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Response to editor’s comments 

Dear Editor,  

Thank you very much for your detailed comments. Following please find our point-by-point response 

to your questions and suggestions. The editor’s comments are in regular font and our response is in 

bold. The page and line numbers refer to the revised manuscript that will be submitted with this 

response (with “all mark up” display for review). 

 

The authors present a study where they investigated the effects of spatial averaging on modelled 

evaporation (ET) estimates at the global scale. They make use of the Budyko framework to model ET and 

use this same framework to spatially 'average' ET and to determine the heterogeneity bias. This method 

was already presented in a previous paper (Rouholahnejad Freund & Kirchner, 2017), but is now applied 

at the global scale. Only applying a method to the global scale without adding new insights (or very 

limited) is not enough for a new publication. As also mentioned by reviewer #1, this should be improved. 

Clearly show the added value of this study above the previous one.  

- Our previous work showed mathematically that averaging over spatially heterogeneous P and PET 

results in overestimation of ET within the Budyko framework. We did not, however, determine where 

around the globe, and under what conditions, this heterogeneity bias is likely to be most important. In 

this work, we examine the global distribution of this bias, its scale dependence, and its sensitivity to 

variations in P versus PET. 

- Our goal is to identify where, under what conditions, and at what spatial scales averaging over 

heterogeneities in P and PET could be most important to estimates of evapotranspiration, but not to 

quantify the absolute magnitude of these averaging effects. 

- Our work outlines a strategy for quantifying heterogeneity biases and potentially correcting for them, 

and highlights regions where more detailed mechanistic modeling is needed.   

- Our analysis of percent variability of P and PET products shows that percent variabilities of precipitation 

products are in general larger than PET products and hence contribute more to heterogeneity bias. 

- Our analyses show that mountainous terrain, regions with temperate climates and dry summers, and 

landscapes where spatial variations in precipitation and potential evapotranspiration are inversely 

correlated exhibit greater heterogeneity bias in ET estimates. 

- Our analysis of scale dependence shows that heterogeneity bias increases almost exponentially as gird 

cell sizes increase.  

- The second order Taylor expansion of a function around its mean is a powerful quantifiable 

approach that can be practically used in estimating biases in ET calculations due to spatial 

averaging over heterogeneous inputs. We use Budyko relations as ET functions for purposes of 

demonstration, but discuss that the approach is expandable and quantifiable in any other ET 

function at large scales (global, continental, and regional scales). We used Budyko as an 
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example "see-through" case to show the applicability of the proposed mathematical method 

at scales that are relevant to large-scale land surface models.  

- One can use this approach to correct for averaging bias without explicitly representing finer-

scale processes within the modeling framework. The same approach can potentially be used in 

more mechanistic ET models with time varying inputs at each modeling time step (daily or sub-

daily). 

 

We have revised the manuscript to point out the added value of this paper more clearly. 

 

In the abstract (L40-41) it is promised to proved insights in the underlying mechanisms, but these can not 

(or limited) be found in the manuscript. 

We revised the manuscript in way that it doesn’t emphasize the underlying mechanisms 

(because of the inherent characteristics of Budyko Framework used in this paper). The 

discussion about the sensitivity of heterogeneity bias to climatic variability (variability in P and 

PET) is now added to the revised manuscript ( P14, L326-339).  We now no longer mention 

underlying mechanisms. 

 

Furthermore, I have some doubts on your methodology. You frame your study in such way, that it will 

help to quantify errors in ET due to spatial averaging for ESMs. To investigate this, you don't use a ESM, 

but you choose for the Budyko framework for simplicity reasons. However, the Budyko framework is a 

first order estimate, meant for large catchments under steady-state (see also comment reviewer #1). I 

wonder if the gridcells can be considered as mini-catchments under steady state.  

In response to reviewer #1's comments, we made it clearer in the manuscript that the current 

heterogeneity bias rates are not applicable to correct for this bias in ESMs because ESMs use 

different algorithms to calculate ET at daily or sub-daily temporal resolution, which goes 

beyond the steady-state assumptions of Budyko curves. We nonetheless think the current 

manuscript is useful because it demonstrates, at global scale, an overall framework for 

estimating how averaging over heterogeneity in atmospheric forcing at the land surface affects 

evapotranspiration estimates. We state in the paper that the current results can not be 

directly exploited by ESMs to correct for averaging bias, although the proposed methodology 

sheds light on the potential ways one can account for this bias (depending on the specific ET 

algorithms ESMs use and the scales at which they average over sub-grid heterogeneities) (P21, 

L394-402).  We made the revised paper even more explicit on this point. Our paper highlights a 

general methodology that can be used to estimate the systematic bias due to averaging, but 

not the precise magnitude of this bias because it will change significantly depending on ET 

formulation used.  

Regarding Budyko’s steady sate assumptions: here we used long-term averages of P and PET to 

get long-term averages of ET at grid scales. Over long periods of time, changes in storage are 

commonly neglected in water balance calculations. Besides, current large-scale physically 
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based models overlook changes in deep groundwater storage and lateral transfers of water 

among their vertical columns at any given modeling time step, so they force grid cells to 

behave like catchments, whether they do so in reality or not. 

We agree that on shorter time steps, Budyko curves cannot be used over individual grid cells. 

The temporal variations in climatic variables and the effect of their averaging on ET estimates 

is indeed an open question but cannot be addressed within Budyko framework. 

We revised the manuscript to include these points more clearly ( P21, L394-402 and P22, 

line440-450). 

 

What is the effect of lateral flow, irrigation, advected energy (dry gridcell next to wet gridcell) etc.? This 

should be more discussed in detail. 

We treated lateral transfers in some detail in our 2017 paper and we currently have nothing to 
add on this subject.  Lateral transfers may of course be important, but unless and until we 
have reliable quantitative estimates of how big lateral transfer fluxes actually are (and where 
they are), it will be difficult to estimate their impact on ET heterogeneity biases. These 
shortcomings are stated in the discussion part of the manuscript (P22, L440-443). 

 

Furthermore, I wonder if the study shows the real ET-heterogeneity bias (as far as you can at all), or that 

I am looking at uncertainties in rainfall products? Because looking at figure 1b, the bias is largest once 

P/PET deviates most between 2 locations. This is the case when either P or PET differs most between 

locations. Often PET differs less than P, so the bias is dominated by differences in P (as shown in figure 

4). Hence I am not surprised to see that the bias is related to topography, because it is well known that P 

changes significantly with altitude (and also becomes more uncertain).  

 

Equations 4 of the revised manuscript shows that averaging biases in Budyko ET estimates are 
equally sensitive to the same percentage variability in P and PET.  Thus we do not try to 
explain the different degree of sensitivity, per se, between P and PET (because, at least in 
percentage terms, these sensitivities are the same).  If P is more variable than PET (in 
percentage terms) across landscapes, as is often the case, then the variability in P will make a 
larger contribution to the averaging bias.  (At least in the Budyko approach; whether this is 
true for more physically based ET estimates remains to be seen, and we are working on this 
question.) 
 
