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Abstract. Thermal-based two-source energy balance modeling is very useful for estimating the land evapotranspiration (ET)

at a wide range of spatial and temporal scales. However, the land surface temperature (LST ) is not sufficient for constraining

simultaneously both soil and vegetation flux components in such a way that assumptions (on either the soil or the vegetation

fluxes) are commonly required. To avoid such assumptions, a new energy balance model TSEB-SM was recently developed

in (Ait Hssaine et al., 2018b) to integrate the microwave-derived near-surface soil moisture (SM), in addition to the thermal-5

derived LST and fractional vegetation cover (fc). Whereas, TSEB-SM has been recently tested using in-situ measurements,

the objective of this paper is to evaluate the performance of TSEB-SM in real-life using 1 km resolution MODIS (Moderate

resolution imaging spectroradiometer) LST and fc data and the 1 km resolution SM data disaggregated from SMOS (Soil

Moisture and Ocean Salinity) observations by using DisPATCh. The approach is applied during a four-year period (2014-

2018) over a rainfed wheat field in the Tensift basin, central Morocco, during a four-year period (2014-2018). The field was10

seeded for the 2014-2015 (S1), 2016-2017 (S2) and 2017-2018 (S3) agricultural season, while it was not ploughed(remained

as bare soil) during the 2015-2016 (B1) agricultural season. The mean retrieved values of (arss,brss) calculated for the entire

study period using satellite data are (7.32, 4.58). The daily calibrated αPT ranges between 0 and 1.38 for both S1 and S2. Its

temporal variability is mainly attributed to the rainfall distribution along the agricultural season. For S3, the daily retrieved

αPT remains at a mostly constant value (∼0.7) throughout the study period, because of the lack of clear sky disaggregated15

SM and LST observations during this season. Compared to eddy covariance measurements, TSEB driven only by LST and

fc data significantly overestimates latent heat fluxes for the four seasons. The overall mean bias values are 119, 94, 128 and

181 W/m2 for S1, S2, S3 and B1 respectively. In contrast, these errors are much reduced when using TSEB-SM (SM and LST

combined data) with the mean bias values estimated as 39, 4, 7 and 62 W/m2 for S1, S2, S3 and B1 respectively.

1

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-105
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 April 2019
c© Author(s) 2019. CC BY 4.0 License.



1 Introduction

Evapotranspiration (ET) is a crucial water flux in semi-arid areas where it strongly impacts the drought monitoring, water

resource management and climate (Littell et al., 2016; Molden et al., 2010). Furthermore, a precise estimate of ET determines

the crop water requirements, which subsequently allows the irrigation regimes to be optimized (Allen et al., 1998).

The most commonly used method to estimate ET at the field scale is the FAO-56 method (Allen et al., 2000, 1998) forced5

by a vegetation index (Bausch and Neale, 1990). FAO-56 is based on the concepts of reference evapotranspiration (ET0) and

crop coefficients (kc). A limitation of this method is that the coefficients used (in the form of a single or double coefficient) are

generally calibrated from in-situ measurements. Therefore, given the natural variability of soil properties and vegetation types,

as well as hydro-meteorological and soil moisture conditions at the landscape scale (Choi et al., 2009), it is difficult to scale up

ET at regional scales from the FAO-56 method alone.10

Regarding the data availability over extended areas, remote sensing is the only viable technique that can provide represen-

tative and multi-resolution measurements of ET. As a consequence, the spatial modelling has become a dominant means to

estimate ET fluxes over regional and continental areas (Anderson et al., 2007; Fisher et al., 2017). One of the most widely used

ET spatial models is the temperature-based approach. Models based on land surface temperature (LST) data classified into two

main groups: (i) residual balance methods and (ii) contextual methods. The first category considers ET as the residual term of15

the energy balance. In particular, one can cite two commonly used models: TSEB (Two-Source Energy Balance, (Norman et al.,

1995)) and SEBS (Surface Energy Balance System, (Su, 2002)). The second category of models estimates ET as the potential

ET times the evaporative efficiency (Moran et al., 1994) or as the available energy times the evaporative fraction (Merlin et al.,

2013; Roerink et al., 2000). These models are called "contextual" because the evaporative fraction involves determining (or

extrapolating) the extreme values of LST for dry and wet conditions.20

Among well-known temperature-driven energy flux models, the TSEB model proposed by Norman et al. (1995) has been

shown to be robust for a wide range of landscapes (Colaizzi et al., 2012; Ait Hssaine et al., 2018a). TSEB has two key input

variables, which can be derived from remote sensing data. The first one is the LST and the second is vegetation cover fraction

(fc). The TSEB model adopts an iterative procedure, in which an initial estimate of the plant transpiration is given by the

Priestly-Taylor (PT) formulation (Priestley and Taylor, 1972). This assumption requires few input data and allows a precise25

estimate of potential ET (Fisher et al., 2008). Nevertheless, several studies (Ait Hssaine et al., 2018b; Fisher et al., 2008;

Jin et al., 2011; Yang et al., 2015) have stressed that the PT coefficient cannot be considered as a constant value, as it is

influenced by several parameters. Other authors (Gonzalez-dugo et al., 2009; Long and Singh, 2012; Morillas et al., 2014)

reported that the PT approach may overestimate the canopy ET, especially for low soil wetness, and/or sparse vegetation

cover, because it does not include a reasonable reduction of the initial canopy ET under stress conditions. Recently, Boulet30

et al. (2015) have developed the Soil-Plant-Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model similar to

TSEB model in its basic assumption. Nevertheless, SPARSE is solved in two modes: the prescribed and the retrieval mode to

constrain the output fluxes. The former first generates an equilibrium LST from the evaporation efficiency and the transpiration

efficiency estimates by assuming that their values are equal to 1. Then, LST is implemented in the SPARSE retrieval mode to
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circumscribe the output fluxes by both limiting cases (namely the fully stressed and potential conditions). In spite of the good

retrieval performances of ET by this model significant uncertainties are observed during the quasi-senescent vegetation period

