-consuming. However, applying a catchment modeller’s approach, this is inevitable for reliably integrated catchment modelling and both the step-wise calibration and iterative model corrections will continue with new model versions.
Figure 8. Discrepancy between the idealised procedure for step-wise calibration (A) and the numerous iterations between the steps that appear in reality (B), leading to overall model corrections.

Another important next step in model evaluation and improvement would be to initiate a concerted model inter-comparison study at the global scale with benchmarking (e.g. Newman et al., 2017), as we currently lack such studies for global hydrological modelling of river flow. Focus should then be on comparing model performance in general but also on input data and performance of specific hydrological processes to understand differences between various model concepts. The latter could be done by using the representative gauged basin approach, as in this study, to evaluate model performance for sites where flow is dominated by certain processes, by analysing specific parts of the hydrograph (or flow signatures) that represents time periods when specific processes dominate the flow generation. In addition to river gauges, other data sources should be used for model evaluation of spatial patterns, e.g. earth observations. Specific areas that are intensively managed and impacted by humans should also be distinguished and evaluated separately to better understanding process variability vs human impacts. Various sources of input data (from which errors may propagate) should also be evaluated to improve global hydrological modelling.

6.2 Model usefulness

Catchment models are often applied by water managers and the usefulness is part of the concept, however, to provide global hydrological data that is relevant locally is far from trivial (e.g. Wood et al., 2011; Bierkens et al., 2015). The result analysis of this first version of the WWH model performance shows that also this first version can only to some extent be useful for water managers in several some regions globally. For instance, long-term averages are rather reliable in Eastern USA, Europe, South-East Asia, Japan as well as most of Russia, Canada, and South America. Here the model could thus be used for e.g. analysing shifts in water resources between different climate periods. For high flows, monthly values show good performance as well as the spatial pattern of relative values. This implies that the model could already be used for seasonal forecasting of recharge to hydropower reservoirs, for which these variables are often used. Accordingly, the model has already been applied for producing water-related climate impact indicators and it is set-up operationally to provide monthly river-flow forecasts for 6 months ahead (http://hypeweb.smhi.se/).
In many areas, HYPE should still be considered as a scientific tool and cannot be used locally by water managers because of poor performance. However, the model provides a first platform for catchment modelling to be further refined and experimented with at the global, regional and local scales. Parts of the model can be extracted (e.g. specific catchments or countries) and used as infrastructure, when starting the time-consuming process of setting up a catchment model. The model can then be improved for the selected catchments by exchanging the global input data with local data and knowledge, as well as parameters estimated to fit with local observations. Significant improvements in model performance from such a procedure have already been noted for West Africa (Andersson et al., 2017).

In Sweden the operational HYPE model runs with national data and adjusted parameter values, providing an average daily NSE (Nash and Sutcliffe, 1970) of 0.83 for 222 stations with ≤5% regulation and an average relative volume error of ±5% for the period 1999–2008. For all gauging sites (some 400) with both regulated and unregulated rivers, the mean monthly NSE is 0.80. The Swedish HYPE model also started with poor performance in its first version, but has been improved incrementally during more than 10 years and has proven very useful in providing decision-support to society. It supports a national warning service with operational forecasting of floods and droughts (e.g. Pechlivanidis et al., 2014), and the water framework directive for measure plans to improve water quality (e.g. Arheimer and Pers, 2017; Arheimer et al., 2015). Moreover, it has been used in assessments of hydro-morphological impact (e.g. Arheimer and Lindström, 2014), climate-change impact analysis (e.g. Arheimer and Lindström, 2015) and combined effects from multiple-drivers on water resources in a changing environment (e.g. Arheimer et al., 2017; Arheimer et al., 2018; Arheimer and Lindström, 2019).

Thus, it is found very useful to have a national multi-catchment model to support society in water related issues. This should be encouraging for other countries who do not yet have a national model set-up and also for international river basin authorities searching for a more harmonized way to predict river flow across administrative borders. Using the WWH as a starting point would be a quick and low-cost alternative for getting started with more detailed catchment modelling for decision-support in water management. Parts of the model are therefore shared and can be requested at http://hypecode.smhi.se/. Using a common framework for catchment modelling by many research groups and practitioners will probably advance science as it enables a critical mass and better communication when sharing experiences. Only when using the same methods or data, there is full transparency in the research process so that scientific progress and failures can be clearly understood, shared and learnt from. The WWH could be one stepping stone in such a collaborative process between catchment modellers across the globe. Therefore, SMHI annually offers a free training course since 2011, accompanied with travel grants for participants from developing countries since 2013. Every year about 30 new persons are trained in HYPE and get access to a piece of the modelled world, resulting in model refinements and various regional assessments around the globe e.g. climate-change impact on Hudson Bay (MacDonald et al., 2018), flow forecasts in Niger River (Andersson et al., 2017), hydromorphological evolution of Mackenzie delta (Vesakoski et al., 2017), and water quality in South Africa (Namugize et al., 2017) or England (Hankin et al., 2019).
7. Conclusions

This study shows the usefulness of applying catchment modelling methods (topographic catchment delineation, stepwise calibration, performance evaluation against a large sample of observations using several metrics and flow signatures) to help advance global hydrological modelling.

