
Dear Dr. Riva, 

Thank you very much for the opportunity to integrate the revisions proposed by the two reviewers. 

Furthermore, we like to thank Dr. Pianosi for her thoughtful and important comments. 

Our responses below are written in italics. 

Response to Dr. Pianosi 
This said, I think the manuscript could really do a better job at valuing the underpinning work if it was 

written in a more concise and clear way. Many sentences are rather long-winded and there are 

several language mistakes, including some potentially very misleading confusion in technical terms 

(e.g. "sensitivities" for "uncertainties" or "ranges" for "values"; some specific examples are given 

below). Overall this makes the text quite hard to follow. I think that the entire manuscript should be 

reread and revised before publication. 

Thank you very much for your input that helped to clarify our work. Additionally, to your suggestions 

below we improved the text in multiple small changes shown in the markup document. 

 

1) P. 2 L. 39-75: I think this addition is a bit odd. The content is useful but the way it is placed here 

really breaks the flow of the Introduction. First, given that it is a comment on the limitations of 

Morris, I would place it after the use of Morris is presented in the context of this work (i.e. after lines 

80-83: "...we present an application of the Morris method (...) to the Global Gradient-based 

Groundwater model ...") not before. Second, I would shorten it, and possibly move some of the more 

technical details to the methodology section (2.2.2). It is odd that 35 lines in the Introduction are 

dedicated to a detailed discussion of pros and contras of Morris method, while the general 

introduction to global groundwater models took less than 25 and the review of SA applications less 

than 30! 

 

We agree that the placement of that paragraph was not optimal and moved it as you suggested. 

It now can be found on P. 5 at the beginning of section 2.2.2. 

 

2) P. 6 L. 11-16. I would at least mention here that the robustness of parameter ranking will also be 

assessed, and that details of how this is done are in Appendix 1. This is an important detail of the 

methodology, and should at least be mentioned here. Also, either here or in the Appendix, it should 

be clarified where the distribution of mu* values, and hence their CIs, stem from - i.e. how 

bootstrapping works. I find Figure A1 somehow misleading. It seems to suggest that the CIs are 

relative to the distribution of the Elementary Effects (EEs) for a given sample, i.e. as if each white 

point referred to the individual EE calculated for a certain trajectory. However, I guess the 

distribution should stem from the re-sampling of the 1848 available simulations, i.e. each white point 

in Figure A1 is a different mu* (mean EEs) calculated from a different bootstrap resamples. This is 

crucial but is never really clearly stated, either in the main text or in the Appendix! 

We agree that the manuscript was imprecise. 

 

The robustness is now mentioned on P. 5 L. 94 and reads: 



“The robustness of the parameter ranking is assessed by calculating confidence intervals as described 

in detail in Appendix 1.” 

 

The bootstrapping is now explained in the Appendix and the description in Fig. A1 has been changed 

to further clarify. 

Now reads (P. 16 L. 1): “Confidence intervals are determined based on 1000 bootstrap resamples 

following Archer et al. (1997) for all simulation outputs. Bootstrapping is an established statistical 

method that relies on random sampling with replacement using the original data. This sampling from 

a set of independent, identically distributed data is equivalent to sampling from the empirical 

distribution function of the data allowing to determine confidence intervals (Archer et al., 1997).” 

Figure A1 reads: “[..]μ∗ is calculated based on the EEs (circles), however the CI is calculated 

based on bootstrap resamples of the simulation outputs.” 

 

 

LANGUAGE AND TYPOS 
 

P. 1 L. 20: remove "for a computationally expensive model" 

The application of a global sensitivity study to a computationally expensive and complex model is a 

key contribution of the paper that we believe should be mentioned in the abstract. 

 

P. 1 L. 40: add (I suppose): "... and CHANGES are projected to continue due to climate change" 

Global groundwater dynamics have been significantly altered by human withdrawals, and are 

projected to be further modified under climate change (Taylor et al., 2013) 

 

P. 2 L. 20-22: "...have led to more widespread application e.g. (...) For this reason, existing studies of 

global models...". Something convoluted and unclear in this sequence. Maybe better: "... have 

facilitated their application e.g. (...) Still, existing studies of global models..." 

Revised and now reads (P. 2 L. 14): “The large number of model evaluations required can render 

global methods unfeasible for computationally demanding models, though increased computational 

resources have facilitated their application e.g. [..]” 

