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Author’s response 

Changes in the paper 
The paper has been subject to major revision in order to address the comments of the reviewers. The 
most significant changes concern the structure of the paper, where we have separated the methods 
from the results, and the introduction, the discussion, and the conclusion sections where we tried to 
address the concerns of the reviewers. A summary of the changes is presented below, followed by the 
individual responses to the editor and to the reviewers. 

Changes in text 
SECTION DESCRIPTION 
Title The title has been changed following the indications of Anonymous Referee #3. 
1 The introduction has been changed adding more information about the objective of the 

study. 
3 Section 3 now contains all the methodology, both of the correlation analysis and of the 

modeling study. Minor changes have been made to the single paragraphs. 
4 Section 4 now contains all the results, both of the correlation analysis and of the 

modeling study. Minor changes have been made to the single paragraph. 
5 The discussion has been enlarged, clarifying the choices made and pointing out their 

limitations. 
6 Major changes to address the concerns of the reviewers. 
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Changes in Figures 
The following figures were modified 

FIGURE DESCRIPTION 
1 Different colors for the land use map. 
6 Changed to address the concerns of Anonymous Referee #3. 
7 Changed to address the concerns of Anonymous Referee #3. 
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Changes in Tables 
Table 2 was added listing the signatures and the indices used in the study. 
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Reply to the editor Dr. Conrad Jackisch 
 

Dear Marco Dal Molin and co-authors, 

Thank you again for your contribution to our special issue and the work you invested into your 
manuscript's revision. After reading your manuscript again and considering the two independent 
reviewer reports, I follow their suggestion to open a second round of major revisions. Please be aware 
that both reviewers scored scientific quality and significance as "good" and presentation quality as "fair". 
Given your interesting material in your manuscript, I am sure this can benefit from considering the very 
thoughtful comments. 

The two reviewers point out two lines of revisions. While Referee #4 has suggestions for fundamental 
clarifications of the study's aims and scopes. I read these not in a sense questioning your overall study 
but as valuable references a revision should orientate on. Hence I would expect that answering his 
questions on the fundamental level as key to structure the revisions on. Referee #3 addresses 
fundamental methodological aspects, which might on second look not be too far from the reflections of 
Referee #4. Considering the scope of our special issue as third pole, this lines up quite nicely in my view 
("Linking landscape organisation and hydrological functioning: from hypotheses and observations to 
concepts, models and understanding"). 

If you see any trouble in addressing the comments during your revisions, please do not hesitate to 
contacting me for further clarification. 

Thank you very much for your efforts and work you put into this manuscript. 

All the best. 

Conrad 

 

We thank the Editor Dr. Conrad Jackisch for his thoughtful suggestions. We believe we have done 
another major review of the manuscript in order to address the comments of both reviewers. We noted 
that unfortunately the paper received a new set of reviewers, who came up with several new points, 
sometimes in contrast with the points raised in the first round of reviews. We did our best to address 
the comments of the current set of reviewers, without penalizing the changes already made to comply 
with the suggestions of the previous reviewers. Nonetheless, the paper underwent major changes, as 
can be noted in the differences’ file, including a major restructuring, as suggested by Anonymous 
Referee #3. 

We believe that our paper contributes to understanding the link between catchment properties and 
hydrological functioning, and therefore is well in line with the topic of the special issue. We are 
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confident that the changes made, including the change in title and the new argumentations in the 
introduction, make this link even more visible. 

 Kind regards, 

 Marco Dal Molin (on behalf of the coauthors). 
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Reply to review by Anonymous Referee #3 

We thank the reviewer for his/her careful read to the manuscript and insightful suggestions.  
As it can be noticed in the differences’ file, the paper has undergone a major restructuring, in the spirit 
of capturing most of the suggestions of the reviewers. However, as the reviewers in this round of 
reviews are different from the reviewers from the previous round of reviews, we had to be careful that 
the suggestions of the current reviewers are not in contrast with the modifications already made to 
comply to the suggestions of the previous reviewers. Cases where a conflict occurs are mentioned in our 
replies.  
Below, we answer in detail the various comments, and illustrate how we have addressed them in the 
revised version. The original comments of the reviewer are reported in black and italics, our replies in 
blue. 
All the references to specific pages and lines of the paper are based on the version without track 
changes. Since the numbering of the sections has changed in the reviewed paper, we will call “first 
revision of the paper” the version that you have reviewed and “new revision” the version that we are 
submitting together with this reply. 

Main comments 

Dal Molin and colleagues submitted their revised manuscript entitled “Data analysis and model building 
for understanding catchment processes: the case study of the Thur catchment” to Hydrology and Earth 
System Sciences (HESS) Special Issue: Linking landscape organisation and hydrological functioning: from 
hypotheses and observations to concepts, models and understanding. The manuscript was substantially 
improved after major modifications following first iteration with reviewers and editors and I enjoyed 
reading it. However, I failed to identify a major scientific contribution in terms of processes 
understanding supported by hydrological interpretations, which makes me feel that authors are 
targeting the proposition of the regional modelling framework rather than the potential hydrological 
insights of the modelling exercise. In that sense, there are some issues that need to be addressed in order 
to achieve a replicable regional modelling framework, which are discussed in details below. 

1. Section 3 still worries me a bit. First, the climate indices presented in Addor et al (2017) were 
selected to be representative in large-scale studies (e.g., CAMELS) where a large climatic 
gradient is the main control of catchment’s streamflow spatial variability. This is not necessarily 
a valid assumption for regional studies where climate variability (across space) is much smaller 
and variables are highly correlated (as per Fig 3). 
The reviewer is right saying that in a limited region, such as the one presented in this study, the 
climatic conditions may not vary as strongly as in studies targeting large climatic gradients (e.g. 
CAMELS); however assuming no climatic variability in the Thur catchment would be unjustified: 
for example, the mean annual precipitation varies significantly between the subcatchments (e.g. 
5.15 mm/d in Appenzell vs. 3.36 mm/d in Frauenfeld); moreover the variability of the amount of 
precipitation falling as snow is large (e.g. 21% in Appenzell vs. 4% in Frauenfeld) which induces 
significant differences in streamflow seasonality, as we have shown in figure 5 presented in the 
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first submission of the paper, then removed to comply to the reviewers suggestions, and 
reported below. 
The figure shows that, while precipitation and potential evapotranspiration follow the same 
annual pattern in all the catchments, the streamflow follows two different patterns, dividing the 
catchments in two different groups: 

• Snow affected catchments (e.g. Appenzell) with high streamflow during the late spring 
and summer; 

• Catchments with less snow (e.g. Frauenfeld) with highest streamflow between October 
and March. 

Since this behavior was also captured by the “mean half streamflow date” signature, the figure 
was omitted by the second submission of the paper, as suggested by Anonymous Referee #1. 

 

Second, the correlative nature of analysis underpinning decisions in the process-based 
hydrological modelling is a weakness. A more comprehensive metrics assessment would benefit 
the manuscript (see second point below). 
We will address this point below 
Third, the final “expert judgment” adds subjectiveness and undermines replicability of modelling 
framework. The other way around would be more intuitive – i.e., run the “expert judgment” prior 
in order to select relevant metrics and establish a process-based conceptual (see third point 
below) model taking accounting relevant specificities of study area (see point 4 below) and then 
the metrics assessment part. 
In principle there are many climate and landscape characteristics that influence catchment 
response. The question is which one are the most relevant for the application, in particular at 
the spatial scale of the study and for the variables that one wants to predict. The reason for 
running the expert judgment after the correlation analysis is to be able to derive some of these 
key model decisions from it and not to decide them a-priori which would be difficult, if not 
impossible. 
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2. Highly correlative nature of section 3: in the metrics assessment part (section 3), essentially, 
criteria for metric selection should go beyond correlation and represent similarity, dissimilarity, 
complementarity and/or importance of metrics and uncertainty. Bray-Curtis ordination or PCA 
could be helpful to understand data structure and complementarity and random forests could be 
used to calculate importance of metrics (see Kennard at al (2010) River Res Applic and Trancoso 
et al (2016) JoH for analytical examples). That would strength the analytical component of 
section 3. 
The possibility to use more advanced methods for metrics selection has been considered in the 
process of our study; the reason why we eventually selected a simple method is that the sample 
size of this study is relatively small. We are in fact limited to only 10 catchments. Studies that 
use complex regression techniques like random forests use a much larger sample of catchments; 
for example, the work proposed by Trancoso et al. (2016) deals with 355 catchments. Using such 
techniques risks to result in models that overfit the data, especially considering the fact that we 
would need to split the catchments in a calibration and a validation group.  
In the previous revision of the paper, we took the suggestion of the first set of reviewers and 
used Spearman correlation instead of Pearson, in order to account also for nonlinear 
correlation. 
We have been more specific about the reasons behind this choice in the “limitations” part of the 
discussion. 
In the attempt to comply with the suggestion of the reviewer, we tested LASSO regression using 
catchment characteristics and climatic indices (indicated as 𝑥𝑥𝑖𝑖) to predict every single 
hydrological signature (indicated as 𝑦𝑦).  

𝑦𝑦 =  �𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖 + 𝛼𝛼�|𝜆𝜆𝑖𝑖| 

The idea behind this method is that it should perform (thanks to the normalization term 𝛼𝛼∑|𝜆𝜆𝑖𝑖|) 
feature selection, setting to zero all the 𝜆𝜆𝑖𝑖 that are associated with indices that are not 
important in calculating the output 𝑦𝑦. 
While being, in theory, a technique suitable also for a small unbalanced (unbalanced in the 
sense that there are more indices than catchments) data set, in the case of the Thur catchment 
the method performed poorly mainly because of the high correlation among the indices. In 
particular, the method prefers the most correlated variables, but we may be interested in a 
slightly less correlated variable if this reflects a more plausible cause effect relationship. 
One possible solution would be applying a pre-selection of the indices based on expert 
judgment (as done in section 3.2.1 of the first revision of the paper) before doing LASSO 
regression but this would fall back to the fallacies in the methodology criticized by the reviewer. 
If a pre-selection is done, this method would produce results comparable with the one given by 
the correlation analysis (done in section 3.2.2 of the first revision of the paper), with the 
disadvantage that the information that we get from the LASSO regression would be only a list of 
selected indices, while the correlations express also the strength of the relationship between 
indices and signatures.  
For these reasons, we have preferred to keep using the (non-linear) correlation analysis, aided 
by expert judgment, to select the meaningful catchment characteristics and climatic indices that 
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influence streamflow signatures: it is true that this approach may be subjective but it guaranties 
meaningful insights for building the hydrological model that are not affected by spurious 
correlations. 
 
Uncertainty in the streamflow signatures and in the climatic indices was not considered because 
the time window used for their calculation (24 years) is long enough to assume limited bias and 
high precision (as shown by Kennard et al. (2010)). 

3. A conceptual model would be helpful on section 3 to understand how selected metrics represent 
catchment processes. 
Point taken. Figure 6 has been modified showing how the catchment has been modeled. 

4. Metrics from continental scale studies are a good starting point but should not be the final call – 
there are also other relevant metrics that could be tested such as phase-offset between the 
seasonal cycle in precipitation and potential evaporation – see Donohue et al (2010) JoH for 
details. 
The number of signatures and indices proposed in literature to represent streamflow and 
climate is enormous (e.g. 120 metrics considered by Kennard et al. (2010)); therefore we had to 
limit our selection and we decided to use the one proposed by Addor et al. (2017) since we think 
they cover a wide range of characteristics of the time series that they synthetize. 
In the first submission of the paper, the climatic indices and the streamflow were selected to 
represent particular features of the time series (e.g. the flashiness index was used to measure 
the variability of the hydrograph). This choice was criticized in the review of Dr. Lieke Melsen 
that suggested to refer to other studies for the selection of signatures/indices. Therefore, the 
original version of the paper was modified to account for her suggestion. 
We have also tried to calculate the phase-offset between the seasonal cycle in precipitation and 
potential evapotranspiration as suggested by this reviewer but, since precipitation and PET have 
the same seasonal cycle in all the catchments (as shown in figure 5 of the first submission of the 
paper, reported above), the phase-offset would be the same for all the catchments and 
therefore it would be excluded by the correlation analysis since it does not show variability (first 
bullet point in section 3.1.2 of the new revision). For this reason we would not include it in the 
paper. 

5. Manuscript structure is a bit unusual and not easy to navigate. It looks more like a thesis/report 
than a paper. Would be better to group all the methods and results together instead of 
presenting them separately on sections 3 and 4. 
We thank the reviewer for this suggestion. Now the paper has been restructured according to 
the standard practice of presenting methods followed by results. We hope that this major 
restructuring has improved the readability of the paper. 

Other comments 
Manuscript title is focused on methods rather than contribution. Currently title is a bit vague and not 
attractive as most hydrological modelling papers do data analysis and model building to understand 
catchment processes. Therefore, there is nothing new in the title and many potential readers might skip 
it if the title is kept the same (It is likely I would be one of them). I strongly recommend changing it 
focusing on the main contribution. 
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Point taken. We have changed the title into: “Understanding dominant controls on streamflow spatial 
variability to set-up a semi-distributed hydrological model: the case study of the Thur catchment”, which 
focuses more clearly on the paper objectives. 
L1-2: “The development of semidistributed hydrological models that reflect the dominant processes 
controlling streamflow spatial variability is a challenging task” – Irrelevant, every science has challenges, 
otherwise would not be science. 
We have removed the sentence from the new version of the paper, and added two paragraphs in the 
introduction to better clarify the scope of our work. 
The term “semidistributed” sometimes appears as semi-distributed. Better standardise. 
Thank you for pointing that out; we have standardized this term in the paper, using semi-distributed 
everythere. 
Figure 1c: Forest and pasture are not easy to distinguish. Suggest use different colour for pasture. 
We have changed the colors used in the figure. Now the figure should be more readable. 
Figure 7 uses line plots to show variability of model performance across study catchments. Choice of plot 
type is a bit misleading as line plots are usually used to show continuity across the x-axis, such as time-
series plots. Suggest use only dots / jitters instead to avoid misinterpretation. 
We have removed the lines from figure 7 
Most figures refer to metrics acronyms and a lot of back and forth is needed to find their definition and 
keep on track with reading. If authors do not want to redefine acronyms on figure captions, suggest 
present all the metrics in a table and cite table on figure captions. 
We have added table 2 that contains all the symbols used in the paper to represent signatures and 
indices 
P28 L2 – “varied considerably between catchments” – I think it should be among instead of between as 
several catchments are assessed. 
We have changed the sentence accordingly. 
P28 L7-8: “based on correlation analysis and expert judgment, we determined that climatic variables, 
especially the precipitation average, are the main controls the on streamflow average yearly values” – 
that’s well known and trivial. I would expect more elaborated hydrological insights. Main issue is that 
section 3 is not robust enough to offer in-depth interpretations. 
Although it is known that precipitation has a strong control on average streamflow, this is not granted in 
some cases where, for example, regional groundwater flow alters the water balance of the catchments. 
For this reason we believe that this point is still important for describing the hydrological processes 
happening in the catchment.  
We have clarified these aspects in Section 4.1.3 point 1, Section 4.2.1 first paragraph, and Conclusions, 
point 4 of the new revision. 
 

We are thankful for the reviews of Anonymous Referee #3 and we are looking forward to his/her 
assessment of our revised paper. 
 
