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Hydrol. Earth Syst. Sci.  
hess-2019-103 
 

Response to editor’s comments – report #2 

Dear Editor,  

Thank you very much for your comments. Following please find our point-by-point response to your 

questions and suggestions. The editor’s comments are in regular font and our response is in bold. The 

page and line numbers refer to the revised manuscript that will be submitted with this response (with 

“all mark up” display for review). 

 

As can be seen by the two review reports, both reviewers still have major concerns. Especially, the 

concerns about the parameter choice n are important. Since you study scale dependency, having a 

constant n is dangerous. Please provide information on:  

1) the value of n 

2) was n constant?  

3) how did you determine it?  

4) was it spatially variable? 

5) how sensitive is the approach to n? 

This is an important point and we should have mentioned the reason to hold n constant. 

We did not vary n either in space or in time, because doing so would create artifacts that would 

confound the effects of spatial heterogeneity in P and PET.  For example, if we vary n from place to 

place, then how do we separate the effects of spatial heterogeneity from the effects of the imposed 

variation in n?  For similar reasons, we do not agree that having a constant n is "dangerous" for a 

study of scale-dependency.  Instead, it is essential for n to be held constant because otherwise one 

cannot separate the effects of scale-dependent variation in P and PET from the effects of scale-

dependent variation in n.  Recall that in our analysis we use Budyko curves as an analytical framework 

(or a simple "see-through" function) for exploring the consequences of spatial heterogeneity in 

landscape properties.  We do not quantify the heterogeneity bias in ESMs (which are not based on 

Budyko curves), nor do we use Budyko curves as a proxy for what ESM ET estimates would be. 

In the revised version we present a sensitivity analysis (for n values ranging from 2 to 5) in the 

supplement (Figs S1, S2) and discuss its main results in the manuscript (under Summary and 

Discussion).  Those results are: 1) the spatial patterns of aggregation bias are similar, 2) the absolute 

magnitude of aggregation bias increases somewhat for higher values of n, as predicted by Eqs. 3 and 4, 

and 3) the Taylor approximation in Eqs. 3 and 4 yield realistic estimates of the aggregation bias for all 

values of n that were tested. 

Furthermore, spatial heterogeneity in P and PET should be better explained as indicated in report #2, 

reviewer #1 (first point). As well as the temporal dynamics (report #1, reviewer#3). 

Please see our response to reviewer #1 first point.  

 

Lastly, I am doubting whether this manuscript should be transferred into a technical note as suggested 
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by reviewer #1. In principle I agree, since the manuscript presents a method to define scaling issues and 

the 'research component' is a bit on the back. I leave it up to the authors to decide whether they prefer a 

technical note or a research article. However, if you chose the latter, please emphasis the research 

component (what can we learn from it, e.g., process understanding). 

We still think that it is appropriate for this manuscript to be published as a research article. We explain 

the added value of the manuscript in response to the second last comment by reviewre#1, report#2. 
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Hydrol. Earth Syst. Sci.  
hess-2019-103 
 
Response to Referee #1, report#2 
 
 
We thank Reviewer #1 for her/his comments on the manuscript, and present our responses 
below.   The Reviewer’s comments are in regular font and our responses are in bold. 
 
Response to Referee #1 
I now read the revised manuscript version and rebuttal letter of the manuscript entitled “Global 
assessment of how averaging over spatial heterogeneity in precipitation and potential 
evapotranspiration affects modeled evapotranspiration rates”. I appreciate authors effort in 
improving the manuscript and clarifying several aspects of their work. Having said that, I must also 
admit that I am still not fully convinced by some of the arguments the authors used in the reply 
letter to present (and defend) their work. Therefore, I highlight below those important points that 
need to be addressed:  
 
- Authors treat P and PET as model input data defined at the same scale (see lines 292-294). 
However, this does not reflect how typically ESMs dynamical cores are designed and/or have been 
evolving. Forcing terms (e.g., precipitation, temperature, humidity) are defined at the atmospheric 
model grid (usually coarser) while PET is calculated at the PFT-level using land surface features (e.g., 
LAI, aerodynamic resistance). In light of this, variability in modelled P and PET occurs at different 
spatial scales. This makes, in my opinion, the calculation of a correction factor for ET less 
straightforward. Could authors elaborate on this point?  
 
The introduction describes "mosaic" approaches in which PET (and ET) are calculated for individual 
PFTs and then aggregated. In any case, our purpose is not to mimic the way that ESMs actually 
calculate ET (obviously so, since ESMs do not employ Budyko curves).  Our purpose is instead to 
illustrate how variability in P and PET would be translated into biased ET estimates, using Budyko 
curves as a simple "see-through" function for illustration purposes.  In the case that the reviewer 
mentions (P and PET calculated at different scales), the magnitude of the bias would depend on 
whether the PET estimates were first averaged at the atmospheric grid cell scale (Case 1), or 
whether P and PET were jointly used to estimate ET for each PFT within each grid cell, and then 
these ET estimates were averaged (Case 2).  The aggregation bias would be greater in Case 1 than 
in Case 2, but we don't think we would be justified in going into these details in the present paper, 
because, again, the Budyko calculations presented here are in any case not the way that ESMs 
actually calculate ET. We make sure we emphasize this point in the manuscript. 
 
 
- Authors affirm that their work highlights under which climate conditions averaging in P and PET has 
an effect on ET estimates. Without giving clear explanations I suspect that the largest differences 
found for Cs and Ds climate zones are still mainly driven by topography. Note also that this analysis is 
limited to the CONUS domain where there are not many sampling points for certain climate zones 
(e.g., Ds). This information should be provided in the plots and the statistical significance of the 
differences should be tested. An analysis at the global scale would be certainly more convincing.  
 
We agree that the large aggregation biases found in the Cs and Ds climate zones are mainly driven 
by topography  We highlight this in the second paragraph of Section 4: "Heterogeneity biases are 
higher in regions with temperate climates and dry summers (climate zone Cs) and in regions with 
cold, dry summers (climate zone Ds), most likely due to the sharp spatial gradient in their water 
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and energy sources for evapotranspiration (Fig. 5b). These areas typically have high topographic 
relief, combined with seasonal climate."  We focused our analysis on the CONUS domain because 
we wanted to compare Prism and WorldClim as precipitation data sources, and fine resolution 
Prism data are only publicly available for CONUS.  Thus while a global analysis would arguably be 
more comprehensive, it is not possible without acquiring (and paying for) proprietary Prism data. 
 
The number of 1-degree by 1-degree grid cells (sampling points) at which heterogeneity biases are 
calculated per climate zones are now added to Figure 5b.  
 
We present a table in the supplement in which we report statistical significance of differences 
between heterogeneity bias estimated at 1-degree by 1-degree grid cell across the contiguous US 
using 4 sets of P and PET data. The difference between heterogeneity bias estimated at the two 
climate zones that are raised by the reviewer (Cs and Ds) is not statistically significant across all 4 
combinations of datasets (highlighted in yellow in Table S1 of the supplementary material). 
However, the difference between estimated heterogeneity bias in Cs vs Cf climate zones, and Ds 
versus Cf climate zones, as well as Cs versus Bs climate zones are significant across all four data 
combinations (highlighted in grey, blue, and green in Table S1 of the supplementary material). We 
discuss the main results of the statistical difference analysis in the manuscript (Section 4., second 
paragraph).  
 