 

P. 2 L. 105: "a Monte Carlo experiment to investigate sensitivities of simulated hydraulic head ..." This 

sentence is very confusing. It is unclear what it refers to and how this analysis is different from the 

subsequent Morris analysis. I think the confusion arises from the incorrect use of the term 

"sensitivities". If this sentence refers to Figure 4 and 5, then what is investigated here are the output 

"uncertainties", not "sensitivities", and the sentence should be rephrased as: "a Monte Carlo 

experiment to quantify uncertainty in simulated hydraulic head ...." 



Now reads (P. 2 L. 72): “[..] eight parameters are selected for a Monte Carlo experiment to quantify 

uncertainty in simulated hydraulic head and groundwater-surface water interactions.” 

 

P. 3 L. 47: "calculated river discharge calculated by WaterGAP". Remove the first "calculated" 

Removed. 

 

P. 3 L. 36: missing ")" after R 

Added. 

 

P. 3 L. 47: "h_swb" is undefined 

It is defined in the previous equation, but was inconsistent with Fig. 1 which contains E_swb instead 

of h_swb. This was corrected. All equations and figures now read E_swb. 

 

P. 4 L. 4: "a flow from the cell to a surface water body is negative and positive if the opposite is true." 

why making things so complicated!? Replace by "a flow from the cell to a surface water body is 

negative and viceversa." 

Now reads (P. 3 L. 67): “The in- and outflows Q are described similar to MODFLOW as flows from the 

cell: a flow from the cell to a surface water body is negative, and the reverse flow is positive.” 

 

Figure 1: I would add "h_swb" in the Figure, given it is the most mentioned variable in the text, it 

would be good to have it clearly displayed in the schematic. 

See previous comment. Now consistent mentioning of E_swb. 

 

P. 5 L. 13: "the river conductance Criv in a steady-state groundwater model needs to be set in a way 

that the river is the sink for all the inflow to the grid cell (R and inflow from neighbouring cells) that is 

not transported laterally to neighbouring cells." Too long and hard to follow, please consider 

breaking into two sentences. 

Now reads (P. 3 L. 93): “According to \citet{miguez2007incorporating}, the river conductance 

$C_{riv}$ in a steady-state groundwater model needs to be set in a way that the river is the sink for all 

the inflow to the grid cell that is not transported laterally to neighbouring cells. This inflow consists of 

$R$ and inflow from neighbouring cells.” 

 

P. 5, titles of Sec. 2.2.1 and 2.2.2: "choice in " should be "choice of" 

Changed. 

 



P. 5 L. 66: "we apply a basic sensitivity method" Given what follows, maybe better "we calculate a 

basic sensitivity index" 

Changed (P. 5 L. 29). 

 

P. 6 L. 11: "To achieve that, mu* and sigma are presented in this study in ranks". Very unclear. If I was 

not familiar with Morris method and the parameter ranking, I would have a hard time understand 

what this means. 

 

Now reads (P. 5 L. 88): “To achieve that, μ∗ and σ i are used to rank the most sensitive parameters. 

Values for all parameters are sorted from highest to lowest, and the parameter with the highest value 

is selected as the most influential parameter with the highest rank (hereafter called rank 1). The 

parameter with the second highest value (rank 2) is the second most influential parameter and so on. 

The robustness of the parameter ranking is assessed by calculating confidence intervals as described 

in detail in Appendix 1.” 

 

P. 6 L. 24: "my" should be "by" 

Changed. 

 

P. 6 L. 33: "equally" should be "equal" 

Changed. 

 

P. 6 L. 62: "we introduce the use of a Global Hydrological Response Unit (GHRU)." should be "we 

introduce the use of Global Hydrological Response Units (GHRU)." 

Changed. 

 

P. 6 L. 68-71: "All multipliers for a given parameter for all regions are based on the same random 

distribution inside a given range of uncertainty for that parameter." Again very unclear. Looking at 

Table 1 I would say that the same random distributions (i.e. uniform with ranges given in Table 1) are 

used for the parameter multipliers in all GHRUs. Is this the point? Or something else? 

Now reads (P. 6 L. 51): “A uniform random distribution within the ranges given in Table 1 is used to 

sample the parameter multipliers for all GHRUs.” 

 

P. 6 L. 78: "to the mean in a cluster" maybe "to the mean in that cluster"? 

Changed. 

 

P. 7 L. 2-15. This paragraph is still very unclear. First, I would swap the order of presentation. In its 

present form, it is unclear where the number 1848 on L. 5 comes from. I would first introduce how 



you determine the maximum number of model evaluations ("For 7 parameters (without ocean 

boundary), n GHRUs... the total number of simulation (1848)." and then explain how you select the 

42 optimised trajectories ("10,000 initial trajectories were sampled in total .... are selected (Ruano et 

al., 2012)". Also, in the sentence "We assume 42 for the number of optimised trajectories ...", I would 

clarify that this is the number of elementary effects and is the variable "r" in the formula that gives N 

(it may not be obvious to the reader not familiar with Morris). 