As a practical matter, it is difficult to know whether rainfall products overestimate the spatial 
variability in P (due to errors or uncertainties), or underestimate it (by leaving out mechanisms 
that cause real-world variability in P).  We agree that it is an interesting question (how 
variability in real-world P relates to variability in rainfall product P), but that is well beyond the 
scope of this paper. 
 
Figure 4a is the boxplot of two products of P and PET for the entire US. It is the spatial (and 

temporal) variability in each calculation unit (grid cells) that contributes to the heterogeneity 

bias in ET estimate on that grid cell. The purpose of the figure was to show the difference in 

mean and variability of the data products.  We have revised the manuscript to more clearly 
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explain that the key variables are the fractional variability in P and PET, and that the fractional 

variability in P will usually be the dominant variable (P14, L326-339). 

In relation to this, I wonder if figure 5b would not look similar once you plot climate zone against the 

standard deviation in P? 

The derived heterogeneity bias term (Eq. 3) is a direct function of percentage standard 

deviations in P and PET (see Eq. 4). Standard deviations of P and PET at 1-degree grid scale 

show similar patterns (figure 3 a and b). We expanded Fig. 5 to show how the distributions of P 

and PET change as a function of climate zones, both in absolute terms (Figs. 5c and 5d) and in 

percentage terms (Fig. 5e). This was one of the concerns of the first reviewer too. We made 

changes in the manuscript to make sure these points are stated more clearly (P14, L326-339 

and Figure 5c-e).  

 

Based on these concerns, plus the 2 critical recommendations by the reviewers I advise to do a major 

revision of your manuscript and emphasize what we can learn from this study in addition to the previous 

study (what are the new insights). Hereafter, I will send out the manuscript for a new review round. 

Please also have a careful look at the comments of reviewer #1. They will help to improve the quality of 

the paper. 

The added values of this work are reviewed in page one and two of the current document in 

response to the Editor’s first comment.   

 

Specific comments: 

- P1L23: what do you mean by "landscapes where P is inversely related with PET"? 

landscape in which spatial variations in P are inversely related to spatial variations in PET. This 

is corrected in the revised manuscript. 

 

- P3L78: in my view ET and LH are synomyms. 

We corrected this in the revised manuscript. 

 

- P5L151-153: the hypotheses miss link with previous text. Please make the connection clearer. 

The strongest link is actually with the analysis that follows in Section 2, and we have added 

that linkage explicitly to this sentence (P6, L172-176). 

 

- fig 1b: Please change this figure to the common way Budyko curves are drawn, i.e.: aridity on x-asis 

(aridity=PET/P) and not the wetness index 

Budyko curves are drawn both ways (either PET/P and ET/P on the x and y axes, or as we have 

done it here and in our previous paper, P/PET and ET/PET on the x and y axes).  We agree with 

you that the official UN/FAO definition of P/PET as the "aridity index" is a source of confusion, 

but that train left the station years ago and none of us can solve it now.  We clearly refer to 
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the "aridity index" and not "aridity".  While in theory one could plot the curves the other way, 

that would create a lot of confusion with respect to our original paper – among other things, it 

would require entirely different equations to connect the heterogeneity bias to the Budyko 

plot, and readers would not understand why the equations are different between the two 

papers.  So we really think it is essential to keep the axes the way they are.  Besides, for the 

same reason you pointed out above – that P is more variable than PET – we think it is much 

more intuitive to have the main "driving variable", P, on only one axis rather than redundantly 

on both the x and y axes. 

 

- P7L208: P/PET is not aridity, become once P/PET becomes larger the index becomes wetter instead of 

dryer 

We did not say "aridity", we said "aridity index", and the distinction is important.  As 

mentioned above, AI=P/PET became a widely used international definition of the "aridity 

index" (not aridity) years ago, and that can't be reversed now.  (We agree that it is confusing 

to have an "aridity index" that is really a wetness index, but that's not a problem we created 

and for the reasons explained above, P/PET is really the correct x-axis variable for our 

problem.  Given that the figures and text are written based on this definition (AI=P/PET) and 

the index has been defined several times throughout the text, we would like to keep the 

definition as it is. 

 

- P11L262-264: this line somehow suggest that you prefer prism P, because you then have larger biases? 

Why? 

Our intention in this section is not to suggest any particular data product merely because it 

gives a larger bias.  Our point was that we can't show explicitly that Prism P gives a larger 

heterogeneity bias at global scale, because the data set is not available globally without paying 

a substantial fee.  We see that the phrasing was unclear and we have clarified it.   

- Fig 4: I would swop a) and b) 

Figure 4 is revised as suggested. 

 

- Fig 5b: would be nice to also make this graph for standard deviation of P and PET. Likely it's similar. 

Three panels are added to figure 5 as requested. 

 

- P15L314: add comma after e.g. 

Revised as suggested. 
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Key pointShort summarys 14 

 Evapotranspiration (ET) rates and the properties that regulate them are spatially heterogeneous at scales 15 

orders of magnitude smaller than typical Earth System Models (ESMs) grid cells. Averaging over this spatial 16 

heterogeneity may lead to biased estimates of energy and water fluxes in ESMs. 17 

- We showed that because Tthe relationships driving ET are nonlinear,. Hence, averaging over sub-grid 18 

heterogeneity of drivers of ET, namely precipitation (P) and potential evapotranspiration (PET), leads to 19 

overestimation of average ET. 20 

- We quantified tThe effects of averaging over spatial heterogeneity on grid-cell-averaged 21 

evapotranspiration (ET)ET rates are quantifiable when the finer resolution variations of the driving forces 22 

are known. over heterogeneous landscapes across the globe and highlighted the locations where the 23 

heterogeneity bias matters. We showed that because the relationships driving ET are nonlinear, averaging 24 

over sub-grid heterogeneity of drivers of ET, namely precipitation (P) and potential evapotranspiration 25 

(PET), leads to overestimation of average ET. 26 

Evapotranspiration (ET) rates and the properties that regulate them are spatially heterogeneous. Averaging over 27 

spatial heterogeneity in precipitation and potential evapotranspiration as main drivers of ET may lead to biased 28 

estimates of energy and water fluxes from the land surface to the atmosphere. Here we show that this Our analysis 29 

showed that this "heterogeneity” bias" is will be largest in mountainous terrain, most pronounced in n regions with 30 

temperate climates and dry summers,  and in mountainous terrains, in landscapes where spatial variations in 31 

precipitationP and potential evapotranspiration are inversely correlated.is are inversely correlated with to spatial 32 

variations in PET, and in regions with temperate climates and dry summers. 33 



2 
 

- We showed that theThe magnitude of this heterogeneity bias grows on average, and expands over larger 34 

areas, as the sub-grid heterogeneities are averaged over size of the coarser grid cells increases. 35 

