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Author’s response 

Changes in the paper 
The paper has been subject to major revision in order to address the comments of the reviewers. The 
most significant changes concern the signatures analysis, where we introduced an extended selection of 
signatures, followed by an approach for selecting significant signatures, and a new model experiment 
(M0), aimed at demonstrating causes for differences in streamflow seasonality. A summary of the 
changes is presented below, followed by the individual responses to the reviewers. 

Changes in text 
SECTION DESCRIPTION 
1 Minor changes to keep consistency with the rest of the paper. 
3.1 and 3.2 Completely restructured to address the comments of the reviewers: 

• The list of signatures and indices considered was extended. 
• Correlation analysis based on Spearman instead of Pearson correlation to 

account for nonlinearities. 
• A pre-selection of signatures and indices based on correlation analysis and 

expert judgment was done to avoid spurious correlations in the subsequent 
analyses. 

• Climatic and catchment indices that drive streamflow variability were identified 
using correlation analysis and expert judgment. 

3.3 Adapted to the new findings. 
4.1.1 Completely restructured to address the concerns of the reviewers about clarity. 
4.1.4 Minor changes to keep consistency with the rest of the paper. 
4.1.5 Completely restructured to address the concerns of the reviewers about clarity. New 

model M0 included to test the importance of snow-related processes. 
4.2.1 Minor changes to include M0. 
4.2.2 Major changes due to the new group of signatures considered. 
4.2.3 Minor changes to keep consistency with the new findings of section 4. 
5 Minor changes to keep consistency with the rest of the paper. 
6 Major changes to address the concerns of the reviewers. 
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Changes in Figures 
The following figures were eliminated or modified (note that the numbers refer to the old version of the 
paper) 

FIGURE DESCRIPTION 
1 Panels (a), (b), and (c) modified to address the concerns of the reviewer. 
2 Eliminated. 
3 Eliminated. 
4 Eliminated. 
5 Eliminated. 
7 Added M0. 
8 Eliminated. 
9 Eliminated. 
10 Eliminated. 
The following figures were created (note that the numbers refer to the new version of the paper) 

FIGURE DESCRIPTION 
2 Internal correlation between the streamflow signatures. 
3 Internal correlation between the climatic indices. 
4 Internal correlation between the catchment characteristics. 
5 Correlation between the selected streamflow signatures and the selected climatic and 

catchment indices. 
8 Influence of the model structure on the representation of the mean half streamflow 

day. 
9 Ability of the models of representing the signatures. 
10 Ability of the hydrological models of representing the signature duration of low-flow 

events. 
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Changes in Tables 
The following tables were eliminated or modified (note that the numbers refer to the old version of the 
paper) 

Table DESCRIPTION 
1 Some columns were eliminated because they were included in table 4 of the new 

version of the paper. 
2 Eliminated. 
3 Eliminated. 
A1 Minor changes to address the comments of the reviewers. 
A2 Minor changes to address the comments of the reviewers. 
A3 Minor changes to address the comments of the reviewers. 
The following tables were created (note that the numbers refer to the new version of the paper) 

FIGURE DESCRIPTION 
2 Values of the streamflow signatures. 
3 Values of the climatic indices. 
4 Values of the subcatchment characteristics. 
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Reply to review by Anonymous Referee #1 
We thank the reviewer for his/her careful read to the manuscript and insightful suggestions. Below, we 
answer in detail the various comments, and illustrate how we have addressed them in the revised 
version. The original comments of the reviewer are reported in black and italics, our replies in blue and 
the changes to the paper in green and bold. 

Note that, were not indicated, the numbers of figure/tables/lines/pages refer to the old version of the 
paper. 

The authors propose to infer the structure of a hydrological model based on landscape and process 
characteristics (signatures) of the catchment. In the first of a two-stage process different landscape and 
catchment characteristics are compared to different streamflow signatures to identify the most 
important controls on runoff formation. In the second step this information is used “as an inspiration for 
model structure design” (p17, l. 32) as the authors put it. 

Inferring structure from function (or vice versa) is at the core of hydrological model building and subject 
to numerous studies. The topic is hence highly relevant for the hydrological community. The manuscript 
is well structured and well-written. Accordingly the manuscript is suitable for a publication on HESS. 
However, I cannot recommend publishing to current version of the manuscript due to several major 
points: 

1. The purpose of the modelling exercise is not clear. Model requirements for flood forecasting are 
e.g. totally different from model requirements to simulate climate change. The relevant 
signatures, temporal and spatial model discretisation, model evaluation metrics and also the 
degree of model conceptualisation differ accordingly. Please specify more clearly the purpose of 
you modelling study. Otherwise it is not possible to evaluate the study meaningfully. 
In the introduction, we already specified (lines 6-10, page 3) the main objectives of the study, 
which in summary consist of proposing a model building strategy which starts from an analysis 
of the data, which provide a basis for motivating the various model decisions.  
As the reviewer noted, the purpose of the model itself has remained unclear. Although one of 
the main objectives of models is making predictions to address some practical issues, here we 
do not have such an immediate applied objective. The model exercise is mainly an instrument to 
help understand and interpret catchment scale processes. In particular, we are interested in 
identifying the landscape properties and associated processes that dominate catchment 
response, and that mostly influence the observed spatial variability in streamflow behavior, as 
characterized by the set of suggested signatures.  
The reviewer is right in the fact that aspects such as “signatures, temporal and spatial model 
discretization, model evaluation metrics and also the degree of model conceptualization differ 
accordingly”. 
We have addressed this comment specifying (line 5, page 3 in the new version of the paper) 
that the objective is explaining the observed spatial diversity of streamflow characteristics, 
with the minimum possible complexity, while trying to maintain a process based 
interpretation. 
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2. I consider the selection, evaluation and identification of landscape characteristics as fairly weak 
due to a number of different reasons: 

a. The authors provide no information about why certain characteristics were selected (and 
why others were not). Catchment characteristics (or signatures) can only provide 
information on the underlying processes if they have some kind of diagnostic potential or 
causal relationship. It is clear that these relationships are often unknown and difficult to 
obtain; nevertheless the selection of appropriate characteristics is vital for the 
identification of underlying processes and mechanisms. I miss a clear and elaborate 
description on the selection of catchment descriptors and on their expected diagnostic 
potential (both in space and time): E.g. why or how can the different land cover ratios or 
aspects help to derive information on hydrological processes? Are the same 
characteristics suitable for all catchments (independent of size, altitude, geology)? 
Please also comment on the importance of the time step e.g. you calculated the 
flashiness index based on daily streamflow data, although you state that streamflow can 
change two orders of magnitude in a few hours (p. 3 l. 18). If this is true please explain 
why you consider a daily-data based flashiness index as a meaningful variable? Please 
do also explain why you think that “half streamflow period” is a suitable parameter to 
discriminate to importance of snow. I expect that there are much simpler and more 
meaningful variables such as temperature and rain, temperature sums or snow data 
itself to describe the importance of snow. The results in Fig 7-9 also show that 
streamflow, runoff coefficient and half streamflow period are pretty identically in all 
cases. Do you consider them being suitable signatures? Please also provide more 
signature papers in the introduction as the number of up to date references is small. 
The reviewer correctly points out that we “miss a clear and elaborate description on the 
selection of catchment descriptors and on their expected diagnostic potential (both in 
space and time)”. Catchment characteristics can affect the hydrological cycle: vegetation 
characteristics, for example, are typically assumed to affect evaporation, soil 
characteristics are typically assumed to influence the partitioning of water between 
retention and runoff. In general, we tried to select a broad class of characteristics, to be 
as inclusive as possible. However, it is also true that these characteristics can be 
represented through a large class of indices, and in order to reduce the size of the 
problem, some choices had to be made. 
We have complemented in section 3.1.1 of the new paper the selection of catchment 
characteristics with their expected diagnostic potential. We have also motivated some 
of our decisions based on how other models have dealt with similar issues. 
We used a daily data resolution, and this choice clearly affects some of the signatures. 
As the reviewer points out, the flashiness index is one of such signatures. The values of 
the flashiness index reduces with increasing time step due to a smoothing effect. In this 
paper, we did not experiment with varying data resolution, as it was outside our scope. 
We have commented (line 25-30, page 4 of the new version of the paper) about this 
choice relating it to findings of previous modeling studies. 
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We experimented with several signatures to account for the effect of snow on 
streamflow seasonality, and we ended up selecting the “half streamflow period”.  The 
reason is that 1) this signature was used in previous publications to quantify streamflow 
seasonality, and we did not want to invent our own signature if something was already 
existing, and 2) this signature captured well the difference between streamflow 
regimes, because we have seen (figure 5) that all the catchments receive similar 
precipitation input (in terms of monthly variability) but the snow-affected ones show 
the peaks during late spring/beginning of summer while the rain dominated ones show 
their peaks during the winter and the spring. 
Figures 7-9 show that all the model configurations represent well the yearly streamflow, 
the runoff coefficient, and the half streamflow period and this is a result of our study 
that is also coherent with our assumption that only distributing the inputs (precipitation, 
PET, and temperature) is sufficient in order to have a model that captures the water 
balance and the snow dynamics.  
We have extended the list of signatures considered in this study and used correlation 
analysis between the signatures to select only the not redundant ones (major changes 
in section 3 of the new version of the paper). 

b. In your study you included several (fairly easy to derive) landscape characteristics that 
are obviously highly correlated and describe in great detail how you identify and select 
appropriate ones based on regression and correlation. In my opinion a rather trivial part 
which does not add any new knowledge to the literature occupies a lot of space. I hence 
suggest shortening and streamlining the entire section. If you want to derive structure 
from function than the first goal must be to derive a (comprehensive) matrix of 
uncorrelated catchment characteristics that have some kind of diagnostic potential. In 
my opinion this should be the source of the story and not a result. 
Section 3 of the new version of the paper has been completely restructured to address 
(also) this comment. The lists of meteorological and climatic indices have been 
reduced before evaluating the correlation with the streamflow signatures; the 
regression analysis has been eliminated. 

3. The approach for informing model structure does not appear very elaborate to me. Since this is 
the core of “model building for understanding catchment process” I particularly miss a clear and 
elaborate discussion on how the identified landscape characteristics help in the model building 
process. More specifically: 

a. In chapter 3.1.3. you state that the results of the regression analysis were used to build 
the hydrological model e.g. the subdivision of the catchment in HRUs (p. 7 l. 32). Later, in 
4.1.1 you state that subdivisions were defined by gauge locations (p. 11 l 26). I did not 
find information on how you derived the number of HRUs and the role of catchment 
characteristics in this context? Chapter 4.1.1. should be more comprehensive in this 
regard. 
Our intention was to present chapter 4.1.1 as a general overview of the model structure 
in order to make the following clearer. The information from the regression analysis are 
used to derive the HRUs is described in chapters 3.3 and 4.1.5. It is important to make 
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clear the difference between the division in subcatchments (areas that have uniform 
inputs) and HRUs (areas that have the same hydrological response). The former are 
defined by the presence of gauging stations (and this division is not negotiable) while 
the latter reflect our understanding of the catchment functioning (and, in this study, of 
the regression analysis). 
Sections 3.3, 4.1.1, and 4.1.5 in the new version of the paper have been restructured 
in order to clarify the difference between subcatchments and HRUs and to make the 
connection between the findings of the correlation analysis and the modeling 
experiments clearer. 

b. The argument that “the regression analyses have indicated that precipitation is a 
dominant control on average streamflow” (p. 12 l. 4) is trivial. I don’t think you need this 
and particular not as a justification for using spatially distribution rainfall as a model 
input. From your manuscript it appears to me that the spatial discretization of your 
model was based on the definition of the subcatchments (which are in turn defined by 
the location of gauges) and according the definition of fields (definition not clear). In 
consequence I don’t see that landscape characteristics played an important role in this 
process. Please clarify? 
Although it may be a priori clear that precipitation needs to be distributed per 
subcatchment, it may be not as taken for granted that this is sufficient to capture the 
water balance of the subcatchments, as many other aspects could in principle play a 
role (e.g. regional groundwater flow). Here we show that considering distributed 
precipitation over the subcatchments  (defined by the presence of the gauging stations) 
could by itself be sufficient. Other landscape characteristics play a role in the definition 
of the HRUs. 
Sections 4.1.1 and 4.1.5 in the new version of the paper have been modified to 
address this comment; in particular, M0 shows that distributing only the precipitation 
without accounting for snow related processes is sufficient to capture the average 
streamflow. 

c. You also mention that “the parameters were motivated by the results of the regression 
analysis” (p. 8 l. 1). Please omit or explain more detailed. A matrix to illustrate the 
relationships between model parameters and catchment descriptors would be good. I 
would for instance be interested in how one could use catchment descriptors to derive 
(or at least constrain) model storage (kFR or kSR) or network lag (trise,IL trise,OL) 
parameters. Please comment on that 
All the process of building the model was motivated by the results of the regression 
analysis (in particular the decisions on the division in HRUs). The parameters are just 
calibrated using streamflow data (section 4.1.3). No inference of the parameters from 
catchment characteristics was done. 
We have changed the misleading sentence (lines 17-20, page 9 of the new version of 
the paper) 

d. Chapter 4.1.5 is difficult to me due to different reasons: i) your analysis does not VERIFY 
that “models that account for influencing factors … lead to an improved representation”. 
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Essentially it only shows that a complicated model (with a larger number of degrees of 
freedom) outperforms a simpler model (with a smaller amount of degrees of freedom). 
Please use precise wording. It addresses the question of adequate model complexity. If a 
lumped representation (M1) is not adequate than also the comparison of M2 to M1 is 
not adequate. Please explain in more detail why you consider M1 a suitable reference? 
ii) Please explain why unconsolidated areas receive an individual HRU and why 
consolidated and alluvial areas can be lumped together (what are your expectation on 
the underlying processes)? iii) The parameterization of M3 is based on land use, which is 
not considered to have a causal relationship to the streamflow signatures (Table 2). 
Please explain why a model which is derived from non-causal properties can be a 
considered a meaningful reference? Why did you group based on geology and not on 
elevation, slope or the aridity index which you considered to have a causal relationship? 
This would maybe be a more appropriate benchmark? iv) Essentially chapter 4.1.5 
addresses the questions of optimal degree of model complexity and optimal degree of 
spatial discretization - which are both very important. However, these aspects are 
treated together and not separated from each other. Moreover, potential answers to 
these questions miss a clear link to catchment descriptors. Essentially only differences in 
geology were considered in the model building. Please clarify to novelties of your study 
more clearly. 
Essentially the two main model configurations are M1 and M2: the first is the baseline 
and it is a semidistributed model (in the sense that the inputs are spatially distributed 
and the routing between subcatchments is explicitly addressed in the model) with only 
one HRU (meaning that all the catchment responds in the same way to the forcings); the 
second extends the first providing a subdivision of the subcatchments in two HRUs. M3 
is used to show that the subdivision in HRUs has to be carefully made otherwise a more 
complex model doesn’t imply automatically better results. Answering to the specific 
points: 
i) M2 is indeed more complex than M1 but our thesis is that its better performance is 
not just due to the fact that it is more complex but to the fact that it incorporates the 
right catchment characteristics. This is also demonstrated by M3 that is as complex as 
M2 but it has the same deficiencies of M1. M1 is already a quite complex model since it 
already considers the spatial distribution of the inputs and incorporates information 
about the routing between subcatchments. The real baseline would have been a lumped 
model, with uniform input and no information about the catchment characteristics but 
it was too simple for the comparison. 
ii) There is an error in the text: the two HRUs are unconsolidated and alluvial (HRU1) vs 
consolidated (HRU2). Alluvial and unconsolidated geology were put together because 
they show a similar behavior in terms of water dynamics in the sense that they both 
represent areas with high storage capacity, especially if compared with HRU2 that is 
quite impermeable. 
iii) M3 was designed to demonstrate that M2 outperforms M1 not just because it is 
more complex but only because it incorporates characteristics that actually have an 
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impact on the response of the catchment. For this reason we used a model with the 
same complexity of M2 but based on characteristics that don’t correlate with the 
streamflow signatures. Also topography was considered in the modeling experiment 
(but not reported in the paper), experimenting with a subdivision in HRUs based on the 
slope, but the model resulted similar to M2 (in terms of spatial discretization) but 
slightly worse in terms of signatures representation. The meteorological characteristics 
are known at subcatchment scale and therefore, due to the configuration of the model, 
they are not suitable for the subdivision in HRUs. 
We have completely restructured the section 4.1.5 with the intent of making clearer 
the differences between the modeling experiments and the reasoning behind them. 
We have also introduced a new model (M0) to test the effect of snow on the 
seasonality patterns. 

e. the whole structure of the model building story is a bit complicated as aspects are 
described in chapters 3.1.3, 3.3, 4.1.4 und 4.1.5 which makes it difficult to follow. I 
suggest combining them into a single chapter. Therein start with the theory e.g. snow is 
important followed by the surrogate you considered it e.g. half stream flow period. Or 
geology is important due to… –> different HRUs. 
It was divided in different paragraphs along the paper in order to emphasize the 
connection between data analysis and modeling choices but we understand that it 
makes more difficult to follow the story.  
Sections 3.1.3, 4.1.1, and 4.1.5 have been restructured in order to improve their 
readability and to show more clearly the connections between the three sections.  

4. Several conclusions are not appropriate: e.g. “the proposed approach is useful in the fact that 
modelling can be used to test specific hypotheses on dominant processes resulting from 
regression analysis” (p. 19 l. 4). This has not be shown. More over aspects related to the event 
scale are mentioned in the first three bullet points but not subject to the manuscript. In the third 
bullet point you state: “Higher proportion of consolidated material has an influence on the 
baseflow vs quickflow portioning, causing lower baseflow and higher peaks” (p 19 l 14). Does the 
study provide evidence for this statement or does it support this hypothesis? I expect the latter 
and missed this statement in the chapter 3.1.1. I suggest re-writing of the entire section and to 
differentiate concisely between hypothesis, results and conclusions. 
With respect to the first point, we think that the model comparisons have been useful to 
confirm the interpretations of the regression analysis. Clearly the regression between variables 
is also a model, but the hydrological model is an integrated model that is meant to explain all 
dependencies at once, whereas the regression model provides a separate model (regression) for 
each of the dependencies. Therefore there is an added value in the hydrological model, 
compared to the regression model. 
The conclusions of the paper have been revised avoiding aspects related to the event scale 
and preferring an analysis of the signatures. 

