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Author’s response 

Changes	in	the	paper	
The paper has been subject to revision in order to address the comments of the reviewers. The most 

significant changes concern an improvement of the modelling results section, with the intent of 

highlighting the relationship between hypotheses and modelling experiments, and the introduction of 

the normalized root mean square error to evaluate the performance of the models in representing the 

signatures. A summary of the changes is presented below, followed by the individual responses to the 

reviewers. 

Changes	in	text	
SECTION  DESCRIPTION 

3.2.4  Introduction of a new metric to evaluate the ability of the models to represent the 
signatures 

4  Change in the numbering of the subsections to highlight the relationship between 
hypotheses and modelling experiments 

4.3.2  Added information about the normalized root mean square error 
4.4  Changes in the text to highlight the relationship between hypotheses and modelling 

experiments 
5  Changes in the text to incorporate the suggestions of Anonymous Referee #3 

 

Changes	in	Figures	
The following figures were modified 

FIGURE  DESCRIPTION 

8, 9, 10  Added the normalized root mean square error 
9  Kept only the snow‐affected catchment in the panels representing the streamflow 

seasonality signature 
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Reply	to	the	editor	Dr.	Conrad	Jackisch	
 

Dear Marco Dal Molin and co‐authors. 

 

Thank you again for your contribution to our special issue and the good work you invested into your 

manuscript during the revisions. I agree with the reviewers that the manuscript has highly improved and 

should be ready for publication very soon. 

 

Please see the suggestions of the reviewers for final revisions. I find it very interesting that both 

reviewers and myself see some interesting points which have formed during the discussion and revisions. 

Could you please check, if they could be incorporated in your manuscript? The reviewers make very nice 

suggestions towards this. As referee #2 also pointed to some questions about the model evaluation, I 

think this should be clarified further. With regards to the overall revision suggestions of referee #2, I will 

leave it with you, how you chose to deal with it. 

 

I am looking very much forward to receiving your reply. If you have any trouble accessing the reports of 

the referees, please contact me on shot notice. 

 

All the best. Merry Christmas (or equivalent seasonal greetings), 

Conrad 

We thank the Editor Dr. Conrad Jackisch for its thoughtful suggestions. We have done our best to 

incorporate the suggestions of the reviewers in the manuscript. 

In particular, Anonymous Referee #3 suggested to incorporate some discussion points emerged during 

the previous round of reviews, which we have included in the revised version. Dr. Lieke Melsen, 

proposed to use a “bias metric” in the signature analysis, which has been included, leading to a more 

complete analysis of the results. Regarding her suggestions to change the structure of the paper, we 

have decided to maintain the classical methods‐results structure (as suggested in the second round of 

revisions), but we have modified the modelling results section to highlight the connection between the 

hypotheses and the modelling experiments. 

Kind regards, 

Marco Dal Molin (on behalf of the coauthors). 
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Reply	to	review	by	Anonymous	Referee	#3	

We  thank  the  Anonymous  Referee  #3  for  his/her  careful  read  to  the  manuscript  and  insightful 

suggestions. Below, we answer  in detail the various comments, and  illustrate how we have addressed 

them in the revised version. The original comments of the reviewer are reported in black and italics, our 

replies in blue. 

All the references to specific pages and  lines of the paper are based on the reviewed version without 

track changes. 

 

Authors have substantially improved the manuscript (MS) with regards to structure and readability. My 

comments have been mostly addressed and I believe the MS is in better shape for publication now. The 

discussion is not optimum yet and my suggestion is that it should undergo minor revision before 

publication. 

 

Authors have developed some interesting explanations while answering reviewers' comments, which I 

think could be worthwhile to explore when revising the discussion. The points are highlighted below: 

 

1) Sample size influence on approach choice ‐ that would be useful to let people know and point out 

other approaches suitable for larger catchment samples: 

"The possibility to use more advanced methods for metrics selection has been considered in the process 

of our study; the reason why we eventually selected a simple method is that the sample size of this study 

is relatively small. We are in fact limited to only 10 catchments. Studies that use complex regression 

techniques like random forests use a much larger sample of catchments; for example, the work proposed 

by Trancoso et al. (2016) deals with 355 catchments. Using such techniques risks to result in models that 

overfit the data, especially considering the fact that we would need to split the catchments in a 

calibration and a validation group. "  

This point is already present in the discussion section, page 18 lines 8‐14.  

“The small number of subcatchments involved in this study (10) limits the range of viable methods for 

identifying relationships between landscape and climatic indices and streamflow signatures (Sect. 3.1) to 

rather simple approaches. […] The usage of more advanced techniques, including machine learning 

approaches such as random forest or clustering analyses, are most efficient when larger samples are 

available and could represent a more suitable choice in these situations.” 

2) Other potential metrics that can suit best other regions" 

"The number of signatures and indices proposed in literature to represent streamflow and climate is 

enormous (e.g. 120 metrics considered by Kennard et al. (2010)); therefore we had to limit our selection 

and we decided to use the one proposed by Addor et al. (2017) since we think they cover a wide range of 

characteristics of the time series that they synthetize." 
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We have introduced this point in the discussion section, page 17 lines 40‐43 

 

3) These are interesting hydrological interpretations: 

"Although it is known that precipitation has a strong control on average streamflow, this is not granted 

in some cases where, for example, regional groundwater flow alters the water balance of the 

catchments. " 

We have introduced this point in the discussion section, page 17 lines 16‐21 

"It is clear that when there is snow (as in this case) the model needs to have a snow component. It is less 

obvious (at least just by looking at hydrographs) how much of the differences in seasonality of the 

streamflow response between catchments are due to snow. Due to the large lag time between snowfall 

and hydrograph response it would be difficult to quantify this aspect without model experiments and the 

main result of the comparison between M0 and M1 is that the attribution of difference in seasonality 

(represented by the mean half streamflow date) is due to the spatial variability of snow processes." 

We have introduced this point in the discussion section, page 17 lines 22‐26  

"It is clear that precipitation is a first order control on streamflow. Less clear, at least before carrying out 

any analysis, is if the spatial variability in streamflow average is only due to precipitation: several 

authors, for example, pointed out the role of regional groundwater flow and incorporated this possibility 

in the models; GR4J, for example, has a parameter that quantifies catchment gains or losses. This shows 

that a‐priori there are several processes that can affect the water balance; our analysis is intended to 

understand which modeling decisions are relevant in this case study" 

We have introduced this point in the discussion section, page 17 lines 22‐26  

4) Good to bring on board in the discussion as well: 

"To avoid misunderstandings, we have clarified that we are interested in explaining the hydrograph 

spatial variability. " 

The interest of the paper in explaining hydrograph spatial variability has been stated in the abstract (“In 

order to appraise the dominant controls on streamflow spatial variability”) and in the introduction (“The 

objective of this study is to develop a semi‐distributed hydrological model with the appropriate level of 

functional complexity to reproduce streamflow spatial variability in the Thur catchment”, “Our specific 

objectives are to: (1) explore the spatial variability present in the Swiss Thur catchment regarding 

landscape characteristics, meteorological forcing and streamflow signatures; (2) identify the main 

climate and landscape controls that explain the variability of the hydrological response”). 

 

5) This could be reinforced and explored together with point 1 above: 

"We have clarified that the paper is not about large sample hydrology but about distributed modeling 

(e.g. see first paragraph of the introduction). In order to formulate model decision we have used 

elements of catchment classification studies. 
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The usage of element from catchment classification studies and the focus of the paper on distributed 

modelling have already emerged in section 3.1.1 (methods) 

“Addor et al. (2017) recently compiled a comprehensive list of streamflow signatures and climatic 

indices for characterizing catchment behaviour (see Table 3 in Addor et al., 2017). Here, we adopted 

their selection: while being originally introduced for a study about large sample hydrology, we believe 

that the indices proposed are also able to capture several different aspects of the time series and are 

therefore suitable also for this regional study” 
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Reply	to	review	by	Dr.	Lieke	Melsen	

We thank Dr. Lieke Melsen for her careful read to the manuscript and insightful suggestions. Below, we 

answer  in  detail  the  various  comments,  and  illustrate  how we  have  addressed  them  in  the  revised 

version. The original comments of the reviewer are reported in black and italics, our replies in blue. 

All the references to specific pages and  lines of the paper are based on the reviewed version without 

track changes. 

 

Dal Molin et al did a great job in incorporating feedback and improving the manuscript. The selection of 

signatures and indices is now more transparent and tested for mutual correlations, the hypotheses are 

now more directly linked to the correlation results, and the model results show interesting relations to 

the predefined hypotheses.  

 

I have only one major concern left, and that is the interpretation of model results solely based on 

correlation (Figure 8, 9, 10). Correlation clearly does not account for bias (as becomes specifically 

apparent in Figure 10) and therefore does not guarantee “good” model results. In the text (Section 4.2) 

the correlation is now discussed as indicator to demonstrate which model performs best for which 

signature. A suggestion could be to include bias and variability (the KGE‐terms) also in the same figures 

(or use the NSE?). Unless the authors have good reasons to do it the way they did, but then please clarify. 

This is a good point and we thank the reviewer for pointing it out. While correlation is the only 

numerical metric considered to evaluate the results in Fig. 8, 9, and 10, simulations are also evaluated 

qualitatively looking at the alignment of the points to the diagonal.  

In the new revision, we capture the bias calculating the normalized root mean square error between 

modelled and observed signatures. 

Minor point; 

 

I would expect the lower right panel (M1, HFD) of figure 8 to be the same as the third row first column 

panel (M1, HFD) of figure 9, but they are different. Is this because in Figure 8 only snow catchments are 

included, and in Figure 9 all? If so, please put more clearly and also explain why for figure 9 no snow‐

catchment selection was made. 

Yes, in the old version of the manuscript Figure 8 presents only snow‐affected catchments while Figure 9 

shows all the catchments. We acknowledge that this has been a bad choice and, therefore, we now 

show, in the new revision, only snow‐affected catchments regarding HFD. 

Textual; 

> “an uniform” ‐> “a uniform” (several times) 

> “not represents well extreme values ” ‐> “not represents extreme values well” 

> “which therefore represents an independent evaluation metrics” ‐> “which therefore represents 

independent evaluation metrics” 
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Thank you for the corrections. We implement them in the text. 

 

Suggestions;  

 

I have a few suggestions that might improve the conveyance of the conclusions. This is not based on the 

content, and therefore beyond the scope of my role as reviewer. As such, it is up to the authors to decide 

whether they agree and if it is worth the effort.  

 

I think the manuscript can benefit from leaving the traditional ‘methods‐results’‐structure. For instance, 

the results on the mutual correlation of the metrics and indices could be presented right after the 

introduction of these metrics and indices. After that, the second part of the paper can focus solely on the 

modelling. 

The general structure of the paper has been a major subject of discussion during the earlier review 

stage. The original paper was in the structure suggested by the reviewer, but it was criticized the 

Anonymous Referee #3 for having two methods‐results sections. We therefore restructured it to the 

current format. We therefore kept the current structure, but made some changes in the results section 

to address the following points.  

Also, I think it would be insightful if the Results‐section follows the structure of the four hypotheses. 

Hypothesis 1 is on precipitation as main driver. Then the first sub‐section should be on testing this 

hypothesis, and so on. Now, the results‐section is a little bit of everything, and the hypotheses are only 

clearly discussed again in 4.2.4. Which is a pity given that I think you chose an elegant way of 

approaching semi‐distributed modelling.  

We thank the reviewer for the suggestion. We have now changed the structure of the results section to 

highlight the pattern from hypotheses formulation to testing and verification. In particular, section 4.2 

now is about the formulation of the hypotheses (old section 4.1.3) and the design of the modelling 

experiments (old 4.2.1); section 4.3 presents the modelling results in terms of performance metrics (old 

4.2.2) and signatures representation (old 4.2.3); section 4.4 interprets the modelling results, relating 

them to the hypotheses (old 4.2.4, with mayor changes to highlight the hypotheses‐modelling pattern). 

In the same way, I think the manuscript could benefit from one clear conceptual figure that 

demonstrates the approach and the conclusions. For me, the main value of this paper is in demonstrating 

a way to thoughtfully develop a semi‐distributed model. This procedure can be schematized and as such 

better convey the message to future‐semi‐distributed‐model‐developers. The same is true for the 

hypotheses and the different model structures; a simple figure showing the different model structures, 

the hypothesis, and whether the hypothesis was confirmed or rejected could summarize all insights from 

this study. If number of figures becomes too high, the signature/indices‐correlation figures can be 

considered for supplementary material.  

We thank the reviewer for her suggestion; we think that, with the changes made to the paper, the 

procedure and the results are clearer and, therefore, such conceptual figure is not needed. 
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Overall, I think, besides the few small points I raised that might be clarified by the authors, the 

manuscript is in good shape for publication. 
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Abstract 

This study documents the development of a semi-distributed hydrological model aimed at reflecting the dominant controls 

on observed streamflow spatial variability. The process is presented through the case study of the Thur catchment 

(Switzerland, 1702 km2), an alpine and pre–alpine catchment where streamflow (measured at 10 subcatchments) has 15 

different spatial characteristics in terms of amounts, seasonal patterns, and dominance of baseflow. In order to appraise the 

dominant controls on streamflow spatial variability, and build a model that reflects them, we follow a two–stages approach. 

