Authors response to Interactive comment on “Spatial and temporal
variation in river corridor exchange across a Sth

order mountain stream network” by

Adam S. Ward et al.

Referees’ comments in bold type. Authors responses below each comment.

Matt Cohen (Referee #1)
mjc@ufl.edu

Adam and colleagues have developed a truly impressive data set from which they

test a specific hypothesis about scaling of river corridor exchange. The topic is important,
not least because it challenges some of the major pronouncements derived

from steady-state models that assume network scaling rules. The technical treatment

of the breakthrough curves is exemplary, spanning the full complement of modern
approaches, and the writing is uniformly clear and compelling. In short, this is a paper that
clearly merits publication. Below I document several areas where I found the paper in
need of clarity, with one area in particular inviting at least some additional discussion if
not some new analysis (#2 below). My recommendation of minor revision is predicated
on the former (discussion), recognizing that some additional statistical treatment of the
responses would more accurately considered major revisions. I’ve also created a list

of minor comments, provided in no particular order (typos, questions, comments).

No response necessary as issues are detailed below.

1) Among the many technical strengths of this paper is the breadth of response metrics
interpreting solute breakthrough curves. It is truly a smorgasbord of measures, consistent
with the assembly of masters that comprise the author list. After a while, however,

it ceased to be clear to me why so many metrics were necessary. The hypothesis is

about predicting river corridor exchange with discharge, and while I would admit (and
their results confirm) that we probably lack a singular measure of that exchange, the
methods provided no specific rationale for the ones selected other than literature
precedent, nor justify their independence from others selected. In figures 5 and 6, skewness
finally emerged as the “response” and much of the paper would have been easier if the
adequacy of this metric were proposed at the outset, justified theoretically, and supported
empirically (e.g., as meaningfully covarying with other more complex response

measures). Otherwise, despite an elegant hypothetico-deductive framework, the resulting
effort feels a little like metric-fishing. I don’t recommend removing metrics, but

rather suggest making their selection strategic (rather than exhaustive) and supportive

of general inference (rather than analyzed in parallel). And where that rationale is

forced, then consider removing.

Accepted. We have restructured the methods section to now include a discussion of why
these multiple approaches were implemented. Perhaps of most utility to the community,
we have added a new table (Table 2 in the revised manuscript) that details the relative
strengths and weaknesses of each approach. This table also include a summary of the key

Ward et al., HESS, Response to Reviewers
Page 1 of 13



metrics that are interpreted from each approach. Finally, while the list of metrics
presented here is large, we consider it far from exhaustive.

Importantly, we do not intend this manuscript to indicate that skewness is somehow the
most important or otherwise “best” metric to describe river corridor exchange. We
intended it as illustrative of patterns that were consistent across many metrics. We have
modified Figures 5 and 6 to now include multiple response variables to decrease the
emphasis on skewness. This change, combined with the modified section 2.2 and newly
added Table 2 should clarify this for readers.

2) The setup for the research effort was exemplary. In the intro, the authors convey the
existing conceptual model of river corridor exchange driven simultaneously by time and
space-varying discharge, as well as stream and valley geomorphic variation. A

naive view might be that these aspects act independently, but since changing discharge
alters the head gradients that enable river-porewater exchange, and also the lateral

and longitudinal geometry of the stream channel, the intro text points clearly to the
plausibility (even primacy) of interactions. For this reason, the insistence on pairwise
regression is confusing. There’s a single passing acknowledgement (P20, L21) that a
multivariate approach may be useful but no effort to explicitly consider contingency

as a native feature of the question at hand. Framed as a question: is current theory
consistent with interactions between geomorphology and discharge being important, or
would such considerations be mostly a statistical contrivance? I believe it’s the former,
and that there’s an opportunity with this data set to set the stage for future explorations
of such interactions. If the authors agree, | think at least passing consideration of
interaction terms is merited. If instead the authors feel conditional relationships are

not implicitly supported by theory, say so explicitly. I’d note that the presentation of the
Wondzell model in Fig. 6a implicitly suggests that the influences of watershed area

and hyporheic potential are conditional (although in an additive sense); my contention
is that there may indeed be informative interaction terms, and few data sets before this
one are adequate to that challenge.

Accepted. Our focus here was testing Wondzell’s (2011) conceptual model, not
conducting a robust multivariate assessment nor exploring interactions between geologic
setting and hydrologic forcing as controls. While we do find merit in this, and we indeed
believe this data set is one of the first that might support this effort, it is beyond the scope
of our study. That said, we have revised the manuscript to clarify that we did fit simple
multivariate relationships to each response metric considered (i.e., the planar surface
shown in Fig. 5 of the original study). We now describe this in the methods section and
show multiple fits in the revised figures, plus include a comparison of univariate and
bivariate fits in a supplemental table.

3) One core reason articulated (intro and discussion) for reduced river corridor exchange
at high flow is that augmented hydraulic gradients to the stream compress

hyporheic flowpaths. This is true when the hydraulic response in the stream and hillslope
are synchronized. It seems demonstrably untrue otherwise, such as when flow

generation is uneven (in small catchments) or when rainfall is uneven (in large catchments).
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Perhaps these are special cases, but the rivers where I’ve worked extensively

exhibit significant “bank” storage during floods when storm-induced head changes are
more rapid and pronounced in the stream than in the adjacent aquifer. The resulting hot
moments of groundwater pumping into (and later out of) the hyporheic and bank
sediments indicate that a simple monotonic association between instantaneous exchange
and discharge is probably naive. Only slightly less oversimplified might be to interrogate
the river corridor exchange as a function of hydrograph position (or the time-rate

of change of discharge) rather than discharge alone. I recommend the authors consider
this. We did this for a setting where tidal variation created interesting hysteresis

in hydraulic exchange (Hensley et al. 2015 WRR) and others (Audrey Sawyer among
others) have seem similar dynamics. It’s reasonable to rebut this comment by saying
that explicit consideration of hydrograph position (or dQ/dt) invites an entirely different
paper, but the general critique of steady-state assumptions that underlies this work
might be bolstered by avoiding the view of variable stream discharge as a sequence of
steady-states. It is not.

Accepted. We have clarified that Wondzell (2011) focused on differences in steady-state
discharge by modifying the introduction and discussion, which is our focus in this study.
This was stated in the last paragraph of the introduction: “variation in discharge as a
function of drainage area during a fixed baseflow condition”, but could have been more
clear throughout the manuscript. Edits in response to this comment are primarily in
describing Wondzell’s (2011) discharge axis as “steady-state discharge” or “baseflow”.
We also added the following text to the introduction to differentiate steady-state
differences from unsteady (i.e., dQ/dt, or hydrograph position) studies: “Notably, most
classical expectations are based on differing steady discharge conditions (e.g., high vs.
low baseflow), though an emerging body of field studies (detailed above), modeling
studies (e.g., Malzone et al., 2016; Schmadel et al., 2016b), and conceptual models (e.g.,
Fig. 8 in Ward et al., 2016) are beginning to actively address exchange during unsteady
discharge conditions.”

Minor Comments: -
P1L43. Should be “is” not “are”. Or “exchange” should be “exchanges”

Accepted. Modified as suggested.

P2L4. The inclusion of the “and” between #2 and #3 underscores the
interaction effects that may exist. —

Accepted. Point taken, Dr. Cohn (no direct edit required in response to this comment)
What does it mean (P6L.19) for streams to change on annual to subannual time scales?
Doesn’t everything that changes at any time scale vary at all time scales? Do you mean that

the streams change quickly? —

Accepted. We have removed the text “on annual to subannual timescales”
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I don’t understand the rationale for stratifying by stream order (P7L5); more precisely,

I don’t understand why it was advantageous to bias the sampling to headwater sites

over higher order reaches. The point here is not to characterize the network (where

we might expect most of the variation to occur in the low order streams), but rather to
explore geomorphic vs. discharge controls on river corridor exchange. To that end, a
more balanced portfolio of sites makes more sense. I’ll note that the resulting sample
population (Fig. 3c¢) is pretty impressively distributed so this comment is more conceptual
than operational. —

Acknowledged. Site selection stratification was an attempt to meet multiple objectives of
the field campaign, which are described in a high level in the related ESSD manuscript.
In short, the overarching objective of the campaign itself was, indeed, to characterize the
network. Thus, the desire for added samples in lower order streams where you correctly
note we would expect more variation. The network-scale patterns presented in this study
take the data as opportunistic, as we did not execute a separate campaign solely for this
publication. However, we do note this is precisely one of the use-cases that we hoped for
with the ESSD data — a community resource with sufficient sampling that it could be
used to support any number of questions. No modifications to the study were made in
response to this comment.

It’s been a while since I took a groundwater class, but why is

the porosity term in the subsurface flow equation (P8)? Darcy’s Law applies to the bulk
cross section (here valley width times mean colluvium depth) and the Hvorslev K is for
porous media. —

Accepted. Nice catch! The porosity term here was a typo. We confirmed that in the data
analysis the porosity was not used, and have corrected the equation accordingly.