5. The model performance evaluation (chapter 4.1.4) is complicated but of minor importance in this 
context. I suggest shorting the evaluation section and to focus on a single, interpretable metric 
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e.g. the Kling-Gupta Efficiency as the NASH has several limitations and the normalized log-
likelihood is difficult to interpret. But this is a minor point and a matter of taste.  
We agree that the Nash-Sutcliffe efficiency has several limitations, as any individual index is 
somehow limited. This is why we have introduced several signatures to evaluate model results. 
Indeed, we could see that a significant improvement in some of the signatures could result into 
a negligible improvement in the Nash- Sutcliffe efficiency. 

Technical corrections (figures and tables only) I only provide technical corrections for the figures and 
tables as I expect that several parts of the manuscript will be subject to major revisions. 

Thank you for the comments for improving the quality of our figures and tables; we will address them 
bellow.  

• Figure 1: A: I suggest to remove the colour code and to provide notations (abbreviation) in or 
around the map. This would help improve the readability of the stream network and the location 
of the gauges. If you want to keep the legend please add catchment abbreviations to it, order it 
according to Fig 2. and use a meaningful colour code (e.g. mean annual precipitation, elevation 
or geology), B: Try a discrete legend like in atlases, will improve readability. C: Forest and pasture 
are hardly distinguishable both on my screen and in a printed version. 
Figure 1A: We agree that there are some problems with the readability of the river network but 
they are mainly due to the poor resolution. In the final version we will upload the figures 
separately with an higher resolution. The presence of the legend doesn’t make the figure 
smaller since the constraint is the height and not the width of the panel; The colors used for the 
single catchments were chosen from a “categorical” color scale in order to be as different as 
possible. Linking them to some characteristic would mean using a “sequential” color scale, with 
little difference between subcatchments, and this would be problematic in the other figures 
(assuming that we want to be consistent) where we want to clearly see the behavior of the 
single catchments. 
Figure 1A : we have changed the figure keeping only the main rivers in order to improve the 
readability. 
Figure 1B: we have improved the figure according to the suggestion 
Figure 1C: we have changed the colors (darker green for the forest) to improve the readability. 

• Figure 2: Please repeat the variables and their abbreviation in the caption such that the figure 
can be read independent from the text. Maybe add another row and provide grouping indices 
based on the results in chapter 3.2.1 
As the names are relatively long, they would not fit on the y axes. Instead, we have opted to 
place them in the title of the subplots.  
Figure 2 is not present in the new version of the paper. 

• Figure 3: Please repeat the variables and their abbreviation in the caption such that the figure 
can be read independent from the text.  
See reply at earlier point. 
Figure 3 is not present in the new version of the paper. 
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• Figure 4: Please repeat the variables and their abbreviation in the caption such that the figure 
can be read independent from the text. Information on the range of the different variables would 
be pretty helpful as well. If possible include it otherwise please mention the ranges in the text or 
add the information to table 1. 
The range of the variables is always between 0 and 1: all the variables plotted are percentage of 
the area of the subcatchment occupied by a certain characteristic. The characteristics that don’t 
belong to the category “part of the catchment occupied by …” are reported in table 1. 
Figure 4 is not present in the new version of the paper. 

• Figure 5: I’m not sure if this figure is required since B and C show very little variation. The only 
important message from A is that there a catchments that are stronger controlled by snow than 
others. I suggest removing it. If you decide to keep it update the colour code according to the 
suggestion for Figure 1. 
Although the plots B and C show little variability across the catchment, it is still interesting to 
present the seasonal dynamics. Moreover, we consider that it is useful to show that the monthly 
variability in streamflow (plot A) is not directly ascribed to variability in precipitation or potential 
evaporation (plot B or C).  
Figure 5 is not present in the new version of the paper. 

• Figure 6: I cannot find a description of the symbols and abbreviations in the Appendix. Please 
specify at least the meaning of the capital letters in the caption (as in 4.1.1) and provide a more 
comprehensive description in the appendix. 
We have put the description of the abbreviations in the caption of the figure 

• Figure 7: Order according to Figure 2 or 3. Line type and colour code are redundant.  
We have added M0 to figure 7. The order of the catchment has been kept alphabetical since 
there is no more need to be consistent with figures 2 and 3. 

• Figure 8, 9, 10: Nice figures! Suggestions: Combine all three figures in one (each model setup as 
an individual row). This would improve readability. Streamflow, runoff coefficient and half 
streamflow period have no or little variation (two out of these could be omitted such that all 
results would fit in one figure). Remove the correlation coefficients due to their distracting 
nature (correlation (alone) is pretty meaningless in this context). Update colour code according 
to Fig 1 A. 
Point taken. We acknowledge that is more meaningful to put the different models together in 
order to facilitate the comparison.  
We have put all the models side by side in the new figures 9 and 10. 

• Table 1: Order according to fig 1 A. Index column is not relevant, omit Code or put it to the very 
right. Rounding is not yet meaningfully and consistent. 
The Index column is used in the “upstream catchments” column to define the river network. The 
“code” column is present to avoid ambiguity with the naming of the gauging stations providing 
the reader with the code of the gauging station used by the Federal Office for the Environment 
FOEN. 
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The new version of Table 1 has a reduced number of columns and its primary goal has 
changed from describing the catchment characteristics to identifying the gauging stations and 
to describe the river network. 

• Table 2: This table includes variables with spurious correlations (Brett 2004, Kenny 1982). This 
includes variables that are considered statistically significant and where causality was assumed 
e.g. the correlation between aridity index AI and the runoff coefficient RC which are both are 
derived from precipitation. The same applies for P and RC. Since P and Q are highly correlated 
and AI is based on P I also wonder about the significance of AI and RC, BFI, FI and HDP. Please 
clarify. Please also explain why you assumed causality among LP and BFI and among LP and FI? 
Differences among the geological fractions are small as well. Why do you consider causality in 
some of the individual relationships and in others not? 
Table 2 is not present in the new version of the paper. 

• Table 3: This analysis also includes variables with spurious correlations. Please comment on that. 
Table 2 is not present in the new version of the paper. 

• Table A1: Please provide a brief explanation on parameters and components. Where does the 
range of variability come from?  
Table A1 has been modified to address this comment. 

• Table A2: Explain component  
Table A2 has been modified to address this comment. 

Literature  

Brett, M. T. (2004). When is a correlation between non-independent variables “spurious”?  

Oikos, 105(3), 647–656. Kenney, B. C. (1982). Beware of spurious self-correlations! Water Resources 
Research, 18(4), 1041–1048. https://doi.org/10.1029/WR018i004p01041 
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Reply to review by Lieke Melsen 
We thank Dr. Lieke Melsen for her careful read to the manuscript and insightful suggestions. Below, we 
answer in detail the various comments, and illustrate how we have addressed them in the revised 
version. The original comments of the reviewer are reported in black and italics, our replies in blue and 
the changes to the paper in green and bold. 

Note that, were not indicated, the numbers of figure/tables/lines/pages refer to the old version of the 
paper. 

Dal Molin et al. investigated, through regression analysis, which indices have explanatory power for 
streamflow response. Based on the insights gained from the regression analysis, different spatial 
configurations were implemented in a hydrological model. Although I find the work flow elegant, starting 
from process-understanding and translating that to the spatial configuration of the model, I have some 
problems / concerns with the regression set-up. 

Major 

My main concerns are all related to the regression-part of the study. 

1. It is unclear how the indices, on which regression was applied, were selected. There is plenty of 
literature around on indices and signatures, which could guide indices selection, but I don’t see 
any justification in the text for the choices made. Check for instance: 
Addor et al., A Ranking of Hydrological Signatures Based on Their Predictability in Space, WRR, 
2018 
Knoben et al., A Quantitative Hydrological Climate Classification Evaluated With Independent 
Streamflow Data, WRR, 2018 
We thank the reviewer for the references she provided. The signatures used in this work were 
chosen in order to represent a wide variety of hydrograph characteristics. There are, for 
instance, two signatures designed to represent the long-term water balance (average 
streamflow and runoff coefficient), two signatures to capture the “responsiveness” of the 
hydrograph (baseflow index and flashiness index), and one (the half streamflow period) that is 
designed to understand seasonality effects, like the ones related to the snow dynamics. 
The indices used (here by indices we mean catchment and meteorological indices) were selected 
in order to have a large group of possible influence factors to start the analysis with. Catchment 
characteristics capture topography, soil properties, land use, and geology while meteorological 
characteristics take into account precipitation and potential evapotranspiration. 
The list of signatures and indices has been extended in the new version of section 3.1.1. taking 
advantage of previous works. 

2. Since the choice of the indices is not well justified, I am worried about their mutual correlation. 
Many indices can describe the same signal. Therefore, please provide the correlation among the 
indices themselves. This might lead to the insight that you need fewer or different ones. 



Page 14 of 17 
 

Mutual correlation, as pointed out by the reviewer, is a potential criticality of this study. Indeed 
there are multiple indices that describe the same signal (or very similar signals) and this 
possibility was considered in the design of this study. We decided to keep them all because we 
didn’t want to restrict a priori the space of possible influence factors.  
Section 3.2.2 in the new version of the paper deals with mutual correlations with the objective 
of selecting signatures and indices that are either not correlated or that represent different 
characteristics. 

3. It was rightly mentioned that correlation does not mean causality. It was claimed (not only in the 
methods, but also in the conclusions) that this study accounts for that by only selecting the 
indices that have a causal relation, based on expert judgement. I do, however, not recognize the 
expert judgement in the selection of significant indices, and this actually directly relates to my 
point 2. Right now, the selection seems to be made based on the mutual correlation of the 
indices – so the mutual correlation was investigated! – but I don’t see any process-reasoning (the 
expert-judgement) that can justify the selected indices, and that justifies the claim that there is 
really causality. 
The analysis of the correlations was only the starting point of the process of selection of the 
indices. Starting form that, we then discarded the indices that are either redundant (e.g. average 
slope vs. fraction of steep areas) or accidental correlations (e.g. using elevation instead of 
precipitation, line 18 page 7). This step was essential to move from mere correlation to causality 
and it involved “expert judgment” in order to prune reasonably the list of indices. An example of 
the “expert judgment” process is illustrated in paragraph 3.2.2, page 10, lines 1 to 10, where we 
showed how the indices were selected for the mean streamflow signature. 
The number of signatures and indices has been reduced using the “internal” correlation 
analysis and expert judgment (section 3.1.2 with results in 3.2.1 of the new version of the 
paper). This process has simplified the selection of influencing factors on streamflow 
signatures (section 3.1.3 with results in 3.1.2 of the new version of the paper). In both cases, 
we have highlighted the role of “expert judgment” in the process of indices selection. 

4. I disagree with the conclusion of the authors that there is no need to look for nonlinearity in the 
correlation, based on the results in the table. The authors rightly state that only few correlations 
that are statistically significant based on Spearman are not significant with Pearson, but how do 
the authors explain the opposite effect? Quite some correlations are significant with Pearson but 
not with Spearman, is this a Type 2 error in the Pearson test? That could have consequences, for 
example, aridity was significantly correlated with BFI for Pearson, but not Spearman, and based 
on ‘expert judgement’ included in the regression. 
The reviewer is right pointing out the possibility of type 2 error for some correlations, motivated 
by discording conclusions between Spearman and Pearson correlation. This may be due to the 
fact that the Pearson correlation was calculated neglecting the assumptions behind it (e.g. 
normality of the data) that may not be respected in this case.  
In the new version of the paper all the analyses have been based on Spearman correlation. 

5. 1 of the 3 points of the guidelines for modelling based on the regression was not based on the 
regression at all, namely the conclusion that the presence of snow is relevant. Please include a 
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snow-related indicator in the regression to support this conclusion (based on expert judgement 
we can expect this, of course). 
The reviewer is right saying that it is not clear that “the conclusion that the presence of snow is 
relevant” was motivated by the regression analysis. This is due to the fact that we didn’t explain 
earlier in the text that the “half streamflow period” signature and the plots in figure 5 were used 
to show the presence of seasonality in the streamflow dynamics. In particular, there are some 
subcatchments that reach their peaks of streamflow in different periods of the year.  
This seasonality is not due to different patterns in precipitation or PET (as shown in figure 5) and 
correlates well with the elevation (higher subcatchments reach half of their streamflow later in 
the year). These two points made us think that this seasonality is due to snow dynamics and 
that, therefore, the model should take them into account; higher catchments are subjected to 
snow that is then released in the streamflow (as snowmelt) later in the year if compared with 
rain-dominated subcatchments. 
The explanatory power of the signatures has been highlighted (section 3.1.1 of the new 
version of the paper) and, in particular, we have made the hypothesis about the importance 
of the snow more explicit introducing the model M0. 

6. It depends a bit on the definition of model building, but the title and the text might give the 
impression that the model structure itself was adapted with the insights in the regression, while 
it was basically the model implementation (accounting for HRU’s or not) that was adapted. 
It is true: it depends on the definition of model building. For us it incorporates all the decisions 
taken in order to have an hydrological model for the Thur catchment. In particular: 

• How to spatially divide the inputs 
• How to divide the catchments in HRUs 
• Structure of the single HRUs 

All these points where considered in the construction of the hydrological model and were 
informed by the regression analysis. The last point (structure of the bucket model) was also 
considered in the procedure of building the hydrological model but was not discussed in this 
paper because it was already done in previous studies and for sake of brevity. 
We have made clearer what we mean for model building, especially restructuring sections 
4.1.1 and 4.1.5. 

 

Minor 

Section 3.2.1, the catchments are sort of grouped based on their stream flow response, but this is not 
used any further in the analysis. Consider to just briefly describe their response, or to use the grouping 
later to explain results (in that case, also display the groups in the figure).  

Section 3.2.1 describes the signatures in the catchments without relating them with the indices. We 
agree with the reviewer that the subdivision done here is no more used in the paper and it was done 
only for convenience when describing the signatures.  

Section 3.2.1 has been completely revised in the new version of the paper. 
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In the same section, it seems unnecessarily complicated to use combinations of signatures to determine 
how flashy catchments are; a flow duration curve can generally provide quite some insight on this 
already (slope of flow duration curve also frequently used signature)  

We acknowledge the possibility of using other signatures to describe the behavior of a catchment but 
we used, among the others, baseflow index and the flashiness index because believe that they are more 
interpretable and they can be related to dynamics represented by the model; the BFI, for example, can 
be linked to the separation between quick and slow flow that is a process that is present also in the 
hydrological model.  

The selection of the signatures has been completely revised in the new version of the paper. 

Provide an overview of the indices and their abbreviations, or include their full name more often in text / 
tables / figures, because now it requires quite some work from the reader to fully understand all 
sentences and figures (and a lot of going back to the methods).  

We understand that the usage of abbreviations may complicate the reading of the paper but, on the 
other side, their usage helps avoiding misunderstandings that may happen when calling the same index 
with different names. The full name of the indices is provided in table 2 and in section 3.1.1 and it will be 
reported in the caption of the figures when not reported in the figure itself. 

We have tried in the new version of the paper to balance the usage of symbols with the usage of the 
full name. 

A large number of figures is dedicated to showing the signature-values, which is not of direct relevance. I 
would be interested to see a figure that displays the HRU’s.  

We acknowledge that a figure representing the HRUs used in M2 and M3 is missing but it can be 
deducted from figure 1 (plot “d” for M2 and “c” for M3) since the HRUs were constructed aggregating 
some classes (for example, for M2, one HRU is composed by the orange part and the other by the rest of 
the catchment).  

Several figures have been changed in the new version of the paper. 

For the landscape characteristics, it is not mentioned in the methods-section (3.1.1) that you consider 
fractional area. Please clarify there, as I was wondering how you would apply regression on nominal 
values, until I found out in the results that you considered frac. area. 

We have clarified that (section 3.1.1 in the new version of the paper) 

The sentence ‘optimizing the parameter of the posterior distribution’ (l.11, p13) can give the impression 
that you minimized e.g. variance (describing distribution), please consider reformulation.  

The actual meaning is “optimizing the parameters of the hydriological model and of the error model 
(refer to section 4.1.1 and 4.1.2) in order to find the ones that maximize the posterior distribution” 
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We have changed the sentence (line 1, page 14 of the new version of the paper) 

Although overall written well and clear, some language editing seems required, for example “The 
average value oscillates of about ..”, (but I’m not a native either).  

We have done our best to improve it. 

Overall, I appreciate the intent of the study and the modelling-part seems well designed (except for my 
question at point 6 which remained unclear), but I do believe the regression-part requires substantial 
revision, related to the selection of indices (more embedded in literature and account for snow) and to 
justify the use of the word ‘causality’. Given that the work-flow is largely set-up, I think the authors 
should be able to incorporate this. 
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Abstract 

The development of semidistributed hydrological models that reflect the dominant processes controlling streamflow spatial 

variability is a challenging task. This study addressesillustrates this problem by investigatingprocess through the case of the 

Thur catchment (Switzerland, 1702 km2), an alpine and pre–alpine catchment that, while having a moderate (1702 km2) 

extension, presents awith large spatial variability in terms of climate, landscape, and streamflow (measured at 10 15 

subcatchments). The methodology forIn order to appraise the dominant processes that control catchment response, and build 

a model that reflects them, the model development consists offollows a two–stages approach. In a first stage, we use 

correlation and regression analysis to identify the main influencing factors on the spatial variability of streamflow signatures. 