(Boulet et al., 2015) . Alternatively to the use of LST as a proxy for ET, numerous studies have stressed that the soil moisture

plays a critical role in the partitioning of available energy into latent and sensible heat fluxes and is the prominent controlling

factor of actual ET (Boulet et al., 2015; Gokmen et al., 2012; Kustas et al., 1998, 1999; Li et al., 2006). Several authors have5

revised the well-known LST-based TSEB model and replaced the LST with microwave-derived surface soil moisture (SM) to

estimate daily ET (Bindlish et al., 2001; Kustas et al., 1998, 1999; Li et al., 2006). Bindlish et al. (2001) found that the impact of

SM on surface fluxes is strongly related to the vegetation cover. The impact is high for low fraction cover, and relatively weak

for high cover fraction. Moreover, the soil evaporation is constrained by the SM through soil-texture dependent coefficients

reported in (Sellers et al., 1992). In the same way, Li et al. (2006) indicated that the model performance is sensitive to these10

two coefficients, and thus they proposed to average the output of LST-based TSEB and SM-based TSEB models, in order to

provide more consistent results over a wide range of conditions. More recently, Yao et al. (2017) evaluated three satellite-based

PT algorithms (ATI-PT, VPD-PT and SM-PT for apparent thermal inertia-, vapour pressure deficit- and SM-based formulations

of the PT coefficients, respectively) to estimate terrestrial water flux in different biomes. Their finding showed that the SM-PT

algorithm had relatively better results compared to those of ATI-PT and VPD-PT. However, all three models underestimated ET15

in irrigated crops, reflecting that those algorithms may not capture well the soil evaporation, notably through its (site-specific)

parameterization with SM. In the same vein, (Purdy et al., 2018) updated the PT Jet Propulsion Laboratory (PT-JPL) and

incorporated the SM data derived from SMAP (Soil Moisture Active and Passive, (Entekhabi et al., 2010)) to constrain both

evaporation and transpiration, separately. The model showed high improvements compared to the original PT-JPL, especially

in dry conditions. However, the model relied on evaporation and transpiration reduction parameters, whose values were set a20

priori.

Previous studies, either LST - or SM-based, agree with the view that combining both LST and SM information at a time

would enhance the robustness and accuracy of ET estimates in various biomes and climates. Nevertheless, few studies have

simultaneously combined both observations in a unique energy balance model. One difficulty lies in developing a consistent

representation of the soil evaporation (as constrained by SM, (Chanzy and Bruckler, 1993)), the total ET (as constrained25

by LST , (Norman et al., 1995)) and the plant transpiration (as indirectly constrained by both LST and SM, (Ait Hssaine

et al., 2018b)). Gokmen et al. (2012) explicitly integrated the SM derived from AMSR-E (Advanced Microwave Scanning

Radiometer for EOS) data (Owe et al., 2008) into the LST-derived SEBS model via the kB-1 parameter, which plays an

important role in the aerodynamic resistance. The updated SEBS model (SEBS-SM) provided a large improvement of sensible

heat flux and thus ET estimates under water-limited conditions. The point is that the soil evaporation reduction parameters were30

calibrated using in-situ measurements, which limits the validity of the approach over large areas. In the same vein, Gan and

Gao (2015) incorporated a SM-based soil resistance term in the TSEB formalism and calibrated several parameters (including

the PT coefficient) using LST data. The obtained results showed that the model calibrated by LST data performed better than

the non-calibrated one. Note that the parameters of the soil resistance were set to constant values as in Sellers et al. (1992). As

a further step towards the combination of LST and SM data. Ait Hssaine et al. (2018b) modified the TSEB formalism (Kustas35
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and Norman, 1999; Norman et al., 1995) (named TSEB-SM) and proposed a new calibration strategy of the main PT-based

TSEB-SM parameters. The TSEB-SM model was tested using in-situ measurements and provided an important improvement in

terms of latent heat flux/sensible heat flux estimates compared to the classic TSEB all along the agricultural season, especially

during the crop emergence and the senescence periods. Such improvements are attributed to stronger constraints exerted on the

representation of soil evaporation (via SM data and the calibrated soil parameters) and plant transpiration (via the calibrated5

daily PT coefficient). One crucial point is that all the above studies based on remotely sensed SM and LST have neglected

the mismatch in the spatial resolutions of readily available SM products. Especially, the global scale SM data sets have

a typical resolution of 40-50 km (Entekhabi et al., 2010; Kerr et al., 2010; Njoku et al., 2003). Such spatial resolution is

generally unsuitable or even incompatible with many hydrological and agricultural applications. To fill the gap, disaggregation

approaches of AMSR-E, SMOS and SMAP like SM data have been developed Peng et al. (2017) but, to date, there has been10

no application of SM-based ET models to disaggregate SM data sets. In addition, the use of remote sensing data would be

necessary in order to avoid the time-consuming process of calibrating the TSEB model over each field.

The objective of this study is to investigate how satellite data can be used to retrieve the main parameters (arss , brss

and αPT ) of TSEB-SM model. In this purpose, TSEB-SM is applied to 1 km resolution using MODIS (Moderate resolution

imaging spectroradiometer) LST/ fc data and to SMOS SM data is applied. To make the SMOS data spatially consistent with15

MODIS data, the SMOS SM is disaggregated at 1 km resolution using the DisPATCh (DISaggregation based on Physical

And Theoretical scale Change) algorithm (Malbéteau et al., 2016; Merlin et al., 2013; Molero et al., 2016). The proposed

methodology is evaluated over a rainfed wheat field in the Tensift basin, central Morocco during four agricultural seasons

(2014-2018).

2 Data description and methods20

2.1 Site and in-situ data description

The study site is situated in the east (Sidi Rahal) of the Tensift basin in central Morocco (see Figure 1). The region is char-

acterized by a semi-arid Mediterranean climate, with an average yearly precipitation of about 250 mm and an atmospheric

evaporative demand around 1600 mm per year according to the FAO method (Allen et al., 1998; Jarlan et al., 2015). Soil is

characterized by a fine texture with 47% of clay, 33% of loam and 18,5% of sand (Er-Raki et al., 2007). The experiment has25

been setting up in a rainfed wheat (“Bour”) field since 2013 (Ali Eweys et al., 2017; Amazirh et al., 2018; Merlin et al., 2018).

Located within a larger area occupied by rainfed wheat ‘Bour’. This field was chosen to be representative at a scale of 1 km,

thus enabling the comparison between 1 km resolution satellite-derived and localized in-situ measurements. The field was

seeded in September 2014, September 2016 and September 2017 for the 2014-2015 (S1), 2016-2017 (S2) and 2017-2018 (S3)

agricultural seasons, respectively. However, It was not ploughed(remained as bare soil) during the 2015-2016 (B1) agricultural30

season due to an unusual lack of precipitation in autumn-winter 2015 (Merlin et al., 2018).