In a first stage, we identify the main climatic or landscape properties that control the spatial variability of streamflow 

signatures. This stage is based on correlation analysis, complemented by expert judgment to identify the most plausible 

cause-effect relationships. In a second stage, the results of the previous analysis are used to develop a set of model 20 

experiments aimed at determining an appropriate model representation of the Thur catchment. These experiments confirm 

that only a hydrological model that accounts for the heterogeneity of precipitation, snow related processes, and landscape 

features such as geology, produces hydrographs that have signatures similar to the observed ones. This model provides 

consistent results in space–time validation, which is promising for predictions in ungauged basins. The presented 

methodology for model building can be transferred to other case studies, since the data used in this work (meteorological 25 

variables, streamflow, morphology and geology maps) is available in numerous regions around the globe. 

1 Introduction 

Semi-distributed rainfall-runoff models are widely applied in operation for applications such as flood forecasting (e.g., 

Ajami et al., 2004) or developing sustainable irrigation practices (e.g., McInerney et al., 2018). The main purpose of these 

models is to simulate streamflow at a limited number of fixed points along river channels (e.g., Boyle et al., 2001), and for 30 

this reason they are characterized by a coarser spatial resolution than fully distributed models, which allowsallow a very 

detailed representation of the spatial variability of catchment processes. Compared to fully distributed models, they are 

characterized by lower data and computational requirements, which represents ana valuable practical advantage in their 

operational use. 

Similarly to the case of lumped models, the parameters of semi-distributed models are estimated via calibration. Therefore, it 35 

is important that the structure of these models is commensurate to the available data, including length, time scale, and spatial 

distribution (Wooldridge et al., 2001). However, semi-distributed models, even when used for similar applications such as 

streamflow predictions, differ significantly in terms of their process representation as well as number of calibration 

parameters. For example, Gao et al. (2014) assumes topography as a dominant control on hydrological processes, whereas 

the SWAT model (Arnold et al., 1998) emphasizes the role of soil. These differences raise the question of how to select an 40 



 

2 
 

appropriate model structure for the data at hand, which requires understanding the association between model parameters 

and the climatological and geomorphological characteristics of the catchment. 

Understanding the relationship between climate, landscape and catchment response is a common objective of many research 

areas in hydrology, including comparative hydrology (e.g., Falkenmark and Chapman, 1989), model regionalization (e.g., 

Parajka et al., 2005), catchment classification (e.g., Wagener et al., 2007), and prediction in ungauged basins (e.g., 5 

Hrachowitz et al., 2013). In the case of streamflow, the attempt to explain its spatial variability is typically accomplished 

either using statistical approaches, which are designed to regionalize selected characteristics of the hydrograph (streamflow 

signatures), or through hydrological models that account for relevant spatial information. In particular, statistical approaches 

such as regression analysis (e.g., Berger and Entekhabi, 2001; Bloomfield et al., 2009) and correlation analysis (e.g., 

Trancoso et al., 2017), or machine learning techniques like clustering (e.g.,  Sawicz et al., 2011;  Toth, 2013; Kuentz et al., 10 

2017) are used to group together catchments that present similar characteristics and to extrapolate the signatures where 

unknown. Such approaches have been useful to quantify the hydrological variability and identify its principal drivers. 

However, they are often not designed to discover causality links and can be affected by multicollinearity, that arises when 

multiple factors are correlated internally and with the target variable (Kroll and Song, 2013). 

By incorporating spatial information about meteorological forcings and landscape characteristics, semi-distributed 15 

hydrological models have the ability to mimic the mechanisms that influence hydrograph spatial variability. However, 

identifying the relevant mechanisms is challenging. One possibility is to be as inclusive as possible in accounting for all the 

catchment properties that are, in principle, important in controlling catchment response. However, this approach leads to 

models that tend to be data demanding and contain many parameters. For example, Gurtz et al. (1999) considered several 

landscape characteristics (elevation, land use, etc.) in their application of a semi-distributed model to the Thur catchment 20 

(Switzerland), which resulted into a model with hundreds of HRUshydrological response units (HRUs) that were defined a–

priori based on the complexity of the catchment. The other option is to try to identify the most relevant processes and neglect 

others, in order to control model complexity. For example, Fenicia et al. (2016) compared various model hypotheses to 

determine an appropriate discretization of the catchment in HRUs and appropriate structures for different HRUs. Antonetti et 

al. (2016) used a map of dominant runoff processes following Scherrer and Naef (2003) for defining HRUs. However, these 25 

approaches require a good experimental understanding of the area, which is not always available.  

Convincing model calibration–validation strategies are essential to provide confidence that the model ability to fit 

observations is a reflection of model realism and not a consequence of calibrating an overparameterized model (e.g., 

Andréassian et al., 2009). A common approach for the calibration of semi-distributed models is the so called ‘sequential’ 

approach, where subcatchments are calibrated sequentially from upstream to downstream (e.g., Verbunt et al., 2006; Feyen 30 

et al., 2008; Lerat et al., 2012; De Lavenne et al., 2016). Although this approach may provide good fits and therefore it has 

its practical utility where data is available, it does not provide understanding into the causes of streamflow spatial variability 

and results into models that are not spatially transferable. Moreover, such models are prone to contain many parameters, as 

each subcatchment would be represented by its own set of parameters. Alternative calibration–validation approaches that 

enable model validation not only in time but also in space are conceptually preferable, particularly when the modeling is 35 

used for process understanding or prediction in ungauged locations (e.g., Wagener et al., 2004; Fenicia et al., 2016). 

The objective of this study is to develop a semi-distributed hydrological model with the appropriate level of functional 

complexity to reproduce streamflow spatial variability in the Thur catchment. For this purpose, we use a two stages 

approach, the first one dedicated to an in-depth analysis of the available data, and the second one focused on hydrological 

modeling. 40 

Our specific objectives are to: (1) explore the spatial variability present in the Swiss Thur catchment regarding landscape 

characteristics, meteorological forcing and streamflow signatures; (2) identify the main climate and landscape controls that 

explain the variability of the hydrological response; (3) based on this analysis, build a set of model experiments aimed to test 
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the relative importance of dominant processes and their effect on the hydrograph; (4) appraise model assumptions against 

competing alternatives using a stringent validation strategy. 

The paper is organized as follows: Section 2 presents the study area and gives information about data availability; Section 3 

illustrates the methodology; Section  4 shows the results; Section 5 analyzes the results and puts them in perspective, 

showing what other similar studies have found; Section 6, finally, summarizes the main conclusions. 5 

2 Study area 

This study is carried out in the Thur catchment (Fig. 1), located in north–east of Switzerland, south–west of the Lake 

Constance. With a total length of 127 km and a catchment area of 1702 km2, the Thur is the longest Swiss river without any 

natural or artificial reservoir along its course. The Thur river is very dynamic, with streamflow values that can change by two 

orders of magnitude within a few hours (Schirmer et al., 2014). 10 

The Thur catchment has been the subject of several studies in the past; Gurtz et al. (1999) performed the first modelling 

study on the entire catchment using a semi-distributed hydrological model; Abbaspour et al. (2007) modelled hydrology and 

water quality using the SWAT model; Fundel et al. (2013) and Jorg-Hess et al. (2015) focused on low flows and droughts; 

Jasper et al. (2004) investigated the impact of climate change on the natural water budget. Other modelling studies include 

also Melsen et al. (2014) and Melsen et al. (2016), who investigated parameters estimation in data limited scenarios and their 15 

transferability across spatial and temporal scales, and Brunner et al. (2019) who studied the spatial dependence of floods. 

The Thur includes also a small–size experimental subcatchment (Rietholzbach, called Mosnang in this paper after the name 

of the gauging station) that was the subject of many field studies at the interface between process understanding and 

hydrological modelling (e.g., Menzel, 1996; Gurtz et al., 2003; Seneviratne et al., 2012; von Freyberg et al., 2014; von 

Freyberg et al., 2015). 20 

The topography of the catchment is presented in Fig. 1b; the elevation ranges between 356 m a.s.l. at the outlet and 2502 m 

a.s.l. at Mount Säntis. The majority of the catchment lies below 1000 m a.s.l (75 %) and only 0.6 % is above 2000 m a.s.l. 

(Gurtz et al., 1999). Based on topography (Fig. 1b), the catchment can be visually subdivided into two distinct regions: the 

northern part, with low elevation and dominated by hills and flat land, and the southern part, which presents a mountainous 

landscape.  25 

The land use (Fig. 1c) is dominated by pasture and sparse vegetated soil (60 %) and forest (25 %); urbanized and cultivated 

areas are located mainly in the north and cover 7 % and 4 % of the catchment respectively.  

Most of the catchment is underlain by conglomerates, marl incrustations and sandstone (Gurtz et al., 1999). For the purpose 

of this study, the geological formations have been divided into three classes (Fig. 1d): “consolidated”, covering mainly the 

mountainous part of the catchment, “unconsolidated”, located in the north, and “alluvial”, located in the proximity of the 30 

river network, mainly in the plateau area; the latter formation constitutes the main source of groundwater in the region 

(Schirmer et al., 2014). The soil depth (Fig. 1e) is shallower in the mountainous part of the catchment and deeper in the 

northern part.  

Based on the availability of gauging stations (Table 1), the catchment was divided in 10 subcatchments (Fig. 1a), with a total 

drained area that ranges between 3.2 km2 (Mosnang) and 1702 km2 (Andelfingen). Streamflow time series are obtained from 35 

the Federal Office for the Environment FOEN and the data is available from 1974 to 2017 but is used only form 1981 to 

2005 to match the precipitation, temperature, and potential evapotranspiration (PET) time series. In the considered range, the 

streamflow data are relatively continuous, with two gaps, one in St. Gallen, from 31 December 1981 to 01 January 1983, and 

the other one in Herisau, from 31 December 1982 to 09 May 1983. 

The raw maps (topography, land use, geology, and soil) are obtained from the Federal Office of Topography swisstopo. The 40 

meteorological data is obtained from the Federal Office of Meteorology and Climatology MeteoSwiss. Precipitation and 
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temperature are interpolated, as done in Melsen et al. (2016), with the pre–processing tool WINMET (Viviroli et al., 2009) 

using inverse distance weight (IDW) and detrended IDW respectively; while the first method considers only the horizontal 

variability (related to the distance from the meteorological stations), the second adds a vertical component to the variability 

related with the elevation (Garen and Marks, 2001). PET data is then obtained, as done in Gurtz et al. (1999), starting from 

meteorological and land use data, using the Penman–Monteith equation (Monteith, 1975), implemented as part of the 5 

hydrological model PREVAH (Viviroli et al., 2009). All these values are calculated at pixel (100 m) scale and then averaged 

over the subcatchments. All the time series are used at daily resolution in the subsequent analyses, aggregating the available 

hourly data. This choice was influenced on the one hand by the need of limiting the computational demand for the model 

experiments, for which a coarser temporal resolution is preferable, and on the other hand by the need of representing relevant 

hydrograph dynamics, for which finer temporal resolution is desirable (e.g., Kavetski et al., 2011). A daily data resolution, 10 

although it may obscure subdaily process dynamics, appeared to be a good compromise, and it is a typical choice in 

distributed model applications at such spatial scales (e.g., Kirchner et al., 2004). 

3 Methods 

The methodology follows a two stages approach. The first stage aims at determining the climatic and landscape controls on 

streamflow signatures. The second stage uses this understanding to configure the structure of a semi-distributed model, 15 

whose functional suitability is tested through a set of model experiments. Section 3.1 describes the first stage of the analysis, 

that is, the identification of influencinginfluence factors on the spatial variability of streamflow signatures. Section 3.2 

describes the general structure of the semi-distributed model, and the model evaluation approach. The design of the model 

experiments, which is dependent on the outcomes of the first stage of analyses, is presented directly in the results (Sect. 

4.2.12). 20 

3.1 Identification of influencinginfluence factors on the spatial variability of streamflow signatures 

The purpose of the analysis presented in this section is to understand the influence of climatic conditions and landscape 

characteristics on streamflow. Climatic conditions are represented by precipitation, potential evaporation, and temperature 

time series. Landscape characteristics are represented by maps of topography, land use, geology, and soil. 

Climatic conditions, landscape characteristics and streamflow are represented through a set of statistics (listed in Table 2). In 25 

the following, statistics calculated based on streamflow data will be called streamflow “signatures”, as it is often done in 

catchment classification literature (e.g., Sivapalan, 2006). We will refer to climatic and landscape “indices” for statistics 

calculated based on climatic data and landscape characteristics. A broad list of signatures and indices is presented in Sect. 

3.1.1; Section 3.1.2 presents the approach for reducing such list to a set of meaningful variables; Section 3.1.3 illustrates the 

approach for determining the indices that mostly control streamflow signatures; Sect. 3.1.4 describes how the signature 30 

analysis is used to set-up the model experiments. 