The catchment modelling approach applied (using the HYPE model, open global data and recent calibration techniques) resulted in better performance (median monthly KGE = 0.4) than what has been reported so far from more traditional gridded modelling of river flow at the global scale. Major variability in hydrological processes could be recognized world-wide using global parameters, as these were linked to physiographical variables to describe spatial variability and calibrated in a stepwise manner. Clearly, the community of catchment modellers can contribute to research also at the global scale nowadays with the numerous open data available and advanced processing facilities.

However, the WWH resulting from this first model version should be used with caution (especially in dry regions) as the performance may still be of low quality for local or regional applications in water management. Geographically, the model performs best in Eastern USA, Europe, South-East Asia and Japan, as well as parts of Russia, Canada, and South America. The model shows overall good potential to capture flow signatures of monthly high flows, spatial variability of high flows, duration of low flows and constancy of daily flow. Nevertheless, there remains large potential for model improvements and it is suggested both to redo the calibration and reconsider parts of the model structure for the next WWH version.

The stepwise calibration procedure was judged as very useful for the model to be potentially right for the right reason, but also very time-consuming and data demanding. The calibration cycle is suggested to be repeated a couple of times to find robust values under new fixed parameter conditions, which is a long-term commitment of continuous model refinement. The model setup will be released in new model versions during this incremental improvement. For the next version, special focus will be given to the water balance (i.e. precipitation and evapotranspiration), soil storage and dynamics from hydrological features, such as lakes, reservoirs, glaciers and floodplains.

The model will be shared by providing a piece of the world to modellers working at the regional scale to appreciate local knowledge, establish a critical mass of experts from different parts of the world and improve the model in a collaborative manner. The model can serve as a fast track to a model environment for users who do not have this ready at hands and in return the WWH can be improved from feedback on hydrological processes from local experts across the world. Potentially it will accelerate scientific advancement if more researchers start using the same tools and data, which makes it easier to be transparent when evaluating and comparing scientific results. SMHI commits to long-term management, continuous refinement, supporting tools, training and documentation of the WWH model.
Code availability

http://hypecode.smhi.se

Data availability

http://hypeweb.smhi.se

Appendices

The Table below show additional information to Table A1 regarding which HYPE parameters that were calibrated for each process during the model set-up and the range of resulting parameter values. Description of each parameter can be found in the HYPE wiki at http://hypeweb.smhi.se/.

Table A1. Metrics and parameter values from the stepwise parameter-estimation globally. Parameter names and values are given in the same order of appearance (columns 2 and 6).

<table>
<thead>
<tr>
<th>Hydrological Process</th>
<th>HYPE parameters</th>
<th>No. gauges</th>
<th>Median value of metric(s)</th>
<th>Parameter value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Evapo-Transpiration (3 PET-algorithms: median of ranges constrained with MODIS)</td>
<td>jhtadd, jhtscale, kc2, kc3, kc4, krs, alb, alfapt, glacvexp, glacvcoef, glacvexp1, glacvexp2</td>
<td>0</td>
<td>Before: RE: 11.5 %</td>
<td>After: RE: 5%</td>
</tr>
<tr>
<td>Glaciers (only evaluated vs mass balance data)</td>
<td>glacvexp, glacvcoef, glacvexp1, glacvexp2, glacvexp3, glacvexp4, glacvexp5</td>
<td>296</td>
<td>RE: 0.38%</td>
<td>-</td>
</tr>
<tr>
<td>Soils (average, rock, urban, water, rice)</td>
<td>rrcs1, rrcs2, rrcs3, trrcs, mperc1, mperc2, macerate, macrinfin, macrtrm, srrate, wcwp1-3, wcfc1-3, wccep1-3</td>
<td>25</td>
<td>RE: -14.1%</td>
<td>KGE: 0.2</td>
</tr>
</tbody>
</table>