The field was instrumented by an Eddy covariance (EC) system at a 2-m height. EC tower includes a CSAT3 3D sonic

anemometer that measures the wind and temperature fluctuations, and a krypton hygrometer KH20 that measures the con-
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centration of water vapour. The EC tower is also equipped with a CNR1 radiometer (Kipp and Zonen) to measure the four

components of the net radiation (Rn) with several heat flux plates (HFT3-L, Campbell Scientific Ltd) to measure the soil heat

flux (G). Energy balance closure analysis indicated that the available energy (Rn-G) was generally higher than the EC mea-

surements. The relative closure was about 68%, 76%, 79% and 79% for S1, S2, S3 and B1, respectively. The sensible and

latent heat fluxes (H and LE) were finally corrected to force the closure of the energy balance by the Bowen’s ratio method5

(Twine et al., 2000). LST is measured at the EC station by using two Apogee IRTS-P infrared radiometers, oriented downward

and measuring the surface leaving radiance between 8 to 14 µm, set up at a 2-m height above ground. An estimate of LST

is obtained by averaging both measurements. The soil water content is measured at various depths (5, 10, 20, 30, 50, 70 cm)

using Time Domain Reflectometry probes (model CS616) installed in a soil pit at the bottom of the EC tower. A weather station

was set up nearby the studied field to measure air temperature, solar radiation, relative humidity, wind speed and rainfall at10

30-minute time step.

2.2 Remote sensing data

2.2.1 MODIS

Three products from the MODIS sensor onboard Terra and Aqua satellites are used in this study: 1) MODIS Terra/Aqua

Land Surface Temperature product ((MOD11A1/MYD11A1), 2) MODIS Terra Vegetation Indices product (MOD13A2) and15

3) MODIS Albedo (combined Terra and Aqua) product (MCD43A3). All products are gridded in the Sinusoidal projection.

The MOD11A1 and MYD11A1 provide LST at 1 km spatial resolution under clear-sky conditions, derived from Terra and

Aqua, respectively. Brightness temperature from bands 31 and 32 are used to deriveLST through a generalized split-window

algorithm. The MOD13A2 provides several vegetation indices at 1 km resolution. One particular vegetation index of interest

in this study is NDV I , available at 16-day temporal intervals. This product is derived from bands 1 and 2 of the MODIS Terra20

satellite.

The obtained NDV I is used to derive the leaf area index (LAI) via the following formulation (Wang et al., 2013):

LAI =
(
NDV I × 1 +NDV I

1−NDV I
)1/2

(1)

The vegetation cover fraction is expressed as (Kustas and Norman, 1997):

fc = 1− exp(−0.5LAI) (2)25

Finally, the MCD43A3 product provides the surface albedo (α) at 500 m resolution every 16 days. The latter is generated

from both Terra and Aqua products. In this work, the shortwave broadband α is used by integrating its value over the entire

solar emission spectrum (0.3-5.0 µm). This value is obtained as a weighted average of the directional hemispherical reflectance

(black-sky-α) and the bi-hemispherical reflectance (white sky α) using their two extreme values. The current α (called "blue

sky") is a weighted average between these two extreme cases (Lewis and Barnsley, 1994). Herein, the percentages of 85% and30

15% are used for the direct and diffuse lights, respectively.
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2.2.2 SMOS

The SMOS mission measures the natural (passive) microwave radiation around the frequency of 1.4 GHz (L-band). It aims to

monitor SM at a depth of about 3–5 cm with a spatial resolution of about 40 km and an accuracy better than 0.04m3/m3 (Kerr

et al., 2012). The revisiting time at the equator is 3 days for both ascending and descending passes, which are sun synchronous

at 6 am and 6 pm respectively. The SMOS level-3 1-day global SM product (MIR CLF31A/D) posted on the ∼ 25 km Equal5

Area Scalable Earth (EASE) version 1.0 grid is used as input to DisPATCh algorithm.

2.2.3 DisPATCh

The DisPATCh remote sensing algorithm combines the coarse scale microwave-retrieved SM with high-resolution opti-

cal/thermal data within a downscaling relationship to produce SM at higher spatial resolution. A detailed description of the

algorithm can be found in (Merlin et al., 2012) and (Malbéteau et al., 2016). The LST is first decomposed into its soil and veg-10

etation components, which allows the soil evaporation and plant transpiration to be estimated separately (Merlin et al., 2012).

The revised soil temperature is then used to estimate the soil evaporative efficiency (SEE), which is defined as the ratio of actual

to potential soil evaporation. Finally, DisPATCh converts the high-resolution optical-derived SEE fields into high- resolution

SM fields given a semi-empirical SEE model and a first-order Taylor series expansion around the SMOS observation. In our

application, we applied DisPATCh to 40 km resolution SMOS level-3 SM and 1 km resolution MODIS optical/thermal data15

to produce SM at a 1 km resolution (Molero et al., 2016). The input datasets are composed of: MODIS LST , MODIS NDV I

and the GTOPO Digital Elevation Model (DEM) used to correct LST for topographic effects (Malbéteau et al., 2016; Merlin

et al., 2013).

2.3 Methods

2.3.1 TSEB-SM20

The recently developed TSEB-SM is fully described in Ait Hssaine et al. (2018b). Only the main equations are reminded below.

The originality of TSEB-SM is to integrate SM observations in addition to LST and vegetation cover fraction data, in order

to calibrate both the soil resistance to evaporation (constant parameters) and the PT coefficient on a daily basis. The model

is based on the original TSEB formalism, meaning that the energy balance for vegetation is the same as in TSEB using the

PT formula, although the soil evaporation is estimated as a function of SM using a soil resistance developed by Sellers et al.25

(1992). The use of the soil resistance formulation is justified by the fact that its main parameters (arss, brss) can be ajusted

based on soil texture characteristics (Merlin et al., 2016) or by combining SM and LST data under bare (Merlin et al., 2018)

or partially covered (Ait Hssaine et al., 2018b) soil conditions.