 

This paragraph was rewritten and now reads (P. 6 L 75 ff.): 

“The total number of necessary simulations $N$ is determined with $N = r(k+1)$ 

citep{campolongo2007effective}, where $r$ is the number of elementary effects and $k$ is the 

number of parameters. 

For 7 parameters (without ocean boundary) and 6 GHRUs we get a total number of parameters 

$k=42+1$ where $+1$ stands for the ocean boundary, which is not varied by GHRU resulting in 1848 

simulations. 

Elementary effects are based on an initial random sampling of 10 000 trajectories using 

\citet{campolongo2007effective} and then reduced by assuming 42 (number of parameters times 

GHRUs without ocean boundary) so called optimized trajectories following \citet{RUANO2012103}. 

Only random sampling might result in non-optimal coverage of the input space; thus the initial 

random trajectories are used to select only those that maximise the dispersion in the input space. 

This optimal set of trajectories is approximated with a reasonable computational demand using the 

methodology developed by \citet{RUANO2012103}.” 

 

P. 7 L. 21-24: "Each simulation was an OAT experiment (an extended explanation of OAT and other 

sensitivity experiment setups and methods can be found in Pianosi et al. (2016))." Why this comment 

here? It is very generic and does not seem appropriate for an "experimental configuration" section. 

Either make it more specific or move to the methodology section? 

Removed. And citation added to methodology at place where OAT is introduced (P. 6 L. 31). 

 

P. 7 L. 47: "(see Sect. 4)" I would remove the reference. 

Removed. 

 

P. 8 L. 1-3. Confidence intervals and bootstrapping were never mentioned before! So this sentence 

can only be understood if in the point was anticipated in the methodology section (see also point 2 

above). 

Now explained in appendix and appendix referenced in methodology (see above). 

 

P. 8 L. 65: "to analyse the outcomes of 1848 model realisations" Vague. I'd be more specific: "to 

quantify the output uncertainty as given in the 1848 available model realisations" 



Changed accordingly. 

 

P. 8 L. 79: "in regions of the model where..." I suppose should be "in regions of the domain where..." 

(unless the sentence actually refers to regions of the model input-output response surface?) 

Now reads (P. 8 L. 61): “can be observed in the model where a strong nonlinear relation may produce 

solutions that fit the convergence” 

 

P. 9 L. 34: "independently of the applied parameter ...". This wording suggests we are only looking at 

regions where 100% of MC realisations behave the same. Otherwise, it should be rephrased as "for 

most applied parameter ...". Also, I suppose "parameter ranges" should be replaced by "parameter 

values" (the ranges of variability stay the same, it's the sampled values that are changing, I guess?). 

Now reads (P. 9 L. 12): “Regions with a higher percentage are in losing conditions for most of the 

applied parameter values.” 

 

Caption of Table 3: " Percentage fractions of simulated cells with parameter sensitivity mu* and 

parameter interaction sigma per model output h and Qswb, where the respective output is most 

sensitive to the listed parameter." Very convoluted, please rephrase. 

 

Now reads: “Percentage of cells for which parameters are ranked 1 to 3 based on  μ∗ and σ. 

Percentages are shown for each model output, h and Q swb . For example, h is the most sensitive to 

parameter E swb (Rank 1) in 57.2% of all grid cells, while R is the most important parameter for Q swb 

in 59.8% of those cells.” 

 

P. 11 L. 41-44: "The values shown in Fig. 10 (a) should be judged with caution as they also include the 

regions Fig. A2 shown to be unreliable. Reliability means that due to overlapping CIs (any 

overlapping) the ranking of the parameters can’t be clearly determined". Unclear. Maybe "Fig. A2" 

should be in parenthesis? What does the side note "(any overlapping)" is expected to point at? 

 

The note refers to that we are not considering a certain percentage of overlapping CIs, as one might 

assume, but rather any overlapping of Cis. 

Now reads (P. 11 L. 18): “The values shown in Fig. 10 (a) should be judged with caution as they also 

include regions with possibly unreliable results, i.e., those where any overlap in CIs indicates that the 

ranking of the parameters cannot be clearly determined (see additional explanation Fig. A1).” 

 

 

Caption of Figure 9: "ranked by Sigma value" - maybe the capital sigma should be a small sigma? 

Yes! Changed. 