  36 
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 37 

Abstract 38 

The major goal of large-scale Earth System Models (ESMs) is to understand and predict global change. However, 39 

computational constraints require ESMs to operate on relatively large spatial grids (typically ~1 degree or ~100 km 40 

in size), with the result that the heterogeneity in land surface properties and processes at smaller spatial scales 41 

cannot be explicitly represented. Averaging over this spatial heterogeneity may lead to biased estimates of energy 42 

and water fluxes.  in ESMs. For example, evapotranspiration rates and the properties that regulate them are 43 

spatially heterogeneous at scales orders of magnitude smaller than typical ESM grid cells. Here we quantify 44 

estimate how averaging over spatial heterogeneity in precipitation (P) and potential evapotranspiration (PET) may 45 

affect the effects of spatial heterogeneity on grid-cell-averaged evapotranspiration (ET) rates, as seen from the 46 

atmosphere over heterogeneous landscapes across the globe. Our goal is to identify where, under what conditions, 47 

and at what scales this heterogeneity bias could be most important, but not to quantify its absolute magnitude. 48 

IWn an earlier study, we used a Budyko curves framework toas a simple functions that estimator of ET that 49 

functionally relates ET to precipitation (P) and potential evapotranspiration (PET), and used a sub-grid closure 50 

relation to quantify the effects of sub-grid heterogeneity on average ET at 1° by 1° grid cells- the scale of typical 51 

ESM. We showed that bBecause the relationships driving ET are nonlinear, averaging over sub-grid heterogeneity in 52 

P and PET leads to overestimationwill lead to biased estimates of average ET. In this study, we We extend that work 53 

to the globe and examine the global distribution of this bias, its scale dependence, and the underlying 54 

mechanismsand its sensitivity to variations in P versus PET as the heterogeneous inputs are averaged at 1° by 1° 55 

grid cells, the scale of typical ESMs. Our analysis shows that this "heterogeneity bias" is more pronounced in 56 

mountainous terrains, in landscapes where spatial variations in P and PET are inversely correlated, is are inversely 57 

correlated with to spatial variations in PET, and in regions with temperate climates and dry summers. We also show 58 

that that the magnitude of this heterogeneity bias grows increases on average, and expands over larger areas, as 59 

the size of the grid cell size increases. Correcting for this overestimation of ET in ESMs is important for modeling the 60 

water cycle, as well as for future temperature predictions, since current overestimations of ET rates imply smaller 61 

sensible heat fluxes, and potential underestimation of dry and warm conditions in the context of climate change. 62 

Our work outlines a strategy for quantifying heterogeneity biases and potentially correcting for them, provides a 63 

basis for translating the estimates of heterogeneity bias into correction factors in large-scale ESMs, and highlights 64 

the regions where more detailed mechanistic modeling is needed.   65 

 66 

  67 
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1. Introduction 68 

Earth System Models (ESMs) are designed to understand interactions between the land surface, atmosphere, and 69 

oceans and to predict global environmental changes. However, the Earth system and its underlying physical 70 

processes are highly heterogeneous across orders of magnitude in scale below the scale of typical ESM grids (e.g., 71 

1° by 1°). Despite increasing recognition of the need to mechanistically represent physical processes in ESMs, 72 

currently even the most disaggregated large-scale ESMs cannot explicitly represent the spatial heterogeneity of 73 

land surface hydrological properties at scales that are important to atmospheric fluxes. Overlooking this spatial 74 

heterogeneity and instead aAveraging over land surface properties at the scale of ESM model grid cells may have 75 

important implications for water and energy flux estimates in large-scale ESMs (Avissar and Pielke, 1989; Giorgi and 76 

Avissar, 1997; Ershadi et al., 2013; Lu et al., 2014).  77 

 78 

Estimates of evapotranspiration (ET) fluxes have significant implications for future temperature predictions. Smaller 79 

ET fluxes imply greater sensible heat fluxes and, therefore, amplified dry and warmdrier and warmer conditions in 80 

the context of climate change (Seneviratne et al., 2010). Surface evaporative fluxes (and thus energy partitioning 81 

over land surfaces) are nonlinear functions of available water and energy, and thus are coupled to spatially 82 

heterogeneous surface characteristics (e.g., soil type, vegetation, topography) and meteorological inputs (e.g., 83 

radiative flux, wind, and precipitation) (; Kalma et al., 2008; Shahraeeni and Or, 2010; Holland et al., 2013). These 84 

characteristics are spatially variable on length scales of <1 m to many kilometers, well below typical ESM grid scales 85 

of ~100 km. ESMs calculate grid-averaged surface and atmospheric fluxes from grid-averaged land surface using 86 

parameterizations that corresponds to grid-averaged properties of the land surfaceparameterizations (Sato et al., 87 

1989; Koster et al., 2006; Santanello and Peters-Lidard, 2011). Thus ET estimates that are derived from spatially-88 

averaged land surface properties do not capture ET variations driven by the underlying surface heterogeneity 89 

(McCabe and Wood, 2006). Because the relationships driving ET are nonlinear, the average ET flux from a 90 

heterogeneous landscape may be different from an ET estimate calculated from spatially averaged inputs 91 

(Rouholahnejad Freund and Kirchner, 2017). 92 

 93 

Several studies have quantified the effects of land surface heterogeneity on ET, potential evapotranspiration (PET), 94 

and latent heat (LH) fluxes, and have found that averaging over land surface heterogeneity can potentially bias ET 95 

estimates either positively or negatively. For example, Boone and Wetzel (1998) studied the effects of soil texture 96 

variability within each pixel in the Land-Atmosphere-Cloud Exchange (PLACE) model, which has a spatial resolution 97 

of approximately 100 by 100 km. They reported that accounting for sub-grid variability in soil texture reduced 98 

global ET by 17%, increased total runoff by 48%, and increased soil wetness by 19%, compared to using a 99 

homogenous soil texture to describe the entire grid cell. Kollet (2009) found that heterogeneity in soil hydraulic 100 

conductivity had a strong influence on evapotranspiration during the dry months of the year, but not during 101 

months with sufficient moisture availability. Hong et al. (2009) reported that aggregating radiance data from 30 m 102 

to 60, 120, 250, 500, and 1000 m resolution (input upscaling) and then calculating ET from these aggregated inputs 103 
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at these grid scales using Surface Energy Balance Algorithm for Land (SEBAL, Bastiaanssen et al., 1998a) yields 104 

slightly larger ET estimates as compared to ET calculated with finer resolution inputs and then aggregated at the 105 

desired grid scales (output upscaling). The discrepancy between ET estimated with the output upscaling method 106 

and the input upscaling method grows as the size of the grid- cell increases (the difference between ET calculated 107 