- The grid-scale dependence is tested for Switzerland and I don`t think we can “extrapolate” this 
exponential relationship everywhere around the globe. If you want to convince the reader you need 
to repeat this assessment for all regions (identified for instance in Fig. 3) where averaging effects are 
not negligible. Juxtaposing the different curves will (or will not) support the existance of a general 
“scaling” relationship with the grid resolution. 
 
A global analysis would indeed be more comprehensive, but it would require high-resolution 
global data that we simply do not have. The graph of average heterogeneity bias versus grid 
resolution was added to figure 6 upon the reviewer’s request in the previous round. In the 
manuscript, we report that “On average, the heterogeneity bias across Switzerland as a whole 
grows exponentially as the inputs are averaged over larger grids” and do not generalize it to any 
other region or the globe.  
 
- In the first iteration I asked authors to provide more information about the value of “n” parameter. 
This information is still missing in the manuscript. Can the authors provide some concrete numbers 
on the sensitivity of their global estimates with respect to different “n” values?  
 
This is an important point, thank you for raising it. We now present a sensitivity analysis for n 

values ranging from 2 to 5 in the supplement (Figures S1 and S2) and discuss its main results in the 

manuscript (Section 5. Summary and discussions, 5th paragraph). Those results are: 1) the spatial 

patterns of aggregation bias are similar, 2) the absolute magnitude of aggregation bias increases 

somewhat for higher values of n, as predicted by Eqs. 3 and 4, and 3) the Taylor approximation in 

Eqs. 3 and 4 yield realistic estimates of the aggregation bias for all values of n that were tested. 

 
Other comments: 
- Please do not include any discussion in the captions of the figures. See Figure 3-5-6. 
 
We include concise statements of the main takeaway messages that the figures convey.  We think 
that this is very helpful to readers – particularly those who scan the figures of a paper to get a first 
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impression of its main points.  As this is a matter of style, we prefer to keep the captions as they 
are. 
 
- Lines 36-37 in the abstract. I do not see how the results of this paper can be used for guiding a 
more detailed mechanistic modelling. Note also that averaging- or grid-scale effects have been 
largely reported also when using mechanistic models. So please remove this sentence. 
 
This sentence is removed from the abstract. 
 
- You do not want to quantify the absolute magnitude of the averaging effects and at the same you 
claim that your methodology is potentially a way for correcting such bias. The second statement 
imply a sort of quantification, in my opinion. 
 
This is correct, and we said this in the first paragraph of Section 5.  Obviously, to correct for 
aggregation biases one needs to quantify them.  As the first paragraph of Section 5 explains, the 
general approach outlined here could be used to quantify and correct for aggregation biases – but 
it would need to be applied to the mechanistic ET equations that are actually used in ESMs, rather 
than the simple Budyko curves that we have used here for purposes of illustration.   
 
- I found an imbalance between the emphasis you put on the introduction and the actual findings of 
the manuscript. As I said in the first iteration, this is an applied study of a previously described 
methodology that does not contain general insights. 
 
The entire introduction, except for the last paragraph, sets up the general problem of 
heterogeneity bias and how it is typically handled in ESMs.  This introduction is essential for 
readers who do not already know this material.  Although we do indeed apply a previously 
described methodology (and the introduction is quite explicit about this), the present paper 
presents a series of new insights, including: 
 

- Our previous work showed mathematically that averaging over spatially heterogeneous P 

and PET results in overestimation of ET within the Budyko framework. We did not, 

however, determine where around the globe, and under what conditions, this 

heterogeneity bias is likely to be most important. In this work, we examine the global 

distribution of this bias, its scale dependence, and its sensitivity to variations in P versus 

PET. 

- Our goal is to identify where, under what conditions, and at what spatial scales averaging 

over heterogeneities in P and PET could be most important to estimates of 

evapotranspiration, but not to quantify the absolute magnitude of these averaging effects. 

- Our work outlines a strategy for quantifying heterogeneity biases and potentially 

correcting for them, and highlights regions where more detailed mechanistic modeling is 

needed.   

- Our analysis of percent variability of P and PET products shows that percent variabilities of 

precipitation products are in general larger than PET products and hence contribute more 

to heterogeneity bias. 

- Our analyses show that mountainous terrain, regions with temperate climates and dry 

summers, and landscapes where spatial variations in precipitation and potential 

evapotranspiration are inversely correlated exhibit greater heterogeneity bias in ET 

estimates. 
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- Our analysis of scale dependence (using Switzerland as a test case) shows that 

heterogeneity bias in Switzerland increases almost exponentially as gird cell sizes increase.  

 
 
 
- Lines 317-319 (“most likely due to the sharp spatial gradient…”). This is a quite generic statement. 
 
In this sentence and the next one, we are making exactly the statement that the reviewer said 
needed to be made (that the high aggregation biases in the Cs and Ds climatic zones are largely 
attributable to topography).   
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Hydrol. Earth Syst. Sci.  
hess-2019-103 
 
Dear Reviewer #3,  
Thank you for your review and the detailed comments. Following please find our point by point 
response to your suggestions and questions. The Reviewer’s comments are in regular font and our 
response is in bold. 
 
Response to Referee #3 #report1 
 
Review of “Global assessment of how averaging over spatial heterogeneity in precipitation and potential 

evapotranspiration affects modeled evapotranspiration rates” by Elham Rouholahnejad Freund et al. 

 

This is my first review of this work. The manuscript by Elham Rouholahnejad Freund et al. addresses the 

interesting issue of scaling of water and energy exchange at the land surface. While the manuscript 

focusses on a novel issue that could provide an interesting new addition to decades of literature on 

scaling, I do not find the manuscript in its current version to be convincing. This has to do with: a) a poor 

link between the main methodology and motivation as outlined in the Introduction, and b) a complete 

neglect of surface heterogeneity and scale-dependency in the Budyko n-parameter. In my view, the work 

could be a valuable contribution to HESS only if these deficiencies are addressed. 

 

The work is motivated by potential scaling issues in ESMs. In my view, these relate mainly to effects of 

land surface heterogeneity (land use, soil type, groundwater tables, soil moisture, all of which can show 

large variability on small scales). To the degree these depend on forcing, this will to a large extent be 

caused by spatio-temporal variability of rainfall (i.e. convective storms leading to temporary wetting of 

part of a water-limited region only) and not just spatial variability. This is a big simplification where most 

of the scaling problem already is solved, and which is inherent to the choice for Budyko. A possible 

solution would be to solely focus on scaling issues within the Budyko framework due to P and PET. This 

would be a fairly novel approach, and it would avoid (artificially) linking too much to ESMs. 