Results of this analysis show that precipitation (rainfall or snow) controlsaverages control signatures of seasonality and water 

balance, snow processes control signatures of seasonality, while landscape characteristics (especially geology) control 20 

signatures of hydrograph shape (e.g. characterizing the importance of baseflow index and flashiness index).. In a second 

stage, we use the results of the previous analysis are used to develop a semidistributed hydrological model that is consistent 

with the data. Model set of model experiments aimed at determining an appropriate model representation of the Thur 

catchment. These experiments confirm that only a hydrological modelsmodel that accountaccounts for the heterogeneity of 

precipitation and, snow related processes, and landscape features such as geology produce, produces hydrographs that have 25 

signatures similar to the observed ones. These models provideThis model provides consistent results in space–time 

validation, which is promising for predictionpredictions in ungauged conditionsbasins. The presented methodology for 

model building can be transferred to other case studies, since the data used in this work (meteorological variables, 

streamflow, morphology and geology maps) is available in manynumerous regions around the globe. 



2 
 

1 Introduction 

Hydrographs are affected by meteorological forcing and landscape characteristics (e.g. topography, land use, etc.) and, 

therefore, they synthetize the hydrological response of a catchment. Because ofDue to the spatial variability of landscape 

(e.g. topography, land use, etc.) and climate characteristics, hydrographs can differ substantially between catchments. Being 

able to quantify and explain hydrograph spatial variability is important both to improve processes understanding and to make 5 

predictions useful for many human activities, such as flood protection, drinking water production, agriculture, energy 

production, and riverine ecosystems management (e.g., Hurford and Harou, 2014). 

Understanding catchment differences and, more specifically, how to transfer hydrological knowledge, methods, and theories 

from one place to anotherbetween places, is a common objective of many research areas in hydrology, including 

comparative hydrology (e.g., Falkenmark and Chapman, 1989), model regionalization (e.g., Parajka et al., 2005), catchment 10 

classification (e.g., Wagener et al., 2007), and prediction in ungauged basins (e.g., Hrachowitz et al., 2013). In the case of 

streamflow, the attempt to explain its spatial variability is typically accomplished either using statistical approaches, which 

tryare designed to regionalize someselected characteristics of the hydrograph (streamflow signatures), or usingthrough 

hydrological models that incorporateaccount for relevant spatial information. In particular, statistical approaches such as 

regression analysis (e.g., Berger and Entekhabi, 2001; Bloomfield et al., 2009) and correlation analysis (e.g., Trancoso et al., 15 

2017), or machine learning techniques like clustering ( e.g.,  Sawicz et al., 2011;  Toth, 2013; Kuentz et al., 2017) are used to 

extrapolate the signatures where unknown and to group together catchments that present similar characteristics and to 

extrapolate the signatures where unknown. Such approaches have been useful to quantify the hydrological variability and 

identify its principal diversdrivers. However, they are often not designed to discover causality links and can be affected by 

multicollinearity, that arises when multiple factors are correlated internally and with the target variable (Kroll and Song, 20 

2013). 

By incorporating spatial information about meteorological forcing and landscape characteristics, distributedsemidistributed 

hydrological models have the ability to reproducemimic the mechanisms that influence hydrograph spatial variability. 

However, identifying the relevant mechanisms is challenging. One possibility is to be as inclusive as possible in accounting 

for all the catchment properties that are, in principle, important in controlling catchment response. However, this approach 25 

leads to models that tend to be data demanding and contain severalmany parameters. For example, Gurtz et al. (1999) 

considered several landscape characteristics (elevation, land use, etc.) in their application of a semidistributed model to the 

Thur catchment (Switzerland), which resulted into a model with hundreds of hydrological response units (HRUs) that were 

defined a–priori based on the complexity of the catchment. The other option is to try to identify the most relevant processes 

and neglect others, by tuning the distributed hydrological model to the available data.in order to control model complexity. 30 

For example, Fenicia et al. (2016) compared various model hypotheses to determine an appropriate discretization of the 

catchment in HRUs and appropriate structures for different HRUs. However, in their work, the space of plausible hypotheses 

could be constrained by a good experimental understanding of the area, which is not always available.Antonetti et al. (2016) 
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used a map of dominant runoff processes following Scherrer and Naef (2003) for defining HRUs. However, these 

approaches require a good experimental understanding of the area, which is not always available.  

Convincing model calibration–validation strategies are essential to provide confidence that the model ability to fit 

observations is a reflection of model realism and not a consequence of calibrating an overparameterized model (e.g., 

Andréassian et al., 2009). A common approach for calibration of semidistributed models is the so called ‘sequential’ 5 

approach, where subcatchments are calibrated sequentially from upstream to downstream (e.g., Verbunt et al., 2006; Feyen 

et al., 2008; Lerat et al., 2012; De Lavenne et al., 2016). Although this approach may provide good fits and therefore it has 

its practical utility where data is available, it does not provide understanding into the causes of streamflow spatial variability 

and results into models that are not spatially transferable. Moreover, such models are prone to contain many parameters, as 

each subcatchment would be represented by its own set of parameters set. Alternative calibration–validation approaches that 10 

enable model validation not only in time but also in space are conceptually preferable, particularly when the modeling is 

used for process understanding or prediction in ungauged locations (e.g., Wagener et al., 2004; Fenicia et al., 2016). 

This study combines the strengths of catchment regionalization approaches and distributedsemidistributed hydrological 

models by first using regionalization studiesregression analysis to understand the main causes of variability of streamflow 

signatures, and then using this analysis to inform the structure of a distributed hydrological model. The model objective is to 15 

explain the observed spatial diversity of streamflow characteristics with the minimum possible complexity, while 

maintaining a process based interpretation. In particular, the objectives of the study are to: (1) explore the spatial variability 

present in the Swiss Thur catchment regarding landscape characteristics, meteorological forcing and streamflow signatures; 

(2) find which characteristicsidentify the main drivers that explain the variability of the hydrological response; (3) based on 

this analysis, build a semidistributed hydrologicalset of model that considers only features that actually 20 

contributeexperiments aimed to the spatial variabilitytest the relative importance of dominant processes and their effect on 

the hydrograph; (4) validateappraise model assumptions against competing alternatives using a stringent validation strategy. 

The paper is organized as follows: Section 2 presents the study area and gives information about data collection and 

availability; Section 3 and Sect. 4 are both divided in methods and results and present, respectively, the correlation and 

regression analysis and the modeling part of this paper; Section 5 puts the results of this work in prospectiveperspective, 25 

comparing them with other studies; Section 6, finally, summarizes the main conclusions. 

2 Study area 

This study is carried out in the Thur catchment (Fig. 1), located in north–east of Switzerland, south–west of the Lake 

Constance. With a total length of 127 km and a catchment area of 1702 km2, the Thur is the longest Swiss river without any 

natural or artificial reservoir along its course. Due to this characteristic, itThe Thur river is a very dynamic river, where the, 30 

with streamflow values that can change ofby two orders of magnitude inwithin a few hours (Schirmer et al., 2014). 
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The Thur catchment has been subject of several studies in the past; Gurtz et al. (1999) didperformed the first modelling study 

on the entire catchment using a semidistributedsemi-distributed hydrological model; Abbaspour et al. (2007) modelled 

hydrology and water quality using the SWAT model; Fundel et al. (2013) and Jorg-Hess et al. (2015) focused on low flows 

and droughts; Jasper et al. (2004) investigated the impact of climate change on the natural water budget. Other modelling 

studies include also Melsen et al. (2014) and Melsen et al. (2016), which investigated parameters estimation in data limited 5 

scenarios and their transferability across spatial and temporal scales, and Brunner et al. (2019) thatwho studied the spatial 

dependence of floods. The Thur includes also a small–size experimental subcatchment (Rietholzbach, called Mosnang in this 

paper after the name of the gauging station) that was subject of many field studies at the interface between process 

understanding and hydrological modelling (e.g., Menzel, 1996; Gurtz et al., 2003; Seneviratne et al., 2012; von Freyberg et 

al., 2014; von Freyberg et al., 2015). 10 

The topography of the catchment is presented in Fig. 1b; the elevation ranges between 356 m a.s.l. at the outlet and 2502 m 

a.s.l. at Mount Säntis. The majority of the catchment lies below 1000 m a.s.l (75 %) and only 0.6 % is above 2000 m a.s.l. 

(Gurtz et al., 1999). Based on topography (Fig. 1b,), the catchment can be visually subdivided into two distinct regions: the 

northern part, with low elevation and dominated by hills and flat land, and the southern part, thatwhich presents a 

mountainous landscape. Such topographic variability suggests the presence of different dynamics in precipitation (type and 15 

quantity) and routing. 

The land use (Fig. 1c) is dominated by pasture and sparse vegetated soil (60 %) and forest (25 %); urbanized and cultivated 

areas are located mainly in the north and cover, respectively, the 7 % and the 4 % of the catchment respectively.  

Most of the catchment is underlain by conglomerates, marl incrustations and sandstone (Gurtz et al., 1999). For the purpose 

of this study, the geological formations have been divided into 3three classes (Fig. 1d): “consolidated”, covering mainly the 20 

mountainous part of the catchment, “unconsolidated”, located in the north, and “alluvial”, located in the proximity of the 

river network, mainly in the plateau area; the latter formation constitutes the main source of groundwater in the region 

(Schirmer et al., 2014). The soil depth (Fig. 1e) is shallower in the mountainous part of the catchment and deeper in the 

northern part.  

Based on the availability of gauging stations, (Table 1), the catchment was divided in 10 subcatchments (Fig. 1a), with a 25 

total drained area that ranges between 3.2 km2 (Mosnang) and 1702 km2 (total catchment area).Andelfingen). Streamflow 

time series are obtained from the Federal Office for the Environment FOEN and the data is available from 1974 to 2017 but 

is used only form 1981 to 2005 to match the precipitation, temperature, and potential evapotranspiration (PET) time series. 

In the considered range, the streamflow data are relatively continuous, with two gaps, one in St. Gallen, from 31 December 

1981 to 01 January 1983, and the other one in Herisau, from 31 December 1982 to 09 May 1983. 30 

The raw maps (topography, land use, geology, and soil) are obtained from the Federal Office of Topography swisstopo. The 

meteorological data is obtained from the Federal Office of Meteorology and Climatology MeteoSwiss. Precipitation and 

temperature are interpolated, as done in Melsen et al. (2016), with the pre–processing tool WINMET (Viviroli et al., 2009) 

using, respectively, inverse distance weight (IDW) and detrended IDW respectively; while the first method considers only 
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the horizontal variability (related to the distance from the meteorological stations), the second adds a vertical component to 

the variability related with the elevation (Garen and Marks, 2001). PET data is then obtained, as done in Gurtz et al. (1999), 

starting from meteorological and land use data, using the Penman–Monteith equation (Monteith, 1975), implemented as part 

of the hydrological model PREVAH (Viviroli et al., 2009). All these values are calculated at pixel (100 m) scale and then 

averaged over the subcatchments. All the time series are used at daily time step, aggregating the available hourly data.All the 5 

time series are used at daily resolution in the subsequent analyses, aggregating the available hourly data. This choice was 

influenced on one hand by the need of limiting the computational demand for the model experiments, for which a coarser 

temporal resolution is preferable, and on the other hand by the need of representing relevant hydrograph dynamics, for which 

finer temporal resolution is desirable (e.g., Kavetski et al., 2011). A daily data resolution, although it may obscure subdaily 

process dynamics, appeared to be a good compromise, and it is a typical choice in distributed model applications at such 10 

spatial scales (e.g., Kirchner et al., 2004). 

The raw maps (topography, land use, geology, and soil) are obtained from the Federal Office of Topography swisstopo. 

Visualization and processing is performed using Qgis 2.18.  

3 Identification of influencing factors on the spatial variability of streamflow signatures 

3.1 Methodology 15 

The purpose of the analysis presented in this section is to understand the influence of climatic conditions and landscape 

characteristics on streamflow. Climatic conditions are represented by precipitation and, potential evaporation data., and 

temperature time series. Landscape characteristics are presentedrepresented by maps of topography, land use, geology and 

soil. 

Climatic conditions, landscape characteristics and streamflow are represented through a set of indices, designed with the 20 

intention of being representative of the underlying data.statistics. In the following, indicesstatistics calculated based on 

streamflow data will be called streamflow “signatures”, as it is often done in catchment classification literature (e.g., 

Sivapalan, 2006). Dependencies between streamflow signatures and other indices are assessed through a regression analysis. 

The signatures used are illustrated in Sect. 3.1.1, the regression analysis between streamflow signatures and the other indices 

is explained in Sect. 3.1.2, and the guidelines for interpretation are given in Sect. 3.1.3We will refer to climatic and 25 

landscape indices for statistics calculated on climatic data and landscape characteristics. A broad list of signatures and 

indices is presented in Sect. 3.1.1; Section 3.1.2 presents an approach for reducing such list to a set of meaningful variables; 

Section 3.1.3 illustrates the approach for determining the indices that mostly control streamflow signatures. 

3.1.1 Catchment indices for representing streamflow, climate, and landscape 

Streamflow signatures (𝜁𝜁) and meteorologicalclimatic indices (𝜓𝜓) were obtained using streamflow, precipitation, PET, and 30 

PETtemperature time series at daily time step.. The values were calculated for each year, starting onusing 24 years of data, 
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between 01 September, here 1981 and 31 August 2005; we considered the 01 September as the beginning of the hydrological 

year, and then averaged over the entire period; years . The periods with gaps in the data (refer to Sect. 2 for details) were 

completely discarded from the analysis of the specific subcatchment. Landscape indices were obtained using the maps 

described in Section 2. 

Streamflow was represented through the following signatures: 5 

Addor et al. (2017) recently compiled a comprehensive list of streamflow signatures and climatic indices for characterizing 

catchment behaviour (see Table 3 in Addor et al. (2017)). Here, we adopted their selection. The streamflow signatures here 

considered are described hereafter, followed by an explanation of their rationale: 

• average daily streamflow (𝜁𝜁𝑄𝑄𝜁𝜁Q = 𝒒𝒒�),, where 𝒒𝒒 is the streamflow time series and the overbar represents the average 

over the observation period; 10 

• runoff coefficientratio 𝜁𝜁𝑅𝑅𝑅𝑅𝜁𝜁RR = 𝒒𝒒�
𝒑𝒑�
, where 𝒑𝒑 is the precipitation time series; 

• baseflow index 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 = 𝒒𝒒(𝒃𝒃)������

𝒒𝒒�  , where 𝒒𝒒(𝒃𝒃)  represents the baseflow and was calculated using a low–pass filter as 

illustrated in (Eckhardt, 2008), Eq. (5) 

𝑞𝑞𝑡𝑡
(𝑏𝑏) = min �𝑞𝑞𝑡𝑡 ,𝜗𝜗𝑏𝑏𝑞𝑞𝑡𝑡−1

(𝑏𝑏) + 1−𝜗𝜗𝑏𝑏
2

(𝑞𝑞𝑡𝑡−1 + 𝑞𝑞𝑡𝑡)�.       (1) 

According to Eckhardt (2008), a single forward filter pass was applied but the parameter 𝜗𝜗𝑏𝑏 was chosen to be equal 15 

to 0.99, instead of 0.925 (suggested by Eckhardt, 2008), to highlight the low frequency component of the 

hydrograph. It was found that the choice of  𝜗𝜗𝑏𝑏 , although affecting the baseflow index (BFI) of individual 

subcatchments, it did not change their relative values significantly. This choice therefore had a limited influence on 

the results of the regression analysis; 

• flashiness index  (Baker et al., 2004), defined as 20 

𝜁𝜁𝐵𝐵𝐵𝐵 =
∑ |𝑞𝑞𝑡𝑡−𝑞𝑞𝑡𝑡−1|𝑁𝑁𝑇𝑇
𝑡𝑡=2
∑ 𝑞𝑞𝑡𝑡
𝑁𝑁𝑇𝑇
𝑡𝑡=2

;          (2) 

and used to describe the “responsiveness” of a catchment. 

• streamflow elasticity (𝜁𝜁EL) defined as 

𝜁𝜁EL = med ��Δ𝒒𝒒�
𝒒𝒒�
� �Δ𝒑𝒑�

𝒑𝒑�
�� �          (1) 

where Δ𝒒𝒒� and Δ𝒑𝒑� represent the streamflow and precipitation jumps between two consecutive years and med is the 25 

median function; 

• slope of the flow duration curve (𝜁𝜁FDC) defined as the slope between the log-transformed 33rd and 66th streamflow 

percentiles; 

• baseflow index 𝜁𝜁BFI = 𝒒𝒒(𝐛𝐛)������

𝒒𝒒�  , where 𝒒𝒒(𝐛𝐛)  represents the baseflow and was calculated using a low–pass filter as 

illustrated in Ladson et al. (2013) with the equation 30 
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𝑞𝑞t
(f) = min �0,𝜗𝜗b𝑞𝑞t−1

(f) + 1+𝜗𝜗b
2

(𝑞𝑞t − 𝑞𝑞t−1)�        (2) 

𝑞𝑞t
(b) = 𝑞𝑞t − 𝑞𝑞t

(f)           (3) 

with 𝑞𝑞t
(f) representing the quick flow. The settings of the filter were taken according to the findings of Ladson et al. 

(2013) and, in particular, three filter passes were applied (forward, backward, and forward), the parameter 𝜗𝜗b was 

chosen to be equal to 0.925, and a reflection of 30 time steps at the beginning and at the end of the time series was 5 

used; 

• mean half streamflow perioddate (𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻𝜁𝜁HFD) (Court, 1962), defined as the number of days needed in order to have a 

cumulated streamflow that reaches the 50 % of the total annual streamflow; the value obtained is then normalized 

by the total number of the days in the year. This index is designed to capture the seasonality of streamflow, since it 

helps differentiating between catchments with high streamflow during the winter and catchments with high 10 

streamflow during the spring.  

Climatology was represented through the following indices: 

• 5th and 95th percentiles of the streamflow (𝜁𝜁Q5and 𝜁𝜁Q95 respectively); 

• frequency (𝜁𝜁HQF) and mean duration (𝜁𝜁HQD) of high-flow events: they are defined as the days when the streamflow 

is bigger than nine times the median daily streamflow; 15 

• frequency (𝜁𝜁LQF) and mean duration (𝜁𝜁LQD) of low-flow events: they are defined as the days when the streamflow is 

smaller than 0.2 times the mean daily streamflow; 

The frequency of days with zero streamflow, present in Addor et al. (2017), was not considered in this study because there 

are no ephemeral subcatchments in the study area.  