from the input and output upscaling methods is ~20% more at a grid scale of 1 km by 1 km compared to a grid scale 108 

of 120 m by 120 m). Aminzadeh et al. (2017) investigated the effects of averaging surface heterogeneity and soil 109 

moisture availability on potential evaporation from a heterogeneous land surface including bare soil and vegetation 110 

patches. They found that if the heterogeneity length scale is smaller than the convective atmospheric boundary 111 

layer (ABL) thickness, averaging over heterogeneous land surfaces has only a small effect on average potential 112 

evaporation rates. Averaging over larger-scale heterogeneities, however, led to overestimates of potential 113 

evaporation.  114 

 115 

Heterogeneity biases have also been identified in Another example of overestimation bias as surface and sub-116 

surface heterogeneities are averaged are manifested with ET calculation algorithms that use remote sensing data as 117 

inputs. McCabe and Wood (2006) found that remote sensing retrievals of ET are larger than the corresponding in-118 

situ flux estimates and characterized the roles of land surface heterogeneity and remote sensing resolution in the 119 

retrieval of evaporative flux. McCabe and Wood (2006) used Landsat (60 m), Advanced Space borne Thermal 120 

Emission and Reflection Radiometer (ASTER) (90 m), and MODIS (1020 m) independently to estimate ET over the 121 

Walnut Creek watershed in Iowa. They compared these remote sensing estimates to eddy covariance flux 122 

measurements and reported that Landsat and ASTER ET estimates had a higher degree of consistency with one 123 

another and correlated better to the ground measurements (0.87 and 0.81, respectively) than MODIS- based ET 124 

estimates did. All three remote sensing products overestimated ET as compared to ground measurements (at 12 125 

out of 14 tower sites).  Upon aggregation of Landsat and ASTER retrievals to MODIS scale (1 km), the correlation 126 

with the ground measurements decreased to 0.75 and 0.63 for Landsat and ASTER, respectively. 127 

 128 

Contrary to overestimation bias, many remotely sensed ET estimates that include parameters related to 129 

aerodynamic resistance are significantly affected by heterogeneity, and underestimate ET as the scale increases 130 

(Ershadi et al., 2013). Because aerodynamic resistance is significantly affected by land surface properties (e.g., 131 

vegetation height, roughness length, and displacement height), decreases in aerodynamic resistance at coarser 132 

resolutions could lead to smaller estimates of evapotranspiration. Ershadi et al. (2013) showed that input 133 

aggregation from 120m to 960 m in Surface Energy Balance System (SEBS, Su, 2002) leads to up to 15 % 134 

underestimation of ET at the aggregated larger grid resolution in an study area in the south-east of Australia.  135 

Rouholahnejad Freund and Kirchner (2017) quantified the impact of sub-grid heterogeneity on grid-average ET 136 

using a simple Budyko curve (Turc, 1954; Mezentsev, 1955) in which long-term average ET is a non-linear function 137 

of long-term averages of precipitation (P) and potential evaporation (PET). They showed mathematically that 138 

averaging over spatially heterogeneous P and PET results in overestimation of ET within the Budyko framework (Fig. 139 
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1). Their analysis implies that large-scale ESMs that overlook land surface heterogeneity will also yield biased 140 

evapotranspiration estimates due to the inherent nonlinearity in ET processes. They did not, however, estimate the 141 

likely actual magnitude of this heterogeneity bias beyond a few example grid cellsdetermine where around the 142 

globe, and under what conditions, this heterogeneity bias is likely to be most important. 143 

 144 

The recognition that spatial averaging can potentially lead to biased flux estimates has prompted methods for 145 

representing sub-grid-scale heterogeneities and processes within ESMs. Accounting for land surface heterogeneity 146 

in large-scale ESMs is not merely constrained by limitations in both computational power (Baker et al. 2017) and 147 

the availability of high-resolution forcing data, but also by the fact that the atmospheric and land surface 148 

components of some ESMs operate at different resolutions. There have been several attempts to integrate sub-grid 149 

heterogeneity in ESMs while maintaining keeping the computational costs affordable. In “mosaic” approaches, the 150 

model is run separately for each surface type in a grid cell, and then the surface surface-specific fluxes are area-151 

weighted to calculate the grid-cell average fluxes (e.g., Avissar and Pielke, 1989; Koster and Suarez, 1992). The 152 

“effective parameter” approach (e.g., Wood and Mason, 1991; Mahrt et al., 1992), by contrast, seeks to estimate 153 

effective parameter values at the grid cell scale that subsume the effects of sub-grid heterogeneity. Estimating 154 

these effective parameters can be challenging because the relevant land-surface processes typically depend 155 

nonlinearly on multiple interacting parameters, and land-surface signals at different scales are propagated and 156 

diffused differently in the atmosphere. Alternatively, the "correction factor" approach (e.g., Maayar and Chen, 157 

2006) uses sub-grid information on spatially heterogeneous land-surface processes and properties to estimate 158 

multiplicative correction factors for fluxes that are originally calculated from spatially averaged inputs at the grid-159 

cell scale. All three approaches try to reduce the heterogeneous problem to a homogeneous one that has 160 

equivalent effects on the atmosphere at the grid-cell scale.  161 

 162 

There is a growing need to understand how sub-grid heterogeneity (and the atmosphere’s integration of it), affect 163 

grid-scale water and energy fluxes, and to develop effective methods to incorporate these effects in ESMs (Clark et 164 

al., 2015, Fan et al., 2019). The above-mentioned studies present the potential effects of spatial heterogeneity on 165 

water and energy flux estimates in land surface models at several scales, but are deficient iIn a previous study, we 166 

proposed n proposing a general framework for quantifying systematic biases in ET estimates due to averaging over 167 

heterogeneities (Rouholahnejad Freund and Kirchner, 2017). WIn a previous study, we used the Budyko framework 168 

as a simple estimator of ET, and demonstrated theoretically how averaging over heterogeneous precipitation and 169 

potential evapotranspiration at the grid scale of a typical ESM (e.g., 1° by 1°) can lead to systematic overestimation 170 

of long-term average ET fluxes from heterogeneous landscapes. In the present study, we apply thisat analysis 171 

across the globe and highlight the locations where the heterogeneity bias mattersis largest. Our hypotheses, 172 

derived from the Budyko framework as summarized in Eq. (4) below, are that, (1) strongly heterogeneous 173 

landscapes, such as mountainous terrain, will exhibit higher greater bias due to averagingheterogeneity bias, (2) 174 
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thise bias will be higher larger in climates where P and PET are inversely correlated in space, and (3) heterogeneity 175 

bias will decrease as the spatial scales of averaging decrease.   176 

 177 

2. Effects of sub-grid heterogeneity on ET estimates in the Budyko framework  178 

Budyko (1974) showed that the long-term annual average evapotranspiration is a function of both the supply of 179 

water (precipitation, P) and the evaporative demand (potential evapotranspiration, PET) under steady-state 180 

conditions and in catchments with negligible changes in storage (Eq. 1; Turc, 1954; Mezentsev, 1955). ):  181 