3.1.1 Catchment indices for representing streamflow, climate, and landscape 

Streamflow signatures (𝜁) and climatic indices (𝜓) were obtained using streamflow, precipitation, PET, and temperature time 

series. The values were calculated using 24 years of data, between 01 September 1981 and 31 August 2005; we considered 

the 01 September as the beginning of the hydrological year. The periods with gaps in the data (refer to Sect. 2 for details) 35 

were discarded from the analysis of the specific subcatchment. Landscape indices were obtained using the maps described in 

Section 2. 

Addor et al. (2017) recently compiled a comprehensive list of streamflow signatures and climatic indices for characterizing 

catchment behaviour (see Table 3 in Addor et al., 2017)(see Table 3 in ).. Here, we adopted their selection: while being 
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originally introduced for a study about large sample hydrology, we believe that the indices proposed are also able to capture 

several different aspects of the time series and are therefore suitable also for this regional study. The streamflow signatures 

here considered are described hereafter, followed by an explanation of their rationale: 

 average daily streamflow 𝜁୕ ൌ 𝒒ഥ, where 𝒒 is the streamflow time series and the overbar represents the average over 

the observation period; 5 

 runoff ratio 𝜁ୖୖ ൌ
𝒒ഥ

𝒑ഥ
, where 𝒑 is the precipitation time series; 

 streamflow elasticity (𝜁୉୐) defined as 

𝜁୉୐ ൌ med ቀቀ
୼𝒒ഥ

𝒒ഥ
ቁ ቀ

୼𝒑ഥ

𝒑ഥ
ቁൗ ቁ          (1) 

where Δ𝒒ഥ and Δ𝒑ഥ represent the streamflow and precipitation difference between two consecutive years and med is 

the median function; 10 

 slope of the flow duration curve (𝜁୊ୈେ) defined as the slope between the log-transformed 33rd and 66th streamflow 

percentiles; 

 baseflow index 𝜁୆୊୍ ൌ
𝒒ሺ𝐛ሻതതതതതത

𝒒ഥ
 , where 𝒒ሺ𝐛ሻ  represents the baseflow and was calculated using a low–pass filter as 

illustrated in Ladson et al. (2013) with the equation 

𝑞୲
ሺ୤ሻ ൌ min ൬0,𝜗ୠ𝑞୲ିଵ

ሺ୤ሻ ൅
ଵାణౘ
ଶ

ሺ𝑞୲ െ 𝑞୲ିଵሻ൰        (2) 15 

𝑞୲
ሺୠሻ ൌ 𝑞୲ െ 𝑞୲

ሺ୤ሻ           (3) 

with 𝑞୲
ሺ୤ሻ representing the quick flowquickflow. The settings of the filter were taken according to the findings of 

Ladson et al. (2013) and, in particular, three filter passes were applied (forward, backward, and forward), the 

parameter 𝜗ୠ was chosen to be equal to 0.925, and a reflection of 30 time steps at the beginning and at the end of 

the time series was used; 20 

 mean half streamflow date (𝜁ୌ୊ୈ) (Court, 1962), defined as the number of days needed in order to have a cumulated 

streamflow that reaches the 50 % of the total annual streamflow; 

 5th and 95th percentiles of the streamflow (𝜁୕ହand 𝜁୕ଽହ respectively); 

 frequency (𝜁ୌ୕୊) and mean duration (𝜁ୌ୕ୈ) of high-flow events: they are defined as the days when the streamflow 

is bigger than nine times the median daily streamflow; 25 

 frequency (𝜁୐୕୊) and mean duration (𝜁୐୕ୈ) of low-flow events: they are defined as the days when the streamflow is 

smaller than 0.2 times the mean daily streamflow; 

The frequency of days with zero streamflow, present in Addor et al. (2017), was not considered in this study because there 

are no ephemeral subcatchments in the study area.  

This group of streamflow signatures is capable of capturing various characteristics of the hydrograph: 𝜁୕  measures the 30 

overall water flows, 𝜁ୖୖ represents the proportion of precipitation that becomes streamflow, 𝜁୉୐ measures the sensitivity of 

the streamflow to precipitation variations, with a value greater than 1 indicating an elastic subcatchment (i.e. sensitive to 

change of precipitation) (Sawicz et al., 2011), 𝜁୊ୈେ measures the variability of the hydrograph, with a steeper flow duration 

curve indicating a more variable streamflow, 𝜁୆୊୍ measures the magnitude of the baseflow component of the hydrograph, and 

can be considered as a proxy for the relative amount of groundwater flow in the hydrograph, 𝜁ୌ୊ୈ measures the streamflow 35 

seasonality, 𝜁୕ହ, 𝜁୐୕୊, and 𝜁୐୕ୈ measure low-flow dynamics, 𝜁୕ଽହ, 𝜁ୌ୕୊, and 𝜁ୌ୕ୈ measure high-flow dynamics. 

Climatology was represented through the following indices (see Addor et al. (2017), Table 2): 

 average daily precipitation 𝜓୔ ൌ 𝒑ഥ;  

 average daily PET 𝜓୔୉୘ ൌ 𝒆𝐩𝐨𝐭തതതതത, where 𝒆𝐩𝐨𝐭 is the potential evapotranspiration time series; 
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 aridity index 𝜓୅୍ ൌ
𝒆𝐩𝐨𝐭തതതതതത

𝒑ഥ
; 

 fraction of snow (𝜓୊ୗ), defined as the volumetric fraction of precipitation falling as snow (i.e. on days colder than 0 

°C); 

 frequency (𝜓ୌ୔୊) and mean duration (𝜓ୌ୔ୈ) of high precipitation events: they are defined as days when the 

precipitation is bigger than five times the mean daily precipitation; 5 

 season (𝜓ୌ୔ୗ) with most high precipitation events (defined as above); 

 frequency (𝜓୐୔୊) and mean duration (𝜓୐୔ୈ) of dry days: they defined as days when the precipitation is lower than 1 

mm day-1; 

 season (𝜓୐୔ୗ) with most dry days (defined as above). 

The seasonality of precipitation used in Addor et al. (2017) was not considered in this study as it relied on fitting a sinusoidal 10 

function to the precipitation values, which in our case did not produce reliable results. Nevertheless, these climatological 

indices are able to comprehensively represent the climatic conditions of the subcatchment, with 𝜓୔ representing average 

water input, 𝜓୔୉୘ representing average evaporative demand, 𝜓୅୍ measuring the dryness of the climate, 𝜓୊ୗ measuring the 

relative importance of snow, 𝜓ୌ୔୊, 𝜓ୌ୔ୈ, and 𝜓ୌ୔ୗ measuring the importance of intense precipitation events, and  𝜓୐୔୊, 

𝜓୐୔ୈ, and 𝜓୐୔ୗ measuring the importance of dry days. 15 

The landscape characteristics were divided in four categories: topography, land use, soil, and geology. In order to quantify 

the characteristics of each category, a set of indices (𝜉) was defined. It is important to notice that all the areas calculated in 

this analysis were normalized by the respective subcatchment area (𝜉୅ ) in order to get comparable values between 

subcatchments of different size. 

Topography was represented with the following indices, calculated based on the digital elevation model (DEM):: 20 

 average elevation (𝜉୘୉); 

 average slope (𝜉୘ୗ୫); 

 fraction of the subcatchment with steep areas (𝜉୘ୗୱ) , with slope larger than 10°; 

 aspect, i.e. fraction of the subcatchment facing north (𝜉୘୅୬), south (𝜉୘୅ୱ), or east and west (𝜉୘୅ୣ୵). 

Land use was represented with the following characteristics, obtained by reclassifying the land use map in four categories 25 

(from 22 original classes): 

 fraction of the subcatchment with crops land use (𝜉୐େ); 

 fraction of the subcatchment with pasture land use (𝜉୐୔); 

 fraction of the subcatchment with forest land use (𝜉୐୊); 

 fraction of the subcatchment with urbanized land use (𝜉୐୙). 30 

Soil type was represented with the following indices, derived by the soil map: 

 fraction of the subcatchment with deep soil (soil depth greater than two meters) (𝜉ୗୈ); 

 average soil depth (𝜉ୗ୑). 

Geology was represented by the following indices, obtained by reclassifying the original map in three categories (from 22 

original classes): 35 

 fraction of the subcatchment with alluvial geology (𝜉ୋ୅); 

 fraction of the subcatchment with consolidated geology (𝜉ୋେ); 

 fraction of the subcatchment with unconsolidated geology (𝜉ୋ୙). 

The reclassification of the land use and of the geology maps consisted in aggregating specific classes into general classes 

(e.g. combining different types of forests into a unique forest class) with the objective of reducing their number, in order to 40 

facilitate subsequent analyses. 
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The consideration of topography, land use, soil, and geology for defining landscape indices was based on their potential 

influence on hydrological processes, and in turn, on the shape of the hydrograph. These landscape characteristics can all play 

an important role in controlling hydrological processes: land use can, for example, influence the infiltration of water in the 

substrate; soil thickness can affect the partitioning between water storage and runoff; vegetation is typically assumed to 

affect evaporation, and geology can affect groundwater dynamics. Indeed, these characteristics are used by many semi-5 

distributed hydrological models, for example for determining parameter values or for dividing the catchment in areas with 

homogenous hydrological response (e.g., Gurtz et al., 1999). 

3.1.2 Selection of meaningful streamflow signatures, climatic indices, and catchment indices 

The sets of statistics presented in Sect. 3.1.1 were designed to be comprehensive. However, they may also be redundant, for 

example by containing metrics that express similar characteristics of the underlying data. In order to facilitate subsequent 10 

correlation analyses between the various sets of statistics, it is important to reduce each set to a short list of meaningful 

variables. The reduction of each set of streamflow signatures, climatic indices, and landscape indices was achieved through 

the following steps: 

 All the statistics that did not show sufficient variability between the subcatchments were eliminated. We were in 

fact interested in identifying causes of spatial variability in the streamflow dynamics of the subcatchments of the 15 

Thur. Therefore, statistics that had a low variability were not of interest in this analysis. The variability was 

assessed using the coefficient of variation (defined by the ratio between the standard deviation and the average) and 

statistics with a coefficient of variation lessvalue lower than 5 % were discarded. 

 All the catchment indices (e.g. a certain type of land use) that account for a limited part of theany subcatchment 

were discarded. This point was motivated by the expectation that landscape characteristics covering a very small 20 

fraction of the subcatchment should not have a strong influence on the streamflow signatures considered. Here, 

landscape indices accounting for less than 5 % of theany subcatchment area were discarded. 

 Within each set of streamflow signatures, climatic indices, and catchment indices we retained only relatively 

independent metrics, if these are believed to represent the same underlying features of the time series. This step was 

motivated by the need of removing redundant information within each set. The selection of independent metrics was 25 

aided by the Spearman’s rank score between each pair of metrics, which represents (also non–linear) correlation 

between variables. Pairs of metrics with high absolute value of the Spearman’s rank score are potentially redundant. 

In eliminating potentially redundant variables, we adopted the following criteria: 

o Among highly correlated metrics, we preferred those depending on single variables (e.g. only precipitation 

or only streamflow) to those containing multiple variables (e.g. combining precipitation and streamflow or 30 

evaporation, such as the aridity index or the runoff ratio), as this may be a problem when looking for 

correlations between metrics; 

o With respect to landscape indices, in many cases the high correlation is due to the fact that they are 

complementary (the areal fractions sum up to unity). In such cases, we kept one index per class (e.g. a 

single index for geology). 35 

o A high correlation between metrics does not always mean that the metrics represent the same information. 

Therefore, the final selection of relevant metrics within each set was guided by expert judgment.  

Based on this process, we compiled a reduced list of signatures, climatic indices, and landscape indices, which was used in 

subsequent analyses. 
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3.1.3 Identification of climate and landscape controls on streamflow and consequences for model development 

This analysis aimed to identify climatic and landscape indices that mostly control streamflow signatures. In order to identify 

causality links between indices (𝜓 and 𝜉) and signatures (𝜁) we proceed as follows: 

 We calculated the correlation between indices and signatures using the Spearman’s rank score, and identified pairs 

of variables with high correlation; 5 

 We scrutinized pairs of variables with high correlations using expert judgment to decide if a causality link between 

variables is justified. 

The outcome of this process will be used to inform the semi-distributed model setup. The expert judgment is a critical step in 

the elicitation of causality from correlation (e.g., Antonetti and Zappa, 2018), and it is clearly subjective, being dependent on 

personal experience and subject matter knowledge. Although personal and subjective, expert decisions are based on an 10 

attempt to interpret data rather than be a-priori defined, which is typically the case in the application of semi-distributed 

hydrological models. 

3.1.4 Semi-distributed model setup and model experiments 

We assumed a generic structure for a semi-distributed hydrological model, described in Section 3.2.1, where some model 

structure characteristics are defined a priori, and others are to be defined. In order to motivate the open decisions, we 15 

proceeded as follows: 

 We used the identified causality links to interpret the dominant processes influencing signature spatial variability; 

 We designed model experiments aimed to confirm the hypothesized climatic and landscape controls on streamflow 

spatial variability. 