Our analysis uses Budyko curves as a simple analytical framework (or a "see-through" function) to 

demonstrate our analysis.  Our purpose is not to mimic the way that ESMs actually calculate ET 

(obviously so, since ESMs do not employ Budyko curves).  Our purpose is instead to illustrate how 

variability in P and PET would be translated into biased ET estimates, using Budyko curves as a simple 

ET function for illustration purposes.  Thus our purpose is not to highlight scaling issues within the 

Budyko framework per se.   

We agree that Budyko curves already average over temporal heterogeneity (and the manuscript says 

this explicitly in the third paragraph of Section 3).  It is unclear whether this temporal heterogeneity 

would lead to significant aggregation bias in ESMs, because they are usually solved on relatively short 

time steps.   

My second concern deals with the choice for a single Budyko n-parameter. Effectively, the authors show 

that at larger scales due to forcing heterogeneity, the Budyko curve tends to become more linear.  



2 
 

  

This is indeed a consequence of our analysis, but it is not the point that we are trying to make.  Our 

point is that any nonlinear function will yield averages that lie "inside" the curve, and for ET functions 

this will always be below the curve.  We are just using Budyko curves to illustrate this point.  

But what is the motivation for the baseline choice of n?  

For the calculations in the main paper, we used n=2 because this is a commonly used value in the 

existing literature.  We will add this detail to the manuscript. 

Where is it shown that this value corresponds better to observations (i.e. is a more valid model) at finer 

scales (1 km) than at courser scales (1 degree)?  

We do not show this (and indeed we are not aware of any literature that does show it).  This would 

require long-term catchment mass balances at the 1 km scale and at 1-degree scale, which are not 

widely available.  In any case, our analysis is mainly concerned with the spatial pattern of aggregation 

bias (where is it larger? where is it smaller?) and this will not be particularly sensitive to the choice of 

n.  We will add figures to the supplement where we compare aggregation bias calculations for 

different values of n. 

Would the results not strongly depend on the choice of n? In reality, n will also very strongly depend on 

land use (see for example Fig. 1 in https://www.hydrol-earth-syst-sci-discuss.net/hess-2018-

634/#discussion or any of the many other studies on this subject). I think any analysis of scaling should 

focus on the main nonlinearities to avoid becoming a purely academic exercise (nothing wrong with the 

latter, but then it should be presented as such). As a minimum, I would expect a sensitivity analysis on 

how the results depend on the value of n, accompanied by a discussion on how n might vary locally and 

with scale.  

We present this sensitivity analysis (for n values ranging from 2 to 5) in the supplement (Figs. S1 and 

s2) and discuss its main results in the manuscript.  Those results are: 1) the spatial patterns of 

aggregation bias are similar, 2) the absolute magnitude of aggregation bias increases somewhat for 

higher values of n, as predicted by Eqs. 3 and 4, and 3) the Taylor approximation in Eqs. 3 and 4 yield 

realistic estimates of the aggregation bias for all values of n that were tested. 

Ideally, I would see the manuscript being restructured towards a more theoretical analysis of effects of 

forcing heterogeneity on the Budyko model, which would result in a clearly testable hypothesis that 

Budyko curves should become more linear with increasing scale as a result of heterogeneity, and based 

on the maps regions can be identified where this effect should be largest and best observable. It should 

also be noted that the value of n used in the analysis is not reported, at least I could not find it. 

As explained above, our paper is not intended as an analysis of scaling effects in Budyko curves.  We 

do not think that it is a particularly interesting hypothesis that Budyko curves should become more 

linear with increasing scale, since this is generally true of all curved functions (it is basically a 

mathematical theorem rather than an empirical hypothesis).  We will report the value of n that we 

used, in addition to the results of the sensitivity analysis covering a range of n values. 
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Short summary 14 

Evapotranspiration (ET) rates and the properties that regulate them are spatially heterogeneous. Averaging over 15 

spatial heterogeneity in precipitation and potential evapotranspiration as main drivers of ET may lead to biased 16 

estimates of energy and water fluxes from the land surface to the atmosphere. Here we show that this bias will be 17 

largest in mountainous terrain, in regions with temperate climates and dry summers, and in landscapes where 18 

spatial variations in precipitation and potential evapotranspiration are inversely correlated. 19 

  20 
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Abstract 21 

The major goal of large-scale Earth System Models (ESMs) is to understand and predict global change. However, 22 

computational constraints require ESMs to operate on relatively large spatial grids (typically ~1 degree or ~100 km 23 

in size), with the result that the heterogeneity in land surface properties and processes at smaller spatial scales 24 

cannot be explicitly represented. Averaging over this spatial heterogeneity may lead to biased estimates of energy 25 

and water fluxes. Here we estimate how averaging over spatial heterogeneity in precipitation (P) and potential 26 

evapotranspiration (PET) may affect grid-cell-averaged evapotranspiration (ET) rates, as seen from the atmosphere 27 

over heterogeneous landscapes across the globe. Our goal is to identify where, under what conditions, and at what 28 

scales this heterogeneity bias could be most important, but not to quantify its absolute magnitude. We use Budyko 29 

curves as simple functions that relate ET to precipitation (P) and potential evapotranspiration (PET). Because the 30 

relationships driving ET are nonlinear, averaging over sub-grid heterogeneity in P and PET will lead to biased 31 

estimates of average ET. We examine the global distribution of this bias, its scale dependence, and its sensitivity to 32 

variations in P versus PET. Our analysis shows that this "heterogeneity bias" is more pronounced in mountainous 33 

terrain, in landscapes where spatial variations in P and PET are inversely correlated, and in regions with temperate 34 

climates and dry summers. We also show that this heterogeneity bias increases on average, and expands over 35 

larger areas, as the grid cell size increases. Our work outlines a strategy for quantifying heterogeneity biases and 36 

potentially correcting for them, and highlights regions where more detailed mechanistic modeling is needed.   37 

 38 

  39 
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1. Introduction 40 

Earth System Models (ESMs) are designed to understand interactions between the land surface, atmosphere, and 41 

oceans and to predict global environmental changes. However, the Earth system and its underlying physical 42 

processes are highly heterogeneous across orders of magnitude in scale below the scale of typical ESM grids (e.g., 43 

1° by 1°). Despite increasing recognition of the need to mechanistically represent physical processes in ESMs, 44 

currently even the most disaggregated large-scale ESMs cannot explicitly represent the spatial heterogeneity of 45 

land surface hydrological properties at scales that are important to atmospheric fluxes. Averaging over land surface 46 

properties at the scale of ESM model grid cells may have important implications for water and energy flux estimates 47 

(Avissar and Pielke, 1989; Giorgi and Avissar, 1997; Ershadi et al., 2013; Lu et al., 2014).  48 

 49 

Estimates of evapotranspiration (ET) fluxes have significant implications for future temperature predictions. Smaller 50 