I really appreciate the guidance on standardizing the reach length by
wetted widths. I think this is an important standard operating procedure. —

Thanks!
P9 refers to a companion manuscript. What/where is that? —

Accepted. This refers to the paired submittal in Earth Systems Science Data. We have
added the full citation to the “ESSD-D” paper in this location.

The equations on P10L7-8 appear to have a typo. Doesn’t the comparison for the
conditional value have to be between CADE and COBS? I am confused how it could be
CAD. -

Acknowledged. We have confirmed that this formulation is correct and consistent with
Wilostowski et al. (2017) where the approach is first published.
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I really like the fMTS metric. It would be informative to consider how this compares with H
(which I like less because I’m too dense to really understand it) and skewness (which I like a lot
as well). For what it’s worth, it was upon introduction of holdback (H) that the array of metrics
started to seem excessive (or at least poorly defended). Some correlation among metrics (e.g., as
a supplemental table) would be helpful. —

Accepted. We have added a supplement to the manuscript that includes both tabular and
visual representations of Pearson correlation and Spearman Rank Correlation.

For the SAS analysis, I was impressed by the explanation and by the utility of the metrics.
I’d only note that the discharge used (to compare against storage) is only surface stream
discharge. The subsurface discharge (downvalley groundwater flow) is not included, and
the relative importance of this flow depends strongly on network position. —

Accepted. We have revisited our analysis and confirmed that the denominator of the
equation in question, Q (Page 14, Line 18) was used as the total down-valley discharge,
not only the surface discharge. We have updated the denominator to now read
“O+QOsubcap” to clarify this point.

P20LS should be “hold” —
Accepted. Modified as suggested.

The criterion of statistical significance is, of course, defensible, but I don’t find the
associations compelling just because they meet the criterion of being non-zero. The authors
aren’t trying to hide behind statistical significance, but seeing Table 2 made me wonder if
the real story of these data (namely that we are really very poor at prediction of the thing
we care most about) aren’t a little too softened by putting pluses and minuses in almost
every box. —

Accepted. We wholeheartedly agree! Indeed, the reason we included r2 in the table was
to demonstrate that while we may find trends that pass a statistical test making them
likely to have one direction or the other, these offer very little predictive power. We
discuss this in the paragraph that preceded Table 2 (page 20 lines 15+ in the original
submittal). Our confidence bolstered by this comment, we have added the following text
to the conclusions to underscore this point: “Importantly, we document consistent trends
with discharge that have low explanatory power (low 1?) despite being statistically
significant in their direction, indictaing that we have little predictive power”

On the subject of Table 2, I wonder if the predicted sign might be included somehow. For
example, I would have (admittedly naively) predicted that skewness is reduced with
increasing Q, UAA, V, order, width, and stream power, but perhaps not sinuosity or K. —

Acknowledged. We agree with this idea, in concept, but do not believe that there exists a
consistent expectation for each of these metrics. Ward and Packman (2018) document
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that conflicting predictions exist for nearly any outcome of interest (exchange flux,
timescale, hyporheic geometry) as a function of any geologic or hydrologic input.

Ward AS, Packman Al. (2018). Advancing our predictive understanding of river corridor
exchange. WIREs Water . 2018;e1327. https://doi.org/10.1002/wat2.1327

QHEF on page 23 has the “HEF” subscripted. Elsewhere it’s just “QHEF”. —
Accepted. Modified to use the subscript throughout.

It’s a little incongruous to show the overarching concept (Fig. 5) using
watershed area and hyporheic potential, but then only use discharge for the pairwise
plots. They are (Fig. 3a) clearly correlated, but not perfectly so. —

Accepted. We have added a supplement showing the Pearson and Spearman’s Rank
correlations between all pairs of site descriptors and metrics, including both tabular data
and a visualization. We have also included versions of Fig. 3 and Fig. 4 that include
HYPPOT and UAA on the X-axis as these are the variables used by Wondzell (2011).

Among the most important points is P31L10-12. We are mostly measuring in-stream
storage with these short-term pulse tests. Unless we suppose that these high turnover
storages are where most of the reactivity occurs (and I don’t believe they are), efforts to
link pulse-based breakthrough curves in a reach to network scale retention seems doomed
to failure. The inclusion of metrics of storage proportion labelled by tracer is really
informative.

Thanks!

Anonymous Referee #2

Received and published: 18 June 2019

The work presented by Ward et al. represents an incredible amount of analysis based
on an extensive dataset presented in a companion article. I was very excited to read
and review this paper and hope that my comments will help improve it. The companion
piece lays out data from synoptic and baseflow sampling of fluid fluxes through a
variety of low order streams and this paper describes the analyses the team took to
understand how exchange varies in relation to streamflow in space and time. With
these analyses they seek to in/validate the model set forth by Wondzell (2011) and

show that exchange decreases with increasing discharge through space, but that exchange
varies in response with time in fixed stream reaches. Ward suggests a number

of best practices for future large-scale sampling excursions to improve on these find-
ings and reach a more parsimonious conclusiona”A” Tfirst, control for advective time;
second, control for storage volume. Finally, they note that a multivariate approach is
likely necessary to improve the systematic understanding of exchange in response to
spatiotemporal variations in stream discharge. This is an important contribution to the
discipline, and I will be delighted to see it in print after some revisions.
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No responses necessary to the comment above, as issues are addressed in more detail
below.

The introductory section argues convincingly that many parameters affect the exchange
in streams — channel width, K, hydraulic gradient, etc. The authors spend

a lot of time walking us through the measurement and calculation of many of these
values, and some discussion of what those values mean and why they do or do not
correlate with exchange. While this discussion is useful, I had trouble following all of
the methods, results, and discussion. I think discussion of these parameters could be
streamlined somewhat. For instance, I’m not sure that all of the panels of tables 3 and

4 belong in the body of this papera”A” Tseveral are not discussed and could be moved to
the supplement. Additionally I spent a lot of time searching through the text to remind
myself how each variable was defined. I think extra care could be taken when terms

are defined, but I think most readers would find a list or table of variable definitions to
be especially helpful.

Accepted. We have added a table to the manuscript that summarizes the various
approaches and key metrics (Table 2 in the revised study). However, we have elected to
keep the metrics all in the study for sake of completeness, and because we do not believe
any of them to be redundant.

In the results and discussion sections there is a brief mention that a multivariate approach
is likely necessary to understand these relationships more thoroughly, but no

analyses to investigate and present any such multivariate relationships. The authors
return to this topic in the conclusion and argue that future studies must focus on these
higher-level statistics. I would suggest the authors pursue this topic further within or at
least explicitly discuss why they did not pursue this approach further.

See response to major comment #2 for the first referee.

Ultimately, the authors reach the conclusion that skewness is the most predictive statistic. I
think it is important to expand and further justify this conclusiona”A

“Tespecially to explore a rationale for why skewness is a good indicator. I think it is also
important to better support their claim with regards to skewness.

Acknowledged. We disagree with the reviewers statement “Ultimately, the authors reach
the conclusion that skewness is the most predictive statistic.” We selected skewness as a
representative and easily understood variable to demonstrate our point in Figs. 5-6, but do
not consider it to be a singular “Best” variable. We have taken care to clarify this by
adding other metrics to Fig. 5 and Fig. 6 and emphasized this in a brief discussion of how
metrics were selected (first paragraph in section 2.2 in the revised manuscript).

In particular, I had trouble understanding figures 5 and 6. Figure 5 was of low image
quality, so an enhanced resolution image might have helped, but I had trouble seeing where
the points were plotted in 3d space, and thus could not follow their argument. I found
figure 6 unconvincing. The argument rests on best fit lines that don’t seem supported by
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the underlying data. I would suggest replacing the figure, removing the lines, or at least
presenting some statistical treatment of why they believe the best fit lines are justified.

Accepted. Figure 5 in the original version (Fig. 6 in the revised) has been revised to
improve the visualization and interpretability of the data. Figure 6 in the original study
has been moved to Fig. 5 in the revised form. The figure now depicts t99, holdback, and
skewness as a function of advective time. The revised figure is described in the results
(newly added section 3.3). We retain the linear trend-lines as a useful interpretive tool,
but provide a quantitative comparison of the ranges of parameter values between the
different approaches.

A last concern is the number of authorsa”A” TI am not used to seeing such a large author
list on a data analysis paper. I think it is important to justify and define the contribution
of each author toward the different tenets of authorship in a systematic mannera”A” TI
think it is important that the authors make an earnest attempt to do so. One approach
would be the approach suggested by Clement (2014).

Acknowledged. We respectfully note that author contributions were described, albeit
briefly, in the acknowledgements section of the manuscript. The lead author hereby
confirms that each co-author contributed at a level consistent with Clement’s (2014)
recommendations. This is perhaps best understood by the scope of the field campaign that
was required to characterize these sites, the many approaches taken to interpret the data, a
collaborative writing process where all co-authors were active participants, and a team
that has been working together for several years on a series of collaborative projects.

Minor/general comments follow and are ordered chronologically.

Pp:line:comment

General: The paper would benefit greatly from a table/list of all variables at the
start/end/supplement. I spent a lot of time flipping through the paper trying to remember
what the variables and subscripts represented.