 
References 
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Reply to review by Dr. Shervan Gharari 

We thank Dr. Shervan Gharari for his careful read to the manuscript and insightful suggestions. As it can 
be noticed in the differences’ file, the paper has undergone a major restructuring, in the spirit of 
capturing most of the suggestions of the reviewers. However, as the reviewers in this round of reviews 
are different from the reviewers from the previous round of reviewers, we had to be careful that the 
suggestions of the current reviewers are not in contrast with the modifications already made to comply 
to the suggestions of the previous reviewers. Cases where a conflict occurs are mentioned in our replies.  
Below, we answer in detail the various comments, and illustrate how we have addressed them in the 
revised version. The original comments of the reviewer are reported in black and italics, our replies in 
blue. 
All the references to specific pages and lines of the paper are based on the version without track 
changes. Since the numbering of the sections has changed in the reviewed paper, we will call “first 
revision of the paper” the version that you have reviewed and “new revision” the version that we are 
submitting together with this reply. 
 
Review of “Data analysis and model building for understanding catchment processes: the case study of 
the Thur catchment” 
The paper tries to rationally build/infer an appropriate model suture based on data for Thur catchment. 
The authors have tried their best to answer to the reviewers’ comments. Reading the manuscripts, 
reviewers’ comments on the work and authors’ replies, I have a feeling that most of the reviewers’ 
concerns including myself is coming from the fact that the manuscript lack some fundamental direction 
which in turn might be the result of lack of proper research question. I personally don’t have any issue 
with the choice of signatures and correlation analysis. At the end of the day this is an engineering 
decision that any modeller will make and there is little to back them even if correlation exists (present or 
absence of causation). 
The first question the authors should answer is the real purpose of this study. 
We have modified abstract and introductions to clarify the purpose of the study. In particular, the first 
paragraph of the introduction presents the general purposes of conceptual semi-distributed 
hydrological models in hydrology and some unresolved questions, which now better substantiate 
objectives of the studies, indicated in lines 37 of page 2 to 2 of page 3. The title has also been changed 
to more clearly reflect the study objectives, as suggested also by Anonymous Referee #3. 
 
The spatial variability can have a wide range of interpretation. For example spatial variability to 
streamflow, or spatial variability to account for slope and aspect and etc. The authors should clearly 
make this case what spatial variability they are talking about (variability is case dependent). 
To avoid misunderstandings, we have clarified that we are interested in explaining the hydrograph 
spatial variability. This is now more clearly apparent from the title (“Understanding first order controls 
on streamflow spatial variability…”), the abstract (e.g. “In order to appraise the dominant controls on 
streamflow spatial variability, and build a model that reflects them…”), and objectives (e.g. “The 
objective of this study is to develop a semi-distributed hydrological model with the appropriate level of 
functional complexity to reproduce streamflow spatial variability in the Thur catchment.”). If the 
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catchment response is spatially variable there must be some spatially variable controls, and therefore 
we also analyze the spatial variability of meteorological inputs and catchments characteristics. 
 
In this study, it is all about the streamflow as the models are calibrated against the streamflow. 
Streamflow is often easy to predict (calibrate). So the author should show the clear gain by moving 
toward spatially distributed input and spatial data such as slope and aspect, vegetation, geology, etc. In 
its current format the manuscript is lacking this direction. In the beginning, the manuscript promises to 
account for various processes but it is kind of missed in the manuscript or boiled down to very basic or 
common knowledge interpretation of the processes for streamflow simulation. 
We hope our restructuring of the manuscript, where the methods are all presented in the same place, 
makes the reasoning of the paper clearer. In particular, we have revised sections 3.1.4 and 4.1.3 of the 
new revision to clarify these aspects. 
In summary, the starting point for the modeling study is a semi-distributed model with uniform 
characteristics (single HRU) and distributed (per subcatchment) climatic inputs (M0) as the effect of 
distributing precipitation would be obvious from the signatures analysis; we then show the gain in 
moving towards accounting for the presence of spatially distributed snow, geology, and land use 
(vegetation). 
As the reviewer notes, there are multiple characteristics that could be included in the model 
experiments. In order to reduce the number of model comparisons, we made use of the results of the 
signatures analysis. For example, signatures analysis showed that vegetation was not a major influencing 
factor and, in our model experiments, we confirmed that including vegetation does not improve model 
performance. Similarly, it could be expected that accounting for e.g. aspect, which was not a major 
influence factor according to the signatures analysis, would not improve model performance. 
 
Sth else that I don’t understand is the choice of model, for example from M0 to M1, if temperature is 
always above the threshold there will be no phase change for the precipitation. Then why even bother 
having model M0? The choice of the model is decided by the data itself (for example a land surface 
models have always snow component but if simulated for warm region they never simulate any snow). 
It is clear that when there is snow (as in this case) the model needs to have a snow component. It is less 
obvious (at least just by looking at hydrographs) how much of the differences in seasonality of the 
streamflow response between catchments are due to snow. Due to the large lag time between snowfall 
and hydrograph response it would be difficult to quantify this aspect without model experiments and 
the main result of the comparison between M0 and M1 is that the attribution of difference in 
seasonality (represented by the mean half streamflow date) is due to the spatial variability of snow 
processes. 
 
Moreover, the fact that the precipitation is first order control is also a bit obvious. If a multiplier is used 
to scale precipitation up and down it will be the most sensitive parameter of the model which in turn 
shows that the simulation is heavily affected by precipitation (or the driving force). Following that, I don’t 
see much translation of the observed processes into the model and I don’t see the added value of the 
added heterogeneity in the spatial models simulation etc. This can be further improved by the authors. 
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It is clear that precipitation is a first order control on streamflow. Less clear, at least before carrying out 
any analysis, is if the spatial variability in streamflow average is only due to precipitation: several 
authors, for example, pointed out the role of regional groundwater flow and incorporated this possibility 
in the models; GR4J, for example, has a parameter that quantifies catchment gains or losses. This shows 
that a-priori there are several processes that can affect the water balance; our analysis is intended to 
understand which modeling decisions are relevant in this case study. We have clarified these aspects in 
Section 4.3 point 1, Section 4.2.1 first paragraph, and Conclusions, point 4 of the new revision. 
 
Following this point, the choice of the models and the modeling looks a bit sloppy; in the sense that the 
continuum of model, spatial data is not very well visible. I think this can be further improved by the 
authors in the revised manuscript (maybe adding more model or stepwise introduction of spatial 
variability). 
Because spatially distributed models are time consuming to develop, even within a multi-model 
framework, and expensive to run, we focused the comparisons on a few interesting cases which were 
decided following the signatures analysis. We have clarified the models line-up in Section 4.2.1 of the 
new revision, where we have specified the expectations that the various models are supposed to meet.  
 
I also suggest the author to have a more structural in to the paper by organizing the signatures that they 
use for model evaluation. These signatures can be grouped into four main categories (1) the signatures 
that are coming from the spatial heterogeneity of the topography, geology, soil, land cover etc. (2) the 
signature that are coming from the response that the model is built to replicate such as flow duration 
curve, flashiness, etc, (3) the signatures that are coming from the forcing to the system including the 
precipitation etc (4) hybrid such as runoff ratio. Each of these signatures have their own effect on the 
modeling result as some are used for calibration and some are not. I would suggest the author to 
segregate them more carefully in the test and analyses. 
We tried to be explicit about the different nature of these metrics: we called metrics derived from the 
landscape properties “landscape indices” and indicated them with the letter 𝜉𝜉; the metrics derived from 
the climate were named “climatic indices” and indicated them with the letter 𝜓𝜓; the metrics derived 
from the streamflow, finally, were named “streamflow signatures” and indicated them with the letter 𝜁𝜁. 
Only the runoff ratio and the streamflow elasticity are “hybrid signatures” and we have decided to put 
them in the category of the “streamflow signatures” as done by Addor et al. (2017). 
 
Is it surprising M0 can do well for the annual average? In my experience, a single reservoir with evapo-
transpiration function can get the annual mean streamflow perfectly well, while it cannot get the 
correlation and variability. 
The reviewer is right pointing out that a simple model calibrated on an individual gauge can get the 
average streamflow correctly; however this is a distributed model which is simultaneously calibrated on 
multiple gauges without catchment specific correction factors for precipitation, evaporation or 
streamflow. In addition, the model is evaluated in space-time validation, meaning that the model has 
not been calibrated in the specific gauge where it is evaluated. The ability of this model to 
simultaneously capture the annual averages at multiple gauges is, therefore, not a-priori obvious. 
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I am interested to know how the authors dealt with the nested gauges. The information/correlation in 
nested gauges can be replicated. Howe the correlation plays in for these nested basin. Any comment on 
that. 
The model deals with nested catchments by routing the water from upstream catchments to the 
downstream outlets through transfer functions. By validating the model in space and time we are not 
reusing the same data. Clearly, this is a spatial validation in a nested setup, which is presumably easier 
to fulfill than a spatial validation in entirely different basins. This limitation has been added in Section 5 
of the new revision, second last paragraph. 
 
Why did the authors have use NS and likelihood at the same time? What would it add…? 
We used the likelihood because it was the objective function for model calibration. Since the model was 
calibrated simultaneously in multiple stations, the likelihood is an aggregated metric. The NS was, on the 
other hand, calculated for each catchment individually. 
 
I think both in the modeling set up and also discussion a significant elements regarding the scale is 
missing. For example, have refereed to some work, Kuentz et al., 2017, that did a large sample 
hydrology. Is the manuscript really is about large sample hydrology and if the study area is following 
large sample hydrology or is it about how the Thur catchment is functioning and how it is modelled. 
We have clarified that the paper is not about large sample hydrology but about distributed modeling 
(e.g. see first paragraph of the introduction).  In order to formulate model decision we have used 
elements of catchment classification studies. 
 
I would also suggest the author to look into the signature before and after bias correction or accounting 
for orographic effects. As mentioned earlier changing in forcing can drastically change the model output 
therefore it should also be noted how different the forcing becomes when is downscaled. Maybe I missed 
but how did the author include slope and aspect in their model? 
Climatic inputs are influenced by orographic effects; as specified in Section 2 of the paper, the elevation 
has been considered in the interpolation of the data from the meteorological stations. We did not do 
sensitivity analyses on the input variables as it was outside of the scope of this paper. 
 
I believe the manuscript can be an interesting contribution but in its current format it is far from being in 
perfect shape. The story needs to follow smoothly and the merit of this work should be better presented. 
Shervan Gharari 
We are thankful for the reviews of Dr. Shervan Gharari and we are looking forward to his assessment of 
our revised paper. 
 
 
 
References 
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes 
and meteorology for large-sample studies, Hydrol Earth Syst Sc, 21, 5293-5313, 10.5194/hess-21-5293-
2017, 2017. 



1 
 

Data analysis and model building for understanding catchment 
processesUnderstanding dominant controls on streamflow spatial 
variability to set-up a semi-distributed hydrological model: the case 
study of the Thur catchment. 
Marco Dal Molin1,2,3, Mario Schirmer2,3, Massimiliano Zappa4, Fabrizio Fenicia1 5 
1Department Systems Analysis, Integrated Assessment and Modelling, Eawag, Swiss Federal Institute of Aquatic Science 
and Technology, 8600 Dübendorf, Switzerland 
2The Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland 
3Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 
8600 Dübendorf, Switzerland 10 
4Hydrological Forecast, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland 

Correspondence to: Marco Dal Molin (marco.dalmolin@eawag.ch) 

Abstract 

The This study documents the development of semidistributeda semi-distributed hydrological models that reflectmodel 

aimed at reflecting the dominant processes controllingcontrols on observed streamflow spatial variability is a challenging 15 

task. This study illustrates this . The process is presented through the case study of the Thur catchment (Switzerland, 1702 

km2), an alpine and pre–alpine catchment with large spatial variability in terms of climate, landscape, and where streamflow 

(measured at 10 subcatchments).) has different spatial characteristics in terms of amounts, seasonal patterns, and dominance 

of baseflow. In order to appraise the dominant processes that control catchment responsecontrols on streamflow spatial 

variability, and build a model that reflects them, the model development followswe follow a two–stages approach. In a first 20 

stage, we use correlation analysis to identify the main influencing factors on climatic or landscape properties that control the 

spatial variability of streamflow signatures. Results of this analysis show that precipitation averages control signatures of 

water balance, snow processes control signatures of seasonality, while landscape characteristics (especially geology) control 

signatures characterizing the importance of baseflow.This stage is based on correlation analysis, complemented by expert 

judgment to identify the most plausible cause-effect relationships. In a second stage, the results of the previous analysis are 25 

used to develop a set of model experiments aimed at determining an appropriate model representation of the Thur catchment. 

These experiments confirm that only a hydrological model that accounts for the heterogeneity of precipitation, snow related 

processes, and landscape features such as geology, produces hydrographs that have signatures similar to the observed ones. 

This model provides consistent results in space–time validation, which is promising for predictions in ungauged basins. The 

presented methodology for model building can be transferred to other case studies, since the data used in this work 30 

(meteorological variables, streamflow, morphology and geology maps) is available in numerous regions around the globe. 

1 1 Introduction 

Due to the spatial variability of landscape (e.g. topography, land use, etc.) and climate, hydrographs can differ substantially 

between catchments. Being able to quantify and explain hydrograph spatial variability is important both to improve 

processes understanding and to make predictions useful for many human activities, such as flood protection, drinking water 35 

production, agriculture, energy production, and riverine ecosystems management (e.g., Hurford and Harou, 2014). 

Understanding catchment differences and, more specifically, how to transfer hydrological knowledge, methods, and theories 

between places,Semi-distributed rainfall-runoff models are widely applied in operation for applications such as flood 

forecasting (e.g., Ajami et al., 2004) or developing sustainable irrigation practices (e.g., McInerney et al., 2018). The main 
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purpose of these models is to simulate streamflow at a limited number of fixed points along river channels (e.g., Boyle et al., 

2001), and for this reason they are characterized by a coarser spatial resolution than fully distributed models, which allows a 

very detailed representation of the spatial variability of catchment processes. Compared to fully distributed models, they are 

characterized by lower data and computational requirements, which represents an valuable practical advantage in their 

operational use. 5 

Similarly to the case of lumped models, the parameters of semi-distributed models are estimated via calibration. Therefore, it 

is important that the structure of these models is commensurate to the available data, including length, time scale, and spatial 

distribution (Wooldridge et al., 2001). However, semi-distributed models used for similar applications differ significantly in 

terms of their process representation as well as number of calibration parameters. For example, Gao et al. (2014) assumes 

topography as a dominant control on hydrological processes, whereas the SWAT model (Arnold et al., 1998) emphasizes the 10 

role of soil. These differences raise the question of how to select an appropriate model structure for the data at hand, which 

requires understanding the association between model parameters and the climatological and geomorphological 

characteristics of the catchment. 

Understanding the relationship between climate, landscape and catchment response is a common objective of many research 

areas in hydrology, including comparative hydrology (e.g., Falkenmark and Chapman, 1989), model regionalization (e.g., 15 

Parajka et al., 2005)(e.g., Parajka et al., 2005), catchment classification (e.g., Wagener et al., 2007), and prediction in 

ungauged basins (e.g., Hrachowitz et al., 2013)(e.g., Hrachowitz et al., 2013). In the case of streamflow, the attempt to 

explain its spatial variability is typically accomplished either using statistical approaches, which are designed to regionalize 

selected characteristics of the hydrograph (streamflow signatures), or through hydrological models that account for relevant 

spatial information. In particular, statistical approaches such as regression analysis (e.g., Berger and Entekhabi, 2001; 20 

Bloomfield et al., 2009) and correlation analysis (e.g., Trancoso et al., 2017), or machine learning techniques like clustering ( 

e.g.,  Sawicz et al., 2011;  Toth, 2013; Kuentz et al., 2017) are used to group together catchments that present similar 

characteristics and to extrapolate the signatures where unknown. Such approaches have been useful to quantify the 

hydrological variability and identify its principal drivers. However, they are often not designed to discover causality links 

and can be affected by multicollinearity, that arises when multiple factors are correlated internally and with the target 25 

variable (Kroll and Song, 2013). 