ET fluxes imply greater sensible heat fluxes and, therefore, drier and warmer conditions in the context of climate 51 

change (Seneviratne et al., 2010). Surface evaporative fluxes (and thus energy partitioning over land surfaces) are 52 

nonlinear functions of available water and energy, and thus are coupled to spatially heterogeneous surface 53 

characteristics (e.g., soil type, vegetation, topography) and meteorological inputs (e.g., radiative flux, wind, and 54 

precipitation; Kalma et al., 2008; Shahraeeni and Or, 2010; Holland et al., 2013). These characteristics are spatially 55 

variable on length scales of <1 m to many kilometers, well below typical ESM grid scales of ~100 km. ESMs calculate 56 

grid-averaged surface and atmospheric fluxes using parameterizations that correspond to grid-averaged properties 57 

of the land surface (Sato et al., 1989; Koster et al., 2006; Santanello and Peters-Lidard, 2011). Thus ET estimates 58 

that are derived from spatially-averaged land surface properties do not capture ET variations driven by the 59 

underlying surface heterogeneity (McCabe and Wood, 2006). Because the relationships driving ET are nonlinear, 60 

the average ET flux from a heterogeneous landscape may be different from an ET estimate calculated from spatially 61 

averaged inputs (Rouholahnejad Freund and Kirchner, 2017). 62 

 63 

Several studies have quantified the effects of land surface heterogeneity on potential evapotranspiration (PET) and 64 

latent heat (LH) fluxes, and have found that averaging over land surface heterogeneity can potentially bias ET 65 

estimates either positively or negatively. For example, Boone and Wetzel (1998) studied the effects of soil texture 66 

variability within each pixel in the Land-Atmosphere-Cloud Exchange (PLACE) model, which has a spatial resolution 67 

of approximately 100 by 100 km. They reported that accounting for sub-grid variability in soil texture reduced 68 

global ET by 17%, increased total runoff by 48%, and increased soil wetness by 19%, compared to using a 69 

homogenous soil texture to describe the entire grid cell. Kollet (2009) found that heterogeneity in soil hydraulic 70 

conductivity had a strong influence on evapotranspiration during the dry months of the year, but not during 71 

months with sufficient moisture availability. Hong et al. (2009) reported that aggregating radiance data from 30 m 72 

to 60, 120, 250, 500, and 1000 m resolution (input upscaling) and then calculating ET from these aggregated inputs 73 

at these grid scales using Surface Energy Balance Algorithm for Land (SEBAL, Bastiaanssen et al., 1998a) yields 74 

slightly larger ET estimates as compared to ET calculated with finer resolution inputs and then aggregated at the 75 
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desired grid scales (output upscaling). The discrepancy between ET estimated with the output upscaling method 76 

and the input upscaling method grows as the size of the grid cell increases (the difference between ET calculated 77 

from the input and output upscaling methods is ~20% more at a grid scale of 1 km by 1 km compared to a grid scale 78 

of 120 m by 120 m). Aminzadeh et al. (2017) investigated the effects of averaging surface heterogeneity and soil 79 

moisture availability on potential evaporation from a heterogeneous land surface including bare soil and vegetation 80 

patches. They found that if the heterogeneity length scale is smaller than the convective atmospheric boundary 81 

layer (ABL) thickness, averaging over heterogeneous land surfaces has only a small effect on average potential 82 

evaporation rates. Averaging over larger-scale heterogeneities, however, led to overestimates of potential 83 

evaporation.  84 

 85 

Heterogeneity biases have also been identified in ET calculation algorithms that use remote sensing data as inputs. 86 

McCabe and Wood (2006) found that remote sensing retrievals of ET are larger than the corresponding in-situ flux 87 

estimates and characterized the roles of land surface heterogeneity and remote sensing resolution in the retrieval 88 

of evaporative flux. McCabe and Wood (2006) used Landsat (60 m), Advanced Space borne Thermal Emission and 89 

Reflection Radiometer (ASTER) (90 m), and MODIS (1020 m) independently to estimate ET over the Walnut Creek 90 

watershed in Iowa. They compared these remote sensing estimates to eddy covariance flux measurements and 91 

reported that Landsat and ASTER ET estimates had a higher degree of consistency with one another and correlated 92 

better to the ground measurements (r=0.87 and r=0.81, respectively) than MODIS- based ET estimates did. All three 93 

remote sensing products overestimated ET as compared to ground measurements (at 12 out of 14 tower sites).  94 

Upon aggregation of Landsat and ASTER retrievals to MODIS scale (1 km), the correlation with the ground 95 

measurements decreased to r=0.75 and r=0.63 for Landsat and ASTER, respectively. 96 

 97 

Contrary to overestimation bias, many remotely sensed ET estimates that include parameters related to 98 

aerodynamic resistance are significantly affected by heterogeneity, and underestimate ET as the scale increases 99 

(Ershadi et al., 2013). Because aerodynamic resistance is significantly affected by land surface properties (e.g., 100 

vegetation height, roughness length, and displacement height), decreases in aerodynamic resistance at coarser 101 

resolutions could lead to smaller estimates of evapotranspiration. Ershadi et al. (2013) showed that input 102 

aggregation from 120m to 960 m in Surface Energy Balance System (SEBS, Su, 2002) leads to up to 15 % 103 

underestimation of ET at the larger grid resolution in a study area in the south-east of Australia.  104 

 105 

Rouholahnejad Freund and Kirchner (2017) quantified the impact of sub-grid heterogeneity on grid-average ET 106 

using a simple Budyko curve (Turc, 1954; Mezentsev, 1955) in which long-term average ET is a non-linear function 107 

of long-term averages of precipitation (P) and potential evaporation (PET). They showed mathematically that 108 

averaging over spatially heterogeneous P and PET results in overestimation of ET within the Budyko framework (Fig. 109 

1). Their analysis implies that large-scale ESMs that overlook land surface heterogeneity will also yield biased 110 
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evapotranspiration estimates due to the inherent nonlinearity in ET processes. They did not, however, determine 111 

where around the globe, and under what conditions, this heterogeneity bias is likely to be most important. 112 

 113 

The recognition that spatial averaging can potentially lead to biased flux estimates has prompted methods for 114 

representing sub-grid-scale heterogeneities and processes within large scale land surface models and ESMs. 115 

Accounting for land surface heterogeneity in large-scale ESMs is not merely constrained by limitations in both 116 

computational power (Baker et al. 2017) and the availability of high-resolution forcing data, but also by the fact 117 

that the atmospheric and land surface components of some ESMs operate at different resolutions. There have been 118 

several attempts to integrate sub-grid heterogeneity in ESMs while keeping the computational costs affordable. In 119 

“mosaic” approaches, the model is run separately for each surface type in a grid cell, and then the surface-specific 120 

fluxes are area-weighted to calculate the grid-cell average fluxes (e.g., Avissar and Pielke, 1989; Koster and Suarez, 121 

1992). The “effective parameter” approach (e.g., Wood and Mason, 1991; Mahrt et al., 1992), by contrast, seeks to 122 

estimate effective parameter values at the grid cell scale that subsume the effects of sub-grid heterogeneity. 123 

Estimating these effective parameters can be challenging because the relevant land-surface processes typically 124 

depend nonlinearly on multiple interacting parameters, and land-surface signals at different scales are propagated 125 

and diffused differently in the atmosphere. Alternatively, the "correction factor" approach (e.g., Maayar and Chen, 126 