The vegetation latent heat flux (LEveg) is estimated via the PT formulation:

LEveg = αPT .fg.
4
4+ γ

.Rn,veg (3)30
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where αPT is the PT coefficient, fg the fraction of green vegetation,γ the psychometric constant (≈67 Pa K−1),4 the slope

of the relationship between saturation vapor pressure and air temperature, and Rn,veg is the vegetation net radiation. Note that,

fg is set to 1 as the αPT coefficient is varied (through the calibration procedure) to take into account the fraction of transpiring

vegetation. The soil latent heat flux is estimated using the resistance formulation:

LEsoil =
ρcp
γ

es− ea

rah + rs + rss
(4)5

where es is the saturated vapor pressure at the soil surface, ea the actual air vapor pressure, rah the aerodynamic resistance to

heat transfer across the canopy–surface layer interface, rs the resistance to heat flux in the boundary layer immediately above

the soil surface, and rss the resistance to vapor diffusion and capillary flux in the soil. rss is computed as a function of SM

and is expressed as (Sellers et al., 1992):

rss = exp(arss− brss×
SM

SMsat
) (5)10

with SM being the 0–5 cm SM, arss and brss are two empirical parameters (to be calibrated) and SMsat is the SM at

saturation expressed as (Cosby et al., 1984):

SMsat = 0.1× (−108× fsand + 49.305) (6)

with fsand being the sand percentage of soil. In Ait Hssaine et al. (2018b), an innovative calibration approach of αPT , arss

and brss is developed from in-situ SM and LST data (Ait Hssaine et al., 2018b). The arss and brss parameters are determined15

by considering that, when fc is lower than a given threshold (fc,thres), the dynamics of total LE is mainly controlled by the

temporal variation of soil evaporation. Meaning that both soil parameters are estimated when the PT coefficient can be set to

a constant value. Once the soil resistance has been calibrated, the PT coefficient is retrieved on a daily basis when fc is larger

than fc,thres. In fact, an iterative loop is run on soil and vegetation parameters to reach convergence of all parameters. LST

and SM data are thus used for calibration, while the calibrated TSEB-SM is run on a daily basis using SM data as forcing20

solely (in addition to vegetation cover fraction data). In this paper, an improvement is made on the former version of TSEB-SM

to normalize the output fluxes using the LST-derived available energy. Therefore, the new version of TSEB-SM uses both LST

and SM data (in addition to vegetation cover fraction data) as forcing on a daily basis. In practice, the latent and sensible heat

fluxes derived from the TSEB-SM model are re-computed using the TSEB-SM derived evaporative fraction (EF, defined as the

ratio of latent heat to available energy) and the LST-derived available energy. The rationale is that numerous modelling studies25

have shown the regularity and constancy of EF during daylight hours in cloud-free days (Gentine et al., 2011; Lhomme and

Elguero, 1999; Shuttleworth et al., 1989) and the EF has a strong link with SM availability (Bastiaanssen and Ali, 2003), which

is an important factor for estimating latent heat flux. For that purpose, the LST data collected at the Terra and Aqua-MODIS

overpass times are used separately to estimate the instantaneous Rn and G. A ratio between the daily (obtained as an average

value between Aqua and Terra overpass times) latent heat flux LEdaily and the daily available energy (Rn,daily-Gdaily) is used30

7
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to calculate an average daily EF:

EF =
LEdaily

Rn,daily −Gdaily
(7)

The daily EF and the instantaneous available energy (calculated using Terra and Aqua MODIS LST , separately) are finally

used to re-calculate the instantaneous TSEB-SM output of LE and H by the following formulas:

LE = EF × (Rn−G) (8)5

H = (1−EF )× (Rn−G) (9)

2.3.2 Uncertainty in TSEB-SM input data

The LST collected by MODIS at Terra and Aqua overpass times and the SM product derived at 1 km resolution from the

DisPATCh algorithm applied to SMOS data, are used as input to TSEB and TSEB-SM models. Validation of TSEB and TSEB-

SM input data prior to the evaluation of models output is an important issue, because of the scale discrepancy between the10

spatial resolution (1 km) of MODIS/DisPATCh data and the footprint of the EC flux measurements that does not exceed 100

m (Schmid, 1994).

Several studies have demonstrated the effectiveness of DisPATCh 1km resolution SM. Malbéteau et al. (2016) compared

DisPATCh SM data with the in-situ measurements collected in the Murrumbidgee catchment in Southeastern Australia. Their

results showed that DisPATCh improved the spatial representation of SM at 1 km resolution (compared to the original 40 km15

resolution SMOS SM), especially in semi-arid areas. Recently, Malbéteau et al. (2018) combined the DisPATCh SM over the

entire year 2014 (Sidi Rahal-Morocco) with the continuous predictions of a surface model in order to obtain a better estimate of

daily SM at 1 km resolution. They found that the assimilation of DisPATCh data improved quasi systematically the dynamics

of SM.

Figure 2 shows the scatter plots of MODIS LST (at Terra and Aqua overpass) versus in-situ measurements for the four20

agricultural seasons separately. The obtained R2, RMSE, and MBE are reported in Table 1. The statistical comparison

shows strong linear correlations (0.76≤R2 ≤ 0.90) for all years. The RMSE is around 4 K for S2 (2016-2017) and S3 (2017-

2018) agricultural seasons while it reaches 6 K for S1 (2014-2015) and B1 (2015-2016), respectively. The observed scatter

may stem from the fact that the localized (1 or 2 m wide) in-situ LST is not fully representative of the 1 km resolution MODIS

pixel (Ait Hssaine et al., 2018a; Yu et al., 2017). For all years (S1-3, B1), it can be seen that theMBE is negative. Note that the25

MBE is the greatest when the temperatures are largest. Such a systematic error is probably due to the non-representativeness

of the in-situ LST observations when compared to the corresponding scale of MODIS observations.