Accepted. The newly added Table 2 include a summary of the key response variables that
are used in this study.

2:5: The “more than 60 solute tracer studies” were conducted in a companion paper, not
this article, it is probably worth clarifying here and elsewhere. Careful throughout that
data from the companion paper are not presented as results of this paper.

Accepted. We have modified this sentence to now read: “To test this conceptual model
we conducted more than 60 solute tracer studies including a synoptic campaign in the 5th
order river network of the H.J. Andrews Experimental Forest (Oregon, USA) and
replicate-in-time experiments in four watersheds.”. We have elected not to include a
reference to the ESSD companion paper in the abstract, but make clear reference to this
data set later in the study.

3: 13-14: is it expected that exchange volume will decrease or the ratio of Qex/Q?
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3: 25: is it expected that exchange volume will decrease or the ratio of Qex/Q? Please
clarify here and several other places.

Acknowledged. There is not a predominant expectation of this relationship. One could
argue that if Quer 1s constant (for example, due to some geologic feature that controls
exchange flux and does not change with discharge), then increasing discharge would
decrease Qwuer/Q. However, other mechanisms (e.g., diffusion of turbulent momentum
across the streamebed) may vary with discharge, changing both Quer and Q
simultaneously.

6:Table 1: I suggest you change the order of table items to match order they’re presented
in the text.

Accepted. Table order has been modified as suggested.

7: 15-25: The presented replicate falling head tests were all conducted at

one location in the stream channel. Were tests conducted to understand the spatial
variability of K within the channel and floodplain sediments? K varies widely over
relatively short scales, is there any way to bracket the errors associated with this?
7: 25: K is typically log-normal, should this be the log-geometric mean?

Acknowledged. The tests to estimate K were conducted at a single location at each study
site. The value reported is the geometric mean, taken from the published data set detailed
in the ESSD manuscript.

8: 4-7: If Qsub,cap is

volumetric and based on Darcy, I don’t understand why porosity is included in the
calculation of the “capacity of the subsurface to convey water down to the valley bottom”
as porosity should impact velocity only, and not impact volumetric flux. If porosity is
estimated as 30% for all sites, this shouldn’t impact findings, but clarification would be
helpful.

Accepted. Porosity was included in the equation as a typo. We confirmed it was not used
in the calculations, and this reviewer is correct that it should not have been there. The
equation and text have been updated accordingly.

8:6-7: You say, “hvalley is the valley colluvium depth (m; estimated as 50% of

the wetted channel width)”. To clarify, depth of colluvium is never independently
determined, it’s only estimated as 1/2 wetted channel width? If so, wetted at what stage
(e.g.

high discharge, mean discharge)? Please provide some references to support this as

a valid approach.

Accepted. We have added several references here that have estimated depth of colluvium
for several sites in the study basin. We have added the following text: “This estimate is
consistent with depths used in past studies (Gooseff et al., 2006; Ward et al., 2012; Crook
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et al., 2008; Ward et al., 2018a; 2018c; Schmadel et al., 2017 ) and geophysical transects
in the 4" and 5" order reaches of Lookout Creek (Wondzell, unpublished data).”

8:9: Suggest changing “nor” to “or”
Accepted. Modified as suggested.

8:20-29: Please define more thoroughly the term “mixing length.” Is this the length
required for advective mixing to result in a homogeneous surface water concentration of a
released solute? How was this determined in cases without any tracer.

We have added the following text to clearly define the term “mixing length” at its first
use in the manuscript: “(i.e., the distance required for the solute tracer to be well-mixed
across the channel cross-section)”. We have also added the following text to describe
how mixing length was estimated in the field: “Mixing lengths were based on visual
estimates in the field as empirical estimates are unreliable in mountain streams (Day et
al., 1977). Moreover, field experience in a study system is recognized to be potentially
more useful that theoretical estimates of mixing length (Kilbatrick and Cobb, 1985).
Thus, we used visual estimates that are consistent with our past studies using these
techniques and tracers in H.J. Andrews Experimental Forest (Ward et al., 2012; 2013a;
2013b; 2019; Voltz et al., 2013) and practices used in other mountain stream networks
(e.g., Payn et al., 2009; Covino et al., 2010).”

9:1-2: The term “conflicting research” is unclear. Do you mean that you could not complete
the test because other experiments meant that you could not do your own experiment, or
that the findings of other experiments convinced you that your results were invalid, or
something else?

Accepted. The sentence has been modified to more clearly explain, now reading “The
differing number of replicates reflects either sensor failure or omission of a replicate due
to conflicting research occurring at the same sites by other researchers (i.e., our
replication would have negatively impacted their independent research campaigns, so we
did not proceed with our injections).”

10:4: Please clarify how MREC was determined. Is “mass recovered” the total mass
recovered during the entire tracer test, the tracer test up to time t, or the mass recovered
during the current time step? Also, how was a tracer test duration determineda”A

“Twas it continued until 99% recovery or something similar?

Accepted. MREC was previously defined in section 2.5. We have moved that definition
up into section 2.2 where it is first used.

10:8-9: I’m confused about this equation.
CAD (left hand side) is based on CAD (right hand side), which suggests CAD is known
a priori? Should the RHS be CADE?
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Accepted. The right-hand side “CAD” should have been “CADE”, which has now been
corrected.

10:10: “associated with” is confusing. Do you

mean something more like the “total solute mass” moved downstream by advection
and dispersion?

10:20: same comment as above about “Associated with” Pp 10 and

Acknowledged. We have elected to retain this language as it is consistent with the
original publication of these techniques (Wlostowski et al., 2017).

10:11: ‘¢’ appears in some equation but not others that I expect to see it in. For instance,
in all terms of “CTS=Cobs-CAD” I would expect the concentration to be a function of
time.

Accepted. Several equations were missing “(t)” in this section, all of which have been
updated.

11:3: Why 99% Is there some particular justification? Were you calculating this
in the field to determine the length of time that tracer tests should be run?

Accepted. This truncation is performed post-hoc to minimize the disproportionally high
impact of late-time noise on summary metrics calculated for short term storage, and is
consistent with many past studies of solute tracer transport. We have added the following
text to clarify this: “...consistent with common practices (e.g., Mason et al., 2012; Ward
et al., 2013a; 2013b; Schmadel et al., 2016) and a community tool for interpretation of
solute tracers (Ward et al., 2017a).”

13:7: What is tau?

Accepted. We have added the following text to define tau: “where 1 is a random variable
representing the age of a parcel of water (Harman, 2015)”.

13:15: What is “P”? Should this be “PQ”? I never see “P” defined. This is one
of many cases where a symbology sheet would help immensely.
13:30: Again, what is “P”?

Accepted. In both cases, “P” has been replaced with “Pp”.

16:10: You never define the subscript “ds” in Cobs,ds so far as I can tell, thought
you do define QDS. Please make sure all symbology is explicitly defined to remove
confusion. Also, should this be “Cobs,DS” with the DS capitalized to match other us-
age?

Accepted. We have dropped the “ds” convention as Cobs is always used in reference to
the downstream solute tracer timeseries. We have clearly defined Cobs where it is first
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used in the study: “where Cops ps (g m™) is the observed solute tracer concentration at the
downstream location in response to the upstream solute tracer injection”.

Pp 17: No reference to figure 3H, 3G is out of order.

Accepted. WE have added the reference to Fig. 3H in the paragraph. We have elected not
to re-write the paragraph to address the order in which subplots are discussed.

Fig 3. This symbology is difficult to interpret. I cannot distinguish symbology for the 4
streams from one another because the blues and greens are too similar, especially with the
poor-resolution image of the submitted pdf. I suggest making all points translucent and
making the colors of the non-synoptic samples more dissimilar. Also, I would recommend
adding a curly bracket around the non-synoptic samples in the legend and labeling them as
the stream-reach samples. The caption begins “for synoptic data” — please clarify caption
to make it clear that the figures also include the non-synoptic data. Also clarify whether
the line of “best fit” is for all data in panel or only for the synoptic data. Figure 4: Same
comments as in figure 3.

Acknowledged. We have used both shape and color to distinguish the sites, and have
elected to retain this redundant differentiation to help readers. The colors are selected
from the “Parula” colormap in Matlab, which is designed to retain contrast in greyscale
and color prints and be accessible for color-impaired vision. We have clarified the
symbology by adding the following text to the figure caption: “Data from unnamed creek
(triangles, Cold creek (squares), WS03 (diamonds), and WSO1 (stars) show the repeated
injections through baseflow recession each headwater catchment.”

20:4: “Hod” ) “Hold”
Accepted. Modified as suggested.

20:13: you say “most previous studies” but only cite one study. Please add more citations or
remove statement.

Accepted. The one study cited is a notable exception to the “most” that we were referring
to. We have modified the sentence to read: “Thus, while our selection of study reach
lengths was imperfect to achieve identical advective timescales, we contend that we have
adequately controlled for advective time.”