2006) uses sub-grid information on spatially heterogeneous land-surface processes and properties to estimate 127 

multiplicative correction factors for fluxes that are originally calculated from spatially averaged inputs at the grid-128 

cell scale. All three approaches try to reduce the heterogeneous problem to a homogeneous one that has 129 

equivalent effects on the atmosphere at the grid-cell scale.  130 

 131 

There is a growing need to understand how sub-grid heterogeneity (and the atmosphere’s integration of it) affect 132 

grid-scale water and energy fluxes, and to develop effective methods to incorporate these effects in ESMs (Clark et 133 

al., 2015, Fan et al., 2019). In a previous study, we proposed a general framework for quantifying systematic biases 134 

in ET estimates due to averaging over heterogeneities (Rouholahnejad Freund and Kirchner, 2017). We used the 135 

Budyko framework as a simple estimator of ET, and demonstrated theoretically how averaging over heterogeneous 136 

precipitation and potential evapotranspiration can lead to systematic overestimation of long-term average ET 137 

fluxes from heterogeneous landscapes. In the present study, we apply this analysis across the globe and highlight 138 

the locations where the heterogeneity bias is largest. Our hypotheses, derived from the Budyko framework as 139 

summarized in Eq. (4) below, are that (1) strongly heterogeneous landscapes, such as mountainous terrain, will 140 

exhibit greater heterogeneity bias, (2) this bias will be larger in climates where P and PET are inversely correlated in 141 

space, and (3) heterogeneity bias will decrease as the spatial scales of averaging decrease.   142 

 143 

2. Effects of sub-grid heterogeneity on ET estimates in the Budyko framework  144 
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Budyko (1974) showed that long-term annual average evapotranspiration is a function of both the supply of water 145 

(precipitation, P) and the evaporative demand (potential evapotranspiration, PET) under steady-state conditions 146 

and in catchments with negligible changes in storage (Eq. 1; Turc, 1954; Mezentsev, 1955):  147 

𝐸𝑇 = 𝑓(𝑃, 𝑃𝐸𝑇) =
𝑃

((
𝑃

𝑃𝐸𝑇
)

𝑛

+ 1)
1 𝑛⁄

.      (1)
 148 

where ET is actual evapotranspiration, P is precipitation, PET is potential evaporation, and n (dimensionless) is a 149 

catchment-specific parameter that modifies the partitioning of P between ET and discharge.  150 

 151 

Evapotranspiration rates are inherently bounded by energy and water limits. Under arid conditions ET is limited by 152 

the available supply of water (the water limit line in Fig. 1b), while under humid conditions ET is limited by 153 

atmospheric demand (PET) and converges toward PET (the energy limit line in Fig. 1b). Budyko showed that over a 154 

long period and under steady-state conditions, hydrological systems function close to their energy or water limits. 155 

These intrinsic water and energy constraints make the Budyko curve downward-curving. 156 

 157 

In a heterogeneous landscape, like the simple example of two model columns in Fig. 1a, P and PET vary spatially. 158 

The two columns with heterogeneous P and PET are represented by the two solid black circles on the Budyko curve 159 

in Fig. 1b. In this hypothetical two-column example, the true average of ET values calculated from individual 160 

heterogeneous inputs (the solid black circles) lies below the curve (the grey circle, labeled “true average”). 161 

However, if we aggregate the two columns and consider the system as one column with average properties, the 162 

function of average inputs (averaged P and PET over the two columns) lies on the Budyko curve (the open circle) 163 

which is larger than the true average of the two columns. In short, in any downward curving function, the function 164 

of the average inputs (the open circle) will always be larger than the average of the individual function values (the 165 

true average; grey circle). The difference between the two can be termed the "heterogeneity bias".  166 

 167 

In a previous study (Rouholahnejad Freund and Kirchner, 2017) we showed that when nonlinear underlying 168 

relationships are used to predict average behaviour from averaged properties, the magnitude of the resulting 169 

heterogeneity bias can be estimated from the degree of the curvature in the underlying function and the range 170 

spanned by the individual data being averaged. Here we summarize theses findings as building blocks of the current 171 

study. The second-order, second-moment Taylor expansion of the ET function f(P,PET) (Eq. 1) around its mean 172 

directly yields:  173 

𝑓̅(𝑃, 𝑃𝐸𝑇) = 𝐸𝑇̅̅ ̅̅ ≈ 𝑓(�̅�, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) +
1

2

𝜕2𝑓

𝜕𝑃2
 𝑣𝑎𝑟(𝑃) +

1

2

𝜕2𝑓

𝜕𝑃𝐸𝑇2
 𝑣𝑎𝑟(𝑃𝐸𝑇) +

𝜕2𝑓

𝜕𝑃 𝜕𝑃𝐸𝑇
𝑐𝑜𝑣(𝑃, 𝑃𝐸𝑇)     ,       (2) 174 

where 𝑓̅(𝑃, 𝑃𝐸𝑇) is the true average of the spatially heterogeneous ET function, 𝑓(�̅�, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) is the ET function 175 

evaluated at its average inputs �̅� and 𝑃𝐸𝑇̅̅ ̅̅ ̅̅  , and the derivatives are calculated at �̅� and 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ .  Evaluating the 176 

derivatives using Eq. (1) and reshuffling the terms, Rouholahnejad Freund and Kirchner (2017) obtained  the 177 
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following expression for the heterogeneity bias, the difference between the average ET, 𝑓̅(𝑃, 𝑃𝐸𝑇), and the ET 178 

function evaluated at the mean of its inputs, 𝑓(�̅�, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ): 179 

𝑓(�̅�, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) − 𝑓̅(𝑃, 𝑃𝐸𝑇) ≈ (𝑛 + 1)
 �̅�𝑛+1𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛+1

(�̅�𝑛 + 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛)2+1
𝑛⁄

 [
1

2

𝑣𝑎𝑟(𝑃)

�̅�2
+

1

2

𝑣𝑎𝑟(𝑃𝐸𝑇)

𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 2
−

𝑐𝑜𝑣(𝑃, 𝑃𝐸𝑇)

𝑃 ̅𝑃𝐸𝑇̅̅ ̅̅ ̅̅
].   (3) 180 

To more clearly show the effects of variations in P and PET, Eq. (3) can be reformulated as follows: 181 

𝑓(�̅�, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) − 𝑓̅(𝑃, 𝑃𝐸𝑇) ≈

(𝑛 + 1)
 �̅�𝑛+1𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛+1

(�̅�𝑛 + 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛)2+1
𝑛⁄

 [
1

2
(

𝑆𝐷(𝑃)

�̅�
)

2

+
1

2
(

𝑆𝐷(𝑃𝐸𝑇)

𝑃𝐸𝑇̅̅ ̅̅ ̅̅
)

2

− 𝑟𝑃,𝑃𝐸𝑇 (
𝑆𝐷(𝑃)

�̅�
) (

𝑆𝐷(𝑃𝐸𝑇)

𝑃𝐸𝑇̅̅ ̅̅ ̅̅
)]    . (4)