This group of streamflow signatures is capable of capturing various characteristics of the hydrograph: 𝜁𝜁Q  measures the 20 

overall water flows, 𝜁𝜁RR represents the proportion of precipitation that becomes streamflow, 𝜁𝜁EL measures the sensitivity of 

the streamflow to precipitation variations, with a value greater than 1 indicating an elastic subcatchment (i.e. sensitive to 

change of precipitation) (Sawicz et al., 2011), 𝜁𝜁FDC measures the variability of the hydrograph with a steeper flow duration 

curve indicating a more variable streamflow, 𝜁𝜁BFI measures the magnitude of the baseflow component of the hydrograph, and 

can be considered as a proxy for the relative amount of groundwater flow in the hydrograph, 𝜁𝜁HFD measures the streamflow 25 

seasonality, 𝜁𝜁Q5, 𝜁𝜁LQF, and 𝜁𝜁LQD measure low-flow dynamics, 𝜁𝜁Q95, 𝜁𝜁HQF, and 𝜁𝜁HQD measure high-flow dynamics. 

Climatology was represented through the following indices (see Addor et al. (2017), Table 2): 

• average precipitation 𝜓𝜓𝐻𝐻𝜓𝜓P = 𝒑𝒑�;  

• average PET 𝜓𝜓𝐻𝐻𝑃𝑃𝑃𝑃 = 𝒆𝒆𝒑𝒑𝒑𝒑𝒑𝒑�����; 

• average PET 𝜓𝜓PET = 𝒆𝒆𝐩𝐩𝐩𝐩𝐩𝐩�����, where 𝒆𝒆𝐩𝐩𝐩𝐩𝐩𝐩 is the potential evapotranspiration time series; 30 

• aridity index 𝜓𝜓𝐴𝐴𝐵𝐵 = 𝒆𝒆𝒑𝒑𝒑𝒑𝒑𝒑������
𝒑𝒑�

.𝜓𝜓AI = 𝒆𝒆𝐩𝐩𝐩𝐩𝐩𝐩������
𝒑𝒑�

; 
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• These indices were designed to capture different featuresfraction of snow (𝜓𝜓FS), defined as the time series: yearly 

streamflow, volumetric fraction of precipitation falling as snow (i.e. on days colder than 0 °C); 

• frequency (𝜓𝜓HPF) and PET can be called “magnitude” indices sincemean duration (𝜓𝜓HPD) of high precipitation 

events: they are a measure of defined as days when the water flows;precipitation is bigger than five times the 

remaining indices give information aboutmean daily precipitation; 5 

• season (𝜓𝜓HPS) with most high precipitation events (defined as above); 

• frequency (𝜓𝜓LPF) and mean duration (𝜓𝜓LPD) of dry days: they defined as days when the “shape” of precipitation is 

lower than 1 mm day-1; 

• season (𝜓𝜓LPS) with most dry days (defined as above). 

The seasonality of precipitation used in Addor et al. (2017) was not considered in this study as it relied on fitting a sinusoidal 10 

function to the time seriesprecipitation values, which in our case did not produce reliable results. Nevertheless, these 

climatological indices are able to comprehensively represent the climatic conditions of the suubcatchment, with 𝜓𝜓P 

representing average water input, 𝜓𝜓PET representing average evaporative demand, 𝜓𝜓AI measuring the dryness of the climate, 

𝜓𝜓FS measuring the relative importance of snow, 𝜓𝜓HPF, 𝜓𝜓HPD, and 𝜓𝜓HPS measuring the importance of intense precipitation 

events, and  𝜓𝜓LPF, 𝜓𝜓LPD, and 𝜓𝜓LPS measuring the importance of dry days. 15 

The landscape characteristics, illustrated in Sect. 2, need to be synthetized in a numeric value  were divided in four 

categories: topography, land use, soil, and geology. In order to quantify the characteristics of each category, a set of indices 

(𝜉𝜉) before being used in the correlation and regression analysis. The maps were processed using GIS techniques and, for 

each subcatchment, numerical features were extracted. Allwas defined. It is important to notice that all the areas calculated in 

this analysis were normalized by theirthe respective subcatchment area (𝜉𝜉𝐴𝐴𝜉𝜉A) in order to get comparable values between 20 

subcatchments of different size. 

 In particular,Topography was represented with the following indices, calculated based on the digital elevation model (DEM) 

was used to calculate the following topographic information:): 

• average elevation (𝜉𝜉𝑃𝑃𝑃𝑃TE); 

• average slope (𝜉𝜉𝑃𝑃𝐻𝐻𝑇𝑇TSm); 25 

• fraction of the subcatchment with steep areas (𝜉𝜉𝑃𝑃𝐻𝐻𝑇𝑇𝜉𝜉TSs) , with slope larger than 10°; 

• aspect, i.e. areasfraction of the subcatchment facing north (𝜉𝜉𝑃𝑃𝐴𝐴𝑇𝑇𝜉𝜉TAn ), south (𝜉𝜉𝑃𝑃𝐴𝐴𝑇𝑇 )𝜉𝜉TAs ), or east and west 

(𝜉𝜉𝑃𝑃𝐴𝐴𝑇𝑇𝑇𝑇TAew). 

TheLand use was represented with the following characteristics, obtained by reclassifying the land use map was reclassified 

in four categories (from 22 original classes): 30 

• crops (𝜉𝜉𝐿𝐿𝑅𝑅); 

• fraction of the subcatchment with crops land use (𝜉𝜉LC); 

• fraction of the subcatchment with pasture land use (𝜉𝜉𝐿𝐿𝐻𝐻LP); 
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• forest (𝜉𝜉𝐿𝐿𝐵𝐵); 

• fraction of the subcatchment with forest land use (𝜉𝜉LF); 

• fraction of the subcatchment with urbanized land use (𝜉𝜉𝐿𝐿𝐿𝐿LU). 

The soil map was used to quantify: 

areasSoil type was represented with the following indices, derived by the soil map: 5 

• fraction of the subcatchment with deep soil (soil depth greater than two meters) (𝜉𝜉𝐻𝐻𝑆𝑆SD); 

• average soil depth (𝜉𝜉𝐻𝐻𝑆𝑆SM). 

The geology map was reclassifiedGeology was represented by the following indices, obtained by reclassifying the original 

map in three categories (from 22 original classes): 

• fraction of the subcatchment with alluvial geology (𝜉𝜉𝐺𝐺𝐴𝐴GA); 10 

• fraction of the subcatchment with consolidated geology (𝜉𝜉𝐺𝐺𝑅𝑅GC); 

• fraction of the subcatchment with unconsolidated geology (𝜉𝜉𝐺𝐺𝐿𝐿𝜉𝜉GU). 

The reclassification of the land use and of the geology maps consisted in aggregating specific classes into general classes 

(e.g. combining different types of forests into a unique forest class) with the objective of reducing thetheir number of classes, 

in order to facilitate subsequent analyses. 15 

3.1.2 Correlation and regression analysis 

This analysis is aimed at identifying meteorological and landscape characteristics (𝜓𝜓 and 𝜉𝜉) that mostly control streamflow 

signatures (𝜁𝜁). The analysis is subdivided in different steps. 

The first step is about checking whether the Pearson correlation is an appropriate metric for representing correlation. For this 

purpose, we calculated the correlation between variables using the Pearson correlation coefficient and the Spearman’s rank 20 

score. The first captures linear correlation while the second is capable of measuring also non–linear (but still monotonic) 

correlation between two variables (e.g., Artusi et al., 2002). 

The second step in the correlation analysis is aimed at excluding non–significant influencing factors. This selection is based 

on the following two criteria: (i) the correlations have to be statistically significant, with p–value lower than 0.05; and (ii) the 

landscape characteristics (𝜉𝜉 ) have to cover at least 5 % of the subcatchment. The latter point isThe consideration of 25 

topography, land use, soil, and geology for defining landscape indices was based on their potential influence on hydrological 

processes, and in turn, on the shape of the hydrograph. These landscape characteristics can all play an important role in 

controlling hydrological processes: land use can, for example, influence the infiltration of water in the substrate; soil 

thickness can affect the partitioning between water storage and runoff; vegetation is typically assumed to affect evaporation, 

and geology can affect groundwater dynamics. Indeed, these characteristics are used by many semidistributed hydrological 30 

models, for example for determining parameter values or for dividing the catchment in areas with homogenous hydrological 

response(e.g., Gurtz et al., 1999). 
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3.1.2 Selection of meaningful streamflow signatures, climatic indices, and catchment indices 

The sets of statistics presented in Sect. 3.1.1 were designed to be comprehensive. However, they may also be redundant, for 

example by containing metrics that express similar characteristics of the underlying data. In order to facilitate subsequent 

correlation analyses between the various sets of statistics, it is important to reduce each set to a short list of meaningful 

variables. The reduction of each set of streamflow signatures, climatic indices, and landscape indices was achieved through 5 

the following steps: 

• All the statistics that did not show sufficient variability between the subcatchments were eliminated. We were in 

fact interested in identifying causes of spatial variability in the streafmow dynamics of the subcatchments of the 

Thur. Therefore, statistics that had a low variability were not of interest in this analysis. The variability was 

measured using the coefficient of variation (defined by the ratio between the standard deviation and the average) 10 

and statistics with a coefficient of variation less than 5 % were discarded. 

• All the catchment indices (e.g. a certain type of land use) that account for a limited part of the subcatchment were 

discarded. The latter point was motivated by the expectation that landscape characteristics covering a very small 

fraction of the subcatchment should not have a strong influence on the streamflow signatures here considered. 

Characteristics at point (ii) could already have been excluded before the analysis. Nevertheless we thought it would 15 

still be interesting to see the complete picture of correlation between variablesconsidered. Here, landscape indices 

accounting for less than 5 % of the subcatchment area were discarded. 

The third step in the correlation analysis aims at distinguishing causality from mere correlation. The identification of 

causality links is based on expert judgment. For example, average streamflow may have a high correlation both with average 

altitude and with average precipitation, but if high mountain regions also have higher precipitations due to orographic 20 

effects, the cause of spatial streamflow variability will be precipitation and not altitude. Additionally, if more indices 

representing the same landscape characteristic (e.g. 𝜉𝜉𝐺𝐺𝐴𝐴, 𝜉𝜉𝐺𝐺𝑅𝑅 , and 𝜉𝜉𝐺𝐺𝐿𝐿 are complementary representations of the geology) are 

correlated with a signature, then only the one with the highest correlation is considered.  

As a last step, in order to determine a range of influencing factors on each of the signatures, we used a linear regression 

analysis with forward selection of the variables (Miller et al., 2002). In particular, for each signature, only the indices 𝜓𝜓 and 25 

𝜉𝜉  that exhibit causality were used in a decreasing order of correlation. Starting from the null hypothesis (none of the 

characteristics is necessary to explain the signatures), at each step a variable was added in the regression and the change in 

the performance was assessed evaluating the variation of the squared correlation (𝑟𝑟2) and the residual sum of squares (RSS). 

The change between these metrics in the steps of the regression was used to interpret the explanatory power of the added 

variable. 30 
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3.1.3 Approach for informing model structure 

• The results of the regression analysis were used to build the hydrological model; its definitionWithin each set of 

streamflow signatures, climatic indices, and catchment indices we retained only relatively independent metrics. This 

step was motivated by the need of removing redundant information within each set. The selection of independent 

metrics was aided by the Spearman’s rank score between each pair of metrics, which represents (also non–linear) 5 

correlation between variables. Pairs of metrics with high Spearman’s rank score are potentially redundant. In 

eliminating potentially redundant variables, we adopted the following criteria: 

o Among highly correlated metrics, we preferred those depending on single variables (e.g. only precipitation 

or only streamflow) to those containing multiple variables (e.g. combining precipitation and streamflow or 

evaporation, such as the aridity index or the runoff ratio), as this may be a problem when looking for 10 

correlations between metrics; 

o With respect to landscape indices, in many cases the high correlation is due to the fact that they are 

complementary (the areal fractions sum up to unity). In such cases, we kept one index per class (e.g. a 

single index for geology). 

o A high correlation between metrics does not always mean that the metrics represent the same information. 15 

Therefore, the final selection of relevant metrics within each set was guided by expert judgment.  

Based on this process, we compiled a reduced list of signatures, climatic indices, and landscape indices, which was used in 

subsequent analyses. 

3.1.3 Identification of climate and landscape controls on streamflow and consequences for model development 

This analysis aimed to identify climatic and landscape indices that mostly control streamflow signatures. In order to identify 20 

causality links between indices (𝜓𝜓 and 𝜉𝜉) and signatures (𝜁𝜁) we proceed as follows: 

• We calculated the correlation between indices and signatures using the Spearman’s rank score, and identified pairs 

of variables with high correlation; 

• We scrutinized pairs of variables with high correlations using expert judgment to decide if a causality link between 

variables is justified; 25 

• We used the identified causality links to inform the structure of a distributed model. 

The distributed model development involved a series of choices regarding the subdivision of the catchment in HRUs, the 

model structure, and the parameters that: all these choices were, in this study, were motivated by the results of the 

regressioncorrelation analysis, i.e. only catchment characteristics that were found capable of explaining the hydrological 

response were used. 30 
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3.2 Results and interpretation 

This section illustrates the results of the correlation analysis aimed to identify influencing factors that control the spatial 

variability of streamflow signatures; Section 3.2.1 showspresents the spatial results of the selection of meaningful statistics; 

Section 3.2.2 identifies climate and landscape indices controlling streamflow signatures and presents consequences for 

model development. 5 

3.2.1 Selection of meaningful streamflow signatures, climatic indices, and catchment indices 

The streamflow signatures defined in Sect. 3.1.1 were calculated for each subcatchment and the values are shown in Table 2 

together with the coefficient of variation. All the signatures have a coefficient of variability of the indices, the correlation 

and regression analysis and bigger than the threshold value of 5%, with the most variable signature being 𝜁𝜁LQF (71%) and the 

least variable 𝜁𝜁HQD (6%). Therefore, none of these signatures was discarded. 10 

Figure 2 shows the correlations between the streamflow signatures: the lower triangle contains the Spearman’s rank 

correlation and the upper triangle the p-value associated with the correlations. Based on correlations and on its interpretation 

is presented in Sect. 3.2.2., a subset of 𝜁𝜁 can be defined as follows: 

3.2.1 Spatial and temporal variability of catchment indices  

In Fig. 2, each boxplot shows the variability (between years) of the observed streamflow signatures. This analysis suggests 15 

that, based on the signatures 𝜁𝜁𝑄𝑄 , 𝜁𝜁𝑅𝑅𝑅𝑅 , 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 , and 𝜁𝜁𝐵𝐵𝐵𝐵 , the subcatchments can be qualitatively divided in three separate groups:  

• subcatchments in the north–west hilly part (Frauenfeld and Wängi) characterized by on average lower values of 𝜁𝜁𝑄𝑄  (less 

than about 700 mm yr–1), 𝜁𝜁𝑅𝑅𝑅𝑅  (less than 0.60), and 𝜁𝜁𝐵𝐵𝐵𝐵 (about 0.30), and higher values of 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  (about 0.50);  

• subcatchments in the south mountainous part (Appenzell, Jonschwil, Mogelsberg, Mosnang, and St. Gallen) that present 

completely opposite behaviour in terms of signatures values compared to the first group, with higher 𝜁𝜁𝑄𝑄  (larger, on 20 

average, than 1100 mm yr–1), 𝜁𝜁𝑅𝑅𝑅𝑅  (larger than 0.70), and 𝜁𝜁𝐵𝐵𝐵𝐵 , (with the average larger than 0.40), and lower 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵(around 

0.40); 

• subcatchments with intermediate behaviour (all the others, i.e. Andelfingen, Halden, and Herisau) that express a regime 

that is in between the other two groups. 

This combination of signatures values suggests that the subcatchments in the north–west hilly part, since they have more 25 

baseflow and a lower 𝜁𝜁𝐵𝐵𝐵𝐵, manifest a hydrograph that is more regular (with less short–term variations) than the other two 

groups.  

Based on the half streamflow period (𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻), the subcatchments can be classified in different groups: Frauenfeld, Wängi, and 

Mosnang, that on average, reach the 50 % of the total streamflow around the 45 % of the year (February); Jonschwil, St. 

Gallen, and Appenzell that reach this threshold around the 60 % of the year (April); all the others that have an intermediate 30 

behaviour. All the subcatchments present some outliers. These outliers can be explained based on the temporal variability of 
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precipitation, which can determine that in some years the 50 % of the total streamflow is reached much earlier than on 

average.  

Figure 3 illustrates the same analysis, but for the meteorological indices. It is possible to observe in the precipitation (Fig. 

3a) and in the aridity index (Fig. 3c) the same patterns that are present in the streamflow (Fig. 2a); nevertheless, the ratio 

between streamflow and precipitation is not constant, as shown by 𝜁𝜁𝑅𝑅𝑅𝑅  (Fig. 2b), which is higher for wetter subcatchments. 5 

Precipitation, varies significantly from subcatchment to subcatchment, with an average value that has a range of variability 

of more than 500 mm yr–1. PET instead is generally more stable from subcatchment to subcatchment. The average value 

oscillates of about 50 mm yr–1, with the exception Appenzell, the catchment with highest altitude, where PET is, on average, 

100 mm yr–1 lower (Fig. 3b). 