By incorporating spatial information about meteorological forcingforcings and landscape characteristics, 

semidistributedsemi-distributed hydrological models have the ability to mimic the mechanisms that influence hydrograph 

spatial variability. However, identifying the relevant mechanisms is challenging. One possibility is to be as inclusive as 

possible in accounting for all the catchment properties that are, in principle, important in controlling catchment response. 30 

However, this approach leads to models that tend to be data demanding and contain many parameters. For example, Gurtz et 

al. (1999) considered several landscape characteristics (elevation, land use, etc.) in their application of a 

semidistributedsemi-distributed model to the Thur catchment (Switzerland), which resulted into a model with hundreds of 

hydrological response units (HRUs) that were defined a–priori based on the complexity of the catchment. The other option is 

to try to identify the most relevant processes and neglect others, in order to control model complexity. For example, Fenicia 35 

et al. (2016) compared various model hypotheses to determine an appropriate discretization of the catchment in HRUs and 

appropriate structures for different HRUs. Antonetti et al. (2016)Antonetti et al. (2016) used a map of dominant runoff 

processes following Scherrer and Naef (2003)Scherrer and Naef (2003) for defining HRUs. However, these approaches 

require a good experimental understanding of the area, which is not always available.  

Convincing model calibration–validation strategies are essential to provide confidence that the model ability to fit 40 

observations is a reflection of model realism and not a consequence of calibrating an overparameterized model (e.g., 

Andréassian et al., 2009).(e.g., Andréassian et al., 2009). A common approach for calibration of semidistributedsemi-

distributed models is the so called ‘sequential’ approach, where subcatchments are calibrated sequentially from upstream to 
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downstream (e.g., Verbunt et al., 2006; Feyen et al., 2008; Lerat et al., 2012; De Lavenne et al., 2016). Although this 

approach may provide good fits and therefore it has its practical utility where data is available, it does not provide 

understanding into the causes of streamflow spatial variability and results into models that are not spatially transferable. 

Moreover, such models are prone to contain many parameters, as each subcatchment would be represented by its own set of 

parameters. Alternative calibration–validation approaches that enable model validation not only in time but also in space are 5 

conceptually preferable, particularly when the modeling is used for process understanding or prediction in ungauged 

locations (e.g., Wagener et al., 2004; Fenicia et al., 2016). 

This study combines the strengths of catchment regionalization approaches and semidistributed hydrological models by first 

using regression analysis to understand the main causes of variability of streamflow signatures, and then using this analysis 

to inform the structure of a distributed hydrological model. The model objective is to explain the observed spatial diversity 10 

of streamflow characteristics with the minimum possible complexity, while maintaining a process based interpretation. In 

particular, the objectives of the studyThe objective of this study is to develop a semi-distributed hydrological model with the 

appropriate level of functional complexity to reproduce streamflow spatial variability in the Thur catchment. For this 

purpose, we use a two stages approach, the first one dedicated to an in-depth analysis of the available data, and the second 

one focused on hydrological modeling. 15 

Our specific objectives are to: (1) explore the spatial variability present in the Swiss Thur catchment regarding landscape 

characteristics, meteorological forcing and streamflow signatures; (2) identify the main driversclimate and landscape 

controls that explain the variability of the hydrological response; (3) based on this analysis, build a set of model experiments 

aimed to test the relative importance of dominant processes and their effect on the hydrograph; (4) appraise model 

assumptions against competing alternatives using a stringent validation strategy. 20 

The paper is organized as follows: Section 2 presents the study area and gives information about data availability; Section 3 

and Sect. 4 are both divided in methods and results and present, respectively,illustrates the correlation analysis 

andmethodology; Section  4 shows the modeling part of this paperresults; Section 5 putsanalyzes the results of this work and 

puts them in perspective, comparing them withshowing what other similar studies have found; Section 6, finally, summarizes 

the main conclusions. 25 

2 2 Study area 

This study is carried out in the Thur catchment (Fig. 1), located in north–east of Switzerland, south–west of the Lake 

Constance. With a total length of 127 km and a catchment area of 1702 km2, the Thur is the longest Swiss river without any 

natural or artificial reservoir along its course. The Thur river is very dynamic, with streamflow values that can change by two 

orders of magnitude within a few hours (Schirmer et al., 2014)(Schirmer et al., 2014). 30 

The Thur catchment has been subject of several studies in the past; Gurtz et al. (1999) performed the first modelling study on 

the entire catchment using a semi-distributed hydrological model; Abbaspour et al. (2007) modelled hydrology and water 

quality using the SWAT model; Fundel et al. (2013) and Jorg-Hess et al. (2015) focused on low flows and droughts; Jasper 

et al. (2004) investigated the impact of climate change on the natural water budget. Other modelling studies include also 

Melsen et al. (2014) and Melsen et al. (2016), whichwho investigated parameters estimation in data limited scenarios and 35 

their transferability across spatial and temporal scales, and Brunner et al. (2019)Brunner et al. (2019) who studied the spatial 

dependence of floods. The Thur includes also a small–size experimental subcatchment (Rietholzbach, called Mosnang in this 

paper after the name of the gauging station) that was subject of many field studies at the interface between process 

understanding and hydrological modelling (e.g., Menzel, 1996; Gurtz et al., 2003; Seneviratne et al., 2012; von Freyberg et 

al., 2014; von Freyberg et al., 2015). 40 
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The topography of the catchment is presented in Fig. 1b; the elevation ranges between 356 m a.s.l. at the outlet and 2502 m 

a.s.l. at Mount Säntis. The majority of the catchment lies below 1000 m a.s.l (75 %) and only 0.6 % is above 2000 m a.s.l. 

(Gurtz et al., 1999). Based on topography (Fig. 1b), the catchment can be visually subdivided into two distinct regions: the 

northern part, with low elevation and dominated by hills and flat land, and the southern part, which presents a mountainous 

landscape.  5 

The land use (Fig. 1c) is dominated by pasture and sparse vegetated soil (60 %) and forest (25 %); urbanized and cultivated 

areas are located mainly in the north and cover 7 % and 4 % of the catchment respectively.  

Most of the catchment is underlain by conglomerates, marl incrustations and sandstone (Gurtz et al., 1999). For the purpose 

of this study, the geological formations have been divided into three classes (Fig. 1d): “consolidated”, covering mainly the 

mountainous part of the catchment, “unconsolidated”, located in the north, and “alluvial”, located in the proximity of the 10 

river network, mainly in the plateau area; the latter formation constitutes the main source of groundwater in the region 

(Schirmer et al., 2014)(Schirmer et al., 2014). The soil depth (Fig. 1e) is shallower in the mountainous part of the catchment 

and deeper in the northern part.  

Based on the availability of gauging stations (Table 1), the catchment was divided in 10 subcatchments (Fig. 1a), with a total 

drained area that ranges between 3.2 km2 (Mosnang) and 1702 km2 (Andelfingen). Streamflow time series are obtained from 15 

the Federal Office for the Environment FOEN and the data is available from 1974 to 2017 but is used only form 1981 to 

2005 to match the precipitation, temperature, and potential evapotranspiration (PET) time series. In the considered range, the 

streamflow data are relatively continuous, with two gaps, one in St. Gallen, from 31 December 1981 to 01 January 1983, and 

the other one in Herisau, from 31 December 1982 to 09 May 1983. 

The raw maps (topography, land use, geology, and soil) are obtained from the Federal Office of Topography swisstopo. The 20 

meteorological data is obtained from the Federal Office of Meteorology and Climatology MeteoSwiss. Precipitation and 

temperature are interpolated, as done in Melsen et al. (2016), with the pre–processing tool WINMET (Viviroli et al., 2009) 

using inverse distance weight (IDW) and detrended IDW respectively; while the first method considers only the horizontal 

variability (related to the distance from the meteorological stations), the second adds a vertical component to the variability 

related with the elevation (Garen and Marks, 2001). PET data is then obtained, as done in Gurtz et al. (1999), starting from 25 

meteorological and land use data, using the Penman–Monteith equation (Monteith, 1975), implemented as part of the 

hydrological model PREVAH (Viviroli et al., 2009). All these values are calculated at pixel (100 m) scale and then averaged 

over the subcatchments. All the time series are used at daily resolution in the subsequent analyses, aggregating the available 

hourly data. This choice was influenced on the one hand by the need of limiting the computational demand for the model 

experiments, for which a coarser temporal resolution is preferable, and on the other hand by the need of representing relevant 30 

hydrograph dynamics, for which finer temporal resolution is desirable (e.g., Kavetski et al., 2011)(e.g., Kavetski et al., 

2011). A daily data resolution, although it may obscure subdaily process dynamics, appeared to be a good compromise, and 

it is a typical choice in distributed model applications at such spatial scales (e.g., Kirchner et al., 2004)(e.g., Kirchner et al., 

2004). 

3 Methods 35 

3 The methodology follows a two stages approach. The first stage aims at determining the climatic and landscape controls on 

streamflow signatures. The second stage uses this understanding to configure the structure of a semi-distributed model, 

whose functional suitability is tested through a set of model experiments. Section 3.1 describes the first stage of the analysis, 

that is, the identification of influencing factors on the spatial variability of streamflow signatures. Section 3.2 describes the 

general structure of the semi-distributed model, and the model evaluation approach. The design of the model experiments, 40 

which is dependent on the outcomes of the first stage of analyses, is presented directly in the results (Sect. 4.2.1). 
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2.13.1 Identification of influencing factors on the spatial variability of streamflow signatures 

2.2 3.1 Methodology 

The purpose of the analysis presented in this section is to understand the influence of climatic conditions and landscape 

characteristics on streamflow. Climatic conditions are represented by precipitation, potential evaporation, and temperature 

time series. Landscape characteristics are represented by maps of topography, land use, geology, and soil. 5 

Climatic conditions, landscape characteristics and streamflow are represented through a set of statistics. (listed in Table 2). 

In the following, statistics calculated based on streamflow data will be called streamflow “signatures”, as it is often done in 

catchment classification literature (e.g., Sivapalan, 2006). We will refer to climatic and landscape “indices” for statistics 

calculated based on climatic data and landscape characteristics. A broad list of signatures and indices is presented in Sect. 

3.1.1; Section 3.1.2 presents anthe approach for reducing such list to a set of meaningful variables; Section 3.1.3 illustrates 10 

the approach for determining the indices that mostly control streamflow signatures; Sect. 3.1.4 describes how the signature 

analysis is used to set-up the model experiments. 

2.2.13.1.1 3.1.1 Catchment indices for representing streamflow, climate, and landscape 

Streamflow signatures (𝜁𝜁) and climatic indices (𝜓𝜓) were obtained using streamflow, precipitation, PET, and temperature time 

series. The values were calculated using 24 years of data, between 01 September 1981 and 31 August 2005; we considered 15 

the 01 September as the beginning of the hydrological year. The periods with gaps in the data (refer to Sect. 2 for details) 

were discarded from the analysis of the specific subcatchment. Landscape indices were obtained using the maps described in 

Section 2. 

Addor et al. (2017) recently compiled a comprehensive list of streamflow signatures and climatic indices for characterizing 

catchment behaviour (see Table 3 in Addor et al. (2017)). Here, we adopted their selection. The streamflow signatures here 20 

considered are described hereafter, followed by an explanation of their rationale: 

• average daily streamflow 𝜁𝜁Q = 𝒒𝒒�, where 𝒒𝒒 is the streamflow time series and the overbar represents the average over 

the observation period; 

• runoff ratio 𝜁𝜁RR = 𝒒𝒒�
𝒑𝒑�
, where 𝒑𝒑 is the precipitation time series; 

• streamflow elasticity (𝜁𝜁EL) defined as 25 

𝜁𝜁EL = med ��Δ𝒒𝒒�
𝒒𝒒�
� �Δ𝒑𝒑�

𝒑𝒑�
�� �          (1) 

Addor et al. (2017) recently compiled a comprehensive list of streamflow signatures and climatic indices for characterizing 

catchment behaviour (see Table 3 in Addor et al. (2017)). Here, we adopted their selection: while being originally introduced 

for a study about large sample hydrology, we believe that the indices proposed are also able to capture several different 

aspects of the time series and are therefore suitable also for this regional study. The streamflow signatures here considered 30 

are described hereafter, followed by an explanation of their rationale: 

• average daily streamflow 𝜁𝜁Q = 𝒒𝒒�, where 𝒒𝒒 is the streamflow time series and the overbar represents the average over 

the observation period; 

• runoff ratio 𝜁𝜁RR = 𝒒𝒒�
𝒑𝒑�
, where 𝒑𝒑 is the precipitation time series; 

• streamflow elasticity (𝜁𝜁EL) defined as 35 

𝜁𝜁EL = med ��Δ𝒒𝒒�
𝒒𝒒�
� �Δ𝒑𝒑�

𝒑𝒑�
�� �          (1) 

where Δ𝒒𝒒� and Δ𝒑𝒑� represent the streamflow and precipitation jumpsdifference between two consecutive years and 

med is the median function; 
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• slope of the flow duration curve (𝜁𝜁FDC) defined as the slope between the log-transformed 33rd and 66th streamflow 

percentiles; 

• baseflow index 𝜁𝜁BFI = 𝒒𝒒(𝐛𝐛)������

𝒒𝒒�  , where 𝒒𝒒(𝐛𝐛)  represents the baseflow and was calculated using a low–pass filter as 

illustrated in Ladson et al. (2013)Ladson et al. (2013) with the equation 

𝑞𝑞t
(f) = min �0,𝜗𝜗b𝑞𝑞t−1

(f) + 1+𝜗𝜗b
2

(𝑞𝑞t − 𝑞𝑞t−1)�        (2) 5 

𝑞𝑞t
(b) = 𝑞𝑞t − 𝑞𝑞t

(f)           (3) 

with 𝑞𝑞t
(f) representing the quick flow. The settings of the filter were taken according to the findings of Ladson et al. 

(2013) and, in particular, three filter passes were applied (forward, backward, and forward), the parameter 𝜗𝜗b was 

chosen to be equal to 0.925, and a reflection of 30 time steps at the beginning and at the end of the time series was 

used; 10 

• mean half streamflow date (𝜁𝜁HFD) (Court, 1962)(Court, 1962), defined as the number of days needed in order to 

have a cumulated streamflow that reaches the 50 % of the total annual streamflow; 

• 5th and 95th percentiles of the streamflow (𝜁𝜁Q5and 𝜁𝜁Q95 respectively); 

• frequency (𝜁𝜁HQF) and mean duration (𝜁𝜁HQD) of high-flow events: they are defined as the days when the streamflow 

is bigger than nine times the median daily streamflow; 15 

• frequency (𝜁𝜁LQF) and mean duration (𝜁𝜁LQD) of low-flow events: they are defined as the days when the streamflow is 

smaller than 0.2 times the mean daily streamflow; 

The frequency of days with zero streamflow, present in Addor et al. (2017)Addor et al. (2017), was not considered in this 

study because there are no ephemeral subcatchments in the study area.  

This group of streamflow signatures is capable of capturing various characteristics of the hydrograph: 𝜁𝜁Q  measures the 20 

overall water flows, 𝜁𝜁RR represents the proportion of precipitation that becomes streamflow, 𝜁𝜁EL measures the sensitivity of 

the streamflow to precipitation variations, with a value greater than 1 indicating an elastic subcatchment (i.e. sensitive to 

change of precipitation) (Sawicz et al., 2011), 𝜁𝜁FDC measures the variability of the hydrograph, with a steeper flow duration 

curve indicating a more variable streamflow, 𝜁𝜁BFI measures the magnitude of the baseflow component of the hydrograph, and 

can be considered as a proxy for the relative amount of groundwater flow in the hydrograph, 𝜁𝜁HFD measures the streamflow 25 

seasonality, 𝜁𝜁Q5, 𝜁𝜁LQF, and 𝜁𝜁LQD measure low-flow dynamics, 𝜁𝜁Q95, 𝜁𝜁HQF, and 𝜁𝜁HQD measure high-flow dynamics. 