20:22: You spent a lot of time showing and describing univariate values, but then say a
multivariate approach is necessary to make sense of this data. Did you consider including
some multivariate stats to explore these relationships?

b (13

Accepted. See response to Reviewer #1°s “major comment 2”
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22:27: “Sens slope was larger for the fixed reaches: : :” I don’t recall if this is explicitly
discussed later.

Acknowledged. This point is discussed again in the conclusions of the study.
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QHEEF, not to the quantity QHEF/Q.
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and hydrological influences at the scale of river networks. Further complicating prediction, exchanges
are expected to vary with hydrologic forcing and the local geomorphic setting. While we desire

CCommented [KTV1]: Exchanges are” plural, or “Exchange is” )

predictive power, we lack a complete spatiotemporal relationship relating discharge to the variation in
geologic setting and hydrologic forcing that are expected across a river basin. Indeed, Wondzell’s
(2011) conceptual model predicts systematic variation in river corridor exchange as a function of (1)

- CDeIeted: [

‘(‘Commented [n2R1]: Good catch. Changed.

variation in paseflow over time at a fixed location, (2) variation in discharge with location in the river

(e

network, and (3) local geomorphic setting. To test this conceptual model we conducted more than 60
solute tracer studies including a synoptic campaign in the 5th order river network of the H.J. Andrews

i CDeIeted: discharge

Experimental Forest (Oregon, USA) and replicate-in-time experiments in four watersheds. We interpret
the data using a series of metrics describing river corridor exchange and solute transport, testing for
consistent direction and magnitude of relationships relating these metrics to discharge and local
geomorphic setting. We confirmed systematic decrease in river corridor exchange space through the
river networks, from headwaters to the larger mainstem. However, we did not find systematic variation
with changes in discharge through time, nor with local geomorphic setting. While interpretation of our
results isﬂcomplicated by problems with the analytical methods, they are sufficiently robust for us to

N AN AN
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conclude that space-for-time and time-for-space substitutions are not appropriate in our study system.
Finally, we suggest two strategies that will improve the interpretability of tracer test results and help the
hyporheic community develop robust data sets that will enable comparisons across multiple sites and/or
discharge conditions.

1 Introduction

Ecological functions and processes in the river corridor are influenced by the exchange of water,
solutes, and energy between the surface stream and its catchment, and thus regulate downstream water
quality (e.g., Brunke and Gonser, 1997; Krause et al., 2011; Wondzell and Gooseff, 2014; Ward, 2015).

- CDeIeted:
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These exchange fluxes are collectively termed river corridor exchange and integrate the stream,
hyporheic zone, and riparian zone along the river network (Harvey and Gooseff, 2015). Several recent

- CDeIeted:
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studies have extended feature- and reach-scale findings to predict ecological functions of river corridors
at basin scales relevant to resource management (e.g., Gomez-Velez and Harvey, 2014; Kiel and

’ CDeIeted:

(oate

Cardenas, 2014; Gomez-Velez et al., 2015; Bertuzzo et al., 2017; Helton et al., 2018). These approaches

require a scaling relationship to predict river corridor exchange across space and through time.
Discharge is a logical scaling factor and has been studied as a control on river corridor exchange in both
space (i.e., along a network) and time (i.e., under different hydrologic conditions at a fixed location).
However, discharge integrates forcing at different scales and may not lead to consistent predictions of
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river corridor exchange (Ward & Packman, 2018). For example, increases in discharge have been found .(Deleted: [ )
to cause increases, decreases, or no change in river corridor exchange (Morrice et al., 1997; Butturini - (" leted: ] )
and Sabater, 1999; Hart et al., 1999; Jin and Ward, 2005; Wondzell, 2011, 2006; Zarnetske et al., 2007, o CDeIeted: [ )
Schmid, 2008; Karwan and Saiers, 2009; Schmid et al., 2010; Fabian et al., 2011; Ward et al., 2013a). Cpeleted: ] )

Clearly, to use discharge as a scaling factor to predict river corridor exchange, a more complete
description of the exchange-discharge relationship is required.
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River corridor exchange is broadly understood to be controlled by interactions between hydrologic
forcing and geomorphic setting (Kasahara and Wondzell, 2003; Ward et al., 2012). First, hydrologic

forcing encompasses variation in the catchment wetness and storage during storms (Ward et al., 2013a;

Dudley-Southern and Binley, 2015; Malzone et al., 2016), seasonal baseflow recession (Payn et al.,

2009; Voltz et al., 2013; Ward et al., 2013c; Schmadel et al., 2017), and diurnal fluctuations arising

from natural (e.g., Harman et al., 2016; Musial et al., 2016) or anthropogenic (e.g., Sawyer et al., 2009;

Gerecht et al., 2011) controls. While hydrologic forcing reflects a variation in the temporal domain, the

geomorphic setting is typically assumed static during river corridor exchange studies. Thus, repeated
studies under different discharge conditions are focused on predicting river corridor exchange as a
function of hydrologic forcing and used to develop exchange-discharge relationships at individual study
reaches (e.g., Rana et al., 2017). This strategy yields a fixed-in-space, varied-in-time exchange-

Deleted: [...Kasahara and Wondzell, 2003; Ward et al., 2012]....
First, hydrologic forcing encompasses variation in the catchment
wetness and storage during storms [...Ward et al., 2013a; Dudley-
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baseflow recession [...Payn et al., 2009; Voltz et al., 2013; Ward et
al., 2013c; Schmadel et al., 2017]..., and diurnal fluctuations arising
from natural [...e.g., Harman et al., 2016; Musial et al., 2016]... or
anthropogenic [...e.g., Sawyer et al., 2009; Gerecht et al., 2011]...
controls. While hydrologic forcing reflects a variation in the
temporal domain, the geomorphic setting is typically assumed static
during river corridor exchange studies. Thus, repeated studies under
different discharge conditions are focused on predicting river
corridor exchange as a function of hydrologic forcing and used to
develop exchange-discharge relationships at individual study reaches

[...e.g., Ranaetal., 2017] .1
discharge relationship. Notably, most classical expectations are based on differing steady discharge L1l
conditions (e.g., high vs. low baseflow), though an emerging body of field studies (detailed above)
modeling studies (e.g., Malzone et al., 2016; Schmadel et al., 2016b), and conceptual models (e.g.. Fig. e (Formatted: Not Highlight )

8 in Ward et al., 2016) are beginning to actively address exchange during unsteady discharge

conditions. Jf is_also important to note that, in some cases, changes in discharge can also change the

effective geomorphic setting. For example, increases in discharge can flood pool-riffle sequences (e.g.,
Storey et al., 2003; Church and Zimmerman, 2007) or activate secondary channels (e.g., Ward et al.,

2016). Exchange-discharge relationships during steady flow conditions have been examined in many

studies with repeated studies over time at a single site resulting in both positive and negative
correlations between river corridor exchange and discharge (Ward and Packman, 2018), though one

classic gxpectation is decreased exchange with increased discharge due to compression of hyporheic

flowpaths by toward-stream hydraulic gradients (e.g., Hakenkamp et al., 1993; Hynes, 1983; Palmer,

1993; Vervier et al., 1992; White 1993).

The second primary control on river corridor exchange is the geomorphic setting, including differences
attributable to tectonics (e.g., Valett et al., 1996; Payn et al., 2009). Over geologic timescales the

geomorphic setting has co-evolved with hydrologic forcing. For example, as drainage area and
discharge accumulate through mountain stream networks, we expect predictable spatial patterns
including lower slopes, smaller grain size, larger channel width-to-depth ratios, and increased valley
bottom widths (e.g., Leopold and Maddock, 1953; Wohl and Merritt, 2005; 2008; Brardinoni and

Hassan, 2007). The evolution of geologic setting occurs over extremely long timescale, allowing the

common simplification of assuming geologic setting as static in hyporheic studies. As a result of this
assumption, researchers commonly conduct experiments across a spatial gradient to describe patterns in
river corridor exchange (Payn et al., 2009; Covino et al., 2011; Mallard et al., 2014). This approach

provides a fixed-in-time, varied-in-space river corridor exchange-discharge relationship that describes a
network under a fixed hydrologic condition, most commonly baseflow. Wondzell (1994) suggested that

exchange should decrease with increasing watershed size based on first principles. For example]the
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role of river corridor exchange as river basins increase in size, attributable to less exchange flux relative

NN

to stream flow (Stewart et al., 2011; Mallard et al., 2014; Gomez-Velez and Harvey, 2014; Kiel and (Deleted= [
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confirmation of the conceptual model would provide a simple scaling relationship for time-variable " Deleted: the
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studies to construct temporal exchange-discharge relationships (i.e., a fixed study reach with (Deleted: in
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2 Methods
2.1 Field site and Solute Tracer Experiments
2.1.1 Site Description

The H.J. Andrews Experimental Forest (HJA) is a Sth order basin draining about 6,400 ha in the
Western Cascade Mountains, Oregon, U.S.A. with elevations ranging from about 410 to 1,630 m
a.m.s.l. The basin is heavily forested and includes stands of old growth Douglas fir trees as well as
smaller areas that have been logged to study the effects of forest management practices. Additional
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detail about the climate, morphology, geology, and ecology of the site are well described by others
{(Dyrness, 1969; Swanson and James, 1975; Swanson and Jones, 2002; Jefferson et al., 2004; Cashman

(Deleted:
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et al., 2009; Deligne et al., 2017). The synoptic sampling spanned the entire HJA basin to characterize

. (Deleted:
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basin scale valley bottom conditions, while additional more detailed sampling occurred in three distinct
landform types.