The landscape characteristics of the subcatchments (𝜉𝜉) are summarized in Fig. 4 (refer to Table 1 for the features that cannot 10 

be expressed as areal fraction, e.g. 𝜉𝜉𝑃𝑃𝑃𝑃, 𝜉𝜉𝑃𝑃𝐻𝐻𝑇𝑇, etc.). All the subcatchments present the same aspect (𝜉𝜉𝑃𝑃𝐴𝐴𝑇𝑇, 𝜉𝜉𝑃𝑃𝐴𝐴𝑇𝑇𝑇𝑇  and 𝜉𝜉𝑃𝑃𝐴𝐴𝑇𝑇), 

mainly north (30 %). Topography (𝜉𝜉𝑃𝑃𝐻𝐻𝑇𝑇  and 𝜉𝜉𝑃𝑃𝐻𝐻𝑇𝑇 ), soil characteristics (𝜉𝜉𝐻𝐻𝑆𝑆  and 𝜉𝜉𝐻𝐻𝑆𝑆 ), and geology (𝜉𝜉𝐺𝐺𝐴𝐴 , 𝜉𝜉𝐺𝐺𝑅𝑅 , and 𝜉𝜉𝐺𝐺𝐿𝐿 ) 

present a high variability, with a difference, between subcatchments, around 40 %. The land use (𝜉𝜉𝐿𝐿𝑅𝑅 , 𝜉𝜉𝐿𝐿𝐻𝐻, 𝜉𝜉𝐿𝐿𝐵𝐵, and 𝜉𝜉𝐿𝐿𝐿𝐿) is 

relatively uniform (variation lower than 10 % between catchments) with the only large (but still limited) difference in the 

urbanized areas. There are also landscape characteristics (e.g. 𝜉𝜉𝐿𝐿𝑅𝑅  or 𝜉𝜉𝐿𝐿𝐿𝐿) that present a limited coverage over the catchment, 15 

lower than 15 %. 

Reducing the time scale from annual to monthly averages it is possible to note differences in seasonality between 

subcatchments. Figure 5 illustrates the variability of streamflow, precipitation and PET; each line represents the normalized 

(divided by the average annual value) average value through the years for a subcatchment. Although the (normalized) 

meteorological variables present similar seasonality between the subcatchments, the streamflow shows stronger variability 20 

between subcatchments. Based on streamflow seasonality, the subcatchments can be visually divided in two separate groups: 

subcatchments that have highest streamflow between October and March (Wängi, Frauenfeld, and Mosnang) and 

subcatchments that present highest streamflow during late spring and summer (particularly evident in Appenzell). These 

dynamics are similar to the ones captured by 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 , that shows that the catchments that reach earlier the 50 % of the 

streamflow are the same that have the highest streamflow between October and March. 25 

3.2.2 Influencing factors on streamflow signatures 

• Table 2 shows the correlation coefficients calculated between  𝜁𝜁Q ,  𝜁𝜁RR and 𝜁𝜁EL are strongly correlated (𝑟𝑟 > 0.72). 

We retained 𝜁𝜁Q and discarded 𝜁𝜁RR  and 𝜁𝜁EL  because both contain climatic information (precipitation) in their 

definition; 

• 𝜁𝜁BFI and 𝜁𝜁FDC are strongly correlated (𝑟𝑟 = −0.77). We decided to retain 𝜁𝜁BFI as it is of easier interpretation (it is a 30 

proxy for the importance of groundwater flow, which is a potentially important process for the subsequent model 

development); 
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• 𝜁𝜁HFD was kept because it measures the seasonality of the streamflow. Note that 𝜁𝜁HFD  is strongly correlated with 𝜁𝜁Q 

(𝑟𝑟 = 0.88). However, they reflect different properties of the hydrograph. In particular, 𝜁𝜁HFD  can be an useful 

indicator for the effect of snow-related processes; 

• 𝜁𝜁Q5 and 𝜁𝜁HQD were retained because they have low correlation (𝑟𝑟 < 0.71) with the other selected signatures and 

because the first represents low flows and the second high flows; 5 

• 𝜁𝜁Q95, 𝜁𝜁HQF, 𝜁𝜁LQD, and 𝜁𝜁LQF were discarded because they all show correlations with the selected signatures. 

In summary, the original set of streamflow signatures was reduced to a set of five meaningful signatures, which will be in the 

subsequent analyses: average daily streamflow (𝜁𝜁Q), baseflow index (𝜁𝜁BFI), half streamflow period (𝜁𝜁HFD), 5th percentiles of 

the streamflow (𝜁𝜁Q5), and duration of high-flow events (𝜁𝜁HQD). 

In terms of climatic indices, Table 3 shows their values together with the coefficient of variation. It can be seen that there are 10 

some indices that show very little or no variation at all and, therefore, they could be already excluded from the subsequent 

correlation analysis; they are: 𝜓𝜓HPD (1 %), 𝜓𝜓HPS (0 %), 𝜓𝜓LPF (4 %), 𝜓𝜓LPD (3 %), and 𝜓𝜓LPS (0 %). 

Fig. 3 shows the correlation between the remaining indices. It can be observed they all have strong internal correlation 

(𝑟𝑟 > 0.71). For this reason it was decided to retain only 𝜓𝜓P and 𝜓𝜓FS, as they have lower correlation. The first represents an 

important term of the water budget, the latter captures snow dynamics.  15 

Table 4 shows the values of the catchment characteristics considered in this study. All of them have a coefficient of variation 

larger than the minimum threshold of 5%. Therefore, none of them was excluded based on this criterion. The second 

criterion for the pre-exclusion of the catchments characteristics, consisting in removing 𝜉𝜉 occupying less than 5% of the 

subcatchments, led to the suppression of 𝜉𝜉LC (which occupies 4% of the subcatchment). 

Figure 4 shows the correlations between catchment characteristics; in many cases the high correlation is due to the fact that 20 

many indices are complementary (e.g. different types of geology). The following 𝜉𝜉 were selected (one index per class): 

• 𝜉𝜉A because it is low correlated to the other features; 

• 𝜉𝜉TE and 𝜉𝜉TAs in representation of the topography; 

• 𝜉𝜉LF for the land use; 

• 𝜉𝜉SD representing the soil characteristics; 25 

• 𝜉𝜉GC for the geology. 

In summary, the original set of catchment indices was reduced to a set of 5 indices. 

3.2.2 Selection of controlling factors on streamflow signatures 

Fig. 5 reports the results of the Spearman correlation between climatic indices plus catchment characteristics on streamflow 

signatures. The upper panel contains the Spearman’s rank coefficients and the lower panel shows p-values associated with 30 

them. 

The following results can be noted: 



15 
 

• The three statistics average precipitation (𝜓𝜓P ), fraction of snow (𝜓𝜓𝐵𝐵𝐻𝐻 ), and average elevation (𝜉𝜉TE ) correlate 

strongly with average streamflow (𝜁𝜁Q) and seasonality (𝜁𝜁HFD) (𝑟𝑟 > 0.64 and p-value< 0.05). This correlation can 

be interpreted as follows: subcatchments with high elevation (𝜉𝜉TE) tend to have higher precipitation (𝜓𝜓P) due to 

orographic effects, which leads to higher streamflow (𝜁𝜁Q). They also tend to have more snow (𝜓𝜓FS) due to lower 

temperatures, which influences the seasonality (𝜁𝜁HFD). 5 

• There are then some catchment characteristics that have no correlation (𝑟𝑟 < 0.45) with the streamflow signatures 

(catchment area (𝜉𝜉A) and land use (𝜉𝜉LF)) or limited correlation (aspect (𝜉𝜉TAs) and deep soil (𝜉𝜉SD), with 𝑟𝑟 < 0.64).  

• The consolidated geology (𝜉𝜉GC) presents a strong correlation (𝑟𝑟 = −0.87) only with the baseflow index (𝜁𝜁BFI) that it 

is not captured by the other indices. 

The streamflow signatures and meteorological and landscape characteristics of the subcatchments; both Pearson and 10 

Spearman’s rank correlations are reported and the values that are statistically significant (p–value < 0.05) are marked in bold.  

The two coefficients provide comparable results and, in particular, only a few correlations that are statistically significant 

according to the Spearman’s rank correlation are of low and high flows (𝜁𝜁Q5 and 𝜁𝜁HQD) cannot be explained by any index, 

with little correlation only with 𝜓𝜓P and 𝜉𝜉TE (𝑟𝑟 < 0.60) that is not considered significant by the Pearson correlations and, in 

these cases, their p–value is close to 0.05. For this reason, the Pearson coefficient is considered to be a good metric to detect 15 

correlation in this case and there is, therefore, no need to look for non–linearity in the following of this analysis.  

Looking at the statistically significant correlations, without any consideration regarding the presence of a causality link, 

some characteristics can be already excluded from the remaining of the analysis since they are never correlated with the 

signatures; they are the subcatchment area (𝜉𝜉𝐴𝐴 ), the aspect (𝜉𝜉𝑃𝑃𝐴𝐴𝑇𝑇 , 𝜉𝜉𝑃𝑃𝐴𝐴𝑇𝑇𝑇𝑇 , and 𝜉𝜉𝑃𝑃𝐴𝐴𝑇𝑇 ), and forest land use (𝜉𝜉𝐿𝐿𝐵𝐵 ). Other 

correlations can be excluded because, while having in some cases a low p–value, the landscape characteristic covers a 20 

limited portion of the subcatchment; this is the case of crops and urban land use (𝜉𝜉𝐿𝐿𝑅𝑅  and 𝜉𝜉𝐿𝐿𝐿𝐿). 

The remaining correlations are then analysed and accepted (or rejected) considering their relation with other characteristics 

and the presence (or absence) of a causality link. Analysing 𝜁𝜁𝑄𝑄 , for example, it can be seen from Table 2 that it is, in a 

decreasing order, correlated to: 𝜓𝜓𝐻𝐻 (0.97), 𝜓𝜓𝐴𝐴𝐵𝐵  (–0.97), 𝜉𝜉𝑃𝑃𝐻𝐻𝑇𝑇 (0.97), 𝜉𝜉𝑃𝑃𝑃𝑃  (0.97), 𝜉𝜉𝑃𝑃𝐻𝐻𝑇𝑇 (0.94),  𝜉𝜉𝐻𝐻𝑆𝑆  (–0.89), 𝜓𝜓𝐻𝐻𝑃𝑃𝑃𝑃  (–0.87), 𝜉𝜉𝐺𝐺𝐴𝐴 

(–0.80), 𝜉𝜉𝐺𝐺𝑅𝑅  (0.80), 𝜉𝜉𝐺𝐺𝐿𝐿 (–0.76), and 𝜉𝜉𝐻𝐻𝑆𝑆 (–0.73). Out of these 11 correlations, some of them can be excluded because either 25 

they represent the same feature or because they are linked with other characteristics that are more explanatory. In particular, 

𝜉𝜉𝑃𝑃𝐻𝐻𝑇𝑇 and 𝜉𝜉𝑃𝑃𝐻𝐻𝑇𝑇 are highly correlated and they both represent the topography so only the slope (𝜉𝜉𝑃𝑃𝐻𝐻𝑇𝑇) is kept. 𝜉𝜉𝐻𝐻𝑆𝑆 and 𝜉𝜉𝐻𝐻𝑆𝑆 

represent both the same feature (soil depth) and the same happens for the three types of geology (that are complementary): 

for these reasons only 𝜉𝜉𝐻𝐻𝑆𝑆 and 𝜉𝜉𝐺𝐺𝑅𝑅  are kept for following analyses. 𝜉𝜉𝑃𝑃𝑃𝑃 and 𝜓𝜓𝐻𝐻 are highly correlated and, as explained in 

Sect. 3.1.2, only the true driver (𝜓𝜓𝐻𝐻) is considered. The aridity index, finally, is a function of 𝜓𝜓𝐻𝐻 and 𝜓𝜓𝐻𝐻𝑃𝑃𝑃𝑃 . Since 𝜓𝜓𝐻𝐻 is 30 

already considered, only 𝜓𝜓𝐻𝐻𝑃𝑃𝑃𝑃  is included in the following analyses. 

The same arguments can be used also to prune the list of the statistically–significant correlations for the other signatures, 

keeping only the most correlated 𝜉𝜉 of each landscape characteristic (the first letter of the subscript of each index denotes the 
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landscape characteristic that it represents). The outcomes of the causality analysis are reported in Table 2, where the 

correlations that show a causality link and are not redundant are underlined.  

The selected 𝜓𝜓 and 𝜉𝜉  are then used, in a decreasing order of correlation (the absolute value is used), in the regression 

analysis. This is presented in Table 3, where each sub–table contains the results of the regression between the meteorological 

and landscape characteristics and a signature; the evaluation metrics, 𝑟𝑟2  and RSS, are also reported. The following 5 

conclusions can be drawn: 

• in all the cases the null hypothesis (none of the features is necessary to explain the signatures) is rejected; 

• excluding 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 , the first feature used in the regression is sufficient to reach an acceptable value of the metrics and, 

thus, the use of the other characteristics does not increase significantly the performance of the model;a p-value 

lower than 0.05. 10 

• when geological and topographical characteristics are used in conjunction, the evaluation metrics do not increase 

appreciably. This is probably due to the fact that they are redundant, since they present the same spatial distribution 

across the subcatchments; 

• regarding the 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 , it can be noticed that, adding information related to the land use 𝜉𝜉𝐿𝐿𝐻𝐻 , the metrics improve 

substantially (+8 % for 𝑟𝑟2 and –60 % for RSS). 15 

These conclusions form the basis to formulate modelling guidance (Sect. 3.3). 

3.3 Guidelines for modelling 

The results of the correlation and regression analysis are, in this paper, are the premise of the hydrologicalfor designing 

meaningful model experiments. 

3.3 Hypotheses for model building.  20 

Our hypothesis is that only a model that is able to accountaccounts for the influencing factors that affect the streamflow 

signatures will be able to reproduce spatial streamflow variability. So it is necessary, atIn this point, tosection, we synthetize 

the outcomes of previous analyses in the form of guidelinestestable hypotheses for model building the model. 

1. The precipitation and, in general, all the meteorological variables are is the first driversdriver of the 

hydrologicaldifferences in the water balance of the subcatchments. The effect of topographic variability; they show 25 

a statistically significant correlation with all the signatures and they are the first control  manifests itself primarily as 

an influence on 𝜁𝜁𝑄𝑄 . For this reason, the hydrological model should be able to distribute the inputs across the 

subcatchments; doing this, the model is automatically incorporating information about the precipitation (amount 

and type). Accounting for variability of precipitation therefore implicitly reflects such effect of topography 

(specificallyon the elevation)hydrograph, since all the inputs were interpolated taking into account the effect of the 30 

elevation (Sect. 2). 
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2. The signature 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻  and the different monthly patterns between streamflow and meteorological inputs show a 

seasonal effect due to the presence of snow. Therefore the model should be able to use the temperature (that is 

distributed across the subcatchments) to separate the precipitation between snow and rainfall and to reproduce the 

melting process. 

2. Out of all the landscapeSnow related processes (e.g. amount of snow, timing of snowmelt) control differences in 5 

streamflow seasonality between subcatchments. 

3. Geology exerts an important control on the partitioning between quick flow and baseflow.  

4. The other catchment characteristics, the ones that are more correlated are topography and geology; since they also 

have a similar spatial distribution, only geology should be kept because it has, overall, a higher correlation (e.g. soil, 

vegetation) show little or no correlations with the streamflow signatures. There are also other characteristics that 10 

have proven to be related with some signatures (e.g. land use with 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  and 𝜁𝜁𝐵𝐵𝐵𝐵  or soil depth with 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵) but, for the 

sake of keeping and therefore they should not be considered if the idea is to keep the model as simple as possible, 

they. 

3. These hypotheses will not be considered. 

This guidance will result intotested through specific model decisionscomparisons, described in Sect. 4.1.1 and in the 15 

selection of the model experiments of Sect. 4.1.5. 

4 Modelling 

4.1 Methods 

This section describes the approach for building and testing a semidistributedsemi-distributed hydrological model designed 

to represent the observed streamflow and particularly the observed spatial variability of streamflow signatures. The 20 

modelling choices aregeneral model structure is explained in Sect. 4.1.1 and follow the discussion of the regression analysis 

presented in Sect. 3.3;, the error model and the calibration procedure are described in Sect. 4.1.2 and 4.1.3, the metrics 

utilized to assess the performance are shown in Sect. 4.1.4, and the model experiments done are illustrated in Sect. 4.1.5. 

4.1.1 General structure of the hydrological model 

The need to provide simultaneous streamflow predictions at the various points within the Thur catchment requires at a 25 

minimum a subdivision into subcatchments based on the location of the gauging stations. In the spirit of semidistributed 

modelling, a common way to account for the spatial heterogeneity of hydrological behaviour is to consider a variable 

number of HRUs (see Sect. 4.1.5). Portions of the entire catchment belonging to the same HRU are supposed to have the 

same hydrological behaviour and, for this reason, are described by the same model structure and parameters set (but can 

have different states because of spatial variability of the forcings). Specific choices for the HRUs, motivated by the results of 30 

the regression analysis (Sect. 3.3), are described in Sect. 4.1.5. 
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The results of the regression analysis have indicated that We describe here the general model structure. Specific choices for 

the various experiments are described in Section 4.1.5. The model uses a two-layers decomposition of the catchment:  

1. Subcatchments are defined by the presence of the gauging stations; this subdivision was due to the necessity of 

having locations in the model where the streamflow was both observed and simulated and, therefore, it was possible 

to calibrate and evaluate the parameters of the hydrological model. This layer of decomposition was used for the 5 

distribution of the meteorological inputs (precipitation is a dominant control on average streamflow (Sect. 3.3, point 

1). Therefore, precipitation needs to be distributed at least at the level of subcatchments. As a result, portions, PET, 

temperature), that are aggregated at the subcatchment scale. 

2. HRUs are defined based on catchment characteristics (e.g. topography, geology or vegetation); they represented 

parts of the catchment belonging to the same HRU but located in differentthat are supposed to have a similar 10 

hydrological response to the meteorological forcing. Each HRU is characterized by its own parameterization. 

Different definitions of HRUs were tested, as described in Section 4.1.5. 