In order to evaluate the 1 km resolution SM during the study period, Figure 3 shows a comparison of DisPATCh SM with

in-situ measurements for the four wheat agricultural seasons (S1, B1, S2 and S3) separately. The statistical results including the

coefficient of determination (R2), the root mean square error (RMSE), and the mean bias error (MBE) are reported in Table30

8
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1. The R2 ranges from 0.27 to 0.55, the RMSE from 0.04 to 0.09 m3/m3 and the MBE from -0.05 to -0.03 m3/m3. These

results are encouraging considering the heterogeneous land use composed of rainfed wheat, bare soil, fallow and farm building

(see Figure 4) . In fact the localized in-situ measurements may not be perfectly representative of the 1 km resolution satellite

data. Note that the efficiency of DisPATCh is supposedly higher for low SM values (Malbéteau et al., 2016), which is clearly

illustrated during B1 season, while it is lower for high SM values (after rain events). This can be explained by the constraints5

of atmospheric and vegetation conditions on disaggregation results, as well as the saturation of SEE in the higher SMSM

range. Another major issue that can lead to differences between DisPATCh and in-situ SM is that the ground SM sensors are

buried at a depth of 5 cm while the penetration of the L-band wave varies between 2 and 5 cm depending on soil conditions

(notably SM content, texture). For S2, the SM provided by DisPATCh underestimated field measurements, especially in the

higher SM range. This particular behaviour could be explained by the particularly low precipitation amount during this year.10

Especially, it is possible that the surrounding plots were not sown by neighbour farmers, resulting in a soil that dried quickly

compared to our field, which retained the SM for a longer period of time.

Note that despite the relative heterogeneity within the 1 km pixel (characterized by rainfed wheat in addition to bare soil and

fallow), the comparison between field measurements and 1 km resolution satellite data reflects acceptable accuracies.

3 Results and Discussion15

In this section, the arss and brss parameters and the αPT are firstly retrieved by following the two-step calibration based on a

threshold of fc (cited in method’s section). Then, the obtained calibrated values are used to estimate the surface fluxes using

TSEB-SM. Finally, TSEB-SM fluxes are evaluated against the eddy covariance measurements, and results are compared with

the original TSEB. To facilitate the interpretation of the simulation results using MODIS and SMOS/DisPATCh data as input,

the calibration and validation steps are previously tested using in-situ (LST and SM) data.20

3.1 Retrieving arss and brss parameters

The soil resistance rss is inverted for fc ≤ fc,thres, between 11 am and 2 pm and at Terra and Aqua overpass time step for

in-situ and satellite data, respectively. The result of this inversion is correlated to the actual to saturated soil moisture ratio

SM/SMsat to determine arss and brss parameters. The calibration process is applied for each season independently. Then a

pair (arss, brss) is calculated for the entire study period for in-situ and satellite data, respectively.25

Figure 5a and 5b plot the log(rss) versus in-situ SM/SMsat using in-situ and satellite data, respectively. The mean retrieved

values (7.62, 2.43) and (7.32, 4.58) for in-situ and satellite data, respectively, are close to the values found in Sellers et al. (1992)

(8.2, 4.3) and in Ait Hssaine et al. (2018b) (7.2, 4). However, by comparing both figures (5a and 5b), one notes that the use

of in-situ data generates more scatter than with satellite data. The apparent scatter in retrieved rss could be interpreted by

the impact of the daily cycle of meteorological (evaporative demand) conditions or soil properties differences (Merlin et al.,30

2011, 2016, 2018). The retrieved soil parameters also vary from year to year: the standard deviation is 0.39 and 1.69 for arss

and brss, respectively. This can be explained by the compensation effects linking arss and brss parameters which prove the
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empirical nature of the rss. Another major issue that can lead to these differences is the depth of SM measurements (Merlin

et al., 2011). In Sellers et al. (1992), the near-surface soil moisture is defined in the 0-5-cm soil layer, whereas in our field, SM

measurements are made at 5-cm depth. Also, the sensing depth of SMOS observations is generally shallower than the in-situ

surface measurements (Escorihuela et al., 2010). Moreover, the variability of arss and brss in Figure 5b using remote sensing

data can be linked to the scale difference between DisPATCh SM/MODIS products (1 km) and the field measurements. As5

shown in Figure 3, the field is surrounded by trees, buildings and fallows, which causes the spatial heterogeneity within the

pixel of 1 km. This heterogeneity can introduce errors on the model inversion. Nevertheless, soil parameters are quite similar

for in-situ and satellite data sets. Therefore, the heterogeneity issues within the 1 km pixel scale are minor in this study.

3.2 Time series of daily retrieved αP T

The second calibration step consists in inverting the daily αPT when vegetation is covering a significant part of soil (fc >10

fc,thres), for the three seasons of rainfed wheat (S1, S2 and S3), by using in-situ data and satellite data, separately. Herein, the

calibration of αPT is bounded by a minimum (0) and maximum (2) acceptable physical value, in order to avoid unacceptable

values of αPT that can be produced because of the uncertainties in daily LST estimates. Such an upper bounding is especially

needed when vegetation partially covers the soil.

3.2.1 Using in-situ data15

Figure 6 plots the daily variation of αPT for each season (S1, S2 and S3) separately, using in-situ data. The mean retrieved

values of αPT are 1.26, 1.12 and 1.09 for S1, S2 and S3 respectively. In all cases, the mean αPT is close to the theoretical αPT

value (1.26). It is well observed that the retrieved αPT for S1 is slightly larger compared to those obtained for both S2 and

S3. This can be explained by the timing and amount of rainfall during each season. Note that unexpected low values of αPT

are recorded for S3 during the first few days (25 January-4 March) of the development stage. They may be associated with20

uncertainties in retrieved αPT as the impact of soil surface is still significant, as well as to a relatively low evaporative demand

especially since this period coincides with cloudy days and abundant precipitations. Indeed, the coupling between transpiration

(and hence retrieved αPT ) and LST is expected to be lower under lower atmospheric demand.

The retrieved αPT is then smoothed as in Ait Hssaine et al. (2018b) to remove outliers and to reduce uncertainties at the

daily time scale. The smoothed values of αPT range from 0 to 1.54, 0 to 1.38 and 0.45 to 1.43 for S1, S2 and S3 respectively.25

The maximum of αPT is close to 1.26 for S2, while it is higher for S1 and S3. This result is in accordance with the total rainfall

amounts which were about 608, 214 and 421 mm for S1, S2 and S3 respectively. Additionally, one can state that the stability of

αPT strongly depends on the rainfall distribution along the agricultural season. The daily αPT is more stable for S1 than for S2

and S3. Indeed, the amount of rain during S1 is very important with two peaks of about 83 mm that occurred at the beginning

of the season and during the growing stage. The second one coincides exactly with the maximum value of the retrieved αPT .30

However, different results are obtained for S2 compared to S1 due to the lowest precipitation amount recorded over that season.