Headwater sites in the HJA generally fall into one of three landform types associated with underlying
geology and geomorphic processes (Table 1). We selected four 2nd order basins to establish fixed
stream reaches for replication through the summer baseflow recession period, one in each landform type
plus one replicate. The first landform type occurs in the lower elevations of the HJA where geology is
dominated by Upper Oligocene - Lower Miocene basaltic flows. These volcanoclastic rocks were
weakened by hydro-thermal alteration from subsequent volcanic activity, enabling rapid downcutting
and formation of a highly dissected landscape. Hillslopes are steep; valleys are v-shaped and tend to be
narrow with steep longitudinal gradients. Valley bottom colluvium is typically shallow but variable,
being emplaced by hillslope mass wasting and debris flows. Exposed bedrock is visible in many
locations, while deeper deposits form behind individual large logs or larger log jams. We selected the
well-studied Watersheds 1 and 3 (WS01 and WS03) for two of our fixed reaches (Figure 1). Briefly,
WSO01 and WS03 valley bottoms reflect different time periods in this landform. In 1996, WS03 was
scoured to bedrock along 100s of meters of the valley bottom (Johnson, 2004). Since that time no debris

; CDeIeted:

flows have been recorded, resulting in a study reach nearly free of colluvium in the upper half of the
study reach. WSO01 is a paired catchment to WS03, reasonably representing a pre-scour and less-
constrained comparison to WS03. WS01 has a wood-forced step-pool morphology (Montgomery and
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Buffington, 1997; 1998) over most of its mainstem length, representative of many steep mountain

. (Deleted:

streams. River corridor exchange in the two catchments have been broadly studied using a paired
catchment approach (e.g., Wondzell, 2006; Voltz et al., 2013; Ward et al., 2017b).
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Deep-seated earth flows provide a second contrasting landform type in the HJA. These are emplaced on
the Upper Oligocene - Lower Miocene basaltic flows and are characterized by a poorly developed
channel network (many parallel channels), a general lack of lateral contributing area to the river
corridor, little lateral constraint, and extensive colluvial deposits with no bedrock exposure. Based on
visual inspection, channels on these earthflows are actively meandering, braiding, and downcutting,

‘ CDeIeted:
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on annual to subannual timescales

Characteristic geomorphic features include meander bends and cut-banks (visually similar to lower-
gradient alluvial systems of the region) in addition to step-pool features. We selected an unnamed 2nd
order reach on a large earth flow adjacent to WS03 for this study (Figure 1).

The third landform type occurs in high elevation headwater catchments with U-shaped valleys
characteristic of glacial cirques, which formed in plieocascade volcanics. Valley bottoms are filled with
compacted glacial tills. Large wood atop the till forms pools and steps with intermediate gravel and
cobble riffles. Lateral tributary area is relatively uniform along the valley with few hollows or tributary
valleys (in contrast to the highly dissected landforms in WS01 and WS03). Bedrock is rarely visible
along the study site. We selected a 2nd order reach of Cold Creek to represent this landform (Figure 1).
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Site Important Hydrologic Controls Important Geologic Controls
WS01 e Highly-dissected landscape e  Colluvium deposited by debris flows from
e Focused lateral inflows hillslopes forms extensive deposits in the
e Diurnal discharge fluctuations due to valley bottom

evapotranspiration ®  V-shaped, rapidly downcutting valley
WS03 e  Highly-dissected landscape e Scoured to bedrock in 1996 leaving only small
e Focused lateral inflows colluvial deposits
e Diurnal discharge fluctuations due to e Highly constrained, low colluvium analogue
evapotranspiration to WSO01

®  V-shaped, rapidly downcutting valley

Unnamed | e Surficial aquifer on earthflow connects ® Deep-seated earthflow
Cr. several parallel channels No defined valley: parallel stream channels
® Minimal lateral tributary area down hillslope
Cold Cr. e  Extensive aquifer provides high discharge, e Compressed glacial tills
cold baseflow year-round e  U-shaped valley (glacial cirque)
e Diffuse lateral inflows e  Uniform lateral tributary area
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low elevation to high elevation (WS01, WS03, Unnamed Creek,
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(2019), but we provide an overview below.

At each site we measured mean stream width and depth, valley width, and collected GPS coordinates.
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(Corson-Rikert et al., 2016; Schmadel et al., 2017; Ward et al., 2018c, 2018a).
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Van Essen Micro-Diver logging at a 0.5-s interval. Falling head tests were interpreted using the

~

Hvorslev (1951) method:
2 ~e
K= r*1n ( R )
2L, T,

where K is hydraulic conductivity (m/s), lris the radius of the well casing (0.025 m), R is the radius of

the well screen (0.005 b)L L. is the screened length of the well (m), and 7y is the time for the head to fall
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to about 37% of its original value (i.e., the e-folding time; s). We took the geometric mean of the
replicate tests as the representative value of K at each site.

We calculated the capacity of the subsurface to convey water down the valley bottom (Qsub,cap,
sometimes termed “underflow”; m® s!) as:

qub,cap :,bvalley hvalleyKSval

following Ward et al. (2018a), where byaiey is the valley width, Ayaiey is the valley colluvium depth (m;

<

estimated as 50% of the wetted channel width. This estimate is consistent with depths used in past

studies (Gooseff et al., 2006; Ward et al., 2012 Crook et al., 2008; Ward et al., 2018a; 2018¢; Schmadel

etal., 2017 ) and geophysical transects in the 4" and 5™ order reaches of Lookout Creek (Wondzell,

unpublished data), We calculated hyporheic potential (HYPpor; m s°') after Wondzell (2011), a similar

metric that does not account for valley width, depth, or porosity, as:,

HYPoor = SyuK
We also calculated stream power (Q; W m™) at each tracer release location as:
Q= pgQs
where p is the density of water (kg m™), g is the gravitational constant (9.81 m s2), Q is the average
discharge in the study segment (m* s!), and S is the DEM-derived slope along the stream channel in the

study segment (m m™").

Finally, at each site, we established a stream-tracer study reach with length approximately 20 times the
wetted channel width that would be representative of reach-scale morphologic variation (MacDonald et

al., 1991; Montgomery and Buffington, 1997; Rot et al., 2000; Martin, 2001; Anderson et al., 2005). We ;

instantancously released a known mass of NaCl (assumed conservative), dissolved in stream water, one

mixing length (i.e.. the distance required for the solute tracer to be well-mixed across the channel cross-
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Moreover, field experience in a study system is recognized to be potentially more useful that theoretical

estimates of mixing length (Kilbatrick and Cobb, 1985). Thus, we used visual estimates that are
consistent with our past studies using these techniques and tracers in H.J. Andrews Experimental Forest
(Ward et al., 2012; 2013a; 2013b; 2019; Voltz et al., 2013) and practices used in other mountain stream
networks (e.g.. Payn et al., 2009: Covino et al., 2010). Next, we released a second known mass of NaCl
one mixing length above the upstream end of the study reach. [We monitored in-stream specific
conductance at both the up- and downstream ends of the study reach]. Mixing lengths were visually
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estimated in the field; small amounts of a fluorescent dye were used to assess mixing lengths where they
could not be readily determined by surface hydraulic conditions. All in-stream specific conductance
measurements were converted to concentrations of NaCl mass added using a 4-point calibration curve

developed from standards made by mixing [varying amounts of NaCl with stream water that

encompassed the range of observations during the tracer tests. Results from all sensors were composited |

into a single linear regression (1> > 0.99).