The overall objective of the model experiments is to prove that only models that incorporate the correct dependencies are 20 

able to correctly predict regional streamflow variability. In order to test this assumption, the model experiments will include 

cases where the assumed dependencies are not incorporated. Omitting an assumed dependency leads to structurally simpler 

model, which may raise the doubt that potential differences in model performance might be due to differences in model 

complexity. For this reason, the model experiments will include cases where alternative dependencies are incorporated, 

which do not reduce model complexity. In order to keep the study and presentation tractable, the model experiments will be 25 

limited to a few cases, illustrated in Sect. 4.2.1 which we judge relevant for this specific application. 

3.2 General structure of the semi-distributed hydrological model and model evaluation approach 

This section describes the approach for building and testing a semi-distributed hydrological model designed to represent the 

observed streamflow and particularly the observed spatial variability of streamflow signatures. The general model structure 

is explained in Sect. 3.2.1, the error model and the calibration procedure are described in Sect. 3.2.2 and 3.2.3, the metrics 30 

utilized to assess the performance are shown in Sect. 3.2.4. 

3.2.1 General structure of the hydrological model 

We describe here the general model structure; the definition of specific model experiments, which depends on the results of 

the signatures analysis done in the first step, will be described in Sect. 4.2.12.  

The model uses a two-layers decomposition of the catchment:  35 

1. Subcatchments are defined by the presence of the gauging stations; this subdivision is due to the necessity of having 

locations in the model where the streamflow is both observed and simulated and, therefore, it is possible to calibrate 

and evaluate the parameters of the hydrological model.  
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2. HRUs are defined based on catchment characteristics (e.g. topography, geology or vegetation); they 

representedrepresent parts of the catchment that are supposed to have a similar hydrological response to the 

meteorological forcing. Each HRU is characterized by its own parameterization. Different definitions of HRUs are 

tested, as described in Section 4.2.12. 

Each HRU has a unique parameterization. However, depending on how the inputs are discretized, the same HRU can have 5 

different states in different parts of the catchment. Therefore, the same HRU needs its own model representation whenever 

the spatial variability of states needs to be considered. For example, if the inputs are discretized per subcatchment, the same 

HRU needs a separate model representation in each subcatchment where it is present. For more details about our model 

implementation of “HRUs” refer to Fig. 4 of Fenicia et al. (2016). 

In order to limit the levels of decisions of the semi-distributed models, some of the aspects of the distributed models are 10 

fixed a-priori, and others are left open. In particular: 

 The structure chosen to represent the various HRUs is kept fixed. That is, differences between HRUs will be 

reflected only through the parameter values. 

 The definition of HRUs is left open. In particular, we do not a-priori specify which approach is used to discretize 

the landscape. 15 

 The spatial discretization of the model inputs is left open. Hence, we do not decide in advance which spatial 

discretization of the inputs is most appropriate. 

Only the fixed decision about the HRUs model structure is here described, whereas the open decisions are described in the 

Resultsresults section (Sect. 4.2.12).  The spatial organization of the model structure is represented in Fig. 6 with the 

equations listed in the Appendix A. The structure includes a snow reservoir (WR), with inputs distributed per subcatchments. 20 

Snowmelt and rainfall are input to an unsaturated reservoir (UR), which determines the portion of precipitation that produces 

runoff. This flux is split through a fast reservoir (FR), designed to represent the peaks of the hydrograph, proceeded by a lag 

function to offset the hydrograph, and a slow reservoir (SR), designed to represent baseflow. This structure was chosen to be 

parsimonious while general enough to reproduce typical hydrograph behaviour; it was tested in previous applications ( e.g., 

van Esse et al., 2013; Fenicia et al., 2014; Fenicia et al., 2016) demonstrating its suitability to reproduce a wide range of 25 

catchment responses. It also resembles popular conceptual hydrological models such as HBV (Lindstrom et al., 1997) and 

HyMod (Boyle, 2003), which are shown to have wide applicability. The model was built using the modelling framework 

SUPERFLEX (Fenicia et al., 2011). 

3.2.2 Error model  

As commonly done in hydrological modelling (e.g., McInerney et al., 2017), we here account for uncertainties by 30 

considering a probabilistic model of the observations 𝑸ሺ𝜽,𝒙ሻ, where 𝜽 is the vector of parameters and 𝒙 the model input, 

which is composed of a deterministic hydrological model 𝒉ሺ𝜽𝐡,𝒙ሻ (illustrated in Sect. 3.2.1) and a random residual error 

term 𝜠ሺ𝜽𝚬ሻ  that accounts for all data and model uncertainties (𝜽𝐡  and  𝜽𝚬  represent the hydrological and the error 

parameters): 

𝑧ሾ𝑸ሺ𝜽,𝒙ሻ; 𝜆ሿ ൌ 𝑧ሾ𝒉ሺ𝜽𝐡,𝒙ሻ; 𝜆ሿ ൅ 𝜠ሺ𝜽𝚬ሻ         (4) 35 

where 𝑧ሾ𝒚; 𝜆ሿ represents the Box–Cox transformation (Box and Cox, 1964) with parameter 𝜆 , which is used to account for 

heteroscedasticity (stabilize the variance). For 𝜆 ് 0:  

𝑧ሾ𝑦୲; 𝜆ሿ ൌ
௬౪
ഊିଵ

ఒ
            (5) 

The residual error term is assumed to follow a Gaussian distribution with zero mean and variance 𝜎ଶ 

𝛦୲~𝑁ሺ0;𝜎ଶሻ            (6) 40 
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The error model has, therefore, two parameters (𝜆 and 𝜎ଶ); the first one was fixed to 0.5 (McInerney et al., 2017) and the 

second one was inferred. 

This choice of error model (Gaussian noise applied to the Box–Cox transformation of the streamflow) allows for an explicit 

definition of the likelihood function (McInerney et al., 2017) 

𝑝ሺ𝒒𝐨𝐛𝐬|𝜽𝐡,𝜽𝚬,𝒙ሻ ൌ ∏ 𝑧′൫𝑞୭ୠୱ,୲|𝜽𝚬൯𝑓ேሺ𝛦௧|0;𝜎ଶሻ୘
୲ୀଵ         (7) 5 

where T represents the length of the time series, 𝑓ே is the Gaussian probability density function (PDF) and 𝑧′ሺ𝒒𝒐𝒃𝒔|𝜽𝜠ሻ is the 

derivative of 𝑧ሺ𝒒𝒐𝒃𝒔,𝜽𝜠ሻ with respect to 𝒒 evaluated at the observed data 𝒒𝒐𝒃𝒔 . Specifying Eq. (7) for the case where 

𝑧ሺ𝒒𝒐𝒃𝒔;𝜽𝜠ሻ is defined by Eq. (5), the expression of the likelihood function becomes: 

𝑝ሺ𝒒𝐨𝐛𝐬|𝜽𝐡,𝜽𝚬,𝒙ሻ ൌ ∏ 𝑞୭ୠ௦,௧
ሺఒିଵሻ𝑓ேሺ𝛦௧|0;𝜎ଶሻ୘

୲ୀଵ         (8) 

Equation (8) represents the likelihood function that is then used, together with ana uniform prior distribution, to calibrate the 10 

parameters of the model as described in Sect. 3.2.3. 

3.2.3 Calibration  

Parameter calibration is performed with the objective of maximizing their posterior density. According to Bayes equation, 

the posterior distribution of model parameters is expressed as the product between the prior distribution and the likelihood 

function; since ana uniform prior is used for the parameters, this is equivalent to maximizing the likelihood function in the 15 

defined parameter space; the optimization procedure is performed with a multi–start quasi–Newton method (Kavetski et al., 

2007) with 20 independent searches. We empirically established that with models of our complexity (about 10 parameters), 

20 independent searches provide good confidence that a global optimum is found. 

The evaluation of the model ability to reproduce streamflow is carried out in space–time validation (see also Fenicia et al., 

2016). For this purpose, the time domain is divided in two periods of 12 years each (from 01 September 1981 to 01 20 

September 1993, and from 01 September 1993 to 01 September 2005) and the subcatchments are split into two groups (A 

and B), according to a spatial alternation (subcatchment in group A flows into a subcatchment in group B that flows into one 

in group A and so on); the subcatchments belonging to group A are Andelfingen, Herisau, Jonschwil, St. Gallen, Wängi and 

the ones in group B are Appenzell, Frauenfeld, Halden, Mogelsberg, Mosnang. This method implies a division of the space–

time domain in four quadrants, such that the model can be calibrated in one quadrant and validated in the other three. For 25 

space–time validation, the model is calibrated using each group of subcatchment and each period, and validated using the 

other group of subcatchment and period. That is, the model calibrated using group A and period 1 was validated using group 

B and period 2, and so on for the other 3 combinations of subcatchments and groups. The model output in the 4 space–time 

validation periods is then combined, to calculate model performance using various indicators (see Sect. 3.2.4). Results are 

presented for space -time validation, which represents the most challenging test of model performance. 30 

3.2.4 Performance assessment 

Model performance is assessed using the following metrics: 

1. Time series metrics, which evaluate the ability of reproducing streamflow time series. The metrics used for this 

assessment are the following: 

 Normalized log–likelihood (LL),𝐹୐୐), that is, the logarithm of Eq. (8) normalized by the number of time steps 35 

present in the time series. This metricsmetric corresponds to the objective function used for model 

optimization. It can be observed that, since λ  is fixed at 0.5 in the Box–Cox transformation, model calibration 

is equivalent to maximising the Nash–Sutcliffe efficiency (NS)𝐹୒ୗ) calculated with the square root of the 

streamflow. LL𝐹୐୐ is not bounded but a higher value means a better match between two time series since, in 

this case, the absolute value of the residual is smaller and, thus, their PDF higher. 40 
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 Nash–Sutcliffe efficiency: 

𝑁𝑆ሺ𝒒𝐨𝐛𝐬,𝒒𝐬𝐢𝐦ሻ ൌ 1 െ
∑ ቀ௤౩౟ౣ,౪ି௤౥ౘ౩,౪ቁ

మ೅
೟సభ

∑ ቀ௤౥ౘ౩,౪ି𝒒𝐨𝐛𝐬തതതതതതቁ
మ೅

೟సభ

𝐹୒ୗሺ𝒒𝐨𝐛𝐬,𝒒𝐬𝐢𝐦ሻ ൌ 1 െ
∑ ቀ௤౩౟ౣ,೟ି௤౥ౘ౩,೟ቁ

మ೅
౪సభ

∑ ቀ௤౥ౘ౩,೟ି𝒒𝐨𝐛𝐬തതതതതതቁ
మ೅

౪సభ

   

    (9) 

Which is often used in hydrological applications, and it provides a sense of general quality of the simulations. 

NS𝐹୒ୗ is bounded between െ∞ and 1, with 1 meaning a perfect match. 5 

2. Signature metrics, which determine the ability of reproducing the streamflow signatures (𝜁) selected using the 

procedure illustrated in Sect. 3.1.2. The accordanceagreement between simulated and observed signatures is 

assessed both visually and using two metrics: the Spearman’s rank correlation. (𝑟) and the normalized root mean 

square error:  

𝐹 ୑ୗ୉ ൌ
ඨ∑ ቀ೜౩౟ౣ,೟ష೜౥ౘ౩,೟ቁ

మ೅
౪సభ

೅

∑ ೜౥ౘ౩,೟
೅
౪సభ

೅

         (10) 10 

While r assesses how well the simulated signatures can be described using a monotonic function, 𝐹 ୑ୗ୉ imposes a 

more stringent requirement, as it assesses how well the simulated and observed signatures line up on the diagonal 

line. 

The use of multiple metrics for assessing model performance enables a comprehensive assessment of various characteristics 

of the simulations. Time series metrics are designed to appraise the general quality of the model fit. Signatures, instead, are 15 

designed to highlight selected characteristics of the data at the expense of others. 

4 Results and interpretation 

4.1 InfluencingInfluence factors on the spatial variability of streamflow signatures 

This section illustrates the results of the correlation analysis complemented by expert judgement aimed to identify 

influencinginfluence factors that control the spatial variability of streamflow signatures; Section 4.1.1 presents the results of 20 

the selection of meaningful statistics; Section 4.1.2 identifies climate and landscape indices controlling streamflow 

signatures and presents consequences for model development; Section 4.1.3 formulates the hypotheses that have to be tested 

by the hydrological model. 

4.1.1 Selection of meaningful streamflow signatures, climatic indices, and catchment indices 

The streamflow signatures defined in Sect. 3.1.1 were calculated for each subcatchment and the values are shown in Table 3 25 

together with the coefficient of variation. All the signatures have a coefficient of variability bigger than the threshold value 

of 5%, with the most variable signature being 𝜁୐୕୊  (71%) and the least variable 𝜁ୌ୕ୈ  (6%). Therefore, none of these 

signatures was discarded. 