 182 

Equation (4) shows that the heterogeneity bias depends on only four quantities: the fractional variation (i.e., the 183 

coefficient of variation) in precipitation (
𝑆𝐷(𝑃)

�̅�
) and in potential ET (

𝑆𝐷(𝑃𝐸𝑇)

𝑃𝐸𝑇̅̅ ̅̅ ̅̅
), the correlation between precipitation 184 

and potential ET (𝑟𝑃,𝑃𝐸𝑇), and the function (𝑛 + 1)
 �̅�𝑛+1𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛+1

(�̅�𝑛+𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛)2+1
𝑛⁄
, which quantifies the curvature in the ET function 185 

in Budyko space.  As shown by Fig. 1b and Eq. (2), the discrepancy between average of the ET function and the ET 186 

function of the average inputs (the heterogeneity bias) is proportional to both the degree of nonlinearity in the 187 

function, as defined by its second derivatives, and the variability of P and PET. Equation (4) allows one to estimate 188 

how much the curvature of the ET function and the fractional variability (standard deviation divided by mean) of P 189 

and PET will affect estimates of ET. However, to the best of our knowledge, the consequences of these 190 

nonlinearities for global evaporative flux estimates have not previously been quantified. 191 

 192 

 193 

Figure 1. Heterogeneity bias in a hypothetical two-column model in the Budyko framework. The true average ET of 194 

the columns (gray circle) lies below the curve and is less than the average ET estimated from the average P/PET of 195 

the two columns (open circle). The heterogeneity bias depends on the curvature of the function and the spread of 196 

its inputs. Both panels are adapted from Rouholahnejad Freund and Kirchner (2017). 197 

 198 
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3. Effects of sub-grid heterogeneity on ET estimates at 1° by 1° grid scale across the globe  199 

Across a landscape of similar size to a typical ESM grid cell (1° by 1°), soil moisture, atmospheric demand (PET) and 200 

precipitation (P) will vary with topographic position; hillslopes will typically be drier, and riparian regions will be 201 

wetter. To map the spatial pattern in the heterogeneity bias that results from averaging over this land surface 202 

heterogeneity, we applied the approach outlined in section 2 to the global land surface area at 1° by 1° grid scale. 203 

Within each 1° by 1° grid cell, we used 30 arc-second values of P (WorldClim; Hijmans et al., 2005) and PET 204 

(WorldClim; Hijmans et al., 2005) to examine the variations in small-scale climatic drivers of ET. Because 30 arc-205 

seconds is nearly 1 km, hereafter we refer to the 30 arc-second data as 1km values for simplicity. The spatial 206 

distribution of long-term annual averages (1960-1990) of P and PET values at 1 km resolution, along with 1km 207 

values of the aridity index (AI=P/PET), are shown in Fig 2a-c. ET values calculated from these 1km P and PET values 208 

using Eq. (1) are then averaged at 1° by 1° scale (“true average”, Fig. 2e). We also averaged the 1km values of P and 209 

PET within each grid cell and then modeled ET using the Budyko curve (Eq. 1) applied to these averaged input 210 

values. The difference between these two ET estimates is the heterogeneity bias. 211 

 212 

We also calculated the heterogeneity bias using Eq. (4), which describes how the nonlinearity in the governing 213 

equation and the heterogeneity in P and PET jointly contribute to the heterogeneity bias. The heterogeneity bias 214 

estimates obtained by Eq. (4) were functionally equivalent (R2=0.97, root mean square error of 0.17%) to those 215 

obtained by direct calculation using Eq. (1) as described above. 216 

 217 

Fig. 3a-d illustrates the variability (quantified by standard deviation) of 1km values of P, PET, aridity index, and 218 

altitude at the 1° by 1° grid scale. The heterogeneity bias in long-term average ET fluxes at the 1° by 1° grid scale 219 

(Fig. 3e) highlights regions around the globe where ET fluxes are likely to be systematically overestimated. The 220 

spatial distribution of the heterogeneity bias calculated using Eq. 4 (Fig. 3e) closely coincides with locations where 221 

the aridity index is highly variable (Fig. 3c), which is driven in turn by topographic variability (Fig. 3d). Strongly 222 

heterogeneous landscapes exhibit significant heterogeneity biases in long-term average ET fluxes. Although the 223 

global average heterogeneity bias is small (<1%), physically based ET calculations may exhibit larger heterogeneity 224 

biases than the modest values we calculate here, because the Budyko approach already subsumes spatial 225 

heterogeneity effects at the catchment scale (and also temporal heterogeneity effects due to its steady-state 226 

assumptions). The heterogeneity biases in ET estimates shown in Fig. 3e correspond to long-term average ET 227 

estimates. Given the fact that P and PET can vary temporally (i.e., seasonality), the actual bias could be much larger, 228 

particularly where P and PET are inversely correlated (see the last term of Eq. 4).  229 

 230 

Our results show that the topographic gradient, and hence the variability in the aridity index across a given grid 231 

scale, drives consistent, predictable patterns of heterogeneity bias in evapotranspiration estimates at that scale. 232 

Equation 4 shows that this bias is equally sensitive to fractional variability in P and PET (standard deviation divided 233 
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by mean).  However, because P is typically more variable (in percentage terms) than PET across landscapes, the 234 

variability in P will usually make a larger contribution to the heterogeneity bias.   235 
 236 

 237 
Figure 2. Global distribution of one-kilometer resolution annual mean precipitation (a: P; WorldClim; Hijmans et al., 238 

2005), potential evapotranspiration (b: PET; WorldClim; Hijmans et al., 2005), aridity index (c: AI=P/PET; WorldClim; 239 

Hijmans et al., 2005), and topography (d: SRTM; Jarvis et al., 2008), along with (e) evapotranspiration (ET) at 1° by 240 

1° scale by averaging 1km values of ET calculated using the Budyko function (Eq. 1).  241 
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 242 

 243 

Figure 3. Global spatial distribution of variability (standard deviation) of one-kilometer values of a) precipitation (P), 244 

b) potential evapotranspiration (PET), c) aridity index (AI=P/PET), and d) altitude at 1° by 1° grid cell. The 245 
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heterogeneity bias in ET estimates (e) is calculated using Eq. (4). Grid cells with larger standard deviation in altitude 246 

and aridity index have larger heterogeneity bias. 247 

4. Variation in heterogeneity bias across climate zones, data sources, and grid scales  248 

With increased availability of spatial data, it is becoming standard practice to assess input data uncertainties and 249 

their propagated impacts on water and energy flux estimates in land surface models. To quantify how choices 250 

among alternative input data products could affect the heterogeneity bias in ET estimates, we calculated the 251 

heterogeneity bias at 1 ° by 1° grid cell resolution across the contiguous US using four different pairs of P and PET 252 

data products. Two precipitation data sets, Prism (http://prism.oregonstate.edu) and WorldClim (Hijmans et al., 253 