2.1.3 Fixed-reach studies

We established 11 fixed reaches of about 50-m of valley length in the four headwater catchments. We
conducted identical site characterizations as described above for the synoptic study. However, for each
study reach, solute tracer injections were conducted 2-6 times through baseflow recession. The differing
number of replicates reflects either sensor failure or omission of a replicate due to conflicting research
occurring at the same sites by other researchers (i.e., our replication would have negatively impacted
their independent research campaigns, so we did not proceed with our injections). , These sites parallel
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the common approach of replication of a study at a fixed reach with varied discharge to relate river
corridor exchange to discharge conditions (after Payn et al., 2009).
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Fig. 1. Synoptic study sites and LiDAR-derived stream network for the H.J. Andrews Experimental Forest. Reprinted

with permission from Ward et al. 2019).
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2.2 Analysis of stream solute tracer injections

There exists no single, widely agreed upon, robust framework for describing river corridor exchange
based based on stream solute tracer experiments. Instead, a host of approaches have been successfully
used to interpret experimental data. In this section we detail the interpretation of stream solute tracers
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using several established approaches. Notably, the interpretations here were selected because they most
directly interpret the observed solute tracer timeseries, in contrast to other strategies that focus on
inverse model parameterization (e.g., Bencala and Walters, 1983; Haggerty and Reeves. 2002) and ma;
be prone to parameter uncertainty and identifiability challenges (e.g.. Ward et al., 2017a; Kelleher et al.
5 2013: Rana et al., 2019; Rana et al., 2019). The suite of approaches implemented here were selected
because the provide complimentary interpretations that may be informative when jointly considered
(Table 2). We emphasize here that we do not seek a singular, “best” metric to describe river corridor
exchange, but instead seek to interpret a suite of metrics to provide a comprehensive understanding of

our study system.
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Table 2. Summary of solute tracer interpretation strategies
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2.2.1 Separation of advection-dispersion from transient storage

We separated the recovered solute tracer mass into fractions that were primarily related to advection-
dispersion and to short-term Itransient storage (after Wlostowski et al., 2017). Briefly, stream velocity
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mass of solute tracer recovered from the upstream injection at the downstream end of the study reach
(Mgec; g) is calculated as:

tog

Mgec = Qps f Cops(t)dt
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Similar to Map, the mass associated with transient storage (M7s, g) can be calculated as:

tog

My 21 Crs(H)Qpsdt

transient storage (fyrs) as:

Frap = Map.
MAD — MREC
and
Furs = Mrs.
MTS — MREC
2.2.2, Short-term storage analysis e

Observations of stream solute tracer releases were analyzed using a host of time-series metrics. We
calculated the time at which 99% of the total mass recovery was achieved (#99; s). To minimize the

impacts of late-time noise on calculated metrics, Coss Was truncated at the downstream end to only
include times bounded by the injection time and 99 (hereafter Cons(?)), consistent with common practices
(e.g., Mason et al., 2012; Ward et al., 2013a; 2013b; Schmadel et al., 2016a) and a community tool for
interpretation of solute tracers (Ward et al., 2017a). The truncated time-series was normalized to isolate
the features of the data in the temporal domain and minimize effects of different concentration
magnitudes between injections. The normalized breakthrough curve (c(?)) was calculated as:

Cobs(t)
c(t)y = b7
© f::"z Cops(t)dt

We calculated the median arrival time (M;; equivalent to the first temporal moment; s) as:

tog

M, = J te(t)dt

t20
Next, we calculated the 2" and 3™ order moments about M; (u2 and y;) as:

tyg
fy = f (t — My)"c(t)dt
t=0
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where n represents the n” order moment, and x> and u;3 contain information about symmetrical and
asymmetrical spreading of the time-series, respectively. The central moments were normalized to
provide information that could be compared between sites and injections by calculating the coefficient

of variation (CV) and skewness (y) as:
1/2
_H
CV = M,

_ MK
- 3/2
2

Finally, we calculated the holdback of the system (H), which describes transport in a continuum ranging

from piston flow (H = 0) to no movement of the solute (7 = /) (Danckwerts, 1953). Ward et al. (2018b) - (Deleted: [ )
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ages within the study reach. The approach is closely related to transit time distributions, but isolates the
contribution to the transit time of storage turnover from that of inflow and outflow variability. Although
physically-based, in the sense of conforming to conservation of mass and describing physically
meaningful properties, this approach describes the higher-level emergent effects of mechanisms like

advection, dispersion and other processes (Harman et al., 2016). Instead, the approach provides a ) (Deleted: [ )

description of the reach as a zero-dimensional, integrated control volume (i.e., no arbitrary division of - (Deleted: | )
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stream solute tracer results (Harman et al., 2016). Notably, we are able to further simplify the approach - Deleted: [ )
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backward transit time distributions are equal. First, we calculated the probability density of the

(forward) transit time distribution (po(7)) as:

QCobs
Pq (T) M,
where My is the mass of the upstream tracer injection (g). Note that, due to the steady state assumption, ~( Deleted: Cua is the observed in-stream solute tracer .
po(T) is only a function of water age T and does not depend on time ¢. Next, we calculated the fr“’,?;z:gam" from the upstream injection at the downstream site (g

cumulative form of the transit time distribution (Po(7)) as:

T

%@=fmmw

=0

where t is a random variable representing the age of a parcel of water (Harman, 2015). This allows us to
determine the age-rank discharge (Qr(7)):

Qr(T) = QPy(T)

and the age-ranked storage (S7(7)) as:

T
Sr(Ty=Q[T- JPQ(T)dT
™=0

The age-rank storage can be interpreted to determine the volume of reach storage that was sensed by the
tracer. If the total storage in the study reach can be estimated, the fraction of total storage that was
sensed by the tracer can also be determined. A perfect tracer study would be sensitive to the entirety of
the storage volume. However, due to limitations arising from the window of detection and truncation of

16

(Deleted: Vd )




20

25

30

35

the breakthrough curve, only a fraction of the storage is actually measured (e.g., Drummond et al.,

- CDeleted: [

2012). The knowledge of measured volume is important and is one advance enabled by using this

(Formatted: Font: Not Italic
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interpretation framework. : CDeleted:]
Plotting the age-rank discharge as a function of the corresponding age-rank storage reveals the SAS
function (Harman 2015; Harman et al. 2016). This relationship shows how discharge is composed of ~(Deleted: [

water drawn from storage of different ages. Flipping this plot along each axis to plot the complements is
advantageous to interpret the results (Harman et al., 2016). Thus, we plot the age rank discharge

complement

Qcomp(T) = Q(l - PQJL(T))

as a function of the age-rank storage complement

Scomp(T) = Sref = Sr(T)

where S,.is the total storage in the study reach (m?). We estimated S;.r as the volume of the surface
water (mean width x mean depth x length along centerline) plus the subsurface storage volume (valley
width x valley segment length % depth x porosity). We estimated porosity as 30% for all locations (after
Domenico and Schwartz, 1990; Ward et al., 2018a).

The SAS analysis can be interpreted to yield an understanding of how storage and discharge are related
for the study. The minimum value of the age-rank discharge complement (Y-axis of Fig. 2) gives the
discharge of outflowing water in the channel that was not labeled by the tracer at the upstream end of
the study reach within the window of detection. In practice, unlabeled discharge represents some
combination of (1) down-valley flow entering the segment from upstream and then upwelling, and (2)
discharge originating from parts of storage that retain tracer for very long periods of time. Finally, while
both the discharge and volume sampled will scale through the network, each can be normalized to a
reference value as:

SCOm T
fvror(T) = 57?’()
ref
QCOm (T)
foavetea(T) = Wspub_mp

where frror is the fraction of the total storage volume that was sampled with the tracer and fp iaberea is the
fraction of the fotal down-valley discharge that was labeled with the tracer. We also calculated the

fraction of the in-stream volume sampled (fys7r) as:
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_ Scomp (T)
VSTR = " A1

The SAS approach requires a physically plausible bounding by input values. In practice, this means that
errors in discharge can cause overestimations of mass recovery (i.e., greater than the mass that was
injected), leading to physically impossible Qr(7) values. As a result, we assumed a typical error of 10%
for dilution gauging (Schmadel et al., 2010). Within that range of discharge values, we calculated the

= (Formatted: Centered

- CDeIeted: [

range of physically plausible discharges (i.e., those which yield physically meaningful SAS
calculations), and analyzed the midpoint of the plausible range. In the first study using the SAS
approach to interpret solute tracers, Harman et al., (2016) found that a similar discharge adjustment was

required to define the feasible parameter space.
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Fig. 2. Graphical representation and interpretation the SAS function. Note that the volume of storage in the stream vs.
subsurface (orange above) is independent of the SAS analysis and is provided here as an example of integrating the SAS
metrics with other knowledge about the system.
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22.4 Long-term storage analysis . CDeleted: 5
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Long-term storage characterized the fate of mass beyond the window of detection (i.e., unrecovered (Deleted: |
mass that did not contribute to the analysis of short-term storage; Payn et al., 2009; Ward et al., 2013¢). (Deleted: |
Dilution gauging at the up- and downstream ends of each study reach was used to estimate discharge .
(Qus and Ops, respectively; m* s™1). Mpge = Qps |, Otgg Cobs,as (t)dtMass loss along the study reach can '[De'eted’

tog .
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Mgec = Qps | Copsas(t)dtMass . (Formatted: Font: Italic
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be calculated by the difference of the mass injected (Mvy; g) and Mrec:

Moved up [1]: The mass of solute tracer recovered from the
upstream injection at the downstream end of the study reach (Mrec;
) is calculated as:

Mypss = MIN] — Mggc :
) Mgec = Qps f;w Copsas(t)dt

Finally, Payn et al. (2009) demonstrate how Moss, Qus, and Ops can be used to bound the gross gains :(Formatted: Font: Ttalic

and losses of water to the channel through the study reach. We focus here on the case of all losses

. (Formatted: Font: Italic

15

25

30

35

occurring before all gains, which is the end-member that yields the largest estimates for gross losses (Deleted: |
(Orosspax) and gains (Ocamvmax) respectively, calculated as: (Delete o]
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Qcainmax = Qps — Qus — Qrossmax
The net change in discharge along the study reach (AQ) is represented by the terms Ops-Qus in the ~(Formatted: Font: Italic
equation above. To compare between reaches, we normalized Moss by Mvs and normalized the gross ~(Formatted: Font: Italic
gains and losses by Qus. We also calculate gross gains and gross losses, focammax and foross.max, as a - (Formatted: Font: Italic
fraction of the inflow at the upstream end of the reach. ( Formatted: Font: Italic
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We applied a Mann-Kendall (MK) test to examine relationships between the metrics of river corridor
exchange and characteristics of geologic setting and hydrologic forcing. The MK test is a non-
parametric test used to assess the likelihood of a monotonically increasing or decreasing trend in a data
set, which we interpret as the presence of a systematic trend through the river network. The MK test
only provides an indication of a relationship’s existence and does not characterize the direction nor

magnitude of the relationship. Thus, we also calculated Sen’s slope, a non-parametric test to fit a robust

linear slope to a data set by choosing the median of slopes connecting all potential pairs of points. This
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metric was selected because it is less sensitive to outliers than a traditional linear regression and more

robust for skewed or heteroskedastic data. Thus, we use the MK test to define the presence or absence
of a statically significant trend (p<0.05) and Sen’s slope to indicate the direction of that trend (positive
or negative). We also compare the magnitude of Sen’s slope among and within datasets to estimate the
relative sensitivity of selected dependent variables to the same independent variable.