As shown in Figure 6 the amount of rain is concentrated at the beginning of the growing stage (mid December), when the αPT

peaks. Afterward, the smoothed αPT tends to decrease because of insufficient soil water reserve in the root zone to enable
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wheat to continue growing. Rainfall is also significant for S3 and every rainfall event causes an immediate (daily) response of

αPT (after 4th March). As mentioned before, the significant error in αPT retrievals for S3 between 25 January and 4 March

induces strong uncertainties in the smoothing function estimates.

3.2.2 Using satellite data

Figure 6 illustrates also the daily variation of αPT retrieved from satellite data for each season separately. S1 and S2 have a5

very similar distribution of the retrieved αPT as compared to the retrieved αPT using in-situ data, respectively. For S3, only

six retrieved αPT values are available because of the non-availability of MODIS products during cloudy days. For this reason,

no information linked to the variability of αPT can be derived during this season. The retrieved values are smoothed and

superimposed with the rainfall events. It is clearly shown that the smoothed αPT for S1 and S2 have the same shape with a

small variability, when comparing with the smoothed αPT using in-situ data, resulting in an error estimated as the RMSE to10

the mean αPT ratio, of about 11 and 19 %, for S1 and S2 respectively. For S1 the maximum of smoothed αPT is reached at the

same time as when using the in-situ data, with a value of about 1.38, while the maximum for S2 is reached 10 days before the

maximum of the αPT derived from in-situ data with little response of αPT to rainfall events. These differences may be linked

to uncertainties in disaggregated SMOS SM, as well as to the weaker availability of satellite data. Because of the small number

of data points (retrieved αPT ) during S3, the smoothed αPT remains at a mostly constant value (∼ 0.7) throughout the study15

period, with a significant relative difference of about 34 % when comparing with the αPT retrieved using in-situ data.

3.2.3 Interpretation of αP T variabilities

Figure 7 plots variation of calibrated daily αPT , superimposed with NDV I and rainfall events. It is visible that the maximum

value of NDV I appears sooner than the maximum value of αPT for both S1 and S3. Such a delay is attributed to the high

soil moisture level in the root-zone during the maturity stage. Later in the season, αPT decreases as NDV I starts to decline20

at the onset of senescence. In contrast, the maximum value of NDV I appears later than the maximum value of αPT for S2.

This can be explained by the fact that rainfall at the beginning of the development phase satisfies the plant requirements, while

the rainfall amount during the development stage is relatively low compared to the crop water needs (Kharrou et al., 2011).

Large variations in αPT occur during the agricultural season, as a result of the amount, frequency, and distribution of rainfall

along the season. In general, the analysis of the αPT variability using satellite data illustrates the robustness of the proposed25

approach, which combines microwave and optical/thermal data to retrieve a water stress indicator at the daily time scale.

3.3 Surface fluxes

The robustness of TSEB and TSEB-SM for partitioning (Rn−G) intoH and LE is evaluated using in-situ and remotely sensed

LST,SM, NDVI, separately, at Terra and Aqua MODIS overpasses.
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3.3.1 Using in-situ data

Figure 8 shows an intercomparison of simulated and observed LE for the 4 seasons separately. TSEB-SM clearly provides

improved results compared to the original TSEB. The obtained values of RMSE by TSEB-SM are about 68 and 72 W/m2 for

S1 and S2 respectively, which is significantly lower than those revealed by TSEB (109 and 86 W/m2, respectively) (see Table

2). For B1 (season of bare soil), TSEB largely overestimates LE with a MBE of about 165 W/m2 compared to TSEB-SM,5

which yields a MBE of 59 W/m2. This overestimation of TSEB is most probably related to an inadequate value of αPT

(=1.26) for bare soil surfaces. In fact, 1.26 is an optimum value for the potential transpiration rate (Agam et al., 2010; Chirouze

et al., 2014). In the case of TSEB-SM, biases are reduced thanks to the calibration of the rss resistance. Additionally, according

to TSEB-SM assumptions, αPT for fc ≤ 0.5 is set to the average value of the αPT retrieved for fc > 0.5. During B1 season

(bare soil conditions), αPT was hence obtained as an average value of the mean αPT retrieved for all seasons S1, S2 and S310

when fc > 0.5 ( αPT ∼ 1). However, this value remains relatively high for a bare soil, which yields a slight overestimate of

LE measurements (see B1 case in Figure 8).

For S3 season, the error on daily retrieved αPT at the beginning of the development stage has a strong impact on LE

predictions and thus yields to greater discrepancies illustrated in Figure 8. To overcome this error, the threshold on fc to

separate calibration steps 1 and 2 was increased to 0.63 (arbitrary value). The TSEB-SM model is then run using the new15

threshold. The LE simulations are improved, with a RMSE of 73 W/m2 instead of 98 W/m2 and a relative error (estimated

as the RMSE divided by the mean observed LE) of about 42 % instead of 58 %. The increase in the threshold is intended to

decrease the uncertainties in αPT retrievals when vegetation is not fully covering the soil. It can be concluded that the errors

in αPT retrievals have a strong impact on LE estimates.

The ability of TSEB-SM to estimate the sensible heat fluxes is also investigated. Figure 9 displays the comparison between20

TSEB and TSEB-SM for each season and Table 2 2 summarized the different statistical parameters. One can notice that TSEB

shows greater discrepancies in H estimation, with a RMSE of about 127, 112 and 103 W/m2 and MBE of about -41, 1, and

-71 W/m2 for S1, S2 and S3 respectively. Both RMSE and MBE values are generally much reduced when using TSEB-SM

with RMSE values of about 68, 72, and 98 W/m2 and MBEMBE values of about -10, 24, and 7 W/m2, respectively. During

B1, TSEB model underestimates H. This can be explained by the low-sensitivity of simulated sensible heat flux to changes in25

surface and atmospheric conditions, consistent with former results obtained on a different sites of irrigated wheat (Ait Hssaine

et al., 2018b). The discrepancies between TSEB-SM and in-situ H during S3 are mostly rectified by using the new threshold

on fc: the statistical results are improved, the RMSE is about 73 W/m2 and the relative error is 39 % (instead of 52 %). It can

be concluded that the uncertainty observed over the αPT during the first few days of development stage (25 January-4 March)

is mainly related to the impact of the soil, which is not negligible during the first weeks of the growing stage. Nevertheless, by30

considering the overall results obtained for the 3 seasons, the threshold of fc,thres = 0.5 can be considered as an acceptable

value to calibrate the soil resistance parameters and the Priestly Taylor coefficient.