Each HRU has a unique parameterization. However, given the choice of discretizing the inputs per subcatchment, a HRU 

that spans multiple subcatchments will generally have different states. Using the same terminology of Fenicia et al. (2016), 

the smallest landscape units in which the catchment is discretized are called ‘fields’. In this case, the total number of ‘fields’ 15 

is obtained by summing the total number of HRUs present in each subcatchment. Therefore, the same HRU needs its own 

model representation in each subcatchment where it is present. For more details about our model implementation of “HRUs” 

refer to Fig. 4 of Fenicia et al. (2016). 

The model was built using the modelling framework SUPERFLEX (Fenicia et al., 2011). We have chosenIn contrast to 

Fenicia et al. (2016), for simplicity we chose a unique structure to represent the various HRUs (as said above, this structure 20 

will generally have different parameters in order to represent the hydrological behaviour of distinct HRUs). The structure 

used to represent the HRUs is represented in Fig. 6 with the equations listed in the Appendix A. Because of the importance 

of snowmelt in controlling streamflow seasonality (Sect. 3.3, point 2), theThe structure includes a snow reservoir (WR).), 

with inputs distributed per subcatchments. Snowmelt and rainfall are input to an unsaturated reservoir (UR), which 

determines the portion of precipitation that produces runoff. This flux is split through a fast reservoir (FR), designed to 25 

represent the peaks of the hydrograph, precededproceeded by a lag function to offset the hydrograph, and a slow reservoir 

(SR), designed to represent baseflow. This structure iswas chosen to be parsimonious while general enough to reproduce 

typical hydrograph behaviour; it was tested in previous applications ( e.g., van Esse et al., 2013; Fenicia et al., 2014; Fenicia 

et al., 2016) demonstrating its suitability to reproduce a wide range of catchment responses. It also resembles popular 

conceptual hydrological models such as HBV (Lindstrom et al., 1997) and HyMod (Boyle, 2003), which are shown to have 30 

wide applicability.  
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4.1.2 Error model  

As commonly done in hydrological modelling (e.g., McInerney et al., 2017), we here account for uncertainties by 

considering a probabilistic model of the observations 𝑸𝑸(𝜽𝜽,𝒙𝒙), where 𝜽𝜽 is the vector of parameters and 𝒙𝒙 the model input, 

which is composed of a deterministic hydrological model 𝒉𝒉(𝜽𝜽𝒉𝒉,𝒙𝒙)(𝜽𝜽𝐡𝐡,𝒙𝒙) (illustrated in Sect. 4.1.1) and a random residual 

error term 𝜠𝜠(𝜽𝜽𝜠𝜠𝜽𝜽𝚬𝚬) that accounts for all data and model uncertainties (𝜽𝜽𝒉𝒉𝜽𝜽𝐡𝐡 and 𝜽𝜽𝜠𝜠𝚬𝚬 represent the hydrological and the error 5 

parameters): 

𝑧𝑧[𝑸𝑸(𝜽𝜽,𝒙𝒙); 𝜆𝜆] = 𝑧𝑧[𝒉𝒉(𝜽𝜽𝒉𝒉,𝒙𝒙)(𝜽𝜽𝐡𝐡,𝒙𝒙); 𝜆𝜆] + 𝜠𝜠(𝜽𝜽𝜠𝜠)        

 (3𝜽𝜽𝚬𝚬)         (4) 

where 𝑧𝑧[𝒚𝒚; 𝜆𝜆] representrepresents the Box–Cox transformation (Box and Cox, 1964) with parameter 𝜆𝜆 , which is used to 

account for heteroscedasticity (stabilize the variance). For 𝜆𝜆 ≠ 0:  10 

𝑧𝑧[𝒚𝒚; 𝜆𝜆][𝑦𝑦t; 𝜆𝜆] = 𝒚𝒚𝜆𝜆−1
𝜆𝜆

𝑦𝑦t
𝜆𝜆−1
𝜆𝜆

           

 (45) 

The residual error term is assumed to follow a Gaussian distribution with zero mean and variance 𝜎𝜎2 

𝜠𝜠~𝛦𝛦t~𝑁𝑁(0;𝜎𝜎2)            (56) 

The error model has, therefore, two parameters (𝜆𝜆 and 𝜎𝜎2); the first was fixed to 0.5 (McInerney et al., 2017) and the second 15 

was inferred. 

This choice of error model (Gaussian noise applied to the Box–Cox transformation of the streamflow) allows for an explicit 

definition of the likelihood function (McInerney et al., 2017) 

𝑝𝑝(𝒒𝒒𝒑𝒑𝒃𝒃𝒐𝒐|𝜽𝜽𝒉𝒉,𝜽𝜽𝜠𝜠,𝒙𝒙) = ∏𝑧𝑧′(𝒒𝒒𝒑𝒑𝒃𝒃𝒐𝒐|𝜽𝜽𝜠𝜠)𝑓𝑓𝑁𝑁(𝜠𝜠|0;𝜎𝜎2)        (6) 

where𝑝𝑝(𝒒𝒒𝐩𝐩𝐛𝐛𝐨𝐨|𝜽𝜽𝐡𝐡,𝜽𝜽𝚬𝚬,𝒙𝒙) = ∏ 𝑧𝑧′�𝑞𝑞obs,t|𝜽𝜽𝚬𝚬�𝑓𝑓𝑁𝑁(𝛦𝛦𝑡𝑡|0;𝜎𝜎2)T
t=1        20 

 (7) 

where T represents the length of the time series, 𝑓𝑓𝑁𝑁 is the Gaussian probability density function (PDF) and 𝑧𝑧′(𝒒𝒒𝒑𝒑𝒃𝒃𝒐𝒐|𝜽𝜽𝜠𝜠) is the 

derivative of 𝑧𝑧(𝒒𝒒𝒑𝒑𝒃𝒃𝒐𝒐,𝜽𝜽𝜠𝜠) with respect to 𝒒𝒒 evaluated at the observed data 𝒒𝒒𝒑𝒑𝒃𝒃𝒐𝒐 . Specifying Eq. (67) for the case where 

𝑧𝑧(𝒒𝒒𝒑𝒑𝒃𝒃𝒐𝒐;𝜽𝜽𝜠𝜠) is defined by Eq. (45), the expression of the likelihood function becomes: 

𝑝𝑝(𝒒𝒒𝒑𝒑𝒃𝒃𝒐𝒐|𝜽𝜽𝒉𝒉,𝜽𝜽𝜠𝜠,𝒙𝒙) = ∏𝒒𝒒𝒑𝒑𝒃𝒃𝒐𝒐
(𝜆𝜆−1)𝑓𝑓𝑁𝑁(𝜠𝜠|0;𝜎𝜎2)         (7) 25 

𝑝𝑝(𝒒𝒒𝐩𝐩𝐛𝐛𝐨𝐨|𝜽𝜽𝐡𝐡,𝜽𝜽𝚬𝚬,𝒙𝒙) = ∏ 𝑞𝑞ob𝑇𝑇,𝑡𝑡
(𝜆𝜆−1)𝑓𝑓𝑁𝑁(𝛦𝛦𝑡𝑡|0;𝜎𝜎2)T

t=1         (8) 

Equation (8) represents the likelihood function that is then used, together with an uniform prior distribution, to calibrate the 

parameters of the model as described in Sect. 4.1.3. 

4.1.3 Calibration  

Parameter calibration was performed by optimizingwith the parametersobjective of themaximizing their posterior 30 

distributiondensity. According to Bayes equation, the posterior distribution of model parameters is expressed as the product 
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between the prior distribution and the likelihood function; since an uniform prior was used for the parameters, this is 

equivalent to maximizing the likelihood function in the defined parameter space; the optimization procedure was done 

usingperformed with a multi–start quasi–Newton method (Kavetski et al., 2007) with 20 independent searchers. We 

empirically established that with models of our complexity (about 10 parameters), 20 independent searches provide good 

confidence that a global optimum is found. 5 

The evaluation of the model ability to reproduce streamflow was carried out in space–time validation. (see also Fenicia et al., 

2016). For this purpose, the time domain was divided in two periods of 12 years each (from 01 September 1981 to 01 

September 1993, and from 01 September 1993 to 01 September 2005) and the subcatchments were split ininto two groups (A 

and B), according to a spatial alternation (subcatchment in group A flows into a subcatchment in group B that flows into one 

in group A and so on); the subcatchments belonging to group A are Andelfingen, Herisau, Jonschwil, St. Gallen, Wängi and 10 

the ones in group B are Appenzell, Frauenfeld, Halden, Mogelsberg, Mosnang. This method implies a division of the space–

time domain in four partsquadrants, such that the model can be calibrated in one quadrant and validated in the other three. 

For space–time validation, the model was calibrated using each group of subcatchment and each period, and validated using 

the other group of subcatchment and period. That is, the model calibrated using group A and period 1 was validated using 

group B and period 2, and so on for the other 3 combinations of subcatchments and groups. The model output in the 4 space–15 

time validation periods was then combined, to calculate model performance using various indicators (see Sect. 4.1.4). 

Results are presented for space time validation, which represents the most challenging test of model performance. 

4.1.4 Performance assessment 

Model performance was assessed using the following metrics: 

1. Time series metrics, which evaluate the ability of reproducing streamflow time series. The metrics used for this 20 

assessment are the following: 

• Normalized log–likelihood (LL), that is, the logarithm of Eq. (78) normalized by the number of time steps 

present in the time series. This metrics corresponds to the objective function used for model optimization. It 

can be observed that, since λ  is fixed at 0.5 in the Box–Cox transformation, model calibration is equivalent to 

maximising the Nash–Sutcliffe efficiency (NS) calculated with the square root of the streamflow. LL is not 25 

bounded but a higher value means a better match between two time series since, in this case, the absolute value 

of the residual is smaller and, thus, their PDF higher. 

• Nash–Sutcliffe efficiency 

𝑁𝑁𝑁𝑁(𝒒𝒒𝒑𝒑𝒃𝒃𝒐𝒐,𝒒𝒒𝒐𝒐𝒔𝒔𝒔𝒔) = 1 − ∑ �𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡 −𝑞𝑞𝑜𝑜𝑏𝑏𝑠𝑠

𝑡𝑡 �
2𝑇𝑇

𝑡𝑡=1

∑ �𝑞𝑞𝑜𝑜𝑏𝑏𝑠𝑠
𝑡𝑡 −𝒒𝒒𝒑𝒑𝒃𝒃𝒐𝒐�������

2𝑇𝑇
𝑡𝑡=1

       

 (8(𝒒𝒒𝐩𝐩𝐛𝐛𝐨𝐨,𝒒𝒒𝐨𝐨𝐬𝐬𝐬𝐬) = 1 −
∑ �𝑞𝑞sim,t−𝑞𝑞obs,t�

2𝑇𝑇
𝑡𝑡=1

∑ �𝑞𝑞obs,t−𝒒𝒒𝐩𝐩𝐛𝐛𝐨𝐨�������
2𝑇𝑇

𝑡𝑡=1

       (9) 30 
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Which is often used in hydrological applications, and it provides a sense of general quality of the simulations. 

NS is bounded between −∞ and 1, with 1 meaning a perfect match. 

2. Signature metrics, which determine the ability of reproducing the selected streamflow signatures ( 𝜁𝜁 ) 

presentedwhich, as illustrated in the regression analysis part (Sect.Section 3.2.1.1), that is, of , are average daily 

streamflow (𝜁𝜁𝑄𝑄), runoff coefficient (𝜁𝜁𝑅𝑅𝑅𝑅𝜁𝜁Q), baseflow index ( 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  ), flashiness index ( 𝜁𝜁𝐵𝐵𝐵𝐵), and 𝜁𝜁BFI ) mean half 5 

streamflow perioddate (𝜁𝜁HFD), 5th percentile of the streamflow (𝜁𝜁Q5), and duration of high-flow events (𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻𝜁𝜁HQD). 

The accordance between simulated and observed signatures was assessed both visually and using the 

PearsonSpearman’s rank correlation. 

This set of metrics, together with the fact that they are calculated in space time validation (Sect. 4.1.3), provides a 

comprehensive assessment of model performance. 10 

The use of multiple metrics for assessing model performance enables a comprehensive assessment of various characteristics 

of the simulations. Time series metrics were designed to appraise the general quality of the model fit. Signatures, instead, 

were designed to highlight selected characteristics of the data at the expense of others. 

4.1.5 Model experiments for testing the results of the correlation analysis 

Using the model structure described in Sect. 4.1.1.1, several, four model variants areconfigurations were compared. The 15 

main motivations for such comparisons are as follows: 

• verify that models that account for the influencing factors identified through the regression analysis indeed lead 

to an improved representation of streamflow spatial variability; 

• provide a mechanistic interpretation of how influencing factors affect streamflow, which cannot be achieved by 

regression analysis; 20 

• get some insights on the relationship between model complexity and performance. 

The model variants and their specific rationale are described below:  

• In order to verify the effect of spatial distribution of landscape properties, we constructed a reference model 

with a single HRU, called M1, (i.e. no spatial distribution of landscape properties); in this case only the input 

variability (the catchment is still divided in subcatchments) is considered. 25 

• In order to verify that geology controls streamflow variability (see Sect. 3.3, point 3), particularly by 

influencing baseflow conditions, a two HRUs model, called M2, was implemented, dividingvarying the three 

geology classes in unconsolidated, for number and the first HRU, and consolidated and alluvial, for the second 

HRU (see Sect. 2 and Fig. 1d). 

In order to verify that eventual improvements in performance brought by M2 compared to M1 are not just due to increase in 30 

complexity, we implemented a two definition of the HRUs, and changing the structure of the HRUs model, called M3, using 

the land use to discretize the domain. The land use classes were arbitrarily defined so that the first HRU contains forest and 
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crops and the second occupies the rest of the catchment. (Fig 6). The objective of the experiments was to test the hypotheses 

1-4 in Sect. 3.3. 

The first hypothesis (precipitation controls the water balance) is tested with the model M0, with uniform parameters on the 

catchment (i.e. a single HRU) and distributed precipitation input. This model does not consider snow processes. We expect 

that this model will be able reproduce differences in streamflow averages between subcatchments. 5 

The second hypothesis (snow controls seasonality) is tested with the model M1. Relatively to M0, M1 accounts for snow 

processes, represented by simple degree day snow module (see Kavetski and Kuczera, 2007), with inputs (temperature) 

distributed per subcatchment. 

The third hypothesis (geology controls baseflow) is tested with the model M2. Relatively to M1, M2 considers two HRUs, 

defined based on geology type. One HRU contains the areas with consolidated geology while the other HRU contains the 10 

rest of the catchment (unconsolidated and alluvial geology together). 

The fourth hypothesis (other catchment characteristics should not be considered if the idea is to keep the model as simple as 

possible), is exemplified by the model M3. M3 is analogous to M2 except that HRUs are based on catchment characteristics 

that did not show correlation with the streamflow signatures. Among those characteristics, we have selected land use, and 

considered an HRU based forest and crops and the second one that occupies the rest of the catchment. 15 

The total number of the calibrated parameters depends on the number of HRUs and on the structure used to represent them: 

it was nine in the first experiment (Table A1)8 for M0, 9 in M1, and 13 in the other twoM2 and M3, where five5 parameters 

were linked between different HRUs; (Table A1); those parameters are: 𝐶𝐶𝑇𝑇𝐶𝐶e that governs the evapotranspiration, 𝑡𝑡𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑂𝑂𝐿𝐿 𝑡𝑡riseOL  

and 𝑡𝑡𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝐵𝐵𝐿𝐿 𝑡𝑡riseIL  that control the routing in the river network, 𝑘𝑘𝑊𝑊𝑅𝑅𝑘𝑘WR that regulates the outflow of the snow reservoir, and 

𝑁𝑁𝑇𝑇𝑚𝑚𝑚𝑚𝐿𝐿𝑅𝑅 𝑁𝑁maxUR  that determines the behaviour of the unsaturated reservoir. 20 

4.2 Results and interpretation 

This section presents the results of the modelling experiments. Section 4.2.1 illustrates model results in terms of hydrograph 

metrics. Section 4.2.2 presents model results in terms of signatures. An interpretation of the results, including a comparison 

with the conclusions of the regressioncorrelation analysis, is given in Sect. 4.2.3. 

4.2.1 Model performance in terms of hydrograph metrics 25 

Figure 7a shows the values of the likelihood function (corresponding to the calibration objective function) for the threefour 

models in calibration and validation. It can be observed that M0 is, by far, the worst model, having a low value of likelihood. 

Moving to the other three models, it can be seen that, during calibration, M1, which has the lowest number of calibration 

parameters, has the lowest likelihood value of the three, indicating lowest performance, whereas M2 and M3 have similar 

higher likelihood values. This behaviour continuespersists in time validation, with M2 and M3 that outperform M1. In space 30 
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and space–time validation, however, M3 has the lowest likelihood value of the three, whereas M1 and M2 limit their 

decrease in performance, havingranking, respectively, the second and the first valuein terms of optimal likelihood value. 

The likelihood function represents an aggregate metric of model performance; in order to get a sense of appreciation of 

model fit on individual subcatchments, Fig. 7b reports the values of Nash Sutcliffe efficiency in space time validation for 

each of the subcatchments. On average, M2 has the best performance of all models (NS = 0.79), followed by M1 (NS = 0.78) 5 

and), M3 (NS = 0.77).), and M0 (NS = 0.68). M3 hasand M0 have the highest variability of performance, with NS values 

between 0.58 and 0.86 and between 0.59 and 0.81. M1 and M2 have similar spread of NS values, ranging from 0.69 to 0.85 

for M1 and from 0.73 to 0.87 for M2. Therefore, M1 and M2 have a more stable performance across subcatchments than 

M3. M3 obtains a significantly worse performance than the other 2 models on Mosnang, where it reaches a NS value of 0.58 

(M1 and M2 have values of 0.69 and 0.73 respectively). 10 

It can also be observed that M2 is generally better than M1, with NS values that are higher or approximately equal except for 

the subcatchments Andelfingen and Halden, where the NS is slightly worse (however still higher than 0.80). M3 is clearly 

better than M1 on Andelfingen, Frauenfeld and Wängi, and clearly worse on Herisau and Mosnang. In particular, in 

Mosnang (the smallest basin), M3 reaches the worst performance of all models on all subcatchments.  