For the synoptic data we also report the coefficient of determination (r?) for univariate best-fit power- . (Deleted: Finally, for
law regression as an indicator of the predictive power of a parsimonious model fit. The coefficient of " (Deleted: a

AN

determination is commonly interpreted as the percent of variance explained by the model. We selected a
power law regression because most independent and dependent variables span orders of magnitude. We
did not test other functional forms as the purpose of this fit is to assess the explanatory power of a
simple regression-model -- comparable to those commonly used to interpret field data for identifying
relationships between two variables -- rather than identify an optimal predictive equation that relates the

two variables. Finally, we fit a planar surface to each metric as a function of log-transformed baseflow

NN

and HYPpor to approximate the conceptual model proposed by Wondzell (2011). We selected a planar .- CFormatted: Font: Italic

surface in log-space as the simplest representation of a relationship. We also fit univariate linear o CFormatted: Font: Italic, Subscript

relationships to the log-transformed O and HYPpor data for each metric. We emphasize here our foucs 'CFormatted: Font: Ttalic

was on attesting Wondzell’s (2011) conceptual model, not an exhaustive curve- nor surface-fitting . (Formatted: Font: Italic
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3 Results

3.1 Spatial patterns in hydrologic and geomorphic controls

Overall, all landscape metrics exhibited statistically significant monotonic trends with one another (MK .- CFormatted: Font: (Default) Times New Roman

test; p < 0.05). We found expected trends of increasing UAA (Fig. 3A) velocity (Fig. 3B) and stream
order (Fig. 3C) with discharge. Moving from the headwaters to the outlet, we found increasing sinuosity
(Fig. 31), stream power (Fig. 3G), and flattening and widening of the valley with increasing discharge

and UAA along the network (Figs. 3E, 3F). We also found an increasing hydraulic conductivity in the (Deleted: |

down-network direction (Fig. 3D), which is indicative of sediment size and sorting in high-relief " ((Formatted: Font: (Default) Times New Roman, Not Itaic

headwater landscapes (Brummer and Montgomery, 2003), but opposite to typical low-relief alluvial
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systems (e.g., Gomez-Velez et al,, 2015). This trend reflects the prevalence of fine material in the upper

reaches emplaced by debris flows and coarsening in the downstream direction where stream power ((Deleted:

increases thus exporting fines from the system. The result of these trends in valley morphology and SR (Deleted: |

hydraulic conductivity is an increasing trend in Qsup.cqp in lower network positions (Fig. 3H), indicating " ((Formatted: Font: (Default) Times New Roman

the increasing width and K are sufficient to overcome the decreases in slope in generating this . (Deleted: |

relationship. Pairwise Pearson correlation coefficients and Spearman Rank correlation coefficients are i “:J’(Formatted: Font: (Default) Times New Roman, Not Italic
summarized in supplemental figures S3 and S4, and table S1 and S2. ; (Commented [KTV35]: Delete duplicate “where”.

CCommented [n36R35]: corrected

CDeleted: where

(Formatted: Font: (Default) Times New Roman

(Formatted: Font: (Default) Times New Roman

NN A NN ANANN

20



10000 5 C O—aIO—
o1
1000 < 54 000 B
P "
£ E 5
100 E3 oo
3 £ o .
=] k-] . ¥ A Umamed 2
Cald
10 s ; wer @5t 0 o O @O0 an
* * & WS
©  Smopsc
1 0.001
10?
E E
P E 10% P
” 0% - 2
E ) s
» >
x - 2
2 s
. ° ] >
105 ° >
1% o
13
~102 .
- o I
e » °
z "E N 125 o °
Eo o
3 2 ’E ° ° ° 3
3 8 10 g 12 ° o
a 2 £ ® © 04
E S @ oM °
E g 10° 115 %
o
@ ° 8 ° b
10% . 106 = " 11le -
10%  10* 10?102 10! 10° 10%  10* 10?102 10! 10 1%  10* 10?102 10! 10°
Q(m’s™) a(m®s™) a(m®s™)

A A
Fig. 3. For synoptic data (yellow circles), discharge exhibits a significant, monotonic trend with all other site variables
considered (Mann-Kendall test; p < 0.05). Pairwise MK[test,h‘esults for all site characteristic pairs (i.e., all y-axis variables

presented above) exhibit significant trends for all combinations (p < 0.05). The solid black line shows the best-fit power
law regression for each panel. Data from unnamed creek (triangles, Cold creek (squares), WS03 (diamonds), and WS01
(stars) show the repeated injections through baseflow recession each headwater catchment. See supplemental Fig. S1
and S2 for similar plots with HYPpor and UAA on x-axis.
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Fig. 4. Fixed reach and synoptic data as a function of stream discharge. Statistical likelihood of significant relationships
(Mann-Kendall test) and their direction (Sen’s slope) are detailed for all sub-reaches and the synoptic data in Table 3.
All trends shown here are significant (MK test, p < 0.05). The coefficient of determination for power law best-fits to

diamonds), and WS01 (stars) show the repeated injections through baseflow recession each headwater catchment. Se

synoptic data (black lines) are reported in Table 3. Data from unnamed creek (triangles, Cold creek (squares), WS03
e

supplemental Fig. S5 and S6 for similar plots with HYPpor and UAA on x-axis.
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3.2 River corridor exchange trends with site characteristics

3.2.1 Basin-scale trends from synoptic campaign

An important element in our synoptic study design was the dynamic reach length, intended to minimize : CFormatted: Font: (Default) Times New Roman
bias associated with the well-documented relationship between advective timescale and transient
storage (e.g., Ward et al., 2013b; Schmadel et al,, 2016a). Despite our efforts to hold advective travel e ( commented [KTV39]: “hold”

time constant, we still found a trend of increasing #,eqx With increasing discharge in our synoptic study (Commented [n40R39]: corrected
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We found decreasing t99 with increasing discharge for the synoptic study (Fig. 4D), which in turn
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resulted in a systematic reduction in the possible length of flowpaths that could be detected by tracer
(Fig. 4G). Note that this ranges, on average, from 0.35 m at the lowest discharge to only 0.09 m at the
highest discharge and the reach with the largest Laeec: was only 2.0 m. In contrast, reach lengths used in

tog,.and Laeec: were all much larger in the fixed reach studies (Table 4). These metrics all exhibited
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fixed reaches). We also found decreasing #99 with discharge in 9 of 11 fixed reaches (all with steeper
Sen’s slope than the synoptic), and decreasing Laerec: With discharge in 9 of 11 fixed reaches (all with
steeper Sen’s slope than the synoptic). Even with the longer reach lengths, relative to stream size, used
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in the fixed reach studies, Laeres averaged only ~2.0 m, and ranged from a maximum of 10 mto a
minimum of 0.10 m.

With respect to short-term storage, we found increasing M; with increasing discharge in the synoptic
study, but this direction was reflected in only 2 of 11 fixed reaches. Sen’s slope was larger in magnitude
for 10 of the 11 fixed reaches, indicating M; interpreted from the fixed reach approach is more sensitive
to discharge than the synoptic approach. We found overall decreasing CV, y, and H with increasing
discharge in the synoptic study, indicating a decreasing importance of non-advective processes in the
downstream direction along the network. The direction of this trend is consistent with 7 fixed reaches
for CV, 2 sites for y, and 3 sites for H. Regardless of the direction of the relationship, the magnitude of
Sens slope was larger for all fixed reaches compared to the synoptic study, indicating increased
sensitivity to discharge relative to the synoptic sites.

For long-term storage and mass involved in advection-dispersion, we again found fixed-reach trends
were steeper and often opposed the direction of the trend for the synoptic data. For the synoptic study
we found decreasing fogainmax (Fig. 41) and fpiossmar (Fig. 4L) with increasing discharge, which is
consistent with 5 and 6 of the 11 fixed reaches, respectively. For the synoptic study we found an overall
decreasing fuup with increasing discharge, consistent with 7 of the 11 fixed reaches. The magnitude of
Sens slope was larger for the fixed reaches than the synoptic study for fiup, fosainmax, and foiossmax.