Climatology was represented through the following indices (see Addor et al. (2017), Table 2): 

Climatology was represented through the following indices (see Addor et al. (2017), Table 2): 

• average daily precipitation 𝜓𝜓P = 𝒑𝒑�;  

• average daily PET 𝜓𝜓PET = 𝒆𝒆𝐩𝐩𝐩𝐩𝐩𝐩�����, where 𝒆𝒆𝐩𝐩𝐩𝐩𝐩𝐩 is the potential evapotranspiration time series; 30 

• aridity index 𝜓𝜓AI = 𝒆𝒆𝐩𝐩𝐩𝐩𝐩𝐩������
𝒑𝒑�

; 

• fraction of snow (𝜓𝜓FS), defined as the volumetric fraction of precipitation falling as snow (i.e. on days colder than 0 

°C); 

• frequency (𝜓𝜓HPF ) and mean duration (𝜓𝜓HPD ) of high precipitation events: they are defined as days when the 

precipitation is bigger than five times the mean daily precipitation; 35 

• season (𝜓𝜓HPS) with most high precipitation events (defined as above); 

• frequency (𝜓𝜓LPF) and mean duration (𝜓𝜓LPD) of dry days: they defined as days when the precipitation is lower than 1 

mm day-1; 

• season (𝜓𝜓LPS) with most dry days (defined as above). 
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The seasonality of precipitation used in Addor et al. (2017)Addor et al. (2017) was not considered in this study as it relied on 

fitting a sinusoidal function to the precipitation values, which in our case did not produce reliable results. Nevertheless, these 

climatological indices are able to comprehensively represent the climatic conditions of the suubcatchmentsubcatchment, with 

𝜓𝜓P  representing average water input, 𝜓𝜓PET  representing average evaporative demand, 𝜓𝜓AI  measuring the dryness of the 

climate, 𝜓𝜓FS  measuring the relative importance of snow, 𝜓𝜓HPF , 𝜓𝜓HPD , and 𝜓𝜓HPS  measuring the importance of intense 5 

precipitation events, and  𝜓𝜓LPF, 𝜓𝜓LPD, and 𝜓𝜓LPS measuring the importance of dry days. 

The landscape characteristics were divided in four categories: topography, land use, soil, and geology. In order to quantify 

the characteristics of each category, a set of indices (𝜉𝜉) was defined. It is important to notice that all the areas calculated in 

this analysis were normalized by the respective subcatchment area (𝜉𝜉A ) in order to get comparable values between 

subcatchments of different size. 10 

Topography was represented with the following indices, calculated based on the digital elevation model (DEM): 

• average elevation (𝜉𝜉TE); 

• average slope (𝜉𝜉TSm); 

• fraction of the subcatchment with steep areas (𝜉𝜉TSs) , with slope larger than 10°; 

• aspect, i.e. fraction of the subcatchment facing north (𝜉𝜉TAn), south (𝜉𝜉TAs), or east and west (𝜉𝜉TAew). 15 

Land use was represented with the following characteristics, obtained by reclassifying the land use map in four categories 

(from 22 original classes): 

• fraction of the subcatchment with crops land use (𝜉𝜉LC); 

• fraction of the subcatchment with pasture land use (𝜉𝜉LP); 

• fraction of the subcatchment with forest land use (𝜉𝜉LF); 20 

• fraction of the subcatchment with urbanized land use (𝜉𝜉LU). 

Soil type was represented with the following indices, derived by the soil map: 

• fraction of the subcatchment with deep soil (soil depth greater than two meters) (𝜉𝜉SD); 

• average soil depth (𝜉𝜉SM). 

Geology was represented by the following indices, obtained by reclassifying the original map in three categories (from 22 25 

original classes): 

• fraction of the subcatchment with alluvial geology (𝜉𝜉GA); 

• fraction of the subcatchment with consolidated geology (𝜉𝜉GC); 

• fraction of the subcatchment with unconsolidated geology (𝜉𝜉GU). 

The reclassification of the land use and of the geology maps consisted in aggregating specific classes into general classes 30 

(e.g. combining different types of forests into a unique forest class) with the objective of reducing their number, in order to 

facilitate subsequent analyses. 

The consideration of topography, land use, soil, and geology for defining landscape indices was based on their potential 

influence on hydrological processes, and in turn, on the shape of the hydrograph. These landscape characteristics can all play 

an important role in controlling hydrological processes: land use can, for example, influence the infiltration of water in the 35 

substrate; soil thickness can affect the partitioning between water storage and runoff; vegetation is typically assumed to 

affect evaporation, and geology can affect groundwater dynamics. Indeed, these characteristics are used by many 

semidistributedsemi-distributed hydrological models, for example for determining parameter values or for dividing the 

catchment in areas with homogenous hydrological response (e.g., Gurtz et al., 1999). 
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2.2.23.1.2 3.1.2 Selection of meaningful streamflow signatures, climatic indices, and catchment indices 

The sets of statistics presented in Sect. 3.1.1 were designed to be comprehensive. However, they may also be redundant, for 

example by containing metrics that express similar characteristics of the underlying data. In order to facilitate subsequent 

correlation analyses between the various sets of statistics, it is important to reduce each set to a short list of meaningful 

variables. The reduction of each set of streamflow signatures, climatic indices, and landscape indices was achieved through 5 

the following steps: 

• All the statistics that did not show sufficient variability between the subcatchments were eliminated. We were in 

fact interested in identifying causes of spatial variability in the streafmowstreamflow dynamics of the 

subcatchments of the Thur. Therefore, statistics that had a low variability were not of interest in this analysis. The 

variability was measuredassessed using the coefficient of variation (defined by the ratio between the standard 10 

deviation and the average) and statistics with a coefficient of variation less than 5 % were discarded. 

• All the catchment indices (e.g. a certain type of land use) that account for a limited part of the subcatchment were 

discarded. The latterThis point was motivated by the expectation that landscape characteristics covering a very 

small fraction of the subcatchment should not have a strong influence on the streamflow signatures considered. 

Here, landscape indices accounting for less than 5 % of the subcatchment area were discarded. 15 

• Within each set of streamflow signatures, climatic indices, and catchment indices we retained only relatively 

independent metrics., if these are believed to represent the same underlying features of the time series. This step 

was motivated by the need of removing redundant information within each set. The selection of independent metrics 

was aided by the Spearman’s rank score between each pair of metrics, which represents (also non–linear) 

correlation between variables. Pairs of metrics with high absolute value of the Spearman’s rank score are potentially 20 

redundant. In eliminating potentially redundant variables, we adopted the following criteria: 

o Among highly correlated metrics, we preferred those depending on single variables (e.g. only precipitation 

or only streamflow) to those containing multiple variables (e.g. combining precipitation and streamflow or 

evaporation, such as the aridity index or the runoff ratio), as this may be a problem when looking for 

correlations between metrics; 25 

o With respect to landscape indices, in many cases the high correlation is due to the fact that they are 

complementary (the areal fractions sum up to unity). In such cases, we kept one index per class (e.g. a 

single index for geology). 

o A high correlation between metrics does not always mean that the metrics represent the same information. 

Therefore, the final selection of relevant metrics within each set was guided by expert judgment.  30 

Based on this process, we compiled a reduced list of signatures, climatic indices, and landscape indices, which was used in 

subsequent analyses. 

2.2.33.1.3 3.1.3 Identification of climate and landscape controls on streamflow and consequences for model 
development 

This analysis aimed to identify climatic and landscape indices that mostly control streamflow signatures. In order to identify 35 

causality links between indices (𝜓𝜓 and 𝜉𝜉) and signatures (𝜁𝜁) we proceed as follows: 

• We calculated the correlation between indices and signatures using the Spearman’s rank score, and identified pairs 

of variables with high correlation; 

• We scrutinized pairs of variables with high correlations using expert judgment to decide if a causality link between 

variables is justified;. 40 

The outcome of this process will be used to inform the semi-distributed model setup. The expert judgment is a critical step in 

the elicitation of causality from correlation (e.g., Antonetti and Zappa, 2018), and it is clearly subjective, being dependent on 
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personal experience and subject matter knowledge. Although personal and subjective, expert decisions are based on an 

attempt to interpret data rather than be a-priori defined, which is typically the case in the application of semi-distributed 

hydrological models. 

3.1.4 Semi-distributed model setup and model experiments 

We assumed a generic structure for a semi-distributed hydrological model, described in Section 3.2.1, where some model 5 

structure characteristics are defined a priori, and others are to be defined. In order to motivate the open decisions, we 

proceeded as follows: 

• We used the identified causality links to inform the structure of a distributed model. 

The distributed model development involved a series of choices regarding the subdivision of the catchment in HRUs, the 

model structure, and the parameters: all these choices were, in this study, motivated by the results of the correlation analysis, 10 

i.e. only catchment characteristics that were found capable of explaining the hydrological response were used. 

31 3.2 interpretResults and interpretation 

• This section illustrates the results of the correlation analysis aimed to identifydominant processes influencing 

factors that control thesignature spatial variability of streamflow signatures; Section 3.2.1 presents the results of the 

selection of meaningful statistics; Section 3.2.2 identifies climate and landscape indices controlling streamflow 15 

signatures and presents consequences for model development.; 

3.1.11.1.1 3.2.1 Selection of meaningful streamflow signatures, climatic indices, and catchment indices 

The streamflow signatures defined in Sect. 3.1.1 were calculated for each subcatchment and the values are shown in Table 2 

together with the coefficient of variation. All the signatures have a coefficient of variability bigger than the threshold value 

of 5%, with the most variable signature being 𝜁𝜁LQF  (71%) and the least variable 𝜁𝜁HQD  (6%). Therefore, none of these 20 

signatures was discarded. 

Figure 2 shows the correlations between the streamflow signatures: the lower triangle contains the Spearman’s rank 

correlation and the upper triangle the p-value associated with the correlations. Based on correlations and on its interpretation, 

a subset of 𝜁𝜁 can be defined as follows: 

•  𝜁𝜁Q ,  𝜁𝜁RR and 𝜁𝜁EL are strongly correlated (𝑟𝑟 > 0.72). We retained 𝜁𝜁Qand discarded 𝜁𝜁RR and 𝜁𝜁EL because both contain 25 

climatic information (precipitation) in their definition; 

• 𝜁𝜁BFI and 𝜁𝜁FDC are strongly correlated (𝑟𝑟 = −0.77). We decided to retain 𝜁𝜁BFI as it is of easier interpretation (it is a 

proxy for the importance of groundwater flow, which is a potentially important process for the subsequent model 

development); 

• 𝜁𝜁HFD was kept because it measures the seasonality of the streamflow. Note that 𝜁𝜁HFD  is strongly correlated with 𝜁𝜁Q 30 

(𝑟𝑟 = 0.88). However, they reflect different properties of the hydrograph. In particular, 𝜁𝜁HFD  can be an useful 

indicator for the effect of snow-related processes; 

• 𝜁𝜁Q5 and 𝜁𝜁HQD were retained because they have low correlation (𝑟𝑟 < 0.71) with the other selected signatures and 

because the first represents low flows and the second high flows; 

• 𝜁𝜁Q95, 𝜁𝜁HQF, 𝜁𝜁LQD, and 𝜁𝜁LQF were discarded because they all show correlations with the selected signatures. 35 

In summary, the original set of streamflow signatures was reduced to a set of five meaningful signatures, which will be in the 

subsequent analyses: average daily streamflow (𝜁𝜁Q), baseflow index (𝜁𝜁BFI), half streamflow period (𝜁𝜁HFD), 5th percentiles of 

the streamflow (𝜁𝜁Q5), and duration of high-flow events (𝜁𝜁HQD). 
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In terms of climatic indices, Table 3 shows their values together with the coefficient of variation. It can be seen that there are 

some indices that show very little or no variation at all and, therefore, they could be already excluded from the subsequent 

correlation analysis; they are: 𝜓𝜓HPD (1 %), 𝜓𝜓HPS (0 %), 𝜓𝜓LPF (4 %), 𝜓𝜓LPD (3 %), and 𝜓𝜓LPS (0 %). 

Fig. 3 shows the correlation between the remaining indices. It can be observed they all have strong internal correlation 

(𝑟𝑟 > 0.71). For this reason it was decided to retain only 𝜓𝜓P and 𝜓𝜓FS, as they have lower correlation. The first represents an 5 

important term of the water budget, the latter captures snow dynamics.  

Table 4 shows the values of the catchment characteristics considered in this study. All of them have a coefficient of variation 

larger than the minimum threshold of 5%. Therefore, none of them was excluded based on this criterion. The second 

criterion for the pre-exclusion of the catchments characteristics, consisting in removing 𝜉𝜉 occupying less than 5% of the 

subcatchments, led to the suppression of 𝜉𝜉LC (which occupies 4% of the subcatchment). 10 

Figure 4 shows the correlations between catchment characteristics; in many cases the high correlation is due to the fact that 

many indices are complementary (e.g. different types of geology). The following 𝜉𝜉 were selected (one index per class): 

• 𝜉𝜉A because it is low correlated to the other features; 

• 𝜉𝜉TE and 𝜉𝜉TAs in representation of the topography; 

• 𝜉𝜉LF for the land use; 15 

• 𝜉𝜉SD representing the soil characteristics; 

• 𝜉𝜉GC for the geology. 

In summary, the original set of catchment indices was reduced to a set of 5 indices. 

3.1.21.1.1 3.2.2 Selection of controlling factors on streamflow signatures 

Fig. 5 reports the results of the Spearman correlation between climatic indices plus catchment characteristics on streamflow 20 

signatures. The upper panel contains the Spearman’s rank coefficients and the lower panel shows p-values associated with 

them. 

The following results can be noted: 

• The three statistics average precipitation (𝜓𝜓P ), fraction of snow (𝜓𝜓𝐹𝐹𝐹𝐹 ), and average elevation (𝜉𝜉TE ) correlate 

strongly with average streamflow (𝜁𝜁Q) and seasonality (𝜁𝜁HFD) (𝑟𝑟 > 0.64 and p-value< 0.05). This correlation can 25 

be interpreted as follows: subcatchments with high elevation (𝜉𝜉TE) tend to have higher precipitation (𝜓𝜓P) due to 

orographic effects, which leads to higher streamflow (𝜁𝜁Q). They also tend to have more snow (𝜓𝜓FS) due to lower 

temperatures, which influences the seasonality (𝜁𝜁HFD). 

• There are then some catchment characteristics that have no correlation (𝑟𝑟 < 0.45) with the streamflow signatures 

(catchment area (𝜉𝜉A) and land use (𝜉𝜉LF)) or limited correlation (aspect (𝜉𝜉TAs) and deep soil (𝜉𝜉SD), with 𝑟𝑟 < 0.64).  30 

• The consolidated geology (𝜉𝜉GC) presents a strong correlation (𝑟𝑟 = −0.87) only with the baseflow index (𝜁𝜁BFI) that it 

is not captured by the other indices. 

• The streamflow signatures of low and high flows (𝜁𝜁Q5  and 𝜁𝜁HQD) cannot be explained by any index, with little 

correlation only with 𝜓𝜓P and 𝜉𝜉TE (𝑟𝑟 < 0.60) that is not sufficient to reach a p-value lower than 0.05. 