Regarding M0, it is interesting to observe that it has the worst performance (among all the subcatchments) in Appenzell, 15 

which is the subcatchment that is most affected by snow (𝜓𝜓FS = 0.21), while it reaches a performance similar to M1 in 

Frauenfeld and Wängi, which are two subcatchments with almost no snow. 

4.2.2 Model performance in terms of signature metrics 

Figure 8 compares the observedability of M0 and simulated signatures for M1. Figure 9  to capture the signatures 

representing average streamflow (𝜁𝜁Q) and Fig. 10 show the same analysis for M2 and M3 respectively.seasonality (𝜁𝜁HFD). 20 

The analysis is presented for space–time validation only.and, for 𝜁𝜁HFD, it focuses only on the four subcatchments that are 

most affected by the snow (𝜓𝜓FS > 0.10) to emphasize the differences between the results of the two models. Each colour 

represents a different subcatchment and each dot a year; the red dashed line has a 45 ° slope and it isrepresents where the 

dots should align in case of perfect simulation results. The Pearson correlation coefficientThe Spearman’s rank score is also 

reported and gives information about the degree of linear dependency between the two variables. It is important to 25 

underlinestress that the models have not been calibrated using any of thesethe signatures as objective function and,, which 

therefore, they represent an independent evaluation metric.  

M1 (Fig. 8)It can be observed that M0 represents relatively accurately 𝜁𝜁𝑄𝑄 ,𝜁𝜁Q  as well as M1, with almost no difference 

between the two models. Focusing on the ability of capturing 𝜁𝜁𝑅𝑅𝑅𝑅 , and  𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 (𝜁𝜁HFD, it can be seen that with M0 the points all 

lie in the upper-left part of the plot, meaning that this model underestimates the signature values. With respect to M1, 30 

instead, the points are more aligned around the diagonal. This difference in performance is also exemplified by the value of 𝑟𝑟 

that is 0.96, 0.83,66 for M0 and 0.85 for M1. 
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Figure 9 compares the observed and 0.92 for 𝜁𝜁𝑄𝑄 , 𝜁𝜁𝑅𝑅𝑅𝑅 ,simulated signatures for the other three models (M1, M2, and 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻M3). 

All of them are extremely good in representing 𝜁𝜁Q (𝑟𝑟 is 0.95, 0.96, and 0.95 for M1, M2, and M3 respectively). On the other 

hand, the model shows clear) and 𝜁𝜁HFD (𝑟𝑟 is 0.88, 0.88, and 0.87 for M1, M2, and M3 respectively). In all cases the cloud of 

points appears aligned to the diagonal meaning that the three models are able to capture the value of the signatures each year. 

Moreover, there is no sensible difference in the various models in representing those signatures. 5 

The performance of all the models decreases for 𝜁𝜁Q5 where the models have a similar performance with 𝑟𝑟 equal to 0.62, 0.66, 

and 0.61 for M1, M2, and M3 respectively. The points cloud is still aligned to the diagonal but it is quite dispersed, 

especially if compared with 𝜁𝜁Q and 𝜁𝜁HFD, meaning that the models capture the general tendency but have deficiencies in 

matchingcapturing the inter-annual variability. 

In terms of 𝜁𝜁BFI , M2 performs clearly better than the other signatures (𝑟𝑟 is 0.20 and 0.37 for  𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  and 𝜁𝜁𝐵𝐵𝐵𝐵  respectively): the 10 

points cloud is quite dispersed meaning that the models. It is the only model is not able to capture the variability between 

years and subcatchments. Moreover, that is able to represent this signature, with 𝑟𝑟 equal to 0.83 and the points that align to 

the diagonal. The other two models have a lower performance (𝑟𝑟 equal to 0.31 and 0.52 for M1 and M3 respectively) with 

the points cloud that is quite dispersed and the dots align (regression line not plotted to avoid an overcrowded plot) almost 

vertically, implying that the simulated values have a range of variability that is definitely smaller than the measuredobserved 15 

data. 

M2 (Fig. 9) has a performance similar to M1 in terms of the signatures 𝜁𝜁𝑄𝑄 , 𝜁𝜁𝑅𝑅𝑅𝑅 , and 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 (𝑟𝑟 is 0.96, 0.88, and 0.92 for 𝜁𝜁𝑄𝑄 , 

𝜁𝜁𝑅𝑅𝑅𝑅 , and 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 respectively). However, in terms of 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 , the representation is much better than M1 (𝑟𝑟 equal to 0.83 vs 0.20 for 

M1), with the points cloud that is more aligned on the diagonal, indicating not only correlation but also a good match of the 

absolute values. Compared to M1, finally, 𝜁𝜁𝐵𝐵𝐵𝐵 presents a much better alignment (𝑟𝑟 is 0.88), but the points are still far from 20 

the diagonal, indicating a poor agreement of the absolute values; in particular, the model tends to consistently underestimate 

𝜁𝜁𝐵𝐵𝐵𝐵 .  

M3 (Fig. 10), finally, has a performance that is in between the other two models; the representation of the signatures  𝜁𝜁𝑄𝑄 , 𝜁𝜁𝑅𝑅𝑅𝑅 , 

and 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 is similar to the one achieved with the other two models, with 𝑟𝑟 that is equal to 0.96, 0.84, and 0.90 respectively. 

On the other hand, the model misrepresents the other signatures (𝑟𝑟 is 0.46 and 0.44 for  𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  and 𝜁𝜁𝐵𝐵𝐵𝐵  respectively): the point 25 

clouds, in this case, are more similar to the one obtained with M1, that is, they are more dispersed and aligned almost 

vertically.  

Figure 10 shows the comparison between observed and simulated 𝜁𝜁HQD; since this signature requires a long time window to 

be computed, it is not calculated year by year (as done with the other signatures) but it is available only the aggregated value 

over the 24 years. The performance of M1 and M2 is overall good, with 𝑟𝑟 that is 0.77 and 0.69, while M3 shows some 30 

deficiencies (𝑟𝑟 equal to 0.48); all the models tend to slightly overestimate the duration of high flow events with most of the 

points that lie on the right side of the diagonal. 



25 
 

4.2.3 Interpretation of hydrological model results 

The results of the hydrological model experiments indicateappear to support our hypothesis that accountingonly models that 

account for the influencing factors identified throughthat affect the regression analysis indeed lead to an improved 

representation of streamflow signatures are able to reproduce streamflow spatial variability. The  (see Sect. 3.3). This 

provides confidence that those models are a realistic representation of dominant processes in the catchment. 5 

In particular, the results of M1M0 show that accounting for the spatial heterogeneity of the inputsprecipitation alone is 

sufficient to achieve to a good accuracy signatures of water balance, with 𝑟𝑟 of 0.9695 for average streamflow 𝜁𝜁𝑄𝑄 . More 

complex models with more HRUs and more parameters do not result in any improvement in reproducing the average 

streamflow signature. The same considerations can be made also for 𝜁𝜁𝑅𝑅𝑅𝑅  and 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 that are well represented by all the three 

models. 10 

The differences between M1 and M0 show that differences in streamflow seasonality 𝜁𝜁HFD can be largely attributed to the  

(spatially variable) effect of snow accumulation and melting. More complex models (M2 and M3) do not demonstrate an 

improvement in this signature. 

M2 determines a large improvement in matching signatures of baseflow variability. The ability of fitting 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵𝜁𝜁BFI goes from 

0.2031 for M1 to 0.83 for M2. This result confirms that geology influences spatial variability of quickflow vs baseflow 15 

partitioning, as indicated by regressioncorrelation analysis. 

M3 reassures that the relatively good results of M2 are not just due to increasing complexity. Although this model performs 

slightly better than the M1 in terms of matching signatures such as of 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  and 𝜁𝜁𝐵𝐵𝐵𝐵𝜁𝜁BFI, M2 is still much better (e.g. the 

Pearson coefficientSpearman’s rank score for 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵𝜁𝜁BFI is 0.83 for M2 and 0.4652 for M3). 

All the models do not preform particularly well in reproducing 𝜁𝜁Q5 and 𝜁𝜁HQF. These problems shows that such models may 20 

not represent well extreme values (high and low flow), and therefore they are still amenable to improvements. 

Overall, distributing the inputs is sufficient to get good performance metrics, water balance, and seasonality, confirming the 

fact that the precipitation rate and the partitioning between rainfall and snow are the first controllers on these hydrograph 

characteristics, but, if we want to capture also other important characteristics of the hydrograph shape, described by the other 

signatures, like 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 , the discretization of the catchment in HRUs is necessary. This discretization has to be carefully made 25 

and a preliminary analysis to understand dominant influencing factors on signatures can help in this decision. As shown in 

Fig. 109, if we use characteristics that are not strongly correlated with the signatures (e.g. land use) the results are worse than 

if we choose characteristics that show a correlation with signatures (e.g. geology). M2 is capable of capturing the signatures 

not just because it is more complex than M1, but because it incorporates the causality link between the geology and the 

streamflow signatures in its structure. 30 

The underestimation of 𝜁𝜁𝐵𝐵𝐵𝐵, which applies to all the models (including  M2), has partly to do with the fact that in our analysis 

observed signatures are compared with the output of the deterministic model without adding the error term. This results in a 

hydrograph that is more regular that the probabilistic one resulting in a lower  𝜁𝜁𝐵𝐵𝐵𝐵 . Although conceptually it is more 
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appropriate to compare the observations to the probabilistic simulations, given that our error model is relatively simple it 

would have resulted in unrealistic signatures. The development of error models that preserve the signatures of the 

observations is a subject of current research (e.g., Ammann et al., 2018). 

5 General discussion 

Explaining the spatial variability observed in catchment hydrological behaviour by identifying the most important controls 5 

on water fluxes and pathways is a major focus of catchment hydrology and a central theme in classification studies (e.g., 

McDonnell and Woods, 2004; Wagener et al., 2007). A common approach for interpreting the spatial variability of 

catchment responses is through regressioncorrelation based analyses, which seek correlations between 

meteorologicalclimatic or catchment characteristics and streamflow signatures (e.g., Lacey and Grayson, 1998; Bloomfield 

et al., 2009).  One of the issues with this approach is that correlation does not always imply causality, and the presence of 10 

multiple correlated variables can obscure process interpretation. 

In this study, we combine regressioncorrelation analysis for identifying dominant influencing factors on streamflow 

signatures with hydrological modelling, by using the interpretation of the regressioncorrelation analysis as an inspiration for 

generating testable model structure design.hypotheses. The combination of regressioncorrelation analysis on streamflow 

signatures and hydrological modelling is beneficial because on the one hand, the speculations on dominant processes 15 

resulting from the regressioncorrelation analyses can be verified in the modelling process. Specifically, we developed model 

experiments to test the influence of precipitation spatial distribution on streamflow average and seasonality, and the 

influence of geology on quickflow vs baseflow partitioning. On the other hand, model building benefits from guidance 

resulting from preliminary regressioncorrelation analysis. The construction of a distributed model requires several decisions 

(e.g., Fenicia et al., 2016), including how to “break–up” the catchment in a meaningful way, and preliminary 20 

regressioncorrelation analysis can motivate some of these decisions. For example, the HRUs defined based on geology, as 

suggested by regressioncorrelation analysis resulted in better model performance than HRUs based on land use, particularly 

in the representation of streamflow signatures. 

Although several modelling decisions were guided by data analysis, it should be noted that alternative decisions would have 

been similarly consistent with the data. For example, both precipitation and elevation are correlated with average 25 

streamflow, and both geology, topography and soil type characteristics are correlated between each other and with baseflow 

index (Section 3.2.2 and Figure 5). The correlation of catchment characteristics (e.g. geology, soil and topography) can be 

attributed to the fact that they evolved together in the shaping of the catchment morphology (e.g. mountainous regions have 

impervious topography with shallower soil and, for these reason, are less suitable for human activities, influencing land use). 

The decisions on which variables are chosen to reflect a causality link is not always obvious from correlation analysis alone, 30 

and it requires expert judgment, which is not always generally shared.  
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Our results on the Thur catchment with respect to the effect of meteorological inputs on average streamflow and of the 

geology on baseflow index are in general agreement with previous work. Kuentz et al. (2017) made a classification study 

over more than 40000 catchments across all Europe (of which almost 2700 are gauged) and found that the rainfall is the first 

controller of the average streamflow, geology controls the BFI, topography the FIflashiness index, and, for most of the cases, 

land use is the second controller of them; Bloomfield et al. (2009) used a linear regression model and linked the lithology of 5 

the Thames Basin (UK) with the BFI; Lacey and Grayson (1998) noted that geology controls the BFI in two ways, storing 

the water and impacting the soil formations; Fenicia et al. (2016) compared different model structures and catchment 

discretization methods in the Attert Basin (Luxemburg) and discovered that the best model was the one that incorporates a 

spatial representation of the meteorological inputs and of the geology. 

On the other hand, this general tendency should not be generalized to all places. For example, Mazvimavi et al. (2005) found 10 

that geology was not important for the BFI, as in their case study the aquifer was deep and disconnected from the river. 

Bouaziz et al. (2018) found a strong influence of regional groundwater flow in the Meuse catchment which altered the water 

balance. 

One of the main limitations of this work is the restricted number of catchments involved and the limited spatial extension of 

the study. For this reason, it is difficult to generalize the results to other climatic regions. The subcatchments belong all to the 15 

same region and the landscape and climatic characteristics, while varying substantially within the basin, can still be quite 

different from characteristics found elsewhere.  

The limited number of catchments involved in this study (only 10) can also pose some problems within the use of techniques 

such as linear regression with multiple features, which can lead to overfit. Another limitation in the regression study is 

thatcorrelation analysis, where only linear or monotonic correlations have been investigated while other forms of 20 

relationship, including the mutual interaction between various influencing factors, have been neglected. This can lead to the 

exclusion of characteristics that are indirectly related to the streamflow signatures. 

6 Conclusion 

In this study, we presented a methodology for the construction of a semidistributedsemi-distributed hydrological model 

where model decisionshypotheses, instead of being made a–priori, are informed by preliminary regressioncorrelation 25 

analysis on streamflow signatures. Besides providing guidance to model development, the proposed approach is useful in the 

fact that modelling can be used to test specific hypotheses on dominant processes resulting from regressioncorrelation 

analysis.  

Our analysis iswas applied to the Thur catchment, with the objective of understanding the main controls on streamflow 

spatial variability. The main findings can beare summarized in the following points: 30 

1. there is awe found large spatial variability between the subcatchments of the Thur catchment in terms of various 

characteristics of the hydrographs streamflow signatures reflecting multiple temporal scales: yearly, seasonal and 
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event scale. In terms of climatic characteristics, indices reflecting fraction of snow, precipitation totals, and aridity 

varied considerably between catchments. Other precipitation characteristics such as season, frequency and duration 

of dry and wet days did not vary significantly between catchments. In terms of landscape characteristics, there is 

large variability of topography (e.g. from upstream mountainous to downstream flat areas), geology (with 

unconsolidated, more permeable, and consolidated, relatively impermeable formations), and soils (with low depths 5 

in the mountains, and large depth in the floodplains) in all catchments; 

2. meteorologicalbased on correlation analysis and expert judgment, we determined that climatic variables, especially 

the precipitation average, are the main controls the on streamflow average yearly values and seasonality, whereas 

they don’t have a great effect on the shape of the hydrograph in response to specific rainfall events; the fraction of 

snow is responsible for streamflow seasonality by delaying the release of winter precipitation to the spring season, 10 

and geology controls the baseflow index, with a higher fraction of unconsolidated material determining higher 

baseflow; 

• the shape of the hydrograph in response to rainfall events is mainly controlled by the catchment characteristics with 

the geology that plays the main role. Higher proportion of consolidated material has an influence on the baseflow vs 

quickflow portioning, causing lower baseflow and higher peaks; 15 

• only hydrological models that are able to reflect spatial variability of precipitation and difference in hydrological 

behaviour between geologies can correctly represent the streamflow signatures considered in this study; 

3. the causality links found by the regression analysis are used and confirmed by the hydrological model.the results of 

the correlation analysis were translated into a set of model hypotheses: a model with uniform parameters and 

distributed precipitation input (M0), the addition of a snow component (M1), the subdivision of the catchment in 20 

geology based HRUs (M2), and the alternative subdivision the catchment using vegetation based HRUs (M3); 

4. using model comparison, and a validation approach that considers model performance (also in terms of signatures) 

in space time validation, we confirmed that model decisions based on correlation analysis were appropriate. In 

particular, we confirmed that M0, in spite of a generally poor performance, is sufficient to capture signatures of 

streamflow average. M1 improves signatures of streamflow seasonality. M2 enables reproducing signatures such as 25 

the baseflow index. Model modifications that are not in line with the results of the signature analysis, such as 

subdividing the catchment using vegetation based HRUs (M3), despite increasing model complexity, not only do 

not lead to an improvement, but cause deterioration in space-time validation. Overall, these results suggest that 

causality relationships explaining the influence of climate and landscape characteristics on streamflow signatures 

can be constructively used for distributed model building. 30 

 

The relatively good performance obtained in space–time validation suggests that the proposed approach could be used for 

the prediction of the streamflow in other ungauged locations within the Thur catchment. The method proposed uses data that 
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is commonly available in many gauged catchments (e.g. meteorological data, streamflow measurements, and maps of 

elevation, geology, land use, and soil); therefore, it is easily transferable to other locations.  

Appendix 

Appendix A: Hydrological model details 

A.1 Model equations 5 

The equations of the model are listed in this appendix; the model structure in presented in Fig. 6. Table A1 contains the 

model parameters with the range of variability used in calibration, Table  A2 lists the water–budget equations, Table A3 and 

A4 present the functions and the constitutive functions used. 
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Figure 1: Landscape characteristics of the Thur catchment: (a) subdivision in subcatchments, river network, and gauging stations; 
(b) elevation map; (c) land use map; (d) simplified geology map; (e) soil depth map; (f) slope map (derived from the elevation 
map). 