Figure 2 shows the correlations between the streamflow signatures: the lower triangle contains the Spearman’s rank 

correlation and the upper triangle the p-value associated with the correlations. Based on correlations and on its interpretation, 30 

a subset of 𝜁 can be defined as follows: 

  𝜁୕  ,  𝜁ୖୖ  and 𝜁୉୐  are strongly correlated (𝑟 ൐ 0.72). We retained 𝜁୕  and discarded 𝜁ୖୖ  and 𝜁୉୐  because both 

contain climatic information (precipitation) in their definition; 

 𝜁୆୊୍ and 𝜁୊ୈେ are strongly correlated (𝑟 ൌ െ0.77). We decided to retain 𝜁୆୊୍ as it is of easier interpretation (it is a 

proxy for the importance of groundwater flow, which is a potentially important process for the subsequent model 35 

development); 
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 𝜁ୌ୊ୈ was kept because it measures the seasonality of the streamflow. Note that 𝜁ୌ୊ୈ  is strongly correlated with 𝜁୕ 

(𝑟 ൌ 0.88). However, they reflect different properties of the hydrograph. In particular, 𝜁ୌ୊ୈ  can be an useful 

indicator for the effect of snow-related processes; 

 𝜁୕ହ and 𝜁ୌ୕ୈ were retained because they have low correlation (𝑟 ൏ 0.71) with the other selected signatures and 

because the first represents low flows and the second high flows; 5 

 𝜁୕ଽହ, 𝜁ୌ୕୊, 𝜁୐୕ୈ, and 𝜁୐୕୊ were discarded because they all show correlations with the selected signatures. 

In summary, the original set of streamflow signatures was reduced to a set of five meaningful signatures, which will be used 

in the subsequent analyses: average daily streamflow (𝜁୕ ), baseflow index (𝜁୆୊୍ ), half streamflow period (𝜁ୌ୊ୈ ), 5th 

percentiles of the streamflow (𝜁୕ହ), and duration of high-flow events (𝜁ୌ୕ୈ). 

In terms of climatic indices, Table 4 shows their values together with the coefficient of variation. It can be seen that there are 10 

some indices that show very little or no variation at all and, therefore, they could be already excluded from the subsequent 

correlation analysis; they are: 𝜓ୌ୔ୈ (1 %), 𝜓ୌ୔ୗ (0 %), 𝜓୐୔୊ (4 %), 𝜓୐୔ୈ (3 %), and 𝜓୐୔ୗ (0 %). 

Figure 3 shows the correlation between the remaining indices. It can be observed they all have strong internal correlation 

(𝑟 ൐ 0.71). For this reason it was decided to retain only 𝜓୔  and 𝜓୊ୗ , as they have lower correlation. The firstformer 

represents an important term of the water budget, the latter captures snow dynamics.  15 

Table 5 shows the values of the catchment characteristics considered in this study. All of them have a coefficient of variation 

larger than the minimum threshold of 5%. Therefore, none of them was excluded based on this criterion. The second 

criterion for the pre-exclusion of the catchments characteristics, consisting in removing 𝜉 occupying less than 5% of the 

subcatchments, led to the suppression of 𝜉୐େ (which occupies 4% of the subcatchment). 

Figure 4 shows the correlations between catchment characteristics; in many cases the high correlation is due to the fact that 20 

many indices are complementary (e.g. different types of geology). The following 𝜉 were selected (one index per class): 

 𝜉୅ because it is low correlated to the other features; 

 𝜉୘୉ and 𝜉୘୅ୱ in representation of the topography; 

 𝜉୐୊ for the land use; 

 𝜉ୗୈ representing the soil characteristics; 25 

 𝜉ୋେ for the geology. 

In summary, the original set of catchment indices was reduced to a set of 5six indices. 

4.1.2 Selection of controlling factors on streamflow signatures 

Figure 5 reports the results of the Spearman correlation between climatic indices plus catchment characteristics onand 

streamflow signatures. The upper panel contains the Spearman’s rank coefficients and the lower panel shows p-values 30 

associated with them. 

The following results can be noted: 

 The three statistics average precipitation (𝜓୔), fraction of snow (𝜓ிௌ𝜓୊ୗ), and average elevation (𝜉୘୉) correlate 

strongly with average streamflow (𝜁୕) and seasonality (𝜁ୌ୊ୈ) (𝑟 ൐ 0.64 and p-value൏ 0.05). This correlation can 

be interpreted as follows: subcatchments with high elevation (𝜉୘୉) tend to have higher precipitation (𝜓୔) due to 35 

orographic effects, which leads to higher streamflow (𝜁୕). They also tend to have more snow (𝜓୊ୗ) due to lower 

temperatures, which influences the seasonality (𝜁ୌ୊ୈ). 

 There are then some catchment characteristics that have no correlation (𝑟 ൏ 0.45) with the streamflow signatures 

(catchment area (𝜉୅) and land use (𝜉୐୊)) or limited correlation (aspect (𝜉୘୅ୱ) and deep soil (𝜉ୗୈ), with 𝑟 ൏ 0.64).  

 The consolidated geology (𝜉ୋେ) presents a strong correlation (𝑟 ൌ െ0.87) only with the baseflow index (𝜁୆୊୍) that it 40 

is not captured by the other indices. 
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 The streamflow signatures of low and high flows (𝜁୕ହ and 𝜁ୌ୕ୈ) cannot be explained by any index, with little 

correlation only with 𝜓୔ and 𝜉୘୉ (𝑟 ൏ 0.60) that is not sufficient to reach a p-value lower than 0.05. 

These results are the premise for designing meaningful model experiments. 

4.2 Hypotheses for model building 

In this section, we synthetize the outcomes of previous analyses in the form of testable hypotheses for model building. 5 

This section interprets the results found in Sect. 4.1.2 and formulates some hypotheses regarding the hydrological 

functioning of the catchment (Sect. 4.2.1). Section 4.2.2, then, presents the model alternatives designed for testing those 

hypotheses. 

4.2.1 Hypotheses on catchment functioning 

The results of the correlation analysis can be interpreted to formulate the following hypotheses regarding the drivers of 10 

streamflow variability:  

1. The precipitation is the first driver of the differences in the water balance of the subcatchments. The effect of 

topographic variability manifests itself primarily as an influence on precipitation (amount and type). Accounting for 

variability of precipitation therefore implicitly reflects such effect of topography on the hydrograph, since some 

inputs were interpolated taking into account the effect of the elevation (Sect. 2). Other phenomena potentially 15 

altering the water balance (e.g. regional groundwater flow) do not have a significant role and should not be 

considered. 

2. Snow related processes (e.g. amount of snow, timing of snowmelt) control differences in streamflow seasonality 

between subcatchments. Hence, the model needs to account for snow related processes and their spatial variability. 

3. Geology exerts an important control on the partitioning between quick flowquickflow and baseflow. Hence, the 20 

model should distinguish the different response behaviour of distinct geological areas. 

4. The other catchment characteristics (e.g. soil, vegetation) show little or no correlations with the streamflow 

signatures and therefore they should not be considered if the idea is to keep the model as simple as possible. 

These hypotheses will be tested through specific model comparisons, described in Sect. 4.2.1. 

The streamflow signatures 𝜁୕ହ and 𝜁ୌ୕ୈ, which have been selected as part of the analysis shown in Section 4.1.1, do not 25 

manifest a strong correlation with any of the indices (r is always less than 0.60), meaning that the identification of their 

potential controls is not obvious with the chosen approach. Hence, we have not been able to build model hypotheses that 

specifically target those signatures. As a result, we expect that the chosen models will not excel and will perform similarly in 

reproducing these signatures. The model comparisons used to test the four hypotheses listed above are described in Sect. 

4.2.2. 30 

4.3 Modelling 

This section presents the results of the modelling experiments. Section 4.2.1 describes the model comparisons designed to 

test the hypotheses formulated in section 4.1.3. Section 4.2.2 illustrates model results in terms of hydrograph metrics. 

Section 4.2.3 presents model results in terms of signatures. An interpretation of the results, including a comparison with the 

conclusions of the signatures analysis, is given in Sect. 4.2.4. 35 

4.3.14.2.2 Model experiments for testing the results of the signatures analysishypotheses 

Using the model structure described in Sect. 3.2.1, four model configurations were compared by varying the number and the 

definition of the HRUs, and changing the structure of the HRUs (Fig. 6). The objective of the experiments was to test the 

hypotheses 1-4 in Sect. 4.2.1.3 using semi-distributed hydrological models. 
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For all models, the meteorological inputs (precipitation, PET, temperature) are aggregated at the subcatchment scale. Based 

on the first hypothesis in Section ,, we assume that this discretization is sufficient to capture the regional difference in water 

balance between subcatchments. This hypothesis is tested with the model M0, with uniform parameters in the catchment (i.e. 

a single HRU) and distributed precipitation input. This model does not consider snow processes. We expect that this model 

will be able to reproduce differences in streamflow averages between subcatchments. 5 

The second hypothesis in Section  (snow controls seasonality) is tested with the model M1. Relatively to M0, M1 accounts 

for snow processes, represented by simple degree day snow module (see Kavetski and Kuczera, 2007), with inputs 

(temperature) distributed per subcatchment. We expect that this model will be able to reproduce differences in streamflow 

seasonality between subcatchments. 

The third hypothesis in Section  (geology controls baseflow) is tested with the model M2. Relatively to M1, M2 considers 10 

two HRUs, defined based on geology type. One HRU contains the areas with consolidated geology while the other HRU 

contains the rest of the catchment (unconsolidated and alluvial geology together). We expect that M2 will be able to 

reproduce differences in the baseflow index between subcatchments. 

The fourth hypothesis in Section  (other catchment characteristics should not be considered if the idea is to keep the model as 

simple as possible) is exemplified by the model M3. M3 is analogous to M2 in terms of complexity but the HRUs are based 15 

on catchment characteristics that did not show correlation with the streamflow signatures. Among those characteristics, we 

have selected land use, and considered an HRU based on forest and crops and the second one that occupies the rest of the 

catchment. This model is as complex as M2 (therefore it is more complex than M1); hence it has the same dimensions of 

flexibility to fit the data. However, since the structure of this model does not incorporate the cause-effect relationships 

derived from the signatures analysis, we expect that its predictive performance will be poorer than M2. 20 

The total number of the calibrated parameters depends on the number of HRUs and on the structure used to represent them: 

it was 8 for M0, 9 in M1, and 13 in M2 and M3, whereof which 5 parameters were linked between differentare common  to 

all HRUs (Fig. 6 and Table A1); thosethese parameters are: 𝐶ୣ that governs the evapotranspiration, 𝑡୰୧ୱୣ
୓୐  and 𝑡୰୧ୱୣ

୍୐  that control 

the routing in the river network, 𝑘୛ୖ  that regulates the outflow of the snow reservoir, and 𝑆୫ୟ୶୙ୖ  that determines the 

behaviour of the unsaturated reservoir. 25 

4.3 Modelling results 

The models presented in Sect. 4.2.2 are evaluated in terms of hydrograph metrics (Sect. 4.3.1) and signatures metrics (Sect. 

4.3.2). 

4.3.24.3.1 Model performance in terms of hydrograph metrics 

Figure 7a shows the values of the likelihood function (corresponding to the calibration objective function) for the four 30 

models in calibration and validation. It can be observed that M0 is, by far, the worst model, with the lowest value of the 

likelihood function. Regarding the other three models, it can be seen that, during calibration, M1, which has the lowest 

number of calibration parameters, has the lowest performance, whereas M2 and M3 have higher and similar likelihood 

values. This behaviour persists in time validation, with M2 and M3 that outperform M1. In space and space–time validation, 

however, M3 has the lowest likelihood value of the three, whereas M1 and M2 limit their decrease in performance, ranking, 35 

respectively, second and the first in terms of optimal likelihood value. 

The likelihood function represents an aggregate metrics of model performance; in order to get a sense of appreciation of 

model fit on individual subcatchments, Fig. 7b reports the values of Nash Sutcliffe efficiency in space -time validation for 

each of the subcatchments. On average, M2 has the best performance of all models (NS =𝐹୒ୗ= 0.79), followed by M1 (NS 

=𝐹୒ୗ= 0.78), M3 (NS =𝐹୒ୗ= 0.77), and M0 (NS =𝐹୒ୗ= 0.68). M3 and M0 have the highest variability of performance, with 40 

NS 𝐹୒ୗvalues between 0.58 and 0.86 and between 0.59 and 0.81. M1 and M2 have similar spread of NS 𝐹୒ୗvalues, ranging 
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from 0.69 to 0.85 for M1 and from 0.73 to 0.87 for M2. Therefore, M1 and M2 have a more stable performance across 

subcatchments than M3. M3 obtains a significantly worse performance than the other 2three models on Mosnang, where it 

reaches a NS 𝐹୒ୗvalue of 0.58 (M0, M1, and M2 have values of 0.62, 0.69, and 0.73 respectively). 

It can also be observed that M2 is generally better than M1, with NS 𝐹୒ୗvalues that are higher or approximately equal except 

for the subcatchments Andelfingen and Halden, where the NS𝐹୒ୗ is slightly worse (however still higher than 0.80). M3 is 5 

clearly better than M1 in Andelfingen, Frauenfeld and Wängi, and clearly worse in Herisau and Mosnang. In particular, in 

Mosnang (the smallest basin), M3 reaches the worst performance of all models on all subcatchments.  