As a further step, the intercomparison between TSEB and TSEB-SM is evaluated by predicting Rn and G fluxes instead of

forcing them to their measured values. The statistical results of the comparison between simulated and observed Rn, G,H and
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LE are listed in Table 3. The scattering obtained when comparing turbulent flux estimations to measurements is mainly related

to the uncertainty in available energy estimates, mainly related to the uncertainty in soil heat flux estimates. Indeed, as reported

in Table 3, Rn is very well simulated for both TSEB and TSEB-SM. The R2 between simulated and observed Rn is about

0.99 during all seasons. Meanwhile G shows a poor correlation, with an R2 varying from 0.05 to 0.45. This is mainly linked to

the approach used to estimate G, which requires local calibration. Kustas et al. (1998) hence indicated that the ratio G/Rn,soil5

cannot be considered as a constant, because it is affected by different factors such as time of day, moisture conditions and soil

texture and structure.

3.3.2 Using satellite data

In order to gain greater insight into how TSEB and TSEB-SM models respond to different surface conditions across a landscape,

an analysis of the spatial distributions and the magnitude of the turbulent fluxes using remotely sensing data produced from the10

two models is conducted. The comparisons between TSEB/TSEB-SM versus observed LE over the four seasons are illustrated

in Figure 10.Figure 10 indicates that TSEB overestimates latent heat flux. The overall MBE are about 119, 181, 94 and 128

W/m2 for S1, B1, S2 and S3 respectively. The overestimation of LE fluxes can be explained by the fact that αPT is set to

1.26 during the entire agricultural season including stress conditions. This probably causes larger errors on the LE estimation

especially during the growing stage. Indeed, the saturation of TSEB during the senescence period is precisely caused by the15

PT coefficient fixed to 1.26. The errors are reduced when using TSEB-SM. In fact, the constraint on plant transpiration, while

retrieving daily αPT values improves ET estimates especially for the growing stage. Moreover, during the senescence stage

the large positive bias of LE is considerably reduced. In fact, the decrease in calibrated daily αPT is associated with the drop

in NDVI during senescence (Ait Hssaine et al., 2018b). Additionally, the constraint on the soil evaporation via the DisPATCh

SM, clearly reduces theMBE values during the emergence period (fc ≤ fc,thres). Finally, the constraint applied on TSEB-SM20

output fluxes using LST-derived available energy and TSEB-SM-derived evaporative fraction (Equation 8) improves the LE

estimates for the whole study period. The MBE are about 39, 4, 7 and 62 W/m2 for S1, S2, S3 and B1 respectively.

TSEB consistently exhibits larger errors onH estimation (see Figure 11), withRMSE values up to 98, 73, 56 and 66 W/m2

during S1, S2, S3 and B1 respectively. The RMSE is improved while using TSEB-SM, with values of about 55, 41, 24 and

27 W/m2 during S1, S2, S3 and B1 respectively.25

The intercomparison between TSEB and TSEB-SM is made by forcing the available energy to its measured value. The

statistics listed in Table 3 indicate that there are similar differences between modeled versus measuredRn using either TSEB or

TSEB-SM. Overall, the discrepancies between estimated and measured Rn are likely due to a greater scatter between MODIS

and in-situ measured LST. Note that RMSE values up to 6 K have been noted when comparing LST MODIS with ground-

based measurements. These uncertainties are likely to be explained by the huge scale mismatch between the 1 km resolution30

of MODIS LST and the footprint size (approximately 1 m) of ground-based radiometers. The uncertainties in key input data

generate large differences in simulated Rn compared to the tower measurements. The greater scatter between modeled and

measured G from the two models reflect the fact that there is a major mismatch in scale between the area sampled by the soil

heat flux sensors and the 1 km resolution of model inputs. It appears that the LE estimates from TSEB-SM are generally in
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closer agreement with the measurements than the TSEB model outputs. The RMSE is significantly improved from 103 to 52

W/m2, from 151 to 30 W/m2, from 101 to 35 W/m2 and from 83 to 24 W/m2, during S1, B1, S2 and S3, respectively. For

the sensible heat flux H, the difference between TSEB estimates and EC measurements listed in Table 3 indicates a fairly large

underestimation, the MBE values varying between -56 W/m2 and -240 W/m2. However, the TSEB-SM output provides a

quite significant improvement, with an absolute MBE lower than -61 W/m2 during all seasons.5

4 Conclusions

The microwave-derived near-surface soil moisture (SM) from SMOS and thermal-derived land surface temperature (LST) from

MODIS are integrated simultaneously within a calibration procedure to invert both the soil resistance to evaporation (constant

parameters) and the PT coefficient based on a threshold on fc. The TSEB-SM model is applied during a four-year period (2014-

2018) over a rainfed wheat field in the Tensift basin, central Morocco. The first calibration step with fc ≤ fc,thres consists in10

inverting rss at Terra and Aqua overpass times. Despite the scale difference between the MODIS/DisPATCh resolution data

and the footprint size of in-situ measurements, the pair parameters (arss, brss) calculated for the entire study period using

satellite data are relatively close to those derived from in-situ measurements. The second calibration step consists in estimating

αPT on a daily basis for fc > fc,thres by using LST and SM data. The maximum of daily calibrated αPT are 1.38, 1.25 and

0.87, when using satellite data, for S1, S2 and S3, respectively. Those values are in accordance with the total rainfall amounts,15

which were about 608, 214 and 421mm/wheat season for S1, S2 and S3 respectively. S1 and S2 have the same distribution of

daily calibrated αPT when comparing with the αPT retrieved using in-situ data, while the retrieved αPT remains at a mostly

constant value (∼ 0.7) throughout the study period S3 because of the non-availability of MODIS products during cloudy days.