These results are the premise for designing meaningful model experiments. 35 

3.1.31.1.1 3.3 designed model experiments aimed to confirm the hypothesized climatic and landscape controls 
on streamflowHypotheses for model building 

Our hypothesis is that only a model that accounts for the influencing factors that affect the streamflow signatures will be able 

to reproduce spatial streamflow variability. In this section, we synthetize the outcomes of previous analyses in the form of 

testable hypotheses for model building. 40 
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1. The precipitation is the first driver of the differences in the water balance of the subcatchments. The effect of 

topographic variability manifests itself primarily as an influence on precipitation (amount and type). Accounting for 

variability of precipitation therefore implicitly reflects such effect of topography on the hydrograph, since the inputs 

were interpolated taking into account the effect of the elevation (Sect. 2). 

2.1. Snow related processes (e.g. amount of snow, timing of snowmelt) control differences in streamflow seasonality 5 

between subcatchments. 

3. Geology exerts an important control on the partitioning between quick flow and baseflow.  

4.1. The other catchment characteristics (e.g. soil, vegetation) show little or no correlations with the streamflow 

signatures and therefore they should not be considered if the idea is to keep the model as simple as possible. 

These hypotheses will be tested through specific model comparisons, described in Sect. 4.1.5. 10 

• 4  

The overall objective of the model experiments is to prove that only models that incorporate the correct dependencies are 

able to correctly predict regional streamflow variability. In order to test this assumption, the model experiments will include 

cases where the assumed dependencies are not incorporated. Omitting an assumed dependency leads to structurally simpler 

model, which may raise the doubt that potential differences in model performance might be due to differences in model 15 

complexity. For this reason, the model experiments will include cases where alternative dependencies are incorporated, 

which do not reduce model complexity. In order to keep the study and presentation tractable, the model experiments will be 

limited to a few cases, illustrated in Sect. 4.2.1 which we judge relevant for this specific application. 

3.2 General structure of the semi-distributed hydrological model and model evaluation approach 

3.21.1 Modelling 20 

41 4.1 Methods 

This section describes the approach for building and testing a semi-distributed hydrological model designed to represent the 

observed streamflow and particularly the observed spatial variability of streamflow signatures. The general model structure 

is explained in Sect. 4.13.2.1, the error model and the calibration procedure are described in Sect. 4.13.2.2 and 4.13.2.3, the 

metrics utilized to assess the performance are shown in Sect. 4.1.4, and the model experiments done are illustrated in Sect. 25 

4.1.53.2.4. 

4.1.13.2.1 4.1.1 General structure of the hydrological model 

We describe here the general model structure. Specific choices for; the variousdefinition of specific model experiments are, 

which depends on the results of the signatures analysis done in the first step, will be described in SectionSect. 4.2.1.5.   

The model uses a two-layers decomposition of the catchment:  30 

1. Subcatchments are defined by the presence of the gauging stations; this subdivision wasis due to the necessity of 

having locations in the model where the streamflow wasis both observed and simulated and, therefore, it wasis 

possible to calibrate and evaluate the parameters of the hydrological model. This layer of decomposition was used 

for the distribution of the meteorological inputs (precipitation, PET, temperature), that are aggregated at the 

subcatchment scale. 35 

2. HRUs are defined based on catchment characteristics (e.g. topography, geology or vegetation); they represented 

parts of the catchment that are supposed to have a similar hydrological response to the meteorological forcing. Each 

HRU is characterized by its own parameterization. Different definitions of HRUs wereare tested, as described in 

Section 4.2.1.5. 
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Each HRU has a unique parameterization. However, given the choice of discretizingdepending on how the inputs per 

subcatchment, a HRU that spans multiple subcatchments will generallyare discretized, the same HRU can have different 

states in each subcatchment.different parts of the catchment. Therefore, the same HRU needs its own model representation 

whenever the spatial variability of states needs to be considered. For example, if the inputs are discretized per subcatchment, 

the same HRU needs a separate model representation in each subcatchment where it is present. For more details about our 5 

model implementation of “HRUs” refer to Fig. 4 of Fenicia et al. (2016). 

The model was built usingIn order to limit the modelling framework SUPERFLEX (Fenicia et al., 2011). In contrast to 

Fenicia et al. (2016), for simplicity we chose a unique levels of decisions of the semi-distributed models, some of the aspects 

of the distributed models are fixed a-priori, and others are left open. In particular: 

• The structure chosen to represent the various HRUs (as said above, thisis kept fixed. That is, differences between 10 

HRUs will be reflected only through the parameter values. 

• The definition of HRUs is left open. In particular, we do not a-priori specify which approach is used to discretize 

the landscape. 

• The spatial discretization of the model inputs is left open. Hence, we do not decide in advance which spatial 

discretization of the inputs is most appropriate. 15 

Only the fixed decision about the HRUs model structure will generally have different parameters in order to represent the 

hydrological behaviour of distinct HRUs). The is here described, whereas the open decisions are described in the Results 

section (Sect. 4.2.1).  The spatial organization of the model structure used to represent the HRUs is is represented in Fig. 6 

with the equations listed in the Appendix A. The structure includes a snow reservoir (WR), with inputs distributed per 

subcatchments. Snowmelt and rainfall are input to an unsaturated reservoir (UR), which determines the portion of 20 

precipitation that produces runoff. This flux is split through a fast reservoir (FR), designed to represent the peaks of the 

hydrograph, proceeded by a lag function to offset the hydrograph, and a slow reservoir (SR), designed to represent baseflow. 

This structure was chosen to be parsimonious while general enough to reproduce typical hydrograph behaviour; it was tested 

in previous applications ( e.g., van Esse et al., 2013; Fenicia et al., 2014; Fenicia et al., 2016) demonstrating its suitability to 

reproduce a wide range of catchment responses. It also resembles popular conceptual hydrological models such as HBV 25 

(Lindstrom et al., 1997) and HyMod (Boyle, 2003), which are shown to have wide applicability. The model was built using 

the modelling framework SUPERFLEX (Fenicia et al., 2011). 

4.1.23.2.2 4.1.2 Error model  

As commonly done in hydrological modelling (e.g., McInerney et al., 2017), we here account for uncertainties by 

considering a probabilistic model of the observations 𝑸𝑸(𝜽𝜽,𝒙𝒙), where 𝜽𝜽 is the vector of parameters and 𝒙𝒙 the model input, 30 

which is composed of a deterministic hydrological model 𝒉𝒉(𝜽𝜽𝐡𝐡,𝒙𝒙) (illustrated in Sect. 4.13.2.1) and a random residual error 

term 𝜠𝜠(𝜽𝜽𝚬𝚬)  that accounts for all data and model uncertainties (𝜽𝜽𝐡𝐡  and  𝜽𝜽𝚬𝚬  represent the hydrological and the error 

parameters): 

𝑧𝑧[𝑸𝑸(𝜽𝜽,𝒙𝒙); 𝜆𝜆] = 𝑧𝑧[𝒉𝒉(𝜽𝜽𝐡𝐡,𝒙𝒙); 𝜆𝜆] + 𝜠𝜠(𝜽𝜽𝚬𝚬)         (4) 

where 𝑧𝑧[𝒚𝒚; 𝜆𝜆] represents the Box–Cox transformation (Box and Cox, 1964) with parameter 𝜆𝜆 , which is used to account for 35 

heteroscedasticity (stabilize the variance). For 𝜆𝜆 ≠ 0:  

𝑧𝑧[𝑦𝑦t; 𝜆𝜆] = 𝑦𝑦t
𝜆𝜆−1
𝜆𝜆

            (5) 

The residual error term is assumed to follow a Gaussian distribution with zero mean and variance 𝜎𝜎2 

𝛦𝛦t~𝑁𝑁(0;𝜎𝜎2)            (6) 

The error model has, therefore, two parameters (𝜆𝜆 and 𝜎𝜎2); the first one was fixed to 0.5 (McInerney et al., 2017) and the 40 

second one was inferred. 
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This choice of error model (Gaussian noise applied to the Box–Cox transformation of the streamflow) allows for an explicit 

definition of the likelihood function (McInerney et al., 2017) 

𝑝𝑝(𝒒𝒒𝐩𝐩𝐛𝐛𝐨𝐨|𝜽𝜽𝐡𝐡,𝜽𝜽𝚬𝚬,𝒙𝒙) = ∏ 𝑧𝑧′�𝑞𝑞obs,t|𝜽𝜽𝚬𝚬�𝑓𝑓𝑁𝑁(𝛦𝛦𝑡𝑡|0;𝜎𝜎2)T
t=1         (7) 

where T represents the length of the time series, 𝑓𝑓𝑁𝑁 is the Gaussian probability density function (PDF) and 𝑧𝑧′(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐|𝜽𝜽𝜠𝜠) is the 

derivative of 𝑧𝑧(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐,𝜽𝜽𝜠𝜠) with respect to 𝒒𝒒 evaluated at the observed data 𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐 . Specifying Eq. (7) for the case where 5 

𝑧𝑧(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐;𝜽𝜽𝜠𝜠) is defined by Eq. (5), the expression of the likelihood function becomes: 

𝑝𝑝(𝒒𝒒𝐩𝐩𝐛𝐛𝐨𝐨|𝜽𝜽𝐡𝐡,𝜽𝜽𝚬𝚬,𝒙𝒙) = ∏ 𝑞𝑞ob𝑠𝑠,𝑡𝑡
(𝜆𝜆−1)𝑓𝑓𝑁𝑁(𝛦𝛦𝑡𝑡|0;𝜎𝜎2)T

t=1         (8) 

Equation (8) represents the likelihood function that is then used, together with an uniform prior distribution, to calibrate the 

parameters of the model as described in Sect. 4.13.2.3. 

4.1.33.2.3 4.1.3 Calibration  10 

Parameter calibration wasis performed with the objective of maximizing their posterior density. According to Bayes 

equation, the posterior distribution of model parameters is expressed as the product between the prior distribution and the 

likelihood function; since an uniform prior wasis used for the parameters, this is equivalent to maximizing the likelihood 

function in the defined parameter space; the optimization procedure wasis performed with a multi–start quasi–Newton 

method (Kavetski et al., 2007) with 20 independent searcherssearches. We empirically established that with models of our 15 

complexity (about 10 parameters), 20 independent searches provide good confidence that a global optimum is found. 

The evaluation of the model ability to reproduce streamflow wasis carried out in space–time validation (see also Fenicia et 

al., 2016). For this purpose, the time domain wasis divided in two periods of 12 years each (from 01 September 1981 to 01 

September 1993, and from 01 September 1993 to 01 September 2005) and the subcatchments wereare split into two groups 

(A and B), according to a spatial alternation (subcatchment in group A flows into a subcatchment in group B that flows into 20 

one in group A and so on); the subcatchments belonging to group A are Andelfingen, Herisau, Jonschwil, St. Gallen, Wängi 

and the ones in group B are Appenzell, Frauenfeld, Halden, Mogelsberg, Mosnang. This method implies a division of the 

space–time domain in four quadrants, such that the model can be calibrated in one quadrant and validated in the other three. 

For space–time validation, the model wasis calibrated using each group of subcatchment and each period, and validated 

using the other group of subcatchment and period. That is, the model calibrated using group A and period 1 was validated 25 

using group B and period 2, and so on for the other 3 combinations of subcatchments and groups. The model output in the 4 

space–time validation periods wasis then combined, to calculate model performance using various indicators (see Sect. 

4.13.2.4). Results are presented for space time validation, which represents the most challenging test of model performance. 

4.1.43.2.4 4.1.4 Performance assessment 

Model performance wasis assessed using the following metrics: 30 

1. Time series metrics, which evaluate the ability of reproducing streamflow time series. The metrics used for this 

assessment are the following: 

• Normalized log–likelihood (LL), that is, the logarithm of Eq. (8) normalized by the number of time steps 

present in the time series. This metrics corresponds to the objective function used for model optimization. It 

can be observed that, since λ  is fixed at 0.5 in the Box–Cox transformation, model calibration is equivalent to 35 

maximising the Nash–Sutcliffe efficiency (NS) calculated with the square root of the streamflow. LL is not 

bounded but a higher value means a better match between two time series since, in this case, the absolute value 

of the residual is smaller and, thus, their PDF higher. 

• Nash–Sutcliffe efficiency 
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𝑁𝑁𝑁𝑁(𝒒𝒒𝐩𝐩𝐛𝐛𝐨𝐨,𝒒𝒒𝐨𝐨𝐬𝐬𝐬𝐬) = 1 −
∑ �𝑞𝑞sim,t−𝑞𝑞obs,t�

2𝑇𝑇
𝑡𝑡=1

∑ �𝑞𝑞obs,t−𝒒𝒒𝐩𝐩𝐛𝐛𝐨𝐨�������
2𝑇𝑇

𝑡𝑡=1

       (9) 

Which is often used in hydrological applications, and it provides a sense of general quality of the simulations. 

NS is bounded between −∞ and 1, with 1 meaning a perfect match. 

2. Signature metrics, which determine the ability of reproducing the selected streamflow signatures (𝜁𝜁 ) which, 

asselected using the procedure illustrated in SectionSect. 3.1.2.1, are average daily streamflow (𝜁𝜁Q), baseflow index 5 

( 𝜁𝜁BFI ) mean half streamflow date (𝜁𝜁HFD), 5th percentile of the streamflow (𝜁𝜁Q5), and duration of high-flow events 

(𝜁𝜁HQD). The accordance between simulated and observed signatures wasis assessed both visually and using the 

Spearman’s rank correlation. 

The use of multiple metrics for assessing model performance enables a comprehensive assessment of various characteristics 

of the simulations. Time series metrics wereare designed to appraise the general quality of the model fit. Signatures, instead, 10 

wereare designed to highlight selected characteristics of the data at the expense of others. 

4 Results and interpretation 

4.1 Influencing factors on the spatial variability of streamflow signatures 

This section illustrates the results of the correlation analysis complemented by expert judgement aimed to identify 

influencing factors that control the spatial variability of streamflow signatures; Section 4.1.1 presents the results of the 15 

selection of meaningful statistics; Section 4.1.2 identifies climate and landscape indices controlling streamflow signatures 

and presents consequences for model development; Section 4.1.3 formulates the hypotheses that have to be tested by the 

hydrological model. 

4.1.1 Selection of meaningful streamflow signatures, climatic indices, and catchment indices 

The streamflow signatures defined in Sect. 34.1.1 were calculated for each subcatchment and the values are shown in Table 20 

3 together with the coefficient of variation. All the signatures have a coefficient of variability bigger than the threshold value 

of 5%, with the most variable signature being 𝜁𝜁LQF  (71%) and the least variable 𝜁𝜁HQD  (6%). Therefore, none of these 

signatures was discarded. 