 



P. 13 L. 24-25: "statistically zero sensitivity values (overlapping CI with zero)". Unclear what the 

problem is. If the sensitivity index has small CI centred around zero, I would conclude that that input 

factor is probably uninfluential. Why this result should be regarded as problematic? If instead the CI 

is very large, then the estimated sensitivity index could be statistically not very reliable, and that 

would be problematic - regardless of the fact that the CI is centred around zero or above. Pls clarify. 

Now reads (P. 13 L. 55): “However, the large number of grid cells with either statistically zero 

sensitivity values (overlapping CI with zero) or unreliable results limit the relevance and applicability 

of the study results. For most of the statistically zero sensitivity values the CI is very large, and it is 

therefore very unlikely that the parameter is not influential.” 

 

P. 15: L. 76: "a feasible the number". Remove "the" 

Removed. 

 

P. 16 L. 20-22: "Results of the method of Morris need to be contemplated in a ranking based scheme 

that relies on metrics that summarize the calculated EEs." Vague and unclear, please clarify what a 

"ranking based scheme" is and which "metrics" are used, or rephrase the entire sentence. 

 

Now reads (P. 16 L. 14): “The derived metrics $\mu *$ and $\sigma_i$ both are measures of intensity 

(higher values are more sensitive/interactive) and do not represent absolute values of sensitivity. 

Both can only be interpreted meaningfully in comparison with values derived for other parameters. 

To achieve that, $\mu *$ and $\sigma_i$ should be presented in so called \emph{ranks}. 

Values for all parameters are sorted from highest to lowest, and the parameter with the highest value 

is selected as the most influential parameter with the highest rank. 

The parameter with the second highest value is the second most influential parameter and so on.” 

 

Response to Referee #2 
 

Page 4 Line 2 “exp(-50mf-1)-1”: What is m?  

 

The SI unit meter. 

Now reads (P. 3 L. 38): 

exp(af −1) −1 where a = −50 (m) 
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Abstract. In global hydrological models, groundwater stor-
ages and flows are generally simulated by linear reservoir
models. Recently, the first global gradient-based groundwa-
ter models were developed in order to improve the repre-
sentation of groundwater-surface water interactions, capil-5

lary rise, lateral flows and human water use impacts. How-
ever, the reliability of model outputs is limited by a lack of
data and by uncertain model assumptions that are necessary
due to the coarse spatial resolution. The impact of data qual-
ity is presented in this study by showing the sensitivity of10

a groundwater model to changes in the only available global
hydraulic conductivity data-set. To better understand the sen-
sitivity of model output to uncertain spatially distributed pa-
rameters, we present the first application of a global sen-
sitivity method for a global-scale groundwater model using15

nearly 2000 steady-state model runs of the global gradient-
based groundwater model G3M. By applying the Morris
method in a novel domain decomposition approach that iden-
tifies global hydrological response units, spatially distributed
parameter sensitivities are determined for a computationally20

expensive model. Results indicate that globally simulated hy-
draulic heads are equally sensitive to hydraulic conductiv-
ity, groundwater recharge and surface water body elevation,
though parameter sensitivities vary regionally. For large ar-
eas of the globe, rivers are simulated to be either losing or25

gaining, depending on the parameter combination, indicating
a high uncertainty of simulating the direction of flow between
the two compartments. Mountainous and dry regions show a
high variance in simulated head due to numerical instabilities

of the model, limiting the reliability of computed sensitivities 30

in these regions. This is likely caused by the uncertainty in
surface water body elevation. We conclude that maps of spa-
tially distributed sensitivities can help to understand complex
behaviour of models that incorporate data with varying spa-
tial uncertainties. The findings support the selection of pos- 35

sible calibration parameters and help to anticipate challenges
for a transient coupling of the model.

1 Introduction

Global groundwater dynamics have significantly changed due to

been significantly altered by human withdrawals, and are 40

projected to continue due to be further modified under cli-
mate change (Taylor et al., 2013). Groundwater withdrawals
have led to lowered water tables, decreased base flows, and
groundwater depletion around the globe (Konikow, 2011;
Scanlon et al., 2012; Wada et al., 2012; Döll et al., 2014; 45

Wada, 2016). To represent groundwater-surface water body
interactions, lateral and vertical flows, and human water
use impacts on head dynamics, it is necessary to simulate
the depth and temporal variation of the groundwater table.
Global-scale hydrological models have recently moved to 50

include these processes by implementing a gradient-based
groundwater model approach (de Graaf et al., 2015; Rei-
necke et al., 2019). This study is based on G3M (Reinecke
et al., 2019) one of the two global groundwater models ca-
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pable of calculating hydraulic head and surface water body
interaction on a global scale. However, the lack of available
input data and the necessary conceptual assumptions due to
the coarse spatial resolution limit the reliability of model out-
put. These substantial uncertainties suggest an opportunity5

for diagnostic methods to prioritize efforts in data collection
and parameter estimation.