Regarding M0, it is interesting to observe that it has the worst performance (among all the subcatchments) in Appenzell, 

which is the subcatchment that is mostly affected by snow (𝜓୊ୗ ൌ 0.21), while it reaches a performance similar to M1 in 

Frauenfeld and Wängi, which are two subcatchments with almost no snow. 10 

4.3.34.3.2 Model performance in terms of signature metrics 

Figure 8 compares the ability of M0 and M1 to capture the signatures representing average streamflow (𝜁୕) and seasonality 

(𝜁ୌ୊ୈ). The analysis is presented for space–time validation and, for 𝜁ୌ୊ୈ, it focuses only on the four subcatchments that are 

most affected by the snow (𝜓୊ୗ ൐ 0.10)), to emphasize the differences between the results of the two models. Each colour 

represents a different subcatchment and each dot a year; the red dashed line has a 45 ° slope and represents where the dots 15 

should align in case of perfect simulation results. The normalized root mean square error and the Spearman’s rank score isare 

also reported and gives information about the degree of dependency between the two variables. It is important to stress that 

the models have not been calibrated using any of the signatures as objective function, which therefore represent an 

independent evaluation metrics.  

It can be observed that M0 represents 𝜁୕ asequally well as M1, with almost no difference between the two models. (𝑟 is 0.95 20 

in both cases, whereas 𝐹 ୑ୗ୉ is 0.11 for M0 and 0.10 for M1). Focusing on the ability of capturing 𝜁ୌ୊ୈ, it can be seen that 

the points corresponding to M0 all lie in the upper-left part of the plot, meaning that this model underestimates the signature 

values. With respect to M1, instead, the points are more aligned around the diagonal. This difference in performance is also 

exemplifiedcaptured by the valuevalues of 𝐹 ୑ୗ୉ (0.13 for M0 and 0.07 for M1) and of 𝑟 that is (0.66 for M0 and 0.85 for 

M1.). 25 

Figure 9 compares the observed and simulated signatures for the other three models (M1, M2, and M3). All of them are 

extremelyequally good in representing 𝜁୕ ((𝐹 ୑ୗ୉ is 0.10, 0.10, and 0.11, and 𝑟 is 0.95, 0.96, and 0.95 for M1, M2, and M3 

respectively) and 𝜁ୌ୊ୈ ((𝐹 ୑ୗ୉ is 0.07, 0.07, and 0.05 and 𝑟 is 0.8885, 0.8884, and 0.87 for M1, M2, and M3 respectively). 

In all cases the cloud of points appears to be aligned to the diagonal meaning that the three models are able to capture the 

value of the signatures each year. Moreover, there is no sensible difference in the various models in representing those 30 

signatures. 

The performance of all the models decreases for 𝜁୕ହ where the models have a similar performance with, with 𝐹 ୑ୗ୉ equal to 

0.32, 0.28, and 0.33, and  𝑟 equal to 0.62, 0.66, and 0.61 for M1, M2, and M3 respectively. The points are still aligned along 

the diagonal but are quite dispersed, especially if compared with 𝜁୕ and 𝜁ୌ୊ୈ, meaning that the models capture the general 

tendency but have deficiencies capturing the inter-annual variability. 35 

In terms of 𝜁୆୊୍ ,, M2 performs clearly better than the other models. It is the only model that is able to represent this 

signature, with 𝐹 ୑ୗ୉ = 0.07, 𝑟 equal to= 0.83, and the points that align compact to the diagonal. The other two models have 

a lower performance (𝐹 ୑ୗ୉ equal to 0.11 and 0.10, and 𝑟 equal to 0.31 and 0.52 for M1 and M3 respectively) with the 

points that are quite dispersed and the dots align almost vertically, implying that the simulated values have a range of 

variability that is definitely smaller than the observed data. 40 
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Figure 10 shows the comparison between observed and simulated 𝜁ୌ୕ୈ; since this signature requires a long time window to 

be computed, it is not calculated year by year (as done with the other signatures) but as an aggregated value over the 24 

years. The performance of M1 and M2 is overall good, with 𝑟 that is 0.77 and 0.69, while M3 shows some deficiencies (𝑟 

equal to 0.48); allIn terms of performance, M2 remains still the best among the three models, with 𝐹 ୑ୗ୉ of 0.09 and 𝑟 of 

0.69; in second place comes M1, that outperforms M2 in terms of 𝑟 (0.77) but has a higher 𝐹 ୑ୗ୉ (0.19), meaning that M1 5 

has the points that are more aligned but on a line that is farther from the diagonal compared to M2; M3, finally, has a bad 

performance, with high 𝐹 ୑ୗ୉ (0.18) and low 𝑟 (0.48). All the models tend to slightly overestimate the duration of high flow 

events with most of the points that lie on the right side of the diagonal. 

4.3.4 Interpretation of hydrological model results 

4.4 Hypotheses testing 10 

The results of the hydrological model experiments appear to support our general hypothesis that only models that account for 

the influencinginfluence factors that affect the streamflow signatures are able to reproduce streamflow spatial variability (see 

Sect. 4.2.1.3). This provides confidence that those models are a realistic representation of dominant processes in the 

catchment.  

In particular, the results of M0 showThe implications of the modelling results with respect to the evaluation of the four 15 

hypotheses are explained as follows: 

1. Hypothesis 1: precipitation is the first driver of differences in the water balance; the good performance of 

model M0 in the representation of the mean annual streamflow (𝜁୕ ) suggests that accounting for the spatial 

heterogeneity of the precipitation alone is sufficient to achieve a good accuracy signaturesrepresentation of the 

annual water balance, with 𝑟  of 0.95 for average streamflow 𝜁ொ .. More complex models, with more HRUs, 20 

processes, and more parameters, while resulting in an overall improvement of time series metrics, do not result in 

any improvement in reproducingsimulating the average streamflowwater balance signature. 𝜁୕. 

2. The differences between M1 and M0 show thatHypothesis 2: snow related processes control differences in 

streamflow seasonality; the improvement in the representation of the streamflow seasonality 𝜁ୌ୊ୈ by M1 can be 

largely attributed to the  (spatially variable) effect of snow accumulation and melting. More complex models (M2 25 

and M3) do not demonstrate an improvement in this signature., indicating that the structural differences between 

these models do not have an influence on this signature. 

M2 determines a large improvement in matching signatures of baseflow variability. The ability of fitting 𝜁୆୊୍ goes from 0.31 

for M1 to 0.83 for M2. This result confirms that geology influences spatial variability of quickflow vs baseflow partitioning, 

as indicated by signatures analysis. 30 

3. M3Hypothesis 3: geology controls the partitioning between quickflow and baseflow; the ability of M2 to match 

the signature 𝜁୆୊୍, which quantifies the separation between quickflow and baseflow, much better than the other 

models, supports the hypothesis that geology has a strong control on the partitioning between quickflow and 

baseflow. M2 is also the model with average best performance in terms of streamflow metrics. 

3.4. Hypothesis 4: characteristics that do not show correlations do not influence streamflow variability; the overall 35 

lower performance of M3 compared to M2, both in terms of signatures and streamflow metrics, reassures that the 

relatively good results of M2 are not just due to increasing complexity. Although this model performs slightly better 

than the M1 in terms of matching signatures such as 𝜁୆୊୍, M2 is still much better (e.g. the Spearman’s rank score for 

𝜁୆୊୍ is 0.83 for M2 and 0.52 for M3). and confirms that adding characteristics that do not show correlations does not 

improve the representation of spatial variability. 40 
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All the models do not preform particularly well in reproducing 𝜁୕ହ and 𝜁ୌ୕୊. These problems show that such models may 

not represent well extreme values (high and low flows), and therefore they are still amenable to improvements. 

OverallIn summary, distributing the inputs in space and accounting for the spatial distribution of snow related processes is 

sufficient to get good performance metrics of water balance and seasonality, confirming the fact that only the precipitation 

rate and the partitioning between rainfall and snow are the first controllerscontrols on these hydrograph characteristics. 5 

However, in order to capture other important characteristics of the hydrograph, described by signatures likesuch as  𝜁஻ிூ, the 

discretization of the catchment in HRUs is necessary. This discretization has to be carefully made and a preliminary analysis 

to understand dominant influencinginfluence factors on signatures can help in this decision. As shown in Fig. 9, if we 

usesuch discretization uses landscape characteristics that are not strongly correlated with the signatures (e.g. land use) the 

results are worse than if we choose characteristics that show a strong correlation with signatures (e.g. geology). This means 10 

that M2 is capable of capturing the signatures not just because it is more complex than M1, but because it incorporates the 

causality link between the geology and the streamflow signatures in its structure. 

 

5 General discussion 

Explaining the spatial variability observed in catchment hydrological behaviour by identifying the most important controls 15 

on water fluxes and pathwaysresponse is a major focus of catchment hydrology and a central theme in classification studies 

(e.g., McDonnell and Woods, 2004; Wagener et al., 2007). A common approach for interpreting the spatial variability of 

catchment responsesresponse is through correlation based analyses, which seek correlationsto identify relationships between 

climatic or catchment characteristics and streamflow signatures. This is typically done through correlation based analyses 

(e.g., Lacey and Grayson, 1998; Bloomfield et al., 2009).  One of, which however, carry the issues with this approach 20 

islimitations that correlation does not always imply causality, and that the presence of multiple correlated variables can 

obscure process interpretation. 

In this study, we combine a correlation analysis and expert judgement for identifying the dominant influencinginfluence 

factors on streamflow signatures with hydrological modelling, by using the interpretation of the correlationfirst analysis as 

an inspiration for generating testable model hypotheses. The combination of correlation analysis on streamflow signatures 25 

and hydrological modelling is beneficial because on the one hand, the speculations on dominant processes resulting from the 

correlation analyses can be verified in the modelling process. Specifically, we developed model experiments to test the 

influence of precipitation spatial distribution on streamflow average and seasonality, and the influence of geology on 

quickflow vs baseflow partitioning. On the other hand, model building benefits from the guidance resulting from the 

preliminary signatures analysis. The construction of a distributed model requires several decisions (e.g., Fenicia et al., 2016), 30 

including how to “break–up” the catchment in a meaningful way, and preliminary signatures analysis can motivate some of 

these decisions. For example, the definition of HRUs defined based on geology, aswhich was suggested by the signatures 

analysis, resulted in models with better model performance than models using HRUs baseddefined on the basis of land use, 

particularly in the representation of streamflow signatures that reflect the baseflow vs quickflow partitioning. 

Although several modelling decisions were guided by data analysis, it should be noted that alternative decisions would have 35 

been similarly consistent with the data. For example, both precipitation and elevation are correlated with average 

streamflow, and both geology, topography and soil type characteristics are correlated between each other and with baseflow 

index (Section 4.1.2 and Figure 5). The correlation of catchment characteristics (e.g. geology, soil and topography) can be 

attributed to the fact that they have evolved together in the shaping of the catchment morphology (e.g. mountainous regions 

have impervious topography with shallower soil and, for these reasons, are less suitable for human activities, influencing 40 

land use). The decisions on which variables are chosen to reflect a causality link is not always obvious from correlation 



 

18 
 

analysis alone, and it requires expert judgment, which is necessarily subjective. Although subjectivity is difficult to avoid, it 

is important being transparent about the decision taken and the argumentations on which they are based, how weak or strong 

they may be, so that they can be reappraised and revised if new evidence is acquired. 

Although our results in terms of the hypotheses 1-4 described in the previous section appear justifiable based on previous 

work, they are not a-priori obvious. In terms of the first hypothesis, although it is known that precipitation has a strong 5 

control on the average streamflow, it is less clear if the spatial variability in the streamflow average can only be attributed to 

precipitation: some authors, for example, pointed at the role of regional groundwater flow in affecting the water balance 

(e.g., Bouaziz et al., 2018); GR4J (Perrin et al., 2003)The choice of streamflow signatures is based on the large-sample study 

from , for example, has a parameter that quantifies catchment gains and losses. Our modelling experiments, in particular 

through M0, have shown that groundwater processes, which potentially alter the water balance, are not influencing the mean 10 

streamflow spatial variability of the Thur catchment.  

In terms of the snow processes, although it is clear that, when there is snow (as in this case), the model needs to have a snow 

component, it is less obvious (at least just by looking at hydrographs) how much of the differences in seasonality of the 

streamflow response between catchments are due to snow. The objective of the comparison between M0 and M1 is not to 

show that adding a snow component improves the overall performance but that the differences in seasonality are captured by 15 

the model only when the snow component is integrated. 

In terms of the effect of geology, Kuentz et al. (2017), which provides a broad range of signatures typically used in 

hydrology. Our analyses showed that this selection is rather inclusive, with several strongly correlated signatures (e.g. 𝜁ொand 

𝜁ோோ). For this reason, we eventually used a much smaller selection of the original set of signatures (12 in the original set vs. 5 

in the final set). The apparent inclusivity of the set from  provides confidence that the main properties of streamflow are 20 

captured in our study. However, it does not guarantee that this set of signatures is sufficient in representing streamflow time 

series. 

Our results on the Thur catchment with respect to the effect of meteorological inputs on average streamflow and of the 

geology on baseflow index are in general agreement with previous work.  made a classification study over more than 40000 

catchments across all Europe (of which almost 2700 are gauged) and found that the rainfall is the first controller of the 25 

average streamflow, geology controls the BFI, topography the flashiness index, and, for most of the cases, land use is the 

second controllercontrol of them; Bloomfield et al. (2009) used a linear regression model and linked the lithology of the 

Thames Basin (UK) with the BFI; Lacey and Grayson (1998) noted that geology controls the BFI in two ways, storing the 

water and impacting the soil formations; Fenicia et al. (2016) compared different model structures and catchment 

discretization methods in the Attert Basin (Luxemburg) and discovered that the best model was the one that incorporates a 30 

spatial representation of the meteorological inputs and of the geology. 