Figure 2 shows the correlations between the streamflow signatures: the lower triangle contains the Spearman’s rank 

correlation and the upper triangle the p-value associated with the correlations. Based on correlations and on its interpretation, 25 

a subset of 𝜁𝜁 can be defined as follows: 

•  𝜁𝜁Q  ,  𝜁𝜁RR  and 𝜁𝜁EL  are strongly correlated (𝑟𝑟 > 0.72 ). We retained 𝜁𝜁Q  and discarded 𝜁𝜁RR  and 𝜁𝜁EL  because both 

contain climatic information (precipitation) in their definition; 

• 𝜁𝜁BFI and 𝜁𝜁FDC are strongly correlated (𝑟𝑟 = −0.77). We decided to retain 𝜁𝜁BFI as it is of easier interpretation (it is a 

proxy for the importance of groundwater flow, which is a potentially important process for the subsequent model 30 

development); 

• 𝜁𝜁HFD was kept because it measures the seasonality of the streamflow. Note that 𝜁𝜁HFD  is strongly correlated with 𝜁𝜁Q 

(𝑟𝑟 = 0.88). However, they reflect different properties of the hydrograph. In particular, 𝜁𝜁HFD  can be an useful 

indicator for the effect of snow-related processes; 

• 𝜁𝜁Q5 and 𝜁𝜁HQD were retained because they have low correlation (𝑟𝑟 < 0.71) with the other selected signatures and 35 

because the first represents low flows and the second high flows; 

• 𝜁𝜁Q95, 𝜁𝜁HQF, 𝜁𝜁LQD, and 𝜁𝜁LQF were discarded because they all show correlations with the selected signatures. 
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In summary, the original set of streamflow signatures was reduced to a set of five meaningful signatures, which will be used 

in the subsequent analyses: average daily streamflow (𝜁𝜁Q ), baseflow index (𝜁𝜁BFI ), half streamflow period (𝜁𝜁HFD ), 5th 

percentiles of the streamflow (𝜁𝜁Q5), and duration of high-flow events (𝜁𝜁HQD). 

In terms of climatic indices, Table 4 shows their values together with the coefficient of variation. It can be seen that there are 

some indices that show very little or no variation at all and, therefore, they could be already excluded from the subsequent 5 

correlation analysis; they are: 𝜓𝜓HPD (1 %), 𝜓𝜓HPS (0 %), 𝜓𝜓LPF (4 %), 𝜓𝜓LPD (3 %), and 𝜓𝜓LPS (0 %). 

Figure 3 shows the correlation between the remaining indices. It can be observed they all have strong internal correlation 

(𝑟𝑟 > 0.71). For this reason it was decided to retain only 𝜓𝜓P and 𝜓𝜓FS, as they have lower correlation. The first represents an 

important term of the water budget, the latter captures snow dynamics.  

Table 5 shows the values of the catchment characteristics considered in this study. All of them have a coefficient of variation 10 

larger than the minimum threshold of 5%. Therefore, none of them was excluded based on this criterion. The second 

criterion for the pre-exclusion of the catchments characteristics, consisting in removing 𝜉𝜉 occupying less than 5% of the 

subcatchments, led to the suppression of 𝜉𝜉LC (which occupies 4% of the subcatchment). 

Figure 4 shows the correlations between catchment characteristics; in many cases the high correlation is due to the fact that 

many indices are complementary (e.g. different types of geology). The following 𝜉𝜉 were selected (one index per class): 15 

• 𝜉𝜉A because it is low correlated to the other features; 

• 𝜉𝜉TE and 𝜉𝜉TAs in representation of the topography; 

• 𝜉𝜉LF for the land use; 

• 𝜉𝜉SD representing the soil characteristics; 

• 𝜉𝜉GC for the geology. 20 

In summary, the original set of catchment indices was reduced to a set of 5 indices. 

4.1.2 Selection of controlling factors on streamflow signatures 

Figure 5 reports the results of the Spearman correlation between climatic indices plus catchment characteristics on 

streamflow signatures. The upper panel contains the Spearman’s rank coefficients and the lower panel shows p-values 

associated with them. 25 

The following results can be noted: 

• The three statistics average precipitation (𝜓𝜓P ), fraction of snow (𝜓𝜓𝐹𝐹𝐹𝐹 ), and average elevation (𝜉𝜉TE ) correlate 

strongly with average streamflow (𝜁𝜁Q) and seasonality (𝜁𝜁HFD) (𝑟𝑟 > 0.64 and p-value< 0.05). This correlation can 

be interpreted as follows: subcatchments with high elevation (𝜉𝜉TE) tend to have higher precipitation (𝜓𝜓P) due to 

orographic effects, which leads to higher streamflow (𝜁𝜁Q). They also tend to have more snow (𝜓𝜓FS) due to lower 30 

temperatures, which influences the seasonality (𝜁𝜁HFD). 

• There are then some catchment characteristics that have no correlation (𝑟𝑟 < 0.45) with the streamflow signatures 

(catchment area (𝜉𝜉A) and land use (𝜉𝜉LF)) or limited correlation (aspect (𝜉𝜉TAs) and deep soil (𝜉𝜉SD), with 𝑟𝑟 < 0.64).  

• The consolidated geology (𝜉𝜉GC) presents a strong correlation (𝑟𝑟 = −0.87) only with the baseflow index (𝜁𝜁BFI) that it 

is not captured by the other indices. 35 

• The streamflow signatures of low and high flows (𝜁𝜁Q5  and 𝜁𝜁HQD) cannot be explained by any index, with little 

correlation only with 𝜓𝜓P and 𝜉𝜉TE (𝑟𝑟 < 0.60) that is not sufficient to reach a p-value lower than 0.05. 

These results are the premise for designing meaningful model experiments. 

4.1.3 Hypotheses for model building 

In this section, we synthetize the outcomes of previous analyses in the form of testable hypotheses for model building. 40 
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1. The precipitation is the first driver of the differences in the water balance of the subcatchments. The effect of 

topographic variability manifests itself primarily as an influence on precipitation (amount and type). Accounting for 

variability of precipitation therefore implicitly reflects such effect of topography on the hydrograph, since some 

inputs were interpolated taking into account the effect of the elevation (Sect. 2). Other phenomena potentially 

altering the water balance (e.g. regional groundwater flow) do not have a significant role and should not be 5 

considered. 

2. Snow related processes (e.g. amount of snow, timing of snowmelt) control differences in streamflow seasonality 

between subcatchments. Hence, the model needs to account for snow related processes and their spatial variability. 

3. Geology exerts an important control on the partitioning between quick flow and baseflow. Hence, the model should 

distinguish the different response behaviour of distinct geological areas. 10 

4. The other catchment characteristics (e.g. soil, vegetation) show little or no correlations with the streamflow 

signatures and therefore they should not be considered if the idea is to keep the model as simple as possible. 

These hypotheses will be tested through specific model comparisons, described in Sect. 4.2.1. 

4.2 Modelling 

This section presents the results of the modelling experiments. 5 Section 4.2.1 describes the model comparisons designed to 15 

test the hypotheses formulated in section 4.1.3. Section 4.2.2 illustrates model results in terms of hydrograph metrics. 

Section 4.2.3 presents model results in terms of signatures. An interpretation of the results, including a comparison with the 

conclusions of the signatures analysis, is given in Sect. 4.2.4. 

4.1.54.2.1 Model experiments for testing the results of the correlationsignatures analysis 

Using the model structure described in Sect. 4.13.2.1, four model configurations were compared by varying the number and 20 

the definition of the HRUs, and changing the structure of the HRUs (Fig. 6). The objective of the experiments was to test the 

hypotheses 1-4 in Sect. 4.1.3.3 using semi-distributed hydrological models. 

TheFor all models, the meteorological inputs (precipitation, PET, temperature) are aggregated at the subcatchment scale. 

Based on the first hypothesis (precipitation controls the in Section 4.1.3, we assume that this discretization is sufficient to 

capture the regional difference in water balance) between subcatchments. This hypothesis is tested with the model M0, with 25 

uniform parameters onin the catchment (i.e. a single HRU) and distributed precipitation input. This model does not consider 

snow processes. We expect that this model will be able to reproduce differences in streamflow averages between 

subcatchments. 

The second hypothesis in Section 4.1.3 (snow controls seasonality) is tested with the model M1. Relatively to M0, M1 

accounts for snow processes, represented by simple degree day snow module (see Kavetski and Kuczera, 2007), with inputs 30 

(temperature) distributed per subcatchment. We expect that this model will be able to reproduce differences in streamflow 

seasonality between subcatchments. 

The third hypothesis in Section 4.1.3 (geology controls baseflow) is tested with the model M2. Relatively to M1, M2 

considers two HRUs, defined based on geology type. One HRU contains the areas with consolidated geology while the other 

HRU contains the rest of the catchment (unconsolidated and alluvial geology together). We expect that M2 will be able to 35 

reproduce differences in the baseflow index between subcatchments. 

The fourth hypothesis in Section 4.1.3 (other catchment characteristics should not be considered if the idea is to keep the 

model as simple as possible),) is exemplified by the model M3. M3 is analogous to M2 except thatin terms of complexity but 

the HRUs are based on catchment characteristics that did not show correlation with the streamflow signatures. Among those 

characteristics, we have selected land use, and considered an HRU based forest and crops and the second one that occupies 40 

the rest of the catchment. This model is as complex as M2 (therefore it is more complex than M1); hence it has the same 
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dimensions of flexibility to fit the data. However, since the structure of this model does not incorporate the cause-effect 

relationships derived from the signatures analysis, we expect that its predictive performance will be poorer than M2. 

The total number of the calibrated parameters depends on the number of HRUs and on the structure used to represent them: 

it was 8 for M0, 9 in M1, and 13 in M2 and M3, where 5 parameters were linked between different HRUs (Fig. 6 and Table 

A1); those parameters are: 𝐶𝐶e that governs the evapotranspiration, 𝑡𝑡riseOL  and 𝑡𝑡riseIL  that control the routing in the river network, 5 

𝑘𝑘WR that regulates the outflow of the snow reservoir, and 𝑁𝑁maxUR  that determines the behaviour of the unsaturated reservoir. 

4.2 4.2 Results and interpretation 

This section presents the results of the modelling experiments. Section 4.2.1 illustrates model results in terms of hydrograph 

metrics. Section 4.2.2 presents model results in terms of signatures. An interpretation of the results, including a comparison 

with the conclusions of the correlation analysis, is given in Sect. 4.2.3. 10 

4.2.14.2.2 4.2.1 Model performance in terms of hydrograph metrics 

Figure 7a shows the values of the likelihood function (corresponding to the calibration objective function) for the four 

models in calibration and validation. It can be observed that M0 is, by far, the worst model, having a lowwith the lowest 

value of the likelihood. Moving to function. Regarding the other three models, it can be seen that, during calibration, M1, 

which has the lowest number of calibration parameters, has the lowest performance, whereas M2 and M3 have higher and 15 

similar higher likelihood values. This behaviour persists in time validation, with M2 and M3 that outperform M1. In space 

and space–time validation, however, M3 has the lowest likelihood value of the three, whereas M1 and M2 limit their 

decrease in performance, ranking, respectively, second and the first in terms of optimal likelihood value. 

The likelihood function represents an aggregate metricmetrics of model performance; in order to get a sense of appreciation 

of model fit on individual subcatchments, Fig. 7b reports the values of Nash Sutcliffe efficiency in space time validation for 20 

each of the subcatchments. On average, M2 has the best performance of all models (NS = 0.79), followed by M1 (NS = 

0.78), M3 (NS = 0.77), and M0 (NS = 0.68). M3 and M0 have the highest variability of performance, with NS values 

between 0.58 and 0.86 and between 0.59 and 0.81. M1 and M2 have similar spread of NS values, ranging from 0.69 to 0.85 

for M1 and from 0.73 to 0.87 for M2. Therefore, M1 and M2 have a more stable performance across subcatchments than 

M3. M3 obtains a significantly worse performance than the other 2 models on Mosnang, where it reaches a NS value of 0.58 25 

(M1 and M2 have values of 0.69 and 0.73 respectively). 

It can also be observed that M2 is generally better than M1, with NS values that are higher or approximately equal except for 

the subcatchments Andelfingen and Halden, where the NS is slightly worse (however still higher than 0.80). M3 is clearly 

better than M1 onin Andelfingen, Frauenfeld and Wängi, and clearly worse onin Herisau and Mosnang. In particular, in 

Mosnang (the smallest basin), M3 reaches the worst performance of all models on all subcatchments.  30 

Regarding M0, it is interesting to observe that it has the worst performance (among all the subcatchments) in Appenzell, 

which is the subcatchment that is mostmostly affected by snow (𝜓𝜓FS = 0.21), while it reaches a performance similar to M1 

in Frauenfeld and Wängi, which are two subcatchments with almost no snow. 

4.2.24.2.3 4.2.2 Model performance in terms of signature metrics 

Figure 8 compares the ability of M0 and M1 to capture the signatures representing average streamflow (𝜁𝜁Q) and seasonality 35 

(𝜁𝜁HFD). The analysis is presented for space–time validation and, for 𝜁𝜁HFD, it focuses only on the four subcatchments that are 

most affected by the snow (𝜓𝜓FS > 0.10) to emphasize the differences between the results of the two models. Each colour 

represents a different subcatchment and each dot a year; the red dashed line has a 45 ° slope and represents where the dots 

should align in case of perfect simulation results. The Spearman’s rank score is also reported and gives information about the 
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degree of dependency between the two variables. It is important to stress that the models have not been calibrated using any 

of the signatures as objective function, which therefore represent an independent evaluation metricmetrics.  

It can be observed that M0 represents 𝜁𝜁Q as well as M1, with almost no difference between the two models. Focusing on the 

ability of capturing  𝜁𝜁HFD, it can be seen that with M0 the points corresponding to M0 all lie in the upper-left part of the plot, 

meaning that this model underestimates the signature values. With respect to M1, instead, the points are more aligned around 5 

the diagonal. This difference in performance is also exemplified by the value of 𝑟𝑟 that is 0.66 for M0 and 0.85 for M1. 

Figure 9 compares the observed and simulated signatures for the other three models (M1, M2, and M3). All of them are 

extremely good in representing 𝜁𝜁Q (𝑟𝑟 is 0.95, 0.96, and 0.95 for M1, M2, and M3 respectively) and 𝜁𝜁HFD (𝑟𝑟 is 0.88, 0.88, and 

0.87 for M1, M2, and M3 respectively). In all cases the cloud of points appears aligned to the diagonal meaning that the 

three models are able to capture the value of the signatures each year. Moreover, there is no sensible difference in the various 10 

models in representing those signatures. 

The performance of all the models decreases for 𝜁𝜁Q5 where the models have a similar performance with 𝑟𝑟 equal to 0.62, 0.66, 

and 0.61 for M1, M2, and M3 respectively. The points cloud isare still aligned toalong the diagonal but it isare quite 

dispersed, especially if compared with 𝜁𝜁Q  and 𝜁𝜁HFD , meaning that the models capture the general tendency but have 

deficiencies capturing the inter-annual variability. 15 

In terms of 𝜁𝜁BFI  , M2 performs clearly better than the other models. It is the only model that is able to represent this 

signature, with 𝑟𝑟 equal to 0.83 and the points that align to the diagonal. The other two models have a lower performance (𝑟𝑟 

equal to 0.31 and 0.52 for M1 and M3 respectively) with the points cloud that isare quite dispersed and the dots align almost 

vertically, implying that the simulated values have a range of variability that is definitely smaller than the observed data. 

Figure 10 shows the comparison between observed and simulated 𝜁𝜁HQD; since this signature requires a long time window to 20 

be computed, it is not calculated year by year (as done with the other signatures) but it is available only theas an aggregated 

value over the 24 years. The performance of M1 and M2 is overall good, with 𝑟𝑟 that is 0.77 and 0.69, while M3 shows some 

deficiencies (𝑟𝑟 equal to 0.48); all the models tend to slightly overestimate the duration of high flow events with most of the 

points that lie on the right side of the diagonal. 

4.2.34.2.4 4.2.3 Interpretation of hydrological model results 25 

The results of the hydrological model experiments appear to support our hypothesis that only models that account for the 

influencing factors that affect the streamflow signatures are able to reproduce streamflow spatial variability (see Sect. 

34.1.3). This provides confidence that those models are a realistic representation of dominant processes in the catchment. 