2005), along with two PET data sets, MODIS (Mu et al., 2007) and WorldClim (Hijmans et al., 2005). As Prism 254 

precipitation data is available at 4 km resolution, all other data sets were aggregated to 4 km. Two P products and 255 

two PET products , all at 1 km resolution, were combined in all possible pairs. The WorldClim PET dataset (Hijmans 256 

et al., 2005) is based on the Hargreaves method (Hargreaves and Samani 1985) while the MODIS PET product (Mu 257 

et al, 2007) is based on the Penman–Monteith equation (Monteith, 1965). The heterogeneity bias in ET estimates 258 

(Eq. 4), as outlined in Sect. 2, was evaluated from 1km 4km values of P, PET, and the estimated average ET using the 259 

Budyko relationship (Eq. 1) for each of the four input data pairs. Figure 4a-e compares the spatial distributions of 260 

heterogeneity bias across the contiguous US for the four pairs of P and PET data products. The heterogeneity bias in 261 

ET estimates reached as high as 36 % in the western US using Prism P and WorldClim PET as input to the ET model 262 

(Fig. 4b). A visual comparison of Figs. 4b and Fig. 4d shows that the choice of P data source (Prism vs. WorldClim) 263 

had a bigger effect on the heterogeneity bias than the choice of PET data source (MODIS vs. WorldClim), meaning 264 

that the fractional variability in P is the dominant variable. In all cases, data sources that were more variable in 265 

relation to their means (Prism for P and WorldClim for PET; Fig. 4b) led to larger heterogeneity biases, as expected 266 

from Eq. (4). Thus we infer that we would have obtained larger heterogeneity biases if we had conducted our global 267 

analysis (Fig. 3) with Prism P and either WorldClim or MODIS PET, but we cannot show that result explicitly at global 268 

scale because Prism P is not freely available globally. 269 

 270 

If we separate the heterogeneity biases shown in Fig. 4 according to Köppen-Geiger climate zones (Peel et al., 2007; 271 

Fig. 5a), we see that they are distinctly higher in particular climate-terrain combinations. Heterogeneity biases are 272 

higher in regions with temperate climates and dry summers (climate zone Cs) and in regions with cold, dry 273 

summers (climate zone Ds), most likely due to the sharp spatial gradient in their water and energy sources for 274 

evapotranspiration (Fig. 5b). These areas typically have high topographic relief, combined with seasonal climate. 275 

The heterogeneity effects on ET estimates in these regions are expected to be even larger when a mechanistic 276 

model of ET is used. We expect that averaging over temporal variations of drivers of ET, especially in places with 277 

strong seasonality, could substantially bias the ET estimates, but this cannot be quantified in the Budyko framework 278 

due to its underlying steady-state assumptions. Figure 5b also illustrates the relative magnitudes of the 279 

heterogeneity biases obtained with the four pairs of P and PET data sources. The heterogeneity bias is the highest 280 

when the Prism P and WorldClim PET datasets are used, followed by the combination of Prism P and MODIS PET, 281 

http://prism.oregonstate.edu/
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which resulted in the second-highest heterogeneity bias across different climate zones. Wilcoxon signed-rank tests 282 

was performed to evaluate the statistical significance of the differences between heterogeneity bias in ET estimates 283 

using all pairs of climate zones and data sources that are shown in Fig. 5b (Table S1). These analysis show that while 284 

the difference between heterogeneity biases estimated in Cs and Ds climate zones are not statistically significant 285 

across all four combinations of datasets, the difference between estimated heterogeneity bias in Cs versus Cf, Ds 286 

versus Cf, as well as Cs versus Bs climate zones are significant across all four data combinations (highlighted in Table 287 

S1 of the supplementary material). 288 

 289 

Equation 4 shows that heterogeneity biases in Budyko estimates of ET are equally sensitive to the same percentage 290 

variability in P and PET. Thus the degree of sensitivity, per se, to P and PET variations expressed in percentage terms 291 

is the same.  Although Figs. 5c and 5d give the visual impression that PET is more variable than P across climate 292 

zones and between data sources, Fig. 5e shows that the fractional variability in P is systematically higher than PET, 293 

and it also varies more across the climate zones and between the two data sets.  Because P is typically more 294 

variable than PET (in percentage terms) across landscapes, the variability in P will make a larger contribution to the 295 

heterogeneity bias (Fig. 5e) in the Budyko approach. Whether this is true for more physically based ET estimates 296 

remains to be seen. Analysis of percent variability of P and PET products shows that percent variabilities of 297 

precipitation products are in general larger than PET products and hence contribute more to heterogeneity (Fig 5e). 298 

While the percent variabilities of the two PET products are in the same range, the percent variability in Prism 299 

precipitation is slightly larger than in WorldClim precipitation, in regions with dry summers (Cs and Ds climate zones 300 

in Fig. 5a). 301 
  302 
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 303 

Figure 4. The distribution of P and PET in the four datasets is shown in a). Estimated heterogeneity bias (Eq. 4) 304 

across the contiguous US using onefour-kilometer values of b) Prism P and WorldClim PET c) Prism P and MODIS 305 

PET d) WorldClim P and WorldClim PET, and e) WorldClim P and MODIS PET as inputs.  306 

 307 



14 
 

 308 
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 309 

Figure 5. a) Köppen-Geiger climate classification (Peel et al., 2007 in Beck et al. 2013) across the contiguous US, b) 310 

the distribution of calculated heterogeneity bias in ET estimates (Eq. 4) at 1° by 1° grid cell in individual climate 311 

zones, shown by boxplot (three data points with heterogeneity biases of over 20% are off-scale). The significance of 312 

differences between the pairs are presented in Table S1.. Panels c and d show the distribution of precipitation 313 

products (Prism and WorldClim) and potential evaporation products (MODIS and WorldClim) at individual climate 314 

zones, respectively.  The color-coded climate zones at the tops of panels b, c, and d correspond to the climate zones 315 

mapped in panel a.  Panel e compares the percentage variability of the two P and PET data products across climate 316 

zones, showing that the percentage variability in P is markedly higher than in PET, and the percentage variability in 317 

Prism P is somewhat higher than in WorldClim P, particularly in climate zones with dry summers. 318 
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Because future increases in computing power will lead to ESMs with smaller grid cells, it is useful to ask how 319 

changes in grid resolution affect the heterogeneity biases that we have estimated in this paper.  To quantify the 320 

heterogeneity bias in ET estimates as a function of grid scale, we repeated our analysis at various grid resolutions 321 

using Switzerland as a test case.  We started with high-resolution (500m) maps of long-term average annual 322 

precipitation and PET across the Swiss landscape (Fig. 6), and then used Eq. 4 to estimate the heterogeneity bias at 323 

grid scales ranging from 1/32° to 2° (~3 km to ~200 km).  As Fig. 6 shows, aggregating P and PET over larger scales 324 

leads to larger, and more widespread, overestimates in ET.  Conversely, at finer grid resolutions, the average 325 

heterogeneity bias is smaller, and the locations with large biases are more localized. On average, the heterogeneity 326 

bias across Switzerland as a whole grows exponentially as the inputs are averaged over larger grids (as shown in the 327 

lower-right panel in Fig. 6). 328 

 329 
 4756300 0250 02000 1500 10007 0050 02501 86  330 

 331 

Figure 6. Heterogeneity bias in ET estimates at various scales across Switzerland, estimated from 500m climate 332 

data.  ET is calculated using the Budyko relationship (Eq. 1).  Heterogeneity bias was estimated from 500m 333 

precipitation (P) and potential evapotranspiration (PET), and their variances at each grid scale, using Eq. 4.  At finer 334 

grid resolutions, the heterogeneity bias is more localized, and smaller on average. 335 