𝐸𝑇 = 𝑓(𝑃, 𝑃𝐸𝑇) =
𝑃

((
𝑃

𝑃𝐸𝑇
)

𝑛

+ 1)
1 𝑛⁄

.      (1)
 182 

where ET is actual evapotranspiration, P is precipitation, PET is potential evaporation, and n (dimensionless) is a 183 

catchment-specific parameter that modifies the partitioning of P between ET and discharge.  184 

 185 

Evapotranspiration rates are inherently bounded by energy and water limits. Under arid conditions ET is limited by 186 

the available supply of water (the water limit line in Fig. 1b), while under humid conditions ET is limited by 187 

atmospheric demand (PET) and converges toward PET (the energy limit line in Fig. 1b). Budyko showed that over a 188 

long period and under steady-state conditions, hydrological systems function close to their energy or water limits. 189 

These intrinsic water and energy constraints make the Budyko curve downward-curving. 190 

 191 

In a heterogeneous landscape, like the simple example of two ESM model columns in Fig. 1a, P and PET vary 192 

spatially. The two columns with heterogeneous P and PET are represented by the two solid black circles on the 193 

Budyko curve in Fig. 1b. In this hypothetical two-column example, the true average of ET values calculated from 194 

individual heterogeneous inputs (the solid black circles) lies below the curve (the grey circle, labeled “true 195 

average”). However, if we aggregate the two columns and consider the system as one column with average 196 

properties, the function of average inputs (averaged P and PET over the two columns) lies on the Budyko curve (the 197 

open circle) which is larger than the true average of the two columns. In short, in any downward curving function, 198 

the function of the average inputs (the open circle) will always be larger than the average of the individual function 199 

values (the true average; grey circle). The difference between the two can be termed the "heterogeneity bias".  200 

 201 

In a previous study (Rouholahnejad Freund and Kirchner,  (2017) we showed that when nonlinear underlying 202 

relationships are used to predict average behaviour from averaged properties, the magnitude of the resulting 203 

heterogeneity bias can be estimated from the degree of the curvature in the underlying function and the range 204 

spanned by the individual data being averaged. Here we summarize theses findings as building blocks of the current 205 

study. The second-order, second-moment Taylor expansion of the ET function f(P,PET) (Eq. 1) around its mean 206 

directly yields:  207 
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𝑓̅(𝑃, 𝑃𝐸𝑇) = 𝐸𝑇̅̅ ̅̅ ≈ 𝑓(�̅�, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) +
1

2

𝜕2𝑓

𝜕𝑃2
 𝑣𝑎𝑟(𝑃) +

1

2

𝜕2𝑓

𝜕𝑃𝐸𝑇2
 𝑣𝑎𝑟(𝑃𝐸𝑇) +

𝜕2𝑓

𝜕𝑃 𝜕𝑃𝐸𝑇
𝑐𝑜𝑣(𝑃, 𝑃𝐸𝑇)     ,       (2) 208 

where 𝑓̅(𝑃, 𝑃𝐸𝑇) is the true average of the spatially heterogeneous ET function, 𝑓(�̅�, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) is the ET function 209 

evaluated at its average inputs �̅� and 𝑃𝐸𝑇̅̅ ̅̅ ̅̅  , and where the derivatives are quantified calculated at �̅� and 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ .  210 

Evaluating the derivatives using Eq. (1) and reshuffling the terms, Rouholahnejad Freund and Kirchner (2017) 211 

obtained  the following expression for the heterogeneity bias, the difference between the average ET, 𝑓̅(𝑃, 𝑃𝐸𝑇), 212 

and the ET function evaluated at the mean of its inputs, 𝑓(�̅�, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ): 213 

𝑓(�̅�, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) − 𝑓̅(𝑃, 𝑃𝐸𝑇) ≈ (𝑛 + 1)
 �̅�𝑛+1𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛+1

(�̅�𝑛 + 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛)2+1
𝑛⁄

 [
1

2

𝑣𝑎𝑟(𝑃)

�̅�2
+

1

2

𝑣𝑎𝑟(𝑃𝐸𝑇)

𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 2
−

𝑐𝑜𝑣(𝑃, 𝑃𝐸𝑇)

𝑃 ̅𝑃𝐸𝑇̅̅ ̅̅ ̅̅
].   (3) 214 

To more clearly show the effects of variations in P and PET, Eq. (3) can be reformulated as follows: 215 

𝑓(�̅�, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) − 𝑓̅(𝑃, 𝑃𝐸𝑇) ≈

(𝑛 + 1)
 �̅�𝑛+1𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛+1

(�̅�𝑛 + 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛)2+1
𝑛⁄

 [
1

2
(

𝑆𝐷(𝑃)

�̅�
)

2

+
1

2
(

𝑆𝐷(𝑃𝐸𝑇)

𝑃𝐸𝑇̅̅ ̅̅ ̅̅
)

2

− 𝑟𝑃,𝑃𝐸𝑇 (
𝑆𝐷(𝑃)

�̅�
) (

𝑆𝐷(𝑃𝐸𝑇)

𝑃𝐸𝑇̅̅ ̅̅ ̅̅
)]    . (4)

 216 

Equation (4) shows that the heterogeneity bias depends on only four quantities: the fractional variation (i.e., the 217 

coefficient of variation) in precipitation (
𝑆𝐷(𝑃)

�̅�
) and in potential ET (

𝑆𝐷(𝑃𝐸𝑇)

𝑃𝐸𝑇̅̅ ̅̅ ̅̅
), the correlation between precipitation 218 

and potential ET (𝑟𝑃,𝑃𝐸𝑇), and the function (𝑛 + 1)
 �̅�𝑛+1𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛+1

(�̅�𝑛+𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛)2+1
𝑛⁄
, which quantifies the curvature in the ET function 219 

in Budyko space.  As shown by Fig. 1b and Eq. (2), the discrepancy between average of the ET function and the ET 220 

function of the average inputs (the heterogeneity bias) is proportional to both the degree of nonlinearity in the 221 

function, as defined by its second derivatives, and the and the range of variation in its input variability of P and 222 

PET.variables, as defined by their variances. Equation. (34) allows one to estimate how much the curvature of a 223 

nonlinear relationshipthe ET function and the fractional variability (standard deviation divided by mean) of P and 224 

PET variance of its inputs at any desired scale will affect estimates of the true meanET. However, to the best of our 225 

knowledge, the consequences of these nonlinearities for global evaporative flux estimates have not previously 226 

been quantified. 227 

 228 
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 229 

Figure 1. Heterogeneity bias in a hypothetical two-column model in the Budyko framework. The true average ET of 230 

the columns (gray circle) lies below the curve and is less than the average ET estimated from the average P/PET of 231 

the two columns (open circle). The heterogeneity bias depends on the curvature of the function and the spread of 232 

its inputs. Both panels are(b) is adapted from Rouholahnejad Freund and Kirchner (2017). 233 