Ranges:
- 0.20 - 0.5
- 0.01 - 0.45
- 0.01 - 0.1
- 0.05 - 0.35
- 30 – 100
- 10 – 60
- 0.05 – 0.7
- 0.3 – 0.9
- 0.01 – 0.3
- 0.01 – 0.6
- 0.2 – 0.6
<table>
<thead>
<tr>
<th>Bare soils in deserts</th>
<th>(calibrated manually)</th>
<th>mperc2, wcwp1, macerate, mactrinf, mactrsm, sfrost, srate, wcwp1−3, wcwp2, wcwp3, wcfc1−3, wcfc2, wcfc3, wcep1−3, wcwp2, wcwp3</th>
<th>18.9</th>
<th>0.01 – 0.5</th>
<th>0.15, 10, 0.1, 10, 0.8, 1, 0.01, 0.01, 0.0001, 0.0001, 0.3, 0.3, 0.0001, 0.03, 0.0003</th>
<th>0.6, 0.3, 0.0002, 0.01, 0.01, 0.0001, 0.0001, 0.3, 0.3, 0.0001, 0.03, 0.0003</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Precipitation: catchment elevation</td>
<td>Pcelevth, Pcelevadd, Pcelevmax</td>
<td>147</td>
<td>RE: -6.7%</td>
<td>KGE: 0.16</td>
<td>Range: [0.90−1.54]; [0.40−1.77]; [0.20−1.90]; [0.20−0.80]; [1.00−10.55]; [0.03−0.50];</td>
<td>KGE: 0.27</td>
</tr>
<tr>
<td>2. Precipitation: land-cover altitude</td>
<td>5 elevation zones: pcluse</td>
<td>1041</td>
<td>RE: 24.3%</td>
<td>RE: 0.01; 0.7</td>
<td>0.25; 0.25; 0.35</td>
<td>0.65; 1.25</td>
</tr>
<tr>
<td>3. HRUs in areas without snow</td>
<td>10 HRUs: kc2, kc3, kc4, alb, soilcorr, srres, soilcorr</td>
<td>318</td>
<td>KGE: 0.16</td>
<td>KGE: 0.27</td>
<td>Ranges: [0.09−0.10]; [0.20−0.65];</td>
<td>Ranges: [0.375−0.5]</td>
</tr>
<tr>
<td>4. HRUs in areas with snow: ET, recession and active soil depth</td>
<td>fscdist0, fepotsnow</td>
<td>225</td>
<td>KGE: 0.16</td>
<td>KGE: 0.24</td>
<td>Ranges: [-2.67−1.80]; [1.10−4.00]; [0.16−1.5]; [0.20−0.75]; [0.09−0.98];</td>
<td>Ranges: [1.8−1.4]</td>
</tr>
<tr>
<td>5. Upstream lakes</td>
<td>liratk, liratp</td>
<td>731</td>
<td>CC: 0.71</td>
<td>CC: 0.72</td>
<td>(depth: 5 m; icatch: 0.3)</td>
<td>(depth: 5 m; icatch: 0.3)</td>
</tr>
<tr>
<td>6. Regionalised ET (in 12 Köppen climate regions)</td>
<td>12 climates: cevpcorr</td>
<td>458</td>
<td>KGE: 0.58</td>
<td>KGE: 0.62</td>
<td>Ranges: [-0.43 − 0.38];</td>
<td>Ranges: [0.6−1.0]</td>
</tr>
<tr>
<td>7. River routing</td>
<td>rivvel, damp</td>
<td>302</td>
<td>CC: 0.70</td>
<td>CC: 0.71</td>
<td>Ranges: [0.09−0.10]; [0.20−0.65];</td>
<td>Ranges: [0.09−0.10]; [0.20−0.65];</td>
</tr>
<tr>
<td>8. Lake rating curve</td>
<td>888 Lakes: rate; exp (LakeData.txt)</td>
<td>945</td>
<td>CC: 0.50</td>
<td>CC: 0.59</td>
<td>Ranges: [0.001−1013]; [1.002−3.0];</td>
<td>Ranges: [0.001−1013]; [1.002−3.0];</td>
</tr>
<tr>
<td>9. Floodplains (partly calibrated manually)</td>
<td>13 Floodplains: rcrfp; rcpl; rcrfpr (FloodData.txt)</td>
<td>32</td>
<td>KGE: −0.03</td>
<td>KGE: 0.03</td>
<td>Ranges: [0.15 − 0.90]; [0.05 − 0.99];</td>
<td>Ranges: [0.15 − 0.90]; [0.05 − 0.99];</td>
</tr>
<tr>
<td>10. Evaporation from water surface</td>
<td>kc2water, kc3water, kc4water</td>
<td>201</td>
<td>RE: -20.7%</td>
<td>RE: 12.2%</td>
<td>Ranges: [-0.43 − 0.38];</td>
<td>Ranges: [-0.43 − 0.38];</td>
</tr>
<tr>
<td>11. Specific lake evaporation</td>
<td>2 regions: cevpcorr</td>
<td>16</td>
<td>RE: 24.8%</td>
<td>RE: 4.8%</td>
<td>Ranges: [0.375−0.5];</td>
<td>Ranges: [0.375−0.5];</td>
</tr>
</tbody>
</table>
Acknowledgements

We would like to thank all data providers listed in Table 1-3 who make their results and observations readily available for re-purposing; without you any global hydrological modelling would not be possible at all. Especially we would like to express our gratitude to Dr. Dai Yamazaki, University of Tokyo, for developing and sharing the global width database for large rivers, which we found very useful. The WWH was developed at the SMHI Hydrological Research unit, where much work is done in common taking advantages from previous work and several projects running in parallel in the group. It was indeed a team work. We would especially like to acknowledge contributions from our colleagues Jörgen Rosberg, Lotta Pers, David Gustafsson and Peter Berg, who provided much of the model infrastructure. Time-series and maps from the World-Wide HYPE model are available for free downloading at http://hypeweb.smhi.se/ and documentation and open source code of the HYPE model is available at http://hypecode.smhi.se/.

References