 On the other hand, this general tendency should not be generalized to all places. For example, Mazvimavi et al. (2005) 

found that geology was not important for the BFI, as in their case study the aquifer was deep and disconnected from the 

river. Bouaziz et al. (2018) found a strong influence of regional groundwater flow in the Meuse catchment which altered the 

water balance. 35 

The choice of streamflow signatures is based on the large-sample study from Addor et al. (2017), which provides a broad 

range of signatures typically used in hydrology. Our analyses showed that this selection is rather inclusive, with several 

strongly correlated signatures (e.g. 𝜁ொand 𝜁ோோ). For this reason, we eventually used a much smaller selection of the original 

set of signatures (12 in the original set vs. 5 in the final set). Although hundreds of signatures have been proposed in 

literature (e.g., Olden and Poff, 2003), the apparent inclusivity of the set from Addor et al. (2017) provides confidence that 40 

the main properties of streamflow are captured in our study. However, it does not guarantee that this set of signatures is 

sufficient in representing streamflow time series. 
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One of the main limitations of this work is the restricted number of catchments involved and the limited spatial extension of 

the study. For this reason, it is difficult to generalize the results to other climatic regions. The subcatchments belong all to the 

same region and the landscape and climatic characteristics, while varying substantially within the basin, are still a small 

sample of the characteristics found elsewhere. Moreover, although the model evaluation uses validation in space and time, 

which is a relatively incisive test, the spatial validation is carried out in a nested setup. The application of systematic model 5 

development strategies to other places and scales, and spatial validation to entirely different regions, are necessary to obtain 

more generalizable insights. 

The small number of subcatchments involved in this study (10) limits the range of viable methods for identifying 

relationships between landscape and climatic indices and streamflow signatures (Sect. 3.1) to rather simple approaches. In 

particular, our correlation analysis, although accounting for non-linearity, is limited to monotonic correlations between 10 

variables, and it is unable to identify other forms of relationship, including the mutual interaction between various 

influencinginfluence factors. The usage of more advanced techniques, including machine learning approaches such as 

random forest or clustering analyses, are most efficient when larger samples are available and could represent a more 

suitable choice in these situations. 

6 Conclusion 15 

In this study, we presented a methodology for the constructiondevelopment process of a semi-distributed hydrological model 

where model hypotheses, instead of being made a–priori, are informed by preliminary analysis on determining the dominant 

climatic and landscape controls on streamflow spatial variability. Besides providing guidance to model development, the 

proposed approach is useful in the fact that modelling can be used to test specific hypotheses on dominant processes 

resulting from such preliminary analysis. Our analysis was applied to the Thur catchment, subdivided in 10 subcatchments 20 

based on available stream gauging stations. The main findings are summarized in the following points: 

1. we found large spatial variability between the subcatchments of the Thur in terms of various streamflow signatures 

reflecting multiple temporal scales: yearly, seasonal and event scale. In terms of climatic characteristics, indices 

reflecting fraction of snow, precipitation totals, and aridity varied considerably among catchments. Other 

precipitation characteristics such as season, frequency and duration of dry and wet days did not vary significantly 25 

among catchments. In terms of landscape characteristics, there is large variability of topography (e.g. from upstream 

mountainous to downstream flat areas), geology (with unconsolidated, more permeable, and consolidated, relatively 

impermeable formations), and soils (with low depths in the mountains, and large depth in the floodplains) in all 

catchments; 

2. based on correlation analysis and expert judgment, we determined that climatic variables, especially precipitation 30 

average, are the main controls on streamflow average yearly values; the fraction of snow is responsible for 

streamflow seasonality by delaying the release of winter precipitation to the spring season, and geology controls the 

baseflow index, with a higher fraction of unconsolidated material determining higher baseflow; 

3. the results of the signatures analysis were translated into a set of model hypotheses: a model with uniform 

parameters and distributed precipitation input (M0), the addition of a snow component (M1), the subdivision of the 35 

catchment in geology based HRUs (M2), and the alternative subdivision the catchment using vegetationland use 

based HRUs (M3); 

4. using model comparison, and a validation approach that considers model performance (also in terms of signatures) 

in space -time validation, accountingwe found that it is necessary to account for the heterogeneity of precipitation, 

snow related processes, and landscape features such as geology, is necessaryin order to produce hydrographs that 40 

have signatures similar to the observed ones. In particular, we confirmed that M0, in spite of a generally poor 
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performance, is sufficient to capture signatures of streamflow average, showing that only distributing the 

meteorological inputs is sufficient to explain regional differences in average streamflow and that other phenomena 

potentially altering the water balance (e.g. regional groundwater flows)  do not play a significant role. M1 improves 

signatures of streamflow seasonality, showing that snow is the main responsible for the variability of the seasonality 

among the catchments. M2 enables reproducing signatures such as the baseflow index, showing that incorporating 5 

the geology of the catchment is important for reproducing regional differences in baseflow. Model modifications 

that are not in line with the results of the signature analysis, such as subdividing the catchment using vegetationland 

use based HRUs (M3), despite leading to the same complexity as M2, cause deterioration in model performance in 

space-time validation. Overall, these results confirm the hypotheses based on the signatures analysis and suggest 

that the causality relationships, explaining the influence of climate and landscape characteristics on streamflow 10 

signatures, can be constructively used for distributed model building. 

 

The relatively good performance obtained in space–time validation suggests that the proposed approach could be used for 

the prediction of the streamflow in other ungauged locations within the Thur catchment. The method proposed uses data that 

is commonly available in many gauged catchments (e.g. meteorological data, streamflow measurements, and maps of 15 

elevation, geology, land use, and soil); therefore, it is easily transferable to other locations.  

7 Appendix 

7.1 Appendix A: Hydrological model details 

7.1.1 A.1 Model equations 

The equations of the model are listed in this appendix; the model structure in presented in Fig. 6. Table A1 contains the 20 

model parameters with the range of variability used in calibration, Table  A2 lists the water–budget equations, Table A3 and 

A4 present the functions and the constitutive functions used. 
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13 Figures 

 

Figure 1: Landscape characteristics of the Thur catchment: (a) subdivision in subcatchments, river network, and gauging stations; 
(b) elevation map; (c) land use map; (d) simplified geology map; (e) soil depth map; (f) slope map (derived from the elevation 
map). 5 
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Figure 2: Internal correlation between the streamflow signatures. The lower triangle shows the Spearman’s rank score with the 
red colour that indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the 
corresponding p-values, where yellow colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in 
the figure are reported in Table 2. 5 

 

Figure 3: Internal correlation between the climatic indices. The lower triangle shows the Spearman’s rank score with the red 
colour that indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the 
corresponding p-values, where yellow colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in 
the figure are reported in Table 2. 10 
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Figure 4: Internal correlation between the catchment characteristics. The lower triangle shows the Spearman’s rank score with 
the red colour that indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the 
corresponding p-values, where yellow colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in 
the figure are reported in Table 2. 5 
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Figure 5: Correlation between the selected streamflow signatures (rows) and the selected climatic indices and catchment 
characteristics (columns). The upper panel shows the Spearman’s rank score with the red colour that indicates negative 
correlations and the blue that indicates positive correlations. The lower panel reports the corresponding p-values, where yellow 
colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in the figure are reported in Table 2. 5 
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Figure 6: Spatial organization of the model structure: the catchment is divided in subcatchments (black lines), based on the 
location of the gauging stations, and HRUs (background colour), based on the catchment characteristics. All the HRUs have the 
same structure but each HRU has its own parameterization except for some shared parameters. In the case of a single HRU model 
(i.e. M0 and M1), the model maintains the subdivision in subcatchments but loses the subdivision in multiple HRUs. 5 
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Figure 7: Normalized log–likelihood (a) and Nash–Sutcliffe efficiency (b) for the three model configurations. The upper plot (a) 
reports the variation between calibration and validation of the average of the 10 subcatchments; the lower plot (b) shows the 
variation between subcatchments during space–time validation.  
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Figure 8: Influence of the model structure on the representation of the average streamflow (𝜻𝐐) and the mean half streamflow day 
(𝜻𝐇𝐅𝐃). Single HRU model without snow reservoir on the left (M0), single HRU model with snow reservoir on the right (M1). Each 
dot represents a year and each colour a subcatchment. For 𝜻𝐇𝐅𝐃, only the four subcatchments with the fraction of snow (𝝍𝐅𝐒) 
larger than 10 % are plotted. The red dashed line has a 45 ° slope and indicates where all points should align in case of perfect 
match. The Spearman’s rank score (𝒓) is also reported. 5 
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Figure 9: Simulated vs observed streamflow signatures. Single HRU model on the left (M1), two HRUs model based on geology in 
the centre (M2), two HRUs model based on land use on the right (M3). Each dot represents a year and each colour a 
subcatchment. From up to bottom, mean daily streamflow (𝜻𝐐), baseflow index (𝜻𝐁𝐅𝐈), mean half streamflow date (𝜻𝐇𝐅𝐃),, only the 5 
catchment with 𝝍𝐅𝐒 larger than 10%  ), and 5th percentile of the streamflow (𝜻𝐐𝟓). The red dashed line has a 45 ° slope and 
indicates where all points should align in case of perfect match. The Spearman’s rank score (𝒓) is also reported. 
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Figure 10: Ability of the hydrological models of representing the signature duration of low-flow events (𝜻𝐇𝐐𝐃). Single HRU model 
on the left, two HRUs model based on geology in the centre, two HRUs model based on land use on the right. 

  5 
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14 Tables 

Table 1: Identification of the gauging stations and description of the river network. 

 Index 
Code (a) 

Upstream 

catchments 

Andelfingen 1 2044 2 – 10 

Appenzell 2 2112 – 

Frauenfeld 3 2386 10 

Halden 4 2181 2, 3, 5 – 10 

Herisau 5 2305 – 

Jonschwil 6 2303 7, 8 

Mogelsberg 7 2374 – 

Mosnang 8 2414 – 

St. Gallen 9 2468 2 

Wängi 10 2126 – 

 (a) Code of the gauging station, as defined by the Federal Office for the Environment FOEN 
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Table 2: List of streamflow signatures, climatic indices, and subcatchments characteristics considered in the study. 

Symbol Name 

Streamflow signatures 

𝜁୕ ሾmm dିଵሿ Average daily streamflow 

𝜁ୖୖ𝜁ோோ ሾെሿ Runoff ratio 

𝜁୉୐ ሾെሿ Streamflow elasticity 

𝜁୊ୈେ ሾെሿ Slope of the flow duration curve 

𝜁୆୊୍ ሾെሿ Baseflow index 

𝜁ୌୈ୊ ሾd of yrሿ Mean half streamflow date 

𝜁୕ହ ሾmm dିଵሿ 5th percentile of the streamflow 

𝜁୕ଽହ ሾmm dିଵሿ 95th percentile of the streamflow 

𝜁ୌ୕୊ ሾd yrିଵሿ Frequency of high-flow events 

𝜁ୌ୕ୈ ሾdሿ Mean duration of high-flow events 

𝜁୐୕୊ ሾd yrିଵሿ Frequency of low-flow events 

𝜁୐୕ୈ ሾdሿ Mean duration of low-flow events 

Climatic indices 

𝜓୔ ሾmm dିଵሿ Average daily precipitation 

𝜓୔୉୘  ሾmm dିଵሿ Average daily potential evapotranspiration 

𝜓୅୍  ሾെሿ Aridity index 

𝜓୊ୗ  ሾെሿ Fraction of snow 

𝜓ୌ୔୊  ሾd yrିଵሿ Frequency of high-precipitation events 

𝜓ୌ୔ୈ  ሾdሿ Mean duration of high-precipitation events 

𝜓ୌୈୗ  ሾെሿ Season with most high-precipitation events 

𝜓୐୔୊  ሾd yrିଵሿ Frequency of low-precipitation events 

𝜓୐୔ୈ  ሾdሿ Mean duration of low-precipitation events 

𝜓୐୔ୗ  ሾെሿ Season with most low-precipitation events 

Subcatchments characteristics 

𝜉୅ ሾkmଶሿ Subcatchment area 

𝜉୘୉ ሾmሿ Average elevation 

𝜉୘ୗ୫ ሾ°ሿ Average slope 

𝜉୘ୗୱ ሾ%ሿ Fraction of the subcatchment with steep areas 

𝜉୘୅ୱ ሾ%ሿ Fraction of the subcatchment facing south 

𝜉୘୅୬ ሾ%ሿ Fraction of the subcatchment facing north 

𝜉୘୅ୣ୵ ሾ%ሿ Fraction of the subcatchment facing east or west 

𝜉ୗ୑ ሾmሿ Average soil depth 

𝜉ୗୈ ሾ%ሿ Fraction of the subcatchment with deep soil 

𝜉୐୊ ሾ%ሿ Fraction of the subcatchment with forest land use 

𝜉୐େ ሾ%ሿ Fraction of the subcatchment with crops land use 

𝜉୐୙ ሾ%ሿ Fraction of the subcatchment with urbanized land use 
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𝜉୐୔ ሾ%ሿ Fraction of the subcatchment with pasture land use 

𝜉ୋ୅ ሾ%ሿ Fraction of the subcatchment with alluvial geology 

𝜉ୋେ ሾ%ሿ Fraction of the subcatchment with consolidated geology 

𝜉ୋ୙ ሾ%ሿ Fraction of the subcatchment with unconsolidated geology 
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Table 3: Values of the streamflow signatures. The names of the subcatchments are abbreviated using the first three letters, the 
symbols are reported in Table 2. The last column contains the coefficient of variation of each signature. 