 234 

3. Effects of sub-grid heterogeneity on ET estimates at 1° by 1° grid scale across the globe  235 

Across a landscape of size similar size to a typical ESM grid cell (1° by 1°), soil moisture, atmospheric demand (PET) 236 

and precipitation (P) will vary with topographic position; hillslopes will typically be drier, and riparian regions will be 237 

wetter. To map the spatial pattern in the heterogeneity bias that results from quantify the likely biases introduced 238 

by averaging over this land surface heterogeneity, we used applied the approach outlined in section 2 to the global 239 

land surface area at 1° by 1° grid scale. Within each 1° by 1° grid cell, we used 30 arc-second values of P (WorldClim; 240 

Hijmans et al., 2005) and PET (WorldClim; Hijmans et al., 2005) to examine the variations in small-scale climatic 241 

drivers of ET. Because 30 arc-seconds is nearly 1 km, hereafter we refer to the 30 arc-second data as 1km values for 242 

simplicity. The spatial distribution of long-term annual averages (1960-1990) of P and PET values at 1 km resolution, 243 

along with  and 1km values of the aridity index (AI=P/PET), are shown in Fig 2a-c. ET values estimated calculated 244 

from these 1km P and PET values using Eq. (1) are then averaged at 1° by 1° scale (“true average”, Fig. 2e). To mimic 245 

the averaging that takes place within ESMs, wWe also averaged the 1km values of P and PET within each grid cell 246 

and then modeled ET using the Budyko curve (Eq. 1) applied to these averaged input values. The difference 247 

between these two ET estimates is the heterogeneity bias. 248 

 249 

We also calculated the heterogeneity bias using Eq. (43), which describes how the nonlinearity in the governing 250 

equation and the heterogeneity in P and PET jointly contribute to the heterogeneity bias. The heterogeneity bias 251 

estimates obtained by Eq. (4) were functionally equivalent (R2=0.97, root mean square error of 0.17%) to those 252 

obtained by y direct calculation using Eq. (1) as described above. and by Eq. (3) were functionally equivalent 253 

(R2=0.97, root mean square error of 0.17%).   254 
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 255 

Fig. 3a-d illustrates the variability (quantified by standard deviation) of 1km values of P, PET, aridity index, and 256 

altitude at the 1° by 1° grid scale. The heterogeneity bias in long-term average ET fluxes at the 1° by 1° grid scale 257 

(Fig. 3e) highlights regions around the globe where ET fluxes are likely to be systematically overestimated. The 258 

spatial distribution of the heterogeneity bias calculated using Eq. 34 (Fig. 3e) closely coincides with locations with 259 

where the aridity index is highly variable large variability in the aridity index (Fig. 3c), which is driven in turn by 260 

topographic variability (Fig. 3d). Strongly heterogeneous landscapes exhibit significant heterogeneity biases in long-261 

term average ET fluxes. A, although the global average heterogeneity bias is small (<1%), . Pphysically based ET 262 

calculations may exhibit larger heterogeneity biases than the modest values we calculate here, because the Budyko 263 

approach already subsumes spatial heterogeneity effects at the catchment scale (and also temporal heterogeneity 264 

effects due to its steady- state assumptions). The heterogeneity biases in ET estimates shown in Fig. 3e corresponds 265 

to long-term average ET estimates. Given the fact that P and PET can vary temporally (i.e., seasonality), the 266 

estimated actual bias could be much larger, particularly where P and PET are inversely correlated (see the last term 267 

of Eq. 34).  268 

 269 

Our results show that the topographic gradient, and hence the variability in the aridity index across a desired given 270 

grid size scale, exhibit drives consistent, predictable patterns of associated predictionheterogeneity bias in 271 

evapotranspiration estimates at that scale. Equation .43 shows that this bias is equally sensitive to 272 

percentagefractional variability in P and PET (variabilitystandard deviation divided by mean in Eq. 3).  However, 273 

becauseif P is typically more variable (in percentage terms) than PET  across landscapes (in percentage terms), then 274 

the variability in P will usually make a larger contribution to the heterogeneity bias.   275 

 276 
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 277 

 278 
Figure 2. Global distribution of one-kilometer resolution annual mean precipitation (a: P; WorldClim; Hijmans et al., 279 

2005), potential evapotranspiration (b: PET; WorldClim; Hijmans et al., 2005), aridity index (c: AI=P/PET; WorldClim; 280 

Hijmans et al., 2005), and topography (d: SRTM; Jarvis et al., 2008), along with and (e) evapotranspiration (ET) at 1° 281 

by 1° scale by averaging 1km values of ET calculated using the Budyko function (Eq. 1).  282 

 283 
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 284 

Figure 3. Global spatial distribution of variability (standard deviation) of one-kilometer values of a) precipitation (P), 285 

b) potential evapotranspiration (PET), c) aridity index (AI=P/PET), and d) altitude at 1° by 1° grid cell. The 286 

approximated averagingheterogeneity bias in ET estimates (e) is calculated using Eq. (43). Grid cells with larger 287 
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standard deviation in altitude and aridity index encounter higher percentage ofhave larger averaging heterogeneity 288 

bias. 289 

 290 

4. Variation in heterogeneity bias across climate zones, data sources, and grid scales  291 

With increased availability of spatial data, it is becoming standard practice to assess input data uncertainties and 292 

their propagated impacts on water and energy flux estimates in land surface models. To quantify how choices 293 

among alternative input data products could affect the heterogeneity bias in ET estimates, we calculated the 294 

heterogeneity bias at 1 ° by 1° grid cell resolution across the contiguous US using four different pairs of P and PET 295 

data products. Two precipitation data sets, Prism (http://prism.oregonstate.edu) and WorldClim (Hijmans et al., 296 

2005), along with two PET data sets, MODIS (Mu et al., 2007) and WorldClim (Hijmans et al., 2005), all at 1 km 297 

resolution, were combined in all possible pairs. The WorldClim PET dataset (Hijmans et al., 2005) is based on the 298 

Hargreaves method (Hargreaves and Samani 1985) while the MODIS PET product (Mu et al, 2007) is based on the 299 

Penman–Monteith equation (Monteith, 1965). The heterogeneity bias in ET estimates (Eq. 34), as outlined in 300 

Ssect.ion 2, was evaluated from 1km values of P, PET, and the estimated average ET using the Budyko relationship 301 