36 
 

 



37 
 

Figure 2: Interannual variability of the streamflow signatures of the subcatchments; the catchments are sorted according to their 
mean elevation and the names are abbreviated using the first three letters. 

 
Figure 3: Interannual variability of the meteorological inputs of the subcatchments. 
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Figure 4: Variability of the landscape characteristics between the subcatchments. Characteristics that are not presented in this 
figure are reported in Table 1 

 
Figure 5: Monthly variability of streamflow (a), precipitation (b) and potential evapotranspiration (c). The values are normalized 5 
by the annual average value of the variable for each subcatchment since here the objective is to analyse the monthly distribution 
and not the actual magnitude. 
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Figure 2: Internal correlation between the streamflow signatures. The lower triangle shows the Spearman’s rank score with the 
red colour that indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the 
corresponding p-values, where yellow colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in 
the figure are reported in Sect. 3.1.1. 5 
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Figure 3: Internal correlation between the climatic indices. The lower triangle shows the Spearman’s rank score with the red 
colour that indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the 
corresponding p-values, where yellow colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in 
the figure are reported in Sect. 3.1.1. 5 
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Figure 4: Internal correlation between the catchment characteristics. The lower triangle shows the Spearman’s rank score with 
the red colour that indicates negative correlations and the blue that indicates positive correlations. The upper triangle reports the 
corresponding p-values, where yellow colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in 
the figure are reported in Sect. 3.1.1. 5 
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Figure 5: Correlation between the selected streamflow signatures (rows) and the selected climatic indices and catchment 
characteristics (columns). The upper panel shows the Spearman’s rank score with the red colour that indicates negative 
correlations and the blue that indicates positive correlations. The lower panel reports the corresponding p-values, where yellow 
colour indicates a statistically significant correlation (p-value < 0.05). The symbols used in the figure are reported in Sect. 3.1.1. 5 
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Figure 6: Schematic representation of the model structure used for the HRUs in all the model configurations. The symbols and 
theIn the scheme “P” represent the precipitation entering in the reservoirs, “E” the evaporation, and  “Q” the outflow from the 
reservoirs. The subscripts indicate the reservoirs: WR = snow reservoir, UR = unsaturated reservoir, FR = fast reservoir, SR = 
slow reservoir, L = lag function. The governing equations are reported in Appendix A 5 
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Figure 7: Normalized log–likelihood (a) and Nash–Sutcliffe efficiency (b) for the three model configurations. The upper plot (a) 
reports the variation between calibration and validation of the average of the 10 subcatchments; the lower plot (b) shows the 
variation between subcatchments during space–time validation.  
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Figure 8: Single HRU model. Comparison between observed and simulated signatures in space-time validation (Influence of the 
model structure on the representation of the average streamflow (a), runoff coefficient (b), baseflow index (c), flashiness index (d), 
and𝜻𝜻𝐐𝐐) and the mean half streamflow period (e)).day (𝜻𝜻𝐇𝐇𝐇𝐇𝐇𝐇). Single HRU model without snow reservoir on the left, single HRU 
model with snow reservoir on the right. Each dot represents a year and each colour a subcatchment. For 𝜻𝜻𝐇𝐇𝐇𝐇𝐇𝐇, only the four 5 
subcatchments with the fraction of snow (𝝍𝝍𝐇𝐇𝐅𝐅) larger than 10 % are plotted. The red dashed line has a 45 ° slope and represents 
the line indicates where all the points should align in case of perfect match between simulated and observed signatures.. The 
Pearson correlation coefficientSpearman’s rank score (𝒓𝒓) is also reported. 
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Figure 9: Two HRUs model based on geology. Comparison between observed and simulated signatures in space-time validation 
(see caption of Fig. 8). 
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Figure 10: Two HRUs model based on land use. Comparison between observed and simulated signatures in space-time validation 
(see caption of Fig. 8). 
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Figure 9: Simulated vs observed streamflow signatures. Single HRU model on the left, two HRUs model based on geology in the 
centre, two HRUs model based on land use on the right. Each dot represents a year and each colour a subcatchment. From up to 
bottom, mean daily streamflow (𝜻𝜻𝐐𝐐), baseflow index (𝜻𝜻𝐁𝐁𝐇𝐇𝐁𝐁), mean half streamflow date (𝜻𝜻𝐇𝐇𝐇𝐇𝐇𝐇), and 5th percentile of the streamflow 
(𝜻𝜻𝐐𝐐𝐐𝐐). The red dashed line has a 45 ° slope and indicates where all points should align in case of perfect match. The Spearman’s 5 
rank score (𝒓𝒓) is also reported. 

 

Figure 10: Ability of the hydrological models of representing the signature duration of low-flow events (𝜻𝜻𝐇𝐇𝐐𝐐𝐇𝐇). Single HRU model 
on the left, two HRUs model based on geology in the centre, two HRUs model based on land use on the right. 
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Tables 

Table 1: Landscape characteristicsIdentification of the catchments. Only features that are not presented ingauging stations and 
description of the plots are reported in this tableriver network. 

 Index 
Code (a) Upstream 

catchments 

Andelfingen 1 2044 2 – 10 

Appenzell 2 2112 – 

Frauenfeld 3 2386 10 

Halden 4 2181 2, 3, 5 – 10 

Herisau 5 2305 – 

Jonschwil 6 2303 7, 8 

Mogelsberg 7 2374 – 

Mosnang 8 2414 – 

St. Gallen 9 2468 2 

Wängi 10 2126 – 
 (a) Code of the gauging station, as defined by the Federal Office for the Environment FOEN 

  5 
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Table 2: Values of the streamflow signatures. The names of the subcatchments are abbreviated using the first three letters. The 
last column contains the coefficient of variation of each signature. 

 Subcatchment  
 And App Fra Hal Her Jon Mog Mos StG Wän CV 
𝜁𝜁Q 2.46 4.14 1.64 3.08 2.95 3.71 3.21 2.91 3.43 2.03 0.25 
𝜁𝜁RR  0.63 0.80 0.49 0.70 0.71 0.80 0.70 0.72 0.71 0.56 0.14 
𝜁𝜁EL 1.35 1.22 1.68 1.24 1.17 1.35 0.97 1.37 0.99 1.54 0.17 
𝜁𝜁FDC 2.12 2.41 2.11 2.30 2.08 2.49 2.76 2.78 2.47 2.02 0.12 
𝜁𝜁BFI 0.55 0.50 0.56 0.52 0.50 0.50 0.45 0.42 0.48 0.57 0.10 
𝜁𝜁HDF 194.21 220.63 170.38 202.00 193.87 205.38 196.96 168.33 209.36 173.17 0.09 
𝜁𝜁Q5 0.50 0.70 0.35 0.57 0.74 0.54 0.44 0.28 0.60 0.49 0.27 
𝜁𝜁Q95 6.96 12.85 4.83 9.23 9.17 11.19 10.57 10.46 11.00 5.98 0.28 
𝜁𝜁HQF 2.21 5.17 3.50 3.67 6.34 4.46 6.54 12.96 5.87 2.96 0.57 
𝜁𝜁HQD 1.39 1.25 1.45 1.35 1.40 1.39 1.37 1.58 1.35 1.29 0.06 
𝜁𝜁LQF 17.50 31.92 12.92 24.21 2.62 37.21 49.42 66.92 28.35 7.25 0.71 
𝜁𝜁LQD 6.67 6.18 3.69 6.53 2.00 7.44 6.38 7.11 4.53 4.35 0.32 
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Table 3: Values of the climatic indices. The names of the subcatchments are abbreviated using the first three letters. The last 
column contains the coefficient of variation of each index. 

 Subcatchment  
 And App Fra Hal Her Jon Mog Mos StG Wän CV 
𝜓𝜓P 3.91 5.15 3.36 4.38 4.13 4.64 4.57 4.04 4.80 3.62 0.13 

𝜓𝜓PET  1.60 1.37 1.70 1.55 1.61 1.54 1.57 1.69 1.49 1.71 0.07 
𝜓𝜓AI 0.41 0.27 0.50 0.35 0.39 0.33 0.34 0.42 0.31 0.47 0.19 
𝜓𝜓FS 0.04 0.21 0.04 0.05 0.09 0.15 0.13 0.09 0.13 0.05 0.57 
𝜓𝜓HPF 15.21 14.38 17.67 14.58 15.82 14.54 14.58 16.13 14.31 17.50 0.08 
𝜓𝜓HPD 1.20 1.17 1.17 1.18 1.22 1.20 1.19 1.22 1.17 1.19 0.01 
𝜓𝜓HDS Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer 0.00 
𝜓𝜓LPF 201.67 195.79 216.83 198.54 205.04 197.21 198.92 205.75 197.69 213.17 0.04 
𝜓𝜓LPD 3.57 3.50 3.83 3.50 3.63 3.51 3.51 3.66 3.51 3.76 0.03 
𝜓𝜓LPS Fall Fall Fall Fall Fall Fall Fall Fall Fall Fall 0.00 
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Table 4: Values of the subcatchment characteristics. The names of the subcatchments are abbreviated using the first three letters. 
The last two columns contain the coefficient of variation and the maximum value of each signature. 

 Subcatchment   
 And App Fra Hal Her Jon Mog Mos StG Wän CV MAX 
𝜉𝜉A 1701 74.46 213.34 1085 16.72 493.0 88.11 3.19 261.1 78.96 1.40 1701 
𝜉𝜉TE 768 1250 591 908 831 1020 954 797 1039 650 0.22 1250 
𝜉𝜉TSm 13.32 25.23 9.70 16.87 15.44 20.66 19.77 15.68 19.72 12.49 0.27 25.23 
𝜉𝜉TSs 0.47 0.81 0.33 0.62 0.69 0.77 0.79 0.71 0.73 0.45 0.26 0.81 
𝜉𝜉TAs 0.25 0.22 0.23 0.23 0.21 0.23 0.24 0.40 0.24 0.21 0.23 0.40 
𝜉𝜉TAn 0.32 0.35 0.33 0.32 0.33 0.32 0.31 0.24 0.33 0.32 0.09 0.35 
𝜉𝜉TAew 0.43 0.43 0.44 0.44 0.46 0.44 0.45 0.36 0.43 0.47 0.07 0.47 
𝜉𝜉SM 1.30 0.56 1.48 1.10 1.32 0.93 1.17 1.00 1.03 1.35 0.23 1.48 
𝜉𝜉SD 0.40 0.04 0.49 0.25 0.41 0.13 0.28 0.00 0.26 0.36 0.63 0.49 
𝜉𝜉LF 0.26 0.25 0.28 0.27 0.21 0.31 0.34 0.18 0.27 0.30 0.17 0.34 
𝜉𝜉LC 0.04 0.00 0.04 0.03 0.03 0.01 0.01 0.01 0.01 0.04 0.79 0.04 
𝜉𝜉LU 0.08 0.03 0.10 0.06 0.15 0.04 0.03 0.03 0.05 0.10 0.63 0.15 
𝜉𝜉LP 0.60 0.59 0.57 0.61 0.61 0.61 0.62 0.77 0.63 0.55 0.09 0.77 
𝜉𝜉GA 0.06 0.01 0.09 0.03 0.00 0.02 0.02 0.00 0.01 0.11 1.05 0.11 
𝜉𝜉GC 0.59 0.92 0.54 0.73 0.88 0.90 0.92 1.00 0.88 0.63 0.20 1.00 
𝜉𝜉GU 0.35 0.07 0.36 0.23 0.12 0.07 0.06 0.00 0.10 0.26 0.79 0.36 
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Table 2: Correlation coefficients (Pearson and Spearman’s rank correlation) between streamflow signatures (columns) and 
meteorological and landscape characteristics (rows) of the catchments. Correlations that are statistically significant (p–value < 
0.05) are marked in bold in the table. Correlations that are interpreted to represent causality are underlined (this analysis has 
been done only for the Pearson correlation). 

  5 
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Table 3: Results of the linear regression with forward selection based on the results of the Pearson correlation. Each sub–table 
represents a hydrological signature and reports the coefficients of the regression and the evaluation metrics. 

 

 

 5 
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Table A1: hydrological model parameters with range of variation used for the definition of the uniform prior distribution. The 
“component” column indicates the element (reservoir, lag or network) where the parameter belongs. 

Parameter Unit Component Range of variability 

𝐶𝐶e − Unsaturated reservoir (UR) 0.1 – 3.0 

𝑁𝑁maxUR  mm Unsaturated reservoir (UR) 0.1 – 500.0 

𝑘𝑘WR d−1 Snow reservoir (WR) 0.1 – 10.0 

𝑡𝑡riseIL  d Network lag 0.5 – 10.0 

𝑡𝑡riseOL  d Network lag 0.5 – 10.0 

𝐷𝐷 − Structure 0.0 – 1.0 

𝑘𝑘FR d−1 Fast reservoir (FR) 10–6 – 10.0 

𝑘𝑘SR d−1 Slow reservoir (SR) 10–6 – 1.0 

𝑡𝑡rise
lag  d Structure lag 1.0 – 20.0 

 

 

  5 
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Table A2: Water–budget equations (see model schematic in Figure 6)). 

Component Equation 

Snow reservoir (WR) d𝑁𝑁WR

d𝑡𝑡
= 𝑃𝑃WR − 𝑄𝑄WR 

Unsaturated reservoir (UR) d𝑁𝑁UR
d𝑡𝑡

= 𝑃𝑃UR − 𝑄𝑄UR − 𝐸𝐸UR 

Lag function 𝑄𝑄UR = 𝑃𝑃SR + 𝑃𝑃lag 

Slow reservoir (SR) d𝑁𝑁SR
d𝑡𝑡

= 𝑃𝑃SR − 𝑄𝑄SR 

Fast reservoir (FR) d𝑁𝑁WR

d𝑡𝑡
= 𝑃𝑃FR − 𝑄𝑄FR 

Outflow 𝑄𝑄 = 𝑄𝑄FR + 𝑄𝑄SR 
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Table A3: Constitutive functions of the model. Refer to Table A4 for the definition of the functions 𝒇𝒇. The calibrated parameters 
are marked in boldred 

Component Equation 

Snow reservoir (WR)(a) 𝑃𝑃WR = �𝑃𝑃 if 𝑇𝑇 ≤ 0
0 if 𝑇𝑇 > 0 

Snow reservoir (WR)(b) 𝑀𝑀max
WR = � 0 if 𝑇𝑇 ≤ 0

𝑘𝑘WR𝑇𝑇 if 𝑇𝑇 > 0 

Snow reservoir (WR) 𝑄𝑄WR = 𝑀𝑀max
WR 𝑓𝑓e(𝑁𝑁WR|2) 

Unsaturated reservoir (UR) 𝑁𝑁UR����� =
𝑁𝑁UR
𝑁𝑁maxUR  

Unsaturated reservoir (UR) 𝐸𝐸UR = 𝐶𝐶e(𝑃𝑃𝐸𝐸𝑇𝑇)𝑓𝑓m(𝑁𝑁UR|0.01) 

Unsaturated reservoir (UR) 𝑄𝑄UR = 𝑃𝑃UR𝑓𝑓p(𝑁𝑁UR�����|2) 

Slow reservoir (SR) 𝑃𝑃SR = 𝐷𝐷𝑄𝑄UR 

Slow reservoir (SR) 𝑄𝑄SR = 𝑘𝑘SR𝑁𝑁SR 

Lag function(c) 𝑃𝑃FR = �𝑃𝑃L ∗ ℎlag�(𝑡𝑡) 

Lag function 
ℎlag = �

2𝑡𝑡 �𝑡𝑡rise
lag �

2
� if 𝑡𝑡 ≤ 𝑡𝑡rise

lag

0 if 𝑡𝑡 > 𝑡𝑡rise
lag

 

Fast reservoir (FR) 𝑄𝑄FR = 𝑘𝑘FR𝑁𝑁FR3  

Lags in the network(c) 𝑄𝑄out = �𝑄𝑄in ∗ ℎlagnet�(𝑡𝑡) 

Lags in the network 

ℎlagnet =

⎩
⎪
⎨

⎪
⎧ 2𝑡𝑡 �𝑡𝑡rise

OL/IL�
2

⁄ if 𝑡𝑡 ≤ 𝑡𝑡rise
OL/IL

�1 𝑡𝑡rise
OL/IL⁄ � �1 − ��𝑡𝑡 − 𝑡𝑡rise

OL/IL� 𝑡𝑡rise
OL/IL� ��  if 𝑡𝑡rise

OL/IL < 𝑡𝑡 ≤ 2𝑡𝑡rise
OL/IL

0 if 𝑡𝑡 > 2𝑡𝑡rise
OL/IL

 

(a) This equation is smoothed using logistic scheme, Eq. (8) in Kavetski and Kuczera (2007), with smoothing parameter 

𝑚𝑚𝐻𝐻 = 1.5°𝐶𝐶 
(b) This equation is smoothed using logistic scheme, Eq. (13) in Kavetski and Kuczera (2007) ,, with smoothing parameter 5 

𝑚𝑚𝑆𝑆 = 1.5°𝐶𝐶 
(c) The operator ∗ denotes the convolution operator, smoothed according to Kavetski and Kuczera (2007) 
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Table A4: Constitutive functions 

Function Name 

𝑓𝑓e(𝑥𝑥|𝜃𝜃) = 1 − 𝑒𝑒𝑥𝑥𝑝𝑝(−𝑥𝑥 𝜃𝜃⁄ ) Tessier function. Note that 𝑓𝑓e(𝑥𝑥|𝜃𝜃) → 1 as 𝑥𝑥 → ∞ 

𝑓𝑓p(𝑥𝑥|𝜃𝜃) = 𝑥𝑥𝜃𝜃 Power function 

𝑓𝑓m(𝑥𝑥|𝜃𝜃) =
𝑥𝑥(1 + 𝜃𝜃)
𝑥𝑥 + 𝜃𝜃

 
Monod–type kinetics, adjusted so that 𝑓𝑓m(1|𝜃𝜃) = 1 
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