The SAS analysis revealed decreasing sampling of the total storage zone (fy1r) with increasing
discharge, but increasing fo iaseied With discharge for the synoptic study. Together, these results indicate
that increasing discharge in synoptic experiments resulted in sampling a larger fraction of the water
exiting the reach, but smaller total volume of storage. Put another way, experiments in locations with
higher discharge were more likely to measure storage in (or proximal to) the stream channel at the
expense of measuring more distal flowpaths and less-connected storage. For the fixed reach studies, we
found decreasing fiior and fpuserqin 7 and 6 of the 11 reaches, respectively. In all cases, the magnitude

of Sens slope was larger for the fixed reaches than the synoptic study.
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3.3 Selection of study reach length across the network
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4.1 How do discharge and local geomorphic setting modulate river corridor exchange?
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Our overarching objective in this study was to test the conceptual model of Wondzell, (2011), which

: Font: (Default) Times New Roman, Not Italic

predicted systematic changes in river corridor exchange as a function of changing baseflow, and
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corridor exchange in network locations with larger discharge (e.g., Covino et al,, 2011; Ward et al,, (Formatted:
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Wondzell’s (2011) conceptual model followed general predictions about systematic changes in channel
morphology with increasing stream size, predicting channel width, channel depth, and flow velocity
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are similar. However, we find that there is substantial variation among sites, particularly when reaches
of similar size yield opposing relationships with explanatory variables (Tables 2, 3).

Overall, we conclude that discharge alone is a poor predictor of river corridor exchange in mountain
stream networks due to heterogeneity in reach-scale geomorphic setting and should not be used as the
sole basis for spatial or temporal extrapolation of findings. We found opposing relationships between
river corridor exchange and discharge through space (synoptic approach) and time (fixed reach
approach). For all metrics considered, at least 18% (2 of 11) of the intensively studied fixed reaches had
trends opposite of that what would be predicted from the one-time sampling of the synoptic study.
Moreover, the opposing trends were always located across at least two different landform types, and
there were examples of within-landform type disagreement for every metric considered. Furthermore,
the regressions we developed indicated that there was substantial inter-site heterogeneity overriding the
observed network-scale trends. These findings are useful for identifying best practices to ultimately
develop better scaling relationships to predict river corridor exchange as a function of hydrologic
forcing and geomorphic setting from headwaters to oceans. For example, intensively studying a small
number of study reaches is not indicative of the conditions occurring across an entire basin, even at the
scale of our 5" order basin. We further develop suggestions for best practices and considerations in the
next section.
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equipment-intensive approach would be to place multiple sensors in the study reach (perhaps 10, 20, 35,
50, 75, and 100 wetted channel widths) and select most appropriate downstream breakthrough curves to

compare based on similarity of advective timescales after conducting the tracer test.

Font: (Default) Times New Roman

: Font: (Default) Times New Roman

Font: (Default) Times New Roman

Font: (Default) Times New Roman

Font: (Default) Times New Roman, Not Italic

Font: (Default) Times New Roman

: Font: (Default) Times New Roman

Font: (Default) Times New Roman, Not Italic

Font: (Default) Times New Roman

Font: (Default) Times New Roman, Not Italic

Font: (Default) Times New Roman

CDeleted: 1
It is also essential that measures of the advective timescale and window of detection be reported for ,[Deleted:
each tracer test. For slug injections these would include #,cax and 99. For constant rate injections these
would be time to the steepest point on the rising limb, time to median arrival (M), and time to achieve f\Gwmaued:
plateau. The Lgescs estimates should also be reported and these should be based on time to achieve (Formatted
plateau as that indicates when tracer has traveled the full length of all measurable flowpaths and only i (FOVmatted:
tracer-labeled water is being returned to the stream. These metrics describing the advective timescale (Formatted:
are necessary both to confirm that comparisons among reaches in any given study are valid and to  (Deleted: [
facilitate comparisons of results among published studies. i (Formatted:
i (Formatted:
We acknowledge here that the steps we’ve recommended above will require substantial time and 5k (Formatted
analysis to design a stream tracer experiment. However, we contend this additional work is necessary to (Formatte a4
maximize the interpretability of the data and enable meaningful comparison across space and time. i (Formatte o
. (Deleted:]
4.4.2 Best Practice 2: Critical evaluation of which flowpaths may have been measured by the experiment ; (Formatted:
| Ui/ | Formatted:
One persistent limitation of interpreting stream solute tracers is the inability to know which flowpaths = %Deleted: [

and features were actually measured in the study reach. While additional observations in storage zones (Deleted:

have been attempted via monitoring wells or geophysical imaging, multiple studies show that solute (Deleted:

observed in the storage zone itself is not necessarily meaningful, as the stream breakthrough curve

‘ »’iy(Formatted:

Font: (Default) Times New Roman, Not Italic

integrates only a sub-set of flowpaths (Ward et al,, 2010a, 2017b, Toran et al., 2012, 2013). Briggs et al, f

(Formatted:

Font: (Default) Times New Roman

{2009) suggest additional measurements in the surface storage domain may allow for parsing surface
from subsurface transient storage. However, this approach relies upon measurement of a representative

g (Formatted:

Font: (Default) Times New Roman, Not Italic

in-stream storage zone and interpretation via the transient storage model, which is known to be limited

(Formatted:

Font: (Default) Times New Roman

in identifiability of parameters and transferability to other sites (e.g., Kelleher et al,, 2013; Ward et al,, (Deleted: |
2017a). - ,(Deleted: [

4, (Formatted :

Font: (Default) Times New Roman, Not Italic

One simple approach to estimate the spatial and temporal scales of the measured flowpaths is to ,',f'/,,(Formatted

: Font: (Default) Times New Roman

consider the truncation of the breakthrough curve itself. The window of detection describes the longest ,@emed: ]

flowpath timescale that may have been measured. Several studies have converted this timescale to a

(Commented [KTV49]: “flowpaths” plural.

length scale using Darcy’s Law, parameterized it with representative values for hydraulic conductivity,

; CCommented [Nn50R49]: corrected

porosity, and valley slope as a proxy for hydraulic gradient (after Ward et al., 2017b; 2018a). While

L CFormatted

: Font: (Default) Times New Roman

imperfect, this interpretation at least indicates a spatial scale of flowpaths that may have been observed.

: Font: (Default) Times New Roman, Not Italic

: Font: (Default) Times New Roman

: Font: (Default) Times New Roman, Not Italic

: Font: (Default) Times New Roman

For example, in previous studies of a small stream in the HJA basin (WS01; Fig. 1), where extensive ,f'<Deleted: L
penetration of the tracer into the subsurface was documented across a 10+ m wide valley bottom (Voltz - (Formatted
etal, 2013; Ward et al,, 2017b), the longest flowpaths detected by a tracer returning to the stream still (Formatted
only averaged 0.21 m (range 0.004 to 1.2 m) compared to overall reach lengths of tens of meters. This N (Formatted
"CFormatted

kk (Deleted: ]

NN NN AN A AN N NANANNANNNANNANNNNNNANNN NN A

33



10

15

20

25

30

35

means that these studies were measuring in-stream storage and only the shortest and fastest subsurface - (Deleted: likely

flowpaths -- not integrating all the exchange in the valley bottom.

The SAS approach implemented in this study provides some valuable additional, contextual information
about the storage volume and discharge that inform interpretation of findings. For example, our
synoptic study labeled an average of 86% of the outflowing discharge in the surface channel (range
57% to 95%). Still, this equated to having only sampled an average of 12% of the total storage volume
in the reach (range 0.3% to 35%), suggesting a bias toward in-stream storage. This bias is confirmed by
the realization that, on average, only 18% of tracer mass was involved in transient storage (range 0% to
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This study documented the interaction between advective travel times and measurement of river
corridor exchange with solute tracers. Our synoptic study design controlled for this complication by
scaling study reach lengths based on wetted channel width. For future studies focused on exchange-
discharge relationships, we suggest two best practices. First, controlling for advective time to measure
consistent timescales of storage processes and limit artifacts that are due to limitations of solute tracer
studies. Second, we suggest analyses that focus on the fractions of storage volume and outflow that
were labeled with tracer to provide context for interpreting recovered timeseries. We also note that
many previous studies have relied upon small sample sizes and focused on singular explanatory
variables of interest considered in isolation. We suggest this is primarily descriptive, and conclude, that

s CDeleted: suggest

consideration of multiple, interacting controls will be necessary to achieve, predictive understanding of

river corridor exchange across varying hydrologic forcing and geomorphic setting from headwaters to
large river networks.

Finally, we underscore that a one-time synoptic sampling campaign does not address local-scale
variability that is created by variable discharge conditions, nor does extensive study of a single reach
provide data that are reflective of variation in space in the river network. In short, space-for-time and
time-for-space substitutions based on the methods used in our study are not a reliable basis for
transferability nor prediction.
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