(Eq. 1) for each of the four input data pairs. Figure. 4a-e compares the spatial distributions of heterogeneity bias 302 

across the contiguous US for the four pairs of P and PET data products. The heterogeneity bias in ET estimates 303 

reached as high as 36 % in the western US using Prism P and WorldClim PET as input to the ET model (Fig. 4a4b). A 304 

visual comparison of Figs. 4a4b and Fig. 4, c, d , and e shows that the choice of P data source (Prism vs. WorldClim) 305 

had a bigger effect on the heterogeneity bias than the choice of PET data source (MODIS vs. WorldClim), meaning 306 

that thea fractional variability (variability divided by mean) in P is the dominant variable.. In all cases, data sources 307 

that were more variable in relation to their means (Prism for P and WorldClim for PET; Fig. 4b) led to larger 308 

heterogeneity biases, as expected from Eq. (34). Thus we infer that we would have obtained larger heterogeneity 309 

biases ifIf we had conducted our global analysis (Fig. 3) with Prism P and either WorldClim or MODIS PET we would 310 

have obtained larger heterogeneity biases, but we cannot show that result explicitly at global scale because Prism P 311 

is not freely available globally. 312 

 313 

If we divide separate the heterogeneity biases shown in Fig. 4 by according to Köppen-Geiger climate zones (Peel et 314 

al., 2007; Fig. 5a), we see that the heterogeneity biasthey are is distinctly higher in particular climate-terrain 315 

combinations. HThe heterogeneity biases are is higher in regions with temperate climates and dry summers 316 

(climate zone Cs) and in regions with cold, dry summers (climate zone Ds), perhaps most likely due to the sharp 317 

spatial gradient in their water and energy sources for evapotranspiration (Fig. 5b). These areas typically have high 318 

topographic relief, combined with seasonal climate. The heterogeneity effects on ET estimates in these regions are 319 

expected to be even higher larger when a mechanistic model of ET is used. We expect that averaging over temporal 320 

variations of drivers of ET, especially in places with strong seasonality, could substantially bias the ET estimates, but 321 

this cannot  but can not be quantified in the Budyko framework due to its underlying steady-state assumptions. 322 

Figure 5b also illustrates the relative magnitudes of the heterogeneity biases obtained with the four pairs of P and 323 

http://prism.oregonstate.edu/
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PET data sources. The heterogeneity bias is the highest when the Prism P and WorldClim PET datasets are 324 

utilizedused, followed by the combination of Prism P and MODIS PET, thatwhich resulted in the second -highest 325 

heterogeneity bias across different climate zones. Equations 2 and 3 4 shows that averaging biasesheterogeneity 326 

biases in Budyko estimates  when Budyko is used as an estimator of ET, are equally sensitive to the same 327 

percentage variability in P and PET and their means. Thus the degree of sensitivity, per se, betweento P and PET 328 

variations , when expressed in percentage terms is the same.  Although Figs. 5c and 5d give the visual impression 329 

that PET is more variable than P across climate zones and between data sources, Fig. 5e shows that the fractional 330 

variability in P is systematically higher than PET, and it also varies more across the climate zones and between the 331 

two data sets.  , are not different in the Budyko approach. In the Budyko approach, ifBecause P is typically more 332 

variable than PET (in percentage terms) across landscapes, then the variability in P will make a larger contribution 333 

to the heterogeneity bias (Fig. 5e) in the Budyko approach. Whether this is true for more physically based ET 334 

estimates remains to be seen. Analysis of percent variability of P and PET products shows that percent variabilities 335 

of precipitation products are in general larger than PET products and hence contribute more to heterogeneity (Fig 336 

5e). While the percent variabilities of the two PET products are in the same range, the percent variability in Prism 337 

precipitation is slightly larger than in WorldClim precipitation, in regions with dry summers (Cs and Ds climate zones 338 

in Fig. 5a). 339 

The heterogeneity bias generally decreases in the order: Prism P-WorldClim PET >> Prism P-MODIS PET >> 340 

WorldClim P-WorldClim PET >> WorldClim P-MODIS PET. 341 

 342 

 343 
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 345 

Figure 4. The distribution of P and PET in the four datasets is shown in a). Estimated averaging heterogeneity bias 346 

(Eq. 43) across the contiguous US using one-kilometer values of ab) Prism P and WorldClim PET c) Prism P and 347 

MODIS PET d) WorldClim P and WorldClim PET, and e) WorldClim P and MODIS PET as inputs. The distribution of P 348 

and PET in the four datasets is shown in b).  349 

 350 

 351 
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 352 
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 353 

Figure 5. a) Köppen-Geiger climate classification (Peel et al., 2007 in Beck et al. 2013) across the contiguous US, b) 354 

and the distribution of corresponding calculated averaging heterogeneity bias in ET estimates (Eq. 43) at 1° by 1° 355 

grid cell at in individual climate zones, shown by boxplot (three data points with heterogeneity biases of over 20% 356 

are off-scale). The background panels top color coded in the box plotb, c, and d corresponds to the climate zones  in 357 

aon the left.  In panel b, Tthree data points with heterogeneity biases of over 20% are off-scale. Pannels c and d 358 

show the distribution of precipitation products (Prism and WorldClim) and potential evaporation products (MODIS 359 

and WorldClim) at individual climate zones, respectively.  The color-coded climate zones at the tops of panels b, c, 360 

and d correspond to the climate zones mapped in panel a.  Panel e compares the percentage variability of the two P 361 

and PET data products across climate zones, showing that the percentage variability in P is markedly higher than in 362 
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PET, and the percentage variability in Prism P is somewhat higher than in WorldClim P, particularly in climate zones 363 

with dry summers. 364 

 365 

One may expect thatBecause future increases in computing power will lead to ESMs with smaller grid cells,  than 366 

those in common usage today.  It is thereforeit is useful to ask how changes in ESM grid resolution are likely to 367 

affect the heterogeneity biases that we have estimated in this paper.  To quantify the heterogeneity bias in ET 368 

estimates as a function of grid scale, we repeated our analysis at various grid resolutions using Switzerland as a test 369 

case.  We started with high-resolution (500m) maps of long-term average annual precipitation and PET across the 370 

Swiss landscape (Fig. 6), and then used Eq. 43 to estimate the heterogeneity bias at grid scales ranging from 1/32° 371 

to 2° (~3 km to ~200 km).  As Fig. 6 shows, aggregating P and PET over larger scales leads to larger, and more 372 

widespread, overestimates in ET.  Conversely, at finer grid resolutions, the average heterogeneity bias is smaller, 373 

and the locations with large biases are more localized. On average, the heterogeneity bias across the entire 374 

Switzerland as a whole grows exponentially as the inputs are averaged over larger grids (as shown in the lower-375 

right panel in Fig. 6, inset). 376 

 377 
 4756300 0250 02000 1500 10007 0050 02501 86378 

 379 
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 380 

Figure 6. Heterogeneity bias in ET estimates at various scales across Switzerland, estimated from 500m climate 381 

data.  ET is calculated using the Budyko relationship (Eq. 1).  Heterogeneity bias was estimated from 500m 382 

precipitation (P) and potential evapotranspiration (PET), and their variances at each grid scale, using Eq. 43.  At 383 

finer grid resolutions, the heterogeneity bias is more localized, and smaller on average. 384 