An analysis of the spatial distributions and the magnitude of the turbulent fluxes using remotely sensing data produced from

the two models were conducted. TSEB exhibits larger errors on H and LE estimates. These uncertainties can be linked to the20

theoretical value of αPT , which is fixed to 1.26 for the whole study period, as well as to the scale mismatch between the 1 km

resolution of MODIS LST and the footprint size (approximately 1 m) of the ground-based radiometer. The constraint applied

on the soil evaporation represented explicitly as a function of SM via a soil resistance term reduces the errors when using

TSEB-SM. In fact, the use of the SM derived from microwave data is one of the main controlling factors of the evaporative

fraction, which helps to determine with more accuracy the LE/H partitioning.25

Last but not least, the coupling of the soil resistance formulation with the TSEB formalism improves the estimation of soil

evaporation, and should, as a consequence, improve the partitioning of evapotranspiration. As a short term prospect, the ro-

bustness of TSEB-SM in terms of evaporation/transpiration partitioning will be tested by using independent flux measurements

derived from lysimeters, and sap flow sensors, and vapour chambers (Rafi et al., 2019).
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Figure 1. Location of Sidi Rahal site (east of Marrakech) in the Tensift basin, central of Morocco.
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Figure 2. Scatter plots of MODIS versus in-situ LST at Sidi Rahal site for S1 (2014-2015), B1 (2015-2016), S2 (2016-2017) and S3

(2017-2018) agricultural seasons, separately, (red dashed line is the line(1:1)-black line is the regression line).
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Figure 3. Scatter plots of the 1 km resolution DisPATCh versus in-situ SM at Sidi Rahal site for S1 (2014-2015), B1 (2015-2016), S2

(2016-2017) and S3 (2017-2018) agricultural seasons, separately.
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Figure 4. NDV I image derived from Landsat data acquired on 17/04/2018. The experimental field and the overlaying 1 km resolution

MODIS pixel are superimposed.
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Figure 5. log(rss) versus SM/SMsat (calibration step 1) using in-situ (a) and satellite (b) data.
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Figure 6. Time series of daily retrieved and smoothed αPT (calibration step 2-using in-situ data, and satellite data) collected during S1, S2

and S3.
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Figure 7. Time series of calibrated daily αPT (red-using in-situ data, green- using satellite data) superimposed with NDV I and the rainfall

events during S1, S2 and S3, separately.
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Figure 8. Scatterplot of simulated versus observed LE for (top) TSEB and (bottom) TSEB-SM models using in-situ data collected during

S1, B1, S2 and S3, respectively.
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Figure 9. Same as Fig. 8 but for H fluxes.
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Figure 10. Same as Fig. 8 but for satellite data.

31

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-105
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 April 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 11. Same as Fig. 8 but for H fluxes and satellite data.
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Table 1. Validation results of DisPATCh SM and MODIS LST at Sidi Rahal site.

Period R2 RMSE MBE

LST

S1 0.8 6.4 (K) -3.7 (K)

B1 0.76 5.6 (K) -4.6(K)

S2 0.91 4.3 (K) -2.9 (K)

S3 0.89 4 (K) -2 (K)

SM

S1 0.55 0.07 m3/m3 -0.04 m3/m3

B1 0.36 0.04 m3/m3 -0.03 m3/m3

S2 0.27 0.09 m3/m3 -0.05 m3/m3

S3 0.47 0.08 m3/m3 -0.03 m3/m3
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Table 2. Statistical results (RMSE, R2 and MBE) between modeled and measured sensible and latent heat fluxes for S1, S2, B1 and S3,

and for TSEB and TSEB-SM model, separately (Rn and G are forced to their measured value).

TSEB TSEB-SM

RMSE R2 MBE RMSE R2 MBE

Using in-situ data

LE (W/m2)

S1 109 0.39 76 68 0.59 10

B1 136 0.15 165 52 0.22 59

S2 86 0.22 30 72 0.16 -24

S3 103 0.53 71 98 0.29 -7

H (W/m2)

S1 127 0.33 -41 68 0.7 -10

B1 136 0.44 -165 52 0.91 -59

S2 112 0.47 1 72 0.63 24

S3 103 0.38 -71 98 0.14 7

Using satellite data

LE (W/m2)

S1 95 0.34 119 55 0.51 39

B1 66 0.07 181 27 0.01 62

S2 67 0.02 94 41 0.08 4

S3 56 0.55 128 24 0.68 7

H (W/m2)

S1 98 0.3 -104 55 0.54 -39

B1 66 0.37 -181 27 0.52 -62

S2 73 0.33 -71 41 0.6 -4

S3 56 0.28 -128 24 0.36 -7
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Table 3. Same as Table 2 but for simulated Rn and G.

TSEB TSEB-SM

RMSE R2 MBE RMSE R2 MBE

Using in-situ data

Rn (W/m2)

S1 35 0.99 -38 35 0.99 -38

B1 14 0.99 12 14 0.99 12

S2 20 0.99 9 20 0.99 9

S3 7 0.99 -0.46 7 0.99 -0.46

G (W/m2)

S1 19 0.32 17 19 0.32 17

B1 19 0.05 12 19 0.05 12

S2 30 0.28 -13 30 0.28 -13

S3 26 0.44 9 26 0.44 8

LE (W/m2)

S1 87 0.35 27 65 0.58 -21

B1 141 0.12 174 52 0.16 60

S2 91 0.23 35 68 0.22 -15

S3 91 0.62 54 84 0.47 22

H (W/m2)

S1 127 0.33 -44 70 0.73 34

B1 145 0.43 -177 52 0.9 -60

S2 112 0.48 2 78 0.68 36

S3 99 0.3 -64 87 0.3 -32

Using satellite data

Rn (W/m2)

S1 23 0.94 8 22 0.93 8

B1 85 0.47 32 85 0.47 32

S2 22 0.94 12 22 0.94 12

S3 17 0.97 2 17 0.97 2

G (W/m2)

S1 20 0.41 24 19 0.4 24

B1 20 0 15 20 0 15

S2 25 0.12 -15 25 0.12 -15

S3 22 0.08 10 22 0.08 10

LE (W/m2)

S1 103 0.24 86 52 0.49 28

B1 151 0.02 240 30 0.01 65

S2 101 0.07 96 37 0.06 28

S3 83 0.47 74 24 0.69 14

H (W/m2)

S1 112 0.34 -91 63 0.44 -45

B1 150 0.16 -240 28 0.49 -61

S2 97 0.4 -56 38 0.52 -4

S3 85 0.12 -83 27 0.28 -29
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