 336 
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5. Summary and discussion 337 

Because evapotranspiration (ET) processes are inherently bounded by water and energy constraints, over the long 338 

term, ET is always a nonlinear function of available water and PET, whether this function is expressed as a Budyko 339 

curve or another ET model. These nonlinearities imply that spatial heterogeneity will not simply average out in 340 

predictions of land surface water and energy fluxes in ESMs. Overlooking sub-grid spatial heterogeneity in large-341 

scale ESMs could lead to biases in estimated water and energy fluxes (e.g., ET rates). Here we have shown that, 342 

across several scales, averaging over spatially heterogeneous land surface properties and processes leads to biases 343 

in evapotranspiration estimates. We examined the global distribution of this bias, its scale dependence, and its 344 

sensitivity to variations in P versus PET, and showed under what conditions, this heterogeneity bias is likely to be 345 

most important. Our analysis does not quantify the heterogeneity biases in ESMs, owing to the many differences 346 

between these mechanistic models and the simple empirical Budyko curve. But if the heterogeneity biases in ESMs 347 

can be quantified, they can be used as correction factors to improve ESM estimates of surface-atmosphere water 348 

and energy fluxes across landscapes. Our paper highlights a general methodology that can be used to estimate 349 

heterogeneity biases and to map their spatial patterns, but not to calculate their absolute magnitudes because 350 

those will change significantly depending on the ET formulation that is used.  351 

 352 

In this study, we used Budyko curves as simple models of ET, in which long-term average ET rates are functionally 353 

related to long-term averages of P and PET. We used an approach outlined by Rouholahnejad Freund and Kirchner 354 

(2017) to estimate the heterogeneity bias in modeled ET at 1-degree grid scale across the globe (Fig. 3), and also at 355 

multiple grid scales across Switzerland (Fig. 6), using finer-resolution P and PET values as drivers of ET. We showed 356 

how the heterogeneity effects on ET estimates vary with the nonlinearity in the governing equations and with the 357 

variability in land surface properties. Our analysis shows that heterogeneity effects on ET fluxes matter the most in 358 

areas with sharp gradients in the aridity index, which are in turn controlled by topographic gradients, and not 359 

merely in areas that are either arid or humid (e.g., compare Fig. 3e with Fig. 2c). 360 

 361 

According to our analysis, regions within the U.S. that have temperate climates and dry summers exhibit greater 362 

heterogeneity bias in ET estimates (Fig. 5). We show that the heterogeneity bias in ET estimates at each grid scale 363 

depends on the variance in the drivers of ET at that scale (Fig. 4), and on the choice of data sources used to 364 

estimate ET. Heterogeneity bias was significantly larger across the contiguous United States when P and PET data 365 

sources with larger variances were used (Fig. 4). 366 

 367 

We also explored the magnitude and spatial distribution of heterogeneity bias in ET estimates as a function of the 368 

scale at which the climatic drivers of ET are averaged. We found that as heterogeneous climatic variables are 369 

aggregated to larger scales, the heterogeneity biases in ET estimates become greater on average, and extend over 370 

larger areas (Fig. 6). At smaller grid scales, the heterogeneity bias does not completely disappear, but instead 371 

becomes more localized around areas with sharp topographic gradients. Finding an effective scale at which one can 372 
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average over the heterogeneity of land surface properties and processes has been a longstanding problem in Earth 373 

science. Our analysis shows that at smaller resolutions the average heterogeneity bias as seen from the 374 

atmosphere becomes smaller, but there is no characteristic scale at which it vanishes entirely (Fig. 6). The 375 

magnitude and spatial distribution of this bias depend strongly on the scale of the averaging and degree of the 376 

nonlinearity in the underlying processes. The heterogeneity bias concept is general and extendable to any convex 377 

or concave function (Rouholahnejad Freund and Kirchner 2017), meaning that in any nonlinear process, averaging 378 

over spatial and temporal heterogeneity can potentially lead to bias. 379 

 380 

In the analysis presented here, we have assumed a value of 2 for the Budyko parameter n, which approximates the 381 

variation of ET/PET with respect to P/PET in MODIS and WorldClim data across continental Europe (Mu et al. 2007; 382 

Hijmans et al. 2005; Rouholahnejad Freund & Kirchner, 2017).  Although there are suggestions in the literature that 383 

n can vary with land use and other landscape properties (e.g., Teuling et al., 2019), here we have assumed that n is 384 

spatially and temporally constant in order to focus on the effects of heterogeneity in P and PET.  In the supplement 385 

we present a sensitivity analysis with values of n ranging from 2 to 5 (Fig. S1).  That analysis shows that, as expected 386 

from Eqs. 3 and 4, higher values of n lead to larger heterogeneity biases, but the spatial pattern shown in Fig. 3e 387 

remains largely unchanged.  The Taylor approximation in Eqs. 3 and 4 yields realistic estimates of the heterogeneity 388 

bias for all values of n that were tested (Fig. S2).  Thus while our numerical estimates of heterogeneity bias depend 389 

somewhat on the value of n, our conclusions do not. 390 

 391 

One should keep in mind that the true mechanistic equations that determine point-scale ET as a function of point-392 

scale water availability and PET (if such data were available) may be much more nonlinear than Budyko’s empirical 393 

curves, because these curves already average over significant spatial and temporal heterogeneity. Thus, we expect 394 

that the real-world effects of sub-grid heterogeneity are probably larger than those we have estimated in Sects. 3 395 

and 4 of this study. In addition, the 1km P and PET values that are used in our global analysis might be still too 396 

coarse to represent small-scale heterogeneity that is important to evapotranspiration processes. 397 

 398 

Budyko curves are empirical relationships that functionally relate evaporation processes to the supply of water and 399 

energy under steady-state conditions in closed catchments with no changes in storage. Our analysis likewise 400 

assumes no changes in storage, nor any lateral transfer between the model grid cells, although both lateral 401 

transfers and changes in storage may be important, both in the real world and in models. Unlike the Budyko 402 

framework, ET fluxes in most ESMs are often physically based (not merely functions of P and PET) and are 403 

calculated at much smaller time steps (seconds to minutes). These models often represent more processes that are 404 

important to evapotranspiration (such as storage variations) and include their dynamics to the extent that is 405 

computationally feasible. Because these relationships may be much more nonlinear than Budyko curves, there may 406 

also be significant heterogeneity biases when complex physically based models are used to estimate ET from 407 
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spatially aggregated data. Therefore, we are now working to quantify heterogeneity bias in ET fluxes using a more 408 

mechanistic land surface model. 409 
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