 385 

  386 
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5. Summary and discussion 387 

Because evapotranspiration (ET) processes are inherently bounded by water and energy constraints, over the long 388 

term, ET is always a nonlinear function of available water and PET, whether this function is expressed as a Budyko 389 

curve or another ET model. These nonlinearities imply that spatial heterogeneity will not simply average out in 390 

predictions of land surface water and energy fluxes in ESMs. Overlooking the sub-grid spatial heterogeneity in large 391 

large-scale ESMs could lead to biases in estimated water and energy fluxes (e.g., ET rates). Here we have shown 392 

that, across several scales, averaging over spatially heterogeneous land surface properties and processes leads to 393 

biases in evapotranspiration estimates. Our analysis does not quantify the heterogeneity biases in ESMs, owing to 394 

the many differences between these mechanistic models and the simple empirical Budyko curve. But if the 395 

heterogeneity biases in ESMs can be quantified, theyThese biases can be estimated, and these estimates can 396 

potentially be used as correction factors to improve ESM estimates calculations of surface-atmosphere water and 397 

energy fluxes across landscapes in large scale models. We use Budyko framework as a simple "see through" test 398 

case for quantifying these biases although Budyko is not actually used in ESM's. Our paper highlights a general 399 

methodology that can be used to estimate the systematic bias due to averagingheterogeneity biases and to map 400 

their spatial patterns, , but not to calculate their preciseabsolute magnitudes because those  of this bias because 401 

the latter will change significantly depending on the ET formulation that is used.  402 

 403 

In this study, we used Budyko curves as simple models of ET, in which long-term average ET rates are functionally 404 

related to long-term averages of P and PET. We used an approach outlined by Rouholahnejad Freund and Kirchner 405 

(2017) to estimate the heterogeneity bias in modeled ET at 1-degree grid scale across the globe (Fig. 3), and also at 406 

multiple grid scales across Switzerland (Fig. 6), using finer-resolution P and PET values as drivers of ET. We showed 407 

how the heterogeneity effects on ET estimates vary with the nonlinearity in the governing equations and with the 408 

variability in land surface properties. Our analysis shows that heterogeneity effects on ET fluxes matter the most in 409 

areas with sharp gradients in the aridity index, which are in turn controlled by topographic gradients, and not 410 

merely in areas that are either arid or humid (e.g., compare Fig. 3e with Fig. 2c). 411 

 412 

According to our analysis, regions within the U.S. that have temperate climates and dry summers exhibit greater 413 

heterogeneity bias in ET estimates (Fig. 5). We show that the heterogeneity bias in ET estimates at each grid scale 414 

depends on the variance in the drivers of ET at that scale (Fig. 4), and on the choice of data sources used to 415 

estimate ET. Heterogeneity bias was significantly larger across the contiguous United States when P and PET data 416 

sources with larger variances were used (Fig. 4). 417 

 418 

We also explored the magnitude and spatial distribution of heterogeneity bias in ET estimates as a function of the 419 

scale at which the climatic drivers of ET are averaged. We found that as heterogeneous climatic variables are 420 

aggregated to larger scales, the heterogeneity biases in ET estimates become greater on average, and extend over 421 

larger areas (Fig. 6). At smaller grid scales, the heterogeneity bias does not completely disappear, but instead 422 
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becomes more localized around areas with sharp topographic gradients. Finding an effective scale at which one can 423 

average over the heterogeneity of land surface properties and processes has been a longstanding problem in Earth 424 

science. Our analysis shows that at smaller resolutions the average heterogeneity bias as seen from the 425 

atmosphere becomes smaller, but there is no characteristic scale at which it vanishes entirely (Fig. 6). The 426 

magnitude and spatial distribution of this bias depend strongly on the scale of the averaging and degree of the 427 

nonlinearity in the underlying processes. The averaging heterogeneity bias concept is general and extendable to 428 

any convex or concave function (Rouholahnejad Freund and Kirchner 2017), meaning that in any nonlinear process, 429 

averaging over spatial and temporal heterogeneity can potentially lead to bias. 430 

 431 

One should keep in mind that the true mechanistic equations that determine point-scale ET as a function of point-432 

scale water availability and PET (if such data were available) may be much more nonlinear than Budyko’s empirical 433 

curves, because these curves already average over the significant spatial and temporal heterogeneity. spatial 434 

heterogeneities across spatial and temporal scales. Thus, we expect that the real-world effects of sub-grid 435 

heterogeneity are probably larger than those we have estimated in Sects. 3 and 4 of this study. In addition, the 1km 436 

P and PET values that are used in our global analysis might be still too coarse to represent small-scale heterogeneity 437 

that is important to evapotranspiration processes. 438 

 439 

Budyko curves are empirical relationships that functionally relate evaporation processes to the supply of water and 440 

energy under steady-state conditions in closed catchments with no changes in storage. Our analysis likewise 441 

assumes no changes in storage, nor any lateral transfer between the model grid cells, although both lateral 442 

transfers and changes in storage may be important, both in the real world and in models. Unlike the Budyko 443 

framework, ET fluxes in most ESMs are often physically based (not merely functions of P and PET) and are 444 

calculated at much smaller time steps (seconds to minutes). These models often represent more processes that are 445 

important to evapotranspiration (such as storage variations) and include their dynamics to the extent that is 446 

computationally feasible. Because these relationships may be much more nonlinear than Budyko curves, there may 447 

also be significant averaging heterogeneity biases when complex physically based models are used to estimate ET 448 

from spatially aggregated data. Therefore, we are now working to quantify aggregation heterogeneity bias in ET 449 

fluxes using a more mechanistic land surface model. 450 

 451 

Our results have further implications for representing sub-grid heterogeneity in hydrological parameterizations of 452 

large scale ESMs, for example as sets of correction factors. However, the estimated bias shown in this study is for 453 

long-term average ET estimates using a conceptual model that uses long-term annual averages and hence can not 454 

be directly exploited by ESMs to correct for averaging bias. Average ET could be substantially affected by temporal 455 

heterogeneity in water and energy fluxes, particularly in climates with strong seasonally and shifts between water-456 

limited and energy-limited conditions. The temporal variations in the drivers of ET fluxes have not been addressed 457 

in the current study but can potentially be a source of bias for ET flux estimates but have not been addressed in the 458 
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current study because Budyko curves cannot be used over individual grid cells in short time steps. Estimating 459 

aggregation bias in ET fluxes at time scales that are relevant to ESMs is therefore needed. Once such bias 460 

estimations are quantified at daily or sub-daily time scales, they can be used as correction factors to account for the 461 

aggregation bias in ET flux estimates.  462 
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