In particular, the results of M0 show that accounting for the spatial heterogeneity of the precipitation alone is sufficient to 

achieve a good accuracy signatures of water balance, with 𝑟𝑟 of 0.95 for average streamflow 𝜁𝜁𝑄𝑄 . More complex models with 30 

more HRUs and more parameters do not result in any improvement in reproducing the average streamflow signature. 

The differences between M1 and M0 show that differences in streamflow seasonality 𝜁𝜁HFD can be largely attributed to the  

(spatially variable) effect of snow accumulation and melting. More complex models (M2 and M3) do not demonstrate an 

improvement in this signature. 

M2 determines a large improvement in matching signatures of baseflow variability. The ability of fitting 𝜁𝜁BFI goes from 0.31 35 

for M1 to 0.83 for M2. This result confirms that geology influences spatial variability of quickflow vs baseflow partitioning, 

as indicated by correlationsignatures analysis. 

M3 reassures that the relatively good results of M2 are not just due to increasing complexity. Although this model performs 

slightly better than the M1 in terms of matching signatures such as 𝜁𝜁BFI, M2 is still much better (e.g. the Spearman’s rank 

score for 𝜁𝜁BFI is 0.83 for M2 and 0.52 for M3). 40 
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All the models do not preform particularly well in reproducing 𝜁𝜁Q5 and 𝜁𝜁HQF. These problems showsshow that such models 

may not represent well extreme values (high and low flowflows), and therefore they are still amenable to improvements. 

Overall, distributing the inputs in space and accounting for the spatial distribution of snow related processes is sufficient to 

get good performance metrics, of water balance, and seasonality, confirming the fact that only the precipitation rate and the 

partitioning between rainfall and snow are the first controllers on these hydrograph characteristics, but, if we want. However, 5 

in order to capture also other important characteristics of the hydrograph, described by signatures like 𝜁𝜁𝐵𝐵𝐹𝐹𝐵𝐵 , the discretization 

of the catchment in HRUs is necessary. This discretization has to be carefully made and a preliminary analysis to understand 

dominant influencing factors on signatures can help in this decision. As shown in Fig. 9, if we use characteristics that are not 

strongly correlated with the signatures (e.g. land use) the results are worse than if we choose characteristics that show a 

correlation with signatures (e.g. geology). This means that M2 is capable of capturing the signatures not just because it is 10 

more complex than M1, but because it incorporates the causality link between the geology and the streamflow signatures in 

its structure. 

5 5 General discussion 

Explaining the spatial variability observed in catchment hydrological behaviour by identifying the most important controls 

on water fluxes and pathways is a major focus of catchment hydrology and a central theme in classification studies (e.g., 15 

McDonnell and Woods, 2004; Wagener et al., 2007). A common approach for interpreting the spatial variability of 

catchment responses is through correlation based analyses, which seek correlations between climatic or catchment 

characteristics and streamflow signatures (e.g., Lacey and Grayson, 1998; Bloomfield et al., 2009).  One of the issues with 

this approach is that correlation does not always imply causality, and the presence of multiple correlated variables can 

obscure process interpretation. 20 

In this study, we combine correlation analysis and expert judgement for identifying dominant influencing factors on 

streamflow signatures with hydrological modelling, by using the interpretation of the correlation analysis as an inspiration 

for generating testable model hypotheses. The combination of correlation analysis on streamflow signatures and hydrological 

modelling is beneficial because on the one hand, the speculations on dominant processes resulting from the correlation 

analyses can be verified in the modelling process. Specifically, we developed model experiments to test the influence of 25 

precipitation spatial distribution on streamflow average and seasonality, and the influence of geology on quickflow vs 

baseflow partitioning. On the other hand, model building benefits from guidance resulting from preliminary 

correlationsignatures analysis. The construction of a distributed model requires several decisions (e.g., Fenicia et al., 2016), 

including how to “break–up” the catchment in a meaningful way, and preliminary correlationsignatures analysis can 

motivate some of these decisions. For example, the HRUs defined based on geology, as suggested by correlationsignatures 30 

analysis resulted in better model performance than HRUs based on land use, particularly in the representation of streamflow 

signatures. 

Although several modelling decisions were guided by data analysis, it should be noted that alternative decisions would have 

been similarly consistent with the data. For example, both precipitation and elevation are correlated with average 

streamflow, and both geology, topography and soil type characteristics are correlated between each other and with baseflow 35 

index (Section 3.24.1.2 and Figure 5). The correlation of catchment characteristics (e.g. geology, soil and topography) can be 

attributed to the fact that they evolved together in the shaping of the catchment morphology (e.g. mountainous regions have 

impervious topography with shallower soil and, for these reasonreasons, are less suitable for human activities, influencing 

land use). The decisions on which variables are chosen to reflect a causality link is not always obvious from correlation 

analysis alone, and it requires expert judgment, which is not always generally shared. necessarily subjective. Although 40 
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subjectivity is difficult to avoid, it is important being transparent about the decision taken and the argumentations on which 

they are based, how weak or strong they may be, so that they can be reappraised and revised if new evidence is acquired. 

The choice of streamflow signatures is based on the large-sample study from Addor et al. (2017), which provides a broad 

range of signatures typically used in hydrology. Our analyses showed that this selection is rather inclusive, with several 

strongly correlated signatures (e.g. 𝜁𝜁𝑄𝑄and 𝜁𝜁𝑅𝑅𝑅𝑅). For this reason, we eventually used a much smaller selection of the original 5 

set of signatures (12 in the original set vs. 5 in the final set). The apparent inclusivity of the set from Addor et al. (2017) 

provides confidence that the main properties of streamflow are captured in our study. However, it does not guarantee that 

this set of signatures is sufficient in representing streamflow time series. 

Our results on the Thur catchment with respect to the effect of meteorological inputs on average streamflow and of the 

geology on baseflow index are in general agreement with previous work. Kuentz et al. (2017) made a classification study 10 

over more than 40000 catchments across all Europe (of which almost 2700 are gauged) and found that the rainfall is the first 

controller of the average streamflow, geology controls the BFI, topography the flashiness index, and, for most of the cases, 

land use is the second controller of them; Bloomfield et al. (2009) used a linear regression model and linked the lithology of 

the Thames Basin (UK) with the BFI; Lacey and Grayson (1998) noted that geology controls the BFI in two ways, storing 

the water and impacting the soil formations; Fenicia et al. (2016) compared different model structures and catchment 15 

discretization methods in the Attert Basin (Luxemburg) and discovered that the best model was the one that incorporates a 

spatial representation of the meteorological inputs and of the geology. 

On the other hand, this general tendency should not be generalized to all places. For example, Mazvimavi et al. (2005) found 

that geology was not important for the BFI, as in their case study the aquifer was deep and disconnected from the river. 

Bouaziz et al. (2018) found a strong influence of regional groundwater flow in the Meuse catchment which altered the water 20 

balance. 

One of the main limitations of this work is the restricted number of catchments involved and the limited spatial extension of 

the study. For this reason, it is difficult to generalize the results to other climatic regions. The subcatchments belong all to the 

same region and the landscape and climatic characteristics, while varying substantially within the basin, can still be quite 

different from characteristics found elsewhere. are still a small sample of the characteristics found elsewhere. Moreover, 25 

although the model evaluation uses validation in space and time, which is a relatively incisive test, the spatial validation is 

carried out in a nested setup. The application of systematic model development strategies to other places and scales, and 

spatial validation to entirely different regions, are necessary to obtain more generalizable insights. 

The limitedsmall number of catchmentssubcatchments involved in this study (only 10) can also pose some problems in limits 

the range of viable methods for identifying relationships between landscape and climatic indices and streamflow signatures 30 

(Sect. 3.1) to rather simple approaches. In particular, our correlation analysis, where only linear or although accounting for 

non-linearity, is limited to monotonic correlations have been investigated whilebetween variables, and it is unable to identify 

other forms of relationship, including the mutual interaction between various influencing factors, have been neglected. This 

can lead to the exclusion of characteristics that. The usage of more advanced techniques, including machine learning 

approaches such as random forest or clustering analyses, are indirectly related to the streamflow signaturesmost efficient 35 

when larger samples are available and could represent a more suitable choice in these situations. 

6 6 Conclusion 

In this study, we presented a methodology for the construction of a semi-distributed hydrological model where model 

hypotheses, instead of being made a–priori, are informed by preliminary correlation analysis on determining the dominant 

climatic and landscape controls on streamflow signaturesspatial variability. Besides providing guidance to model 40 
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development, the proposed approach is useful in the fact that modelling can be used to test specific hypotheses on dominant 

processes resulting from correlationsuch preliminary analysis.  

Our analysis was applied to the Thur catchment, with the objective of understanding the main controlssubdivided in 10 

subcatchments based on streamflow spatial variabilityavailable stream gauging stations. The main findings are summarized 

in the following points: 5 

1. we found large spatial variability between the subcatchments of the Thur in terms of various streamflow signatures 

reflecting multiple temporal scales: yearly, seasonal and event scale. In terms of climatic characteristics, indices 

reflecting fraction of snow, precipitation totals, and aridity varied considerably betweenamong catchments. Other 

precipitation characteristics such as season, frequency and duration of dry and wet days did not vary significantly 

betweenamong catchments. In terms of landscape characteristics, there is large variability of topography (e.g. from 10 

upstream mountainous to downstream flat areas), geology (with unconsolidated, more permeable, and consolidated, 

relatively impermeable formations), and soils (with low depths in the mountains, and large depth in the floodplains) 

in all catchments; 

2. based on correlation analysis and expert judgment, we determined that climatic variables, especially precipitation 

average, are the main controls on streamflow average yearly values; the fraction of snow is responsible for 15 

streamflow seasonality by delaying the release of winter precipitation to the spring season, and geology controls the 

baseflow index, with a higher fraction of unconsolidated material determining higher baseflow; 

3. the results of the correlationsignatures analysis were translated into a set of model hypotheses: a model with 

uniform parameters and distributed precipitation input (M0), the addition of a snow component (M1), the 

subdivision of the catchment in geology based HRUs (M2), and the alternative subdivision the catchment using 20 

vegetation based HRUs (M3); 

4. using model comparison, and a validation approach that considers model performance (also in terms of signatures) 

in space time validation, we confirmed that model decisions based on correlation analysis were 

appropriate.accounting for the heterogeneity of precipitation, snow related processes, and landscape features such as 

geology, is necessary to produce hydrographs that have signatures similar to the observed ones. In particular, we 25 

confirmed that M0, in spite of a generally poor performance, is sufficient to capture signatures of streamflow 

average., showing that only distributing the meteorological inputs is sufficient to explain regional differences in 

average streamflow and that other phenomena potentially altering the water balance (e.g. regional groundwater 

flows)  do not play a significant role. M1 improves signatures of streamflow seasonality., showing that snow is the 

main responsible for the variability of the seasonality among the catchments. M2 enables reproducing signatures 30 

such as the baseflow index, showing that incorporating the geology of the catchment is important for reproducing 

regional differences in baseflow. Model modifications that are not in line with the results of the signature analysis, 

such as subdividing the catchment using vegetation based HRUs (M3), despite increasing model leading to the same 

complexity, not only do not lead to an improvement, but as M2, cause deterioration in model performance in space-

time validation. Overall, these results confirm the hypotheses based on the signatures analysis and suggest that the 35 

causality relationships, explaining the influence of climate and landscape characteristics on streamflow signatures, 

can be constructively used for distributed model building. 

 

The relatively good performance obtained in space–time validation suggests that the proposed approach could be used for 

the prediction of the streamflow in other ungauged locations within the Thur catchment. The method proposed uses data that 40 

is commonly available in many gauged catchments (e.g. meteorological data, streamflow measurements, and maps of 

elevation, geology, land use, and soil); therefore, it is easily transferable to other locations.  
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7 Appendix 

7.1 Appendix A: Hydrological model details 

7.1.1 A.1 Model equations 

The equations of the model are listed in this appendix; the model structure in presented in Fig. 6. Table A1 contains the 

model parameters with the range of variability used in calibration, Table  A2 lists the water–budget equations, Table A3 and 5 

A4 present the functions and the constitutive functions used. 
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Figure 1: Landscape characteristics of the Thur catchment: (a) subdivision in subcatchments, river network, and gauging stations; 
(b) elevation map; (c) land use map; (d) simplified geology map; (e) soil depth map; (f) slope map (derived from the elevation 
map). 
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Figure 2: Internal correlation between the streamflow signatures. The lower triangle shows the Spearman’s rank score with the 
red colour that indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the 
corresponding p-values, where yellow colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in 
the figure are reported in Sect. 3.1.1Table 2. 5 

 
Figure 3: Internal correlation between the climatic indices. The lower triangle shows the Spearman’s rank score with the red 
colour that indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the 
corresponding p-values, where yellow colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in 
the figure are reported in Sect. 3.1.1Table 2. 10 
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Figure 4: Internal correlation between the catchment characteristics. The lower triangle shows the Spearman’s rank score with 
the red colour that indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the 
corresponding p-values, where yellow colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in 
the figure are reported in Sect. 3.1.1Table 2. 5 
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Figure 5: Correlation between the selected streamflow signatures (rows) and the selected climatic indices and catchment 
characteristics (columns). The upper panel shows the Spearman’s rank score with the red colour that indicates negative 
correlations and the blue that indicates positive correlations. The lower panel reports the corresponding p-values, where yellow 
colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in the figure are reported in Sect. 5 
3.1.1Table 2. 

 
Figure 6: Schematic representation of the model structure used for the HRUs in all the model configurations. In the scheme “P” 
represent the precipitation entering in the reservoirs, “E” the evaporation, and  “Q” the outflow from the reservoirs. The 
subscripts indicate the reservoirs: WR = snow reservoir, UR = unsaturated reservoir, FR = fast reservoir, SR = slow reservoir, L = 10 
lag function. The governing equations are reported in Appendix A 
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Figure 6: Spatial organization of the model structure: the catchment is divided in subcatchments (black lines), based on the 
location of the gauging stations, and HRUs (background colour), based on the catchment characteristics. All the HRUs have the 
same structure but each HRU has its own parameterization except for some shared parameters. In the case of a single HRU model 
(i.e. M0 and M1), the model maintains the subdivision in subcatchments but loses the subdivision in multiple HRUs. 5 
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Figure 7: Normalized log–likelihood (a) and Nash–Sutcliffe efficiency (b) for the three model configurations. The upper plot (a) 
reports the variation between calibration and validation of the average of the 10 subcatchments; the lower plot (b) shows the 
variation between subcatchments during space–time validation.  
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Figure 8: Influence of the model structure on the representation of the average streamflow (𝜻𝜻𝐐𝐐) and the mean half streamflow day 
(𝜻𝜻𝐇𝐇𝐇𝐇𝐇𝐇). Single HRU model without snow reservoir on the left, (M0), single HRU model with snow reservoir on the right. (M1). 
Each dot represents a year and each colour a subcatchment. For 𝜻𝜻𝐇𝐇𝐇𝐇𝐇𝐇, only the four subcatchments with the fraction of snow (𝝍𝝍𝐇𝐇𝐅𝐅) 
larger than 10 % are plotted. The red dashed line has a 45 ° slope and indicates where all points should align in case of perfect 5 
match. The Spearman’s rank score (𝒓𝒓) is also reported. 
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Figure 9: Simulated vs observed streamflow signatures. Single HRU model on the left, (M1), two HRUs model based on geology in 
the centre, (M2), two HRUs model based on land use on the right. (M3). Each dot represents a year and each colour a 
subcatchment. From up to bottom, mean daily streamflow (𝜻𝜻𝐐𝐐), baseflow index (𝜻𝜻𝐁𝐁𝐇𝐇𝐁𝐁), mean half streamflow date (𝜻𝜻𝐇𝐇𝐇𝐇𝐇𝐇), and 5th 5 
percentile of the streamflow (𝜻𝜻𝐐𝐐𝐐𝐐). The red dashed line has a 45 ° slope and indicates where all points should align in case of 
perfect match. The Spearman’s rank score (𝒓𝒓) is also reported. 
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Figure 10: Ability of the hydrological models of representing the signature duration of low-flow events (𝜻𝜻𝐇𝐇𝐐𝐐𝐇𝐇). Single HRU model 
on the left, two HRUs model based on geology in the centre, two HRUs model based on land use on the right. 
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14 Tables 

Table 1: Identification of the gauging stations and description of the river network. 