 Subcatchment  
 And App Fra Hal Her Jon Mog Mos StG Wän CV 
𝜁୕ 2.46 4.14 1.64 3.08 2.95 3.71 3.21 2.91 3.43 2.03 0.25 
𝜁ୖୖ 0.63 0.80 0.49 0.70 0.71 0.80 0.70 0.72 0.71 0.56 0.14 
𝜁୉୐ 1.35 1.22 1.68 1.24 1.17 1.35 0.97 1.37 0.99 1.54 0.17 
𝜁୊ୈେ 2.12 2.41 2.11 2.30 2.08 2.49 2.76 2.78 2.47 2.02 0.12 
𝜁୆୊୍ 0.55 0.50 0.56 0.52 0.50 0.50 0.45 0.42 0.48 0.57 0.10 
𝜁ୌୈ୊ 194.21 220.63 170.38 202.00 193.87 205.38 196.96 168.33 209.36 173.17 0.09 
𝜁୕ହ 0.50 0.70 0.35 0.57 0.74 0.54 0.44 0.28 0.60 0.49 0.27 
𝜁୕ଽହ 6.96 12.85 4.83 9.23 9.17 11.19 10.57 10.46 11.00 5.98 0.28 
𝜁ୌ୕୊ 2.21 5.17 3.50 3.67 6.34 4.46 6.54 12.96 5.87 2.96 0.57 
𝜁ୌ୕ୈ 1.39 1.25 1.45 1.35 1.40 1.39 1.37 1.58 1.35 1.29 0.06 
𝜁୐୕୊ 17.50 31.92 12.92 24.21 2.62 37.21 49.42 66.92 28.35 7.25 0.71 
𝜁୐୕ୈ 6.67 6.18 3.69 6.53 2.00 7.44 6.38 7.11 4.53 4.35 0.32 
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Table 4: Values of the climatic indices. The names of the subcatchments are abbreviated using the first three letters, the symbols 
are reported in Table 2. The last column contains the coefficient of variation of each index. 

 Subcatchment  
 And App Fra Hal Her Jon Mog Mos StG Wän CV 
𝜓୔ 3.91 5.15 3.36 4.38 4.13 4.64 4.57 4.04 4.80 3.62 0.13 
𝜓୔୉୘  1.60 1.37 1.70 1.55 1.61 1.54 1.57 1.69 1.49 1.71 0.07 
𝜓୅୍  0.41 0.27 0.50 0.35 0.39 0.33 0.34 0.42 0.31 0.47 0.19 
𝜓୊ୗ  0.04 0.21 0.04 0.05 0.09 0.15 0.13 0.09 0.13 0.05 0.57 
𝜓ୌ୔୊  15.21 14.38 17.67 14.58 15.82 14.54 14.58 16.13 14.31 17.50 0.08 
𝜓ୌ୔ୈ  1.20 1.17 1.17 1.18 1.22 1.20 1.19 1.22 1.17 1.19 0.01 
𝜓ୌୈୗ  Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer 0.00 
𝜓୐୔୊  201.67 195.79 216.83 198.54 205.04 197.21 198.92 205.75 197.69 213.17 0.04 
𝜓୐୔ୈ  3.57 3.50 3.83 3.50 3.63 3.51 3.51 3.66 3.51 3.76 0.03 
𝜓୐୔ୗ  Fall Fall Fall Fall Fall Fall Fall Fall Fall Fall 0.00 
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Table 5: Values of the subcatchment characteristics. The names of the subcatchments are abbreviated using the first three letters, 
the symbols are reported in Table 2. The last two columns contain the coefficient of variation and the maximum value of each 
signature. 

 Subcatchment   
 And App Fra Hal Her Jon Mog Mos StG Wän CV MAX 
𝜉୅ 1701 74.46 213.34 1085 16.72 493.0 88.11 3.19 261.1 78.96 1.40 1701 
𝜉୘୉ 768 1250 591 908 831 1020 954 797 1039 650 0.22 1250 
𝜉୘ୗ୫ 13.32 25.23 9.70 16.87 15.44 20.66 19.77 15.68 19.72 12.49 0.27 25.23 
𝜉୘ୗୱ 0.47 0.81 0.33 0.62 0.69 0.77 0.79 0.71 0.73 0.45 0.26 0.81 
𝜉୘୅ୱ 0.25 0.22 0.23 0.23 0.21 0.23 0.24 0.40 0.24 0.21 0.23 0.40 
𝜉୘୅୬ 0.32 0.35 0.33 0.32 0.33 0.32 0.31 0.24 0.33 0.32 0.09 0.35 
𝜉୘୅ୣ୵ 0.43 0.43 0.44 0.44 0.46 0.44 0.45 0.36 0.43 0.47 0.07 0.47 
𝜉ୗ୑ 1.30 0.56 1.48 1.10 1.32 0.93 1.17 1.00 1.03 1.35 0.23 1.48 
𝜉ୗୈ 0.40 0.04 0.49 0.25 0.41 0.13 0.28 0.00 0.26 0.36 0.63 0.49 
𝜉୐୊ 0.26 0.25 0.28 0.27 0.21 0.31 0.34 0.18 0.27 0.30 0.17 0.34 
𝜉୐େ 0.04 0.00 0.04 0.03 0.03 0.01 0.01 0.01 0.01 0.04 0.79 0.04 
𝜉୐୙ 0.08 0.03 0.10 0.06 0.15 0.04 0.03 0.03 0.05 0.10 0.63 0.15 
𝜉୐୔ 0.60 0.59 0.57 0.61 0.61 0.61 0.62 0.77 0.63 0.55 0.09 0.77 
𝜉ୋ୅ 0.06 0.01 0.09 0.03 0.00 0.02 0.02 0.00 0.01 0.11 1.05 0.11 
𝜉ୋେ 0.59 0.92 0.54 0.73 0.88 0.90 0.92 1.00 0.88 0.63 0.20 1.00 
𝜉ୋ୙ 0.35 0.07 0.36 0.23 0.12 0.07 0.06 0.00 0.10 0.26 0.79 0.36 

 

 5 
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Table A1: hydrological model parameters with range of variation used for the definition of the uniform prior distribution. The 
“component” column indicates the element (reservoir, lag or network) where the parameter belongs. 

Parameter Unit Component Range of variability 

𝐶ୣ െ Unsaturated reservoir (UR) 0.1 – 3.0 

𝑆୫ୟ୶୙ୖ  mm Unsaturated reservoir (UR) 0.1 – 500.0 

𝑘୛ୖ dିଵ Snow reservoir (WR) 0.1 – 10.0 

𝑡୰୧ୱୣ
୍୐  d Network lag 0.5 – 10.0 

𝑡୰୧ୱୣ
୓୐  d Network lag 0.5 – 10.0 

𝐷 െ Structure 0.0 – 1.0 

𝑘୊ୖ dିଵmmିଶ Fast reservoir (FR) 10–6 – 10.0 

𝑘ୗୖ dିଵ Slow reservoir (SR) 10–6 – 1.0 

𝑡୰୧ୱୣ
୪ୟ୥  d Structure lag 1.0 – 20.0 
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Table A2: Water–budget equations (see model schematic in Figure 6). 

Component Equation 

Snow reservoir (WR) d𝑆୛ୖ

d𝑡
ൌ 𝑃୛ୖ െ 𝑄୛ୖ 

Unsaturated reservoir (UR) d𝑆୙ୖ
d𝑡

ൌ 𝑃୙ୖ െ 𝑄୙ୖ െ 𝐸୙ୖ 

Lag function 𝑄୙ୖ ൌ 𝑃ୗୖ ൅ 𝑃୪ୟ୥ 

Slow reservoir (SR) d𝑆ୗୖ
d𝑡

ൌ 𝑃ୗୖ െ 𝑄ୗୖ 

Fast reservoir (FR) d𝑆୛ୖ

d𝑡
ൌ 𝑃୊ୖ െ 𝑄୊ୖ 

Outflow 𝑄 ൌ 𝑄୊ୖ ൅ 𝑄ୗୖ 
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Table A3: Constitutive functions of the model. Refer to Table A4 for the definition of the functions 𝒇. The calibrated parameters 
are marked in red 

Component Equation 

Snow reservoir (WR)(a) 𝑃୛ୖ ൌ ቄ𝑃 if 𝑇 ൑ 0
0 if 𝑇 ൐ 0

 

Snow reservoir (WR)(b) 𝑀୫ୟ୶
୛ୖ ൌ ൜

0 if 𝑇 ൑ 0
𝑘୛ୖ𝑇 if 𝑇 ൐ 0 

Snow reservoir (WR) 𝑄୛ୖ ൌ 𝑀୫ୟ୶
୛ୖ 𝑓 ሺ𝑆୛ୖ|2ሻ 

Unsaturated reservoir (UR) 
𝑆୙ୖതതതതത ൌ

𝑆୙ୖ
𝑆୫ୟ୶୙ୖ  

Unsaturated reservoir (UR) 𝐸୙ୖ ൌ 𝐶ୣሺ𝑃𝐸𝑇ሻ𝑓୫ሺ𝑆୙ୖ|0.01ሻ 

Unsaturated reservoir (UR) 𝑄୙ୖ ൌ 𝑃୙ୖ𝑓୮ሺ𝑆୙ୖതതതതത|2ሻ 

Slow reservoir (SR) 𝑃ୗୖ ൌ 𝐷𝑄୙ୖ 

Slow reservoir (SR) 𝑄ୗୖ ൌ 𝑘ୗୖ𝑆ୗୖ 

Lag function(c) 𝑃୊ୖ ൌ ൫𝑃୐ ∗ ℎ୪ୟ୥൯ሺ𝑡ሻ 

Lag function 
ℎ୪ୟ୥ ൌ ቐ

2𝑡 ቀ𝑡୰୧ୱୣ
୪ୟ୥ ቁ

ଶ
ൗ if 𝑡 ൑ 𝑡୰୧ୱୣ

୪ୟ୥

0 if 𝑡 ൐ 𝑡୰୧ୱୣ
୪ୟ୥

 

Fast reservoir (FR) 𝑄୊ୖ ൌ 𝑘୊ୖ𝑆୊ୖ
ଷ  

Lags in the network(c) 𝑄୭୳୲ ൌ ൫𝑄୧୬ ∗ ℎ୪ୟ୥
୬ୣ୲൯ሺ𝑡ሻ 

Lags in the network 

ℎ୪ୟ୥
୬ୣ୲ ൌ

⎩
⎪
⎨

⎪
⎧ 2𝑡 ൫𝑡୰୧ୱୣ

୓୐/୍୐൯
ଶ

⁄ if 𝑡 ൑ 𝑡୰୧ୱୣ
୓୐/୍୐

൫1 𝑡୰୧ୱୣ
୓୐/୍୐⁄ ൯ ቀ1 െ ൫൫𝑡 െ 𝑡୰୧ୱୣ

୓୐/୍୐൯ 𝑡୰୧ୱୣ
୓୐/୍୐ൗ ൯ቁ  if 𝑡୰୧ୱୣ

୓୐/୍୐ ൏ 𝑡 ൑ 2𝑡୰୧ୱୣ
୓୐/୍୐

0 if 𝑡 ൐ 2𝑡୰୧ୱୣ
୓୐/୍୐

 

(a) This equation is smoothed using logistic scheme, Eq. (8) in Kavetski and Kuczera (2007), with smoothing parameter 

𝑚௉ ൌ 1.5°𝐶 
(b) This equation is smoothed using logistic scheme, Eq. (13) in Kavetski and Kuczera (2007), with smoothing parameter 5 

𝑚ெ ൌ 1.5°𝐶 

(c) The operator ∗ denotes the convolution operator, smoothed according to Kavetski and Kuczera (2007) 
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Table A4: Constitutive functions 

Function Name 

𝑓 ሺ𝑥|𝜃ሻ ൌ 1 െ 𝑒𝑥𝑝ሺെ𝑥 𝜃⁄ ሻ Tessier function. Note that 𝑓 ሺ𝑥|𝜃ሻ → 1 as 𝑥 → ∞ 

𝑓୮ሺ𝑥|𝜃ሻ ൌ 𝑥ఏ Power function 

𝑓୫ሺ𝑥|𝜃ሻ ൌ
𝑥ሺ1 ൅ 𝜃ሻ
𝑥 ൅ 𝜃

 
Monod–type kinetics, adjusted so that 𝑓୫ሺ1|𝜃ሻ ൌ 1 
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