 Index 
Code (a) Upstream 

catchments 

Andelfingen 1 2044 2 – 10 

Appenzell 2 2112 – 

Frauenfeld 3 2386 10 

Halden 4 2181 2, 3, 5 – 10 

Herisau 5 2305 – 

Jonschwil 6 2303 7, 8 

Mogelsberg 7 2374 – 

Mosnang 8 2414 – 

St. Gallen 9 2468 2 

Wängi 10 2126 – 
 (a) Code of the gauging station, as defined by the Federal Office for the Environment FOEN 
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Table 2: List of streamflow signatures, climatic indices, and subcatchments characteristics considered in the study. 

Symbol Name 

Streamflow signatures 

𝜁𝜁Q Average daily streamflow 

𝜁𝜁RR Runoff ratio 

𝜁𝜁EL Streamflow elasticity 

𝜁𝜁FDC Slope of the flow duration curve 

𝜁𝜁BFI Baseflow index 

𝜁𝜁HDF Mean half streamflow date 

𝜁𝜁Q5 5th percentile of the streamflow 

𝜁𝜁Q95 95th percentile of the streamflow 

𝜁𝜁HQF Frequency of high-flow events 

𝜁𝜁HQD Mean duration of high-flow events 

𝜁𝜁LQF Frequency of low-flow events 

𝜁𝜁LQD Mean duration of low-flow events 

Climatic indices 

𝜓𝜓P Average daily precipitation 

𝜓𝜓PET  Average daily potential evapotranspiration 

𝜓𝜓AI  Aridity index 

𝜓𝜓FS  Fraction of snow 

𝜓𝜓HPF  Frequency of high-precipitation events 

𝜓𝜓HPD  Mean duration of high-precipitation events 

𝜓𝜓HDS  Season with most high-precipitation events 

𝜓𝜓LPF  Frequency of low-precipitation events 

𝜓𝜓LPD  Mean duration of low-precipitation events 

𝜓𝜓LPS  Season with most low-precipitation events 

Subcatchments characteristics 

𝜉𝜉A Subcatchment area 

𝜉𝜉TE Average elevation 

𝜉𝜉TSm Average slope 

𝜉𝜉TSs Fraction of the subcatchment with steep areas 

𝜉𝜉TAs Fraction of the subcatchment facing south 

𝜉𝜉TAn Fraction of the subcatchment facing north 

𝜉𝜉TAew Fraction of the subcatchment facing east or west 

𝜉𝜉SM Average soil depth 

𝜉𝜉SD Fraction of the subcatchment with deep soil 

𝜉𝜉LF Fraction of the subcatchment with forest land use 

𝜉𝜉LC Fraction of the subcatchment with crops land use 

𝜉𝜉LU Fraction of the subcatchment with urbanized land use 
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𝜉𝜉LP Fraction of the subcatchment with pasture land use 

𝜉𝜉GA Fraction of the subcatchment with alluvial geology 

𝜉𝜉GC Fraction of the subcatchment with consolidated geology 

𝜉𝜉GU Fraction of the subcatchment with unconsolidated geology 

Table 2  
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Table 3: Values of the streamflow signatures. The names of the subcatchments are abbreviated using the first three letters., the 
symbols are reported in Table 2. The last column contains the coefficient of variation of each signature. 

 Subcatchment  
 And App Fra Hal Her Jon Mog Mos StG Wän CV 
𝜁𝜁Q 2.46 4.14 1.64 3.08 2.95 3.71 3.21 2.91 3.43 2.03 0.25 
𝜁𝜁RR  0.63 0.80 0.49 0.70 0.71 0.80 0.70 0.72 0.71 0.56 0.14 
𝜁𝜁EL 1.35 1.22 1.68 1.24 1.17 1.35 0.97 1.37 0.99 1.54 0.17 
𝜁𝜁FDC 2.12 2.41 2.11 2.30 2.08 2.49 2.76 2.78 2.47 2.02 0.12 
𝜁𝜁BFI 0.55 0.50 0.56 0.52 0.50 0.50 0.45 0.42 0.48 0.57 0.10 
𝜁𝜁HDF 194.21 220.63 170.38 202.00 193.87 205.38 196.96 168.33 209.36 173.17 0.09 
𝜁𝜁Q5 0.50 0.70 0.35 0.57 0.74 0.54 0.44 0.28 0.60 0.49 0.27 
𝜁𝜁Q95 6.96 12.85 4.83 9.23 9.17 11.19 10.57 10.46 11.00 5.98 0.28 
𝜁𝜁HQF 2.21 5.17 3.50 3.67 6.34 4.46 6.54 12.96 5.87 2.96 0.57 
𝜁𝜁HQD 1.39 1.25 1.45 1.35 1.40 1.39 1.37 1.58 1.35 1.29 0.06 
𝜁𝜁LQF 17.50 31.92 12.92 24.21 2.62 37.21 49.42 66.92 28.35 7.25 0.71 
𝜁𝜁LQD 6.67 6.18 3.69 6.53 2.00 7.44 6.38 7.11 4.53 4.35 0.32 
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Table 34: Values of the climatic indices. The names of the subcatchments are abbreviated using the first three letters., the symbols 
are reported in Table 2. The last column contains the coefficient of variation of each index. 

 Subcatchment  
 And App Fra Hal Her Jon Mog Mos StG Wän CV 
𝜓𝜓P 3.91 5.15 3.36 4.38 4.13 4.64 4.57 4.04 4.80 3.62 0.13 
𝜓𝜓PET  1.60 1.37 1.70 1.55 1.61 1.54 1.57 1.69 1.49 1.71 0.07 
𝜓𝜓AI  0.41 0.27 0.50 0.35 0.39 0.33 0.34 0.42 0.31 0.47 0.19 
𝜓𝜓FS  0.04 0.21 0.04 0.05 0.09 0.15 0.13 0.09 0.13 0.05 0.57 
𝜓𝜓HPF  15.21 14.38 17.67 14.58 15.82 14.54 14.58 16.13 14.31 17.50 0.08 
𝜓𝜓HPD  1.20 1.17 1.17 1.18 1.22 1.20 1.19 1.22 1.17 1.19 0.01 
𝜓𝜓HDS  Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer 0.00 
𝜓𝜓LPF  201.67 195.79 216.83 198.54 205.04 197.21 198.92 205.75 197.69 213.17 0.04 
𝜓𝜓LPD  3.57 3.50 3.83 3.50 3.63 3.51 3.51 3.66 3.51 3.76 0.03 
𝜓𝜓LPS  Fall Fall Fall Fall Fall Fall Fall Fall Fall Fall 0.00 
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Table 45: Values of the subcatchment characteristics. The names of the subcatchments are abbreviated using the first three 
letters., the symbols are reported in Table 2. The last two columns contain the coefficient of variation and the maximum value of 
each signature. 

 Subcatchment   
 And App Fra Hal Her Jon Mog Mos StG Wän CV MAX 
𝜉𝜉A 1701 74.46 213.34 1085 16.72 493.0 88.11 3.19 261.1 78.96 1.40 1701 
𝜉𝜉TE 768 1250 591 908 831 1020 954 797 1039 650 0.22 1250 
𝜉𝜉TSm 13.32 25.23 9.70 16.87 15.44 20.66 19.77 15.68 19.72 12.49 0.27 25.23 
𝜉𝜉TSs 0.47 0.81 0.33 0.62 0.69 0.77 0.79 0.71 0.73 0.45 0.26 0.81 
𝜉𝜉TAs 0.25 0.22 0.23 0.23 0.21 0.23 0.24 0.40 0.24 0.21 0.23 0.40 
𝜉𝜉TAn 0.32 0.35 0.33 0.32 0.33 0.32 0.31 0.24 0.33 0.32 0.09 0.35 
𝜉𝜉TAew 0.43 0.43 0.44 0.44 0.46 0.44 0.45 0.36 0.43 0.47 0.07 0.47 
𝜉𝜉SM 1.30 0.56 1.48 1.10 1.32 0.93 1.17 1.00 1.03 1.35 0.23 1.48 
𝜉𝜉SD 0.40 0.04 0.49 0.25 0.41 0.13 0.28 0.00 0.26 0.36 0.63 0.49 
𝜉𝜉LF 0.26 0.25 0.28 0.27 0.21 0.31 0.34 0.18 0.27 0.30 0.17 0.34 
𝜉𝜉LC 0.04 0.00 0.04 0.03 0.03 0.01 0.01 0.01 0.01 0.04 0.79 0.04 
𝜉𝜉LU 0.08 0.03 0.10 0.06 0.15 0.04 0.03 0.03 0.05 0.10 0.63 0.15 
𝜉𝜉LP 0.60 0.59 0.57 0.61 0.61 0.61 0.62 0.77 0.63 0.55 0.09 0.77 
𝜉𝜉GA 0.06 0.01 0.09 0.03 0.00 0.02 0.02 0.00 0.01 0.11 1.05 0.11 
𝜉𝜉GC 0.59 0.92 0.54 0.73 0.88 0.90 0.92 1.00 0.88 0.63 0.20 1.00 
𝜉𝜉GU 0.35 0.07 0.36 0.23 0.12 0.07 0.06 0.00 0.10 0.26 0.79 0.36 
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Table A1: hydrological model parameters with range of variation used for the definition of the uniform prior distribution. The 
“component” column indicates the element (reservoir, lag or network) where the parameter belongs. 

Parameter Unit Component Range of variability 

𝐶𝐶e − Unsaturated reservoir (UR) 0.1 – 3.0 

𝑁𝑁maxUR  mm Unsaturated reservoir (UR) 0.1 – 500.0 

𝑘𝑘WR d−1 Snow reservoir (WR) 0.1 – 10.0 

𝑡𝑡riseIL  d Network lag 0.5 – 10.0 

𝑡𝑡riseOL  d Network lag 0.5 – 10.0 

𝐷𝐷 − Structure 0.0 – 1.0 

𝑘𝑘FR d−1mm−2 Fast reservoir (FR) 10–6 – 10.0 

𝑘𝑘SR d−1 Slow reservoir (SR) 10–6 – 1.0 

𝑡𝑡rise
lag  d Structure lag 1.0 – 20.0 
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Table A2: Water–budget equations (see model schematic in Figure 6). 

Component Equation 

Snow reservoir (WR) d𝑁𝑁WR

d𝑡𝑡
= 𝑃𝑃WR − 𝑄𝑄WR 

Unsaturated reservoir (UR) d𝑁𝑁UR
d𝑡𝑡

= 𝑃𝑃UR − 𝑄𝑄UR − 𝐸𝐸UR 

Lag function 𝑄𝑄UR = 𝑃𝑃SR + 𝑃𝑃lag 

Slow reservoir (SR) d𝑁𝑁SR
d𝑡𝑡

= 𝑃𝑃SR − 𝑄𝑄SR 

Fast reservoir (FR) d𝑁𝑁WR

d𝑡𝑡
= 𝑃𝑃FR − 𝑄𝑄FR 

Outflow 𝑄𝑄 = 𝑄𝑄FR + 𝑄𝑄SR 
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Table A3: Constitutive functions of the model. Refer to Table A4 for the definition of the functions 𝒇𝒇. The calibrated parameters 
are marked in red 

Component Equation 

Snow reservoir (WR)(a) 𝑃𝑃WR = �𝑃𝑃 if 𝑇𝑇 ≤ 0
0 if 𝑇𝑇 > 0 

Snow reservoir (WR)(b) 𝑀𝑀max
WR = � 0 if 𝑇𝑇 ≤ 0

𝑘𝑘WR𝑇𝑇 if 𝑇𝑇 > 0 

Snow reservoir (WR) 𝑄𝑄WR = 𝑀𝑀max
WR 𝑓𝑓e(𝑁𝑁WR|2) 

Unsaturated reservoir (UR) 𝑁𝑁UR����� =
𝑁𝑁UR
𝑁𝑁maxUR  

Unsaturated reservoir (UR) 𝐸𝐸UR = 𝐶𝐶e(𝑃𝑃𝐸𝐸𝑇𝑇)𝑓𝑓m(𝑁𝑁UR|0.01) 

Unsaturated reservoir (UR) 𝑄𝑄UR = 𝑃𝑃UR𝑓𝑓p(𝑁𝑁UR�����|2) 

Slow reservoir (SR) 𝑃𝑃SR = 𝐷𝐷𝑄𝑄UR 

Slow reservoir (SR) 𝑄𝑄SR = 𝑘𝑘SR𝑁𝑁SR 

Lag function(c) 𝑃𝑃FR = �𝑃𝑃L ∗ ℎlag�(𝑡𝑡) 

Lag function 
ℎlag = �

2𝑡𝑡 �𝑡𝑡rise
lag �

2
� if 𝑡𝑡 ≤ 𝑡𝑡rise

lag

0 if 𝑡𝑡 > 𝑡𝑡rise
lag

 

Fast reservoir (FR) 𝑄𝑄FR = 𝑘𝑘FR𝑁𝑁FR3  

Lags in the network(c) 𝑄𝑄out = �𝑄𝑄in ∗ ℎlagnet�(𝑡𝑡) 

Lags in the network 

ℎlagnet =

⎩
⎪
⎨

⎪
⎧ 2𝑡𝑡 �𝑡𝑡rise

OL/IL�
2

⁄ if 𝑡𝑡 ≤ 𝑡𝑡rise
OL/IL

�1 𝑡𝑡rise
OL/IL⁄ � �1 − ��𝑡𝑡 − 𝑡𝑡rise

OL/IL� 𝑡𝑡rise
OL/IL� ��  if 𝑡𝑡rise

OL/IL < 𝑡𝑡 ≤ 2𝑡𝑡rise
OL/IL

0 if 𝑡𝑡 > 2𝑡𝑡rise
OL/IL

 

(a) This equation is smoothed using logistic scheme, Eq. (8) in Kavetski and Kuczera (2007), with smoothing parameter 

𝑚𝑚𝑃𝑃 = 1.5°𝐶𝐶 
(b) This equation is smoothed using logistic scheme, Eq. (13) in Kavetski and Kuczera (2007), with smoothing parameter 5 

𝑚𝑚𝑀𝑀 = 1.5°𝐶𝐶 
(c) The operator ∗ denotes the convolution operator, smoothed according to Kavetski and Kuczera (2007) 
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Table A4: Constitutive functions 

Function Name 

𝑓𝑓e(𝑥𝑥|𝜃𝜃) = 1 − 𝑒𝑒𝑥𝑥𝑝𝑝(−𝑥𝑥 𝜃𝜃⁄ ) Tessier function. Note that 𝑓𝑓e(𝑥𝑥|𝜃𝜃) → 1 as 𝑥𝑥 → ∞ 

𝑓𝑓p(𝑥𝑥|𝜃𝜃) = 𝑥𝑥𝜃𝜃 Power function 

𝑓𝑓m(𝑥𝑥|𝜃𝜃) =
𝑥𝑥(1 + 𝜃𝜃)
𝑥𝑥 + 𝜃𝜃

 
Monod–type kinetics, adjusted so that 𝑓𝑓m(1|𝜃𝜃) = 1 
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