Sensitivity analysis is a powerful tool to assess how uncer-
tainty in model parameters affects model outcome, and can
provide insights about how the interactions between param-10

eters influence the model results (Saltelli et al., 2008). Sen-
sitivity methods can be separated into two classes: local and
global methods. Local methods compute partial derivatives
of the output with respect to an input factor at a fixed point
in the input space. By contrast, global methods explore the15

full input space, though at higher computational costs (Pi-
anosi et al., 2016). The large number of model evaluations
required can render global methods unfeasible for computa-
tionally demanding models, though increased computational
resources have led to more widespread facilitated their application20

e.g. (Herman et al., 2013a, b; Ghasemizade et al., 2017).
For this reasonStill, existing studies of global models either fo-
cus on exploring uncertainties by running their model with
a limited set of different inputs for a quasi local sensitivity
analysis (Wada et al., 2014; Müller Schmied et al., 2014,25

2016; Koirala et al., 2018) or applying computationally in-
expensive methods based on a limited set of model evalua-
tions (Schumacher et al., 2015). For example, de Graaf et al.
(2015, 2017) determined the coefficient of variation for head
results in a global groundwater model with 1000 model runs30

evaluating the impact of varying aquifer thickness, saturated
conductivity and groundwater recharge. To the knowledge of
the authors, the only other study that applied a global sen-
sitivity analysis to a comparably complex global model is
Chaney et al. (2015). An overview of the application of dif-35

ferent sensitivity analysis methods for hydrological models
can be found in Song et al. (2015); Pianosi et al. (2016).

This study relies on the G3M uses input from, and it is intended
to be coupled and integrated into, the global hydrologi-
cal model WaterGAP Global Hydrology Model (WGHM)40

(Döll et al., 2014). This study investigates the sensitivity of
steady-state hydraulic heads and exchange flows between
groundwater and surface water to variations in main model
parameters (e.g. groundwater recharge, hydraulic conduc-
tivity, and riverbed conductance). To this end the method of45

Morris (Morris, 1991) in the context of global sensitivity methods. Morris (Mor-
ris, 1991) is applied.

Morris is a global sensitivity method as it provides an ag-
gregated measure of local sensitivity coefficients for each pa-
rameter at multiple points across the input space and analyses50

the distribution properties (Razavi and Gupta, 2015). Compared

to other global methods, like the more robust variance based methods e.g. Sobol (1993),

Morris has drawbacks as it may provide false conclusions (Razavi and Gupta, 2015).

The attribution of what is a direct effect (model response only due to one parameter

change) and what an effect of interaction (response to non-linear interaction of pa-55

rameters on model output) is not trivial. Morris is prone to scale issues, that is that

the step size of the analysis can have significant impact on the conclusions drawn es-

pecially for significantly nonlinear responses (Razavi and Gupta, 2015). In this study

we address this by limiting the parameter ranges of the multipliers where we suspect

non-linearity in the model response. In general the choice of the chosen global sensi- 60

tivity method may yield different results (Dell’Oca et al., 2017). On the other hand,

Janetti et al. (2019) showed for a regional scale groundwater study that different global

methods showed similar results for hydraulic conductivity parameterization. Neverthe-

less, Morris is a well established and recognized method (Razavi and Gupta, 2015) that

has the advantage of computational efficiency compared to variance-based methods to 65

screen the most sensitive parameters (Herman et al., 2013a). It requires signifi-
cantly fewer model runs, compared to other global methods,
to provide a meaningful ranking of sensitive parameters en-
abling the exploration of computationally demanding models
(Herman et al., 2013a). The application of a global sensitiv- 70

ity method for a complex world-wide model of groundwater
flows is unique, and Morris is currently the best available
method to handle the computational constraints.

To reduce the number of necessary model runs when con-
ducting global sensitivity analysis for computationally de- 75

manding models we introduce the concept of Global Hydro-
logical Response Units (GHRUs) (Sect. 2.2.3) (similar to e.g.
Hartmann et al. (2015)). Using the GHRUs we present an ap-
plication of the Morris method (Morris, 1991) to the Global
Gradient-based Groundwater Model G3M (Reinecke et al., 80

2019).
G3M uses input from, and it is intended to be coupled and integrated into, the global

hydrological model WaterGAP Global Hydrology Model (WGHM) (Döll et al., 2014).

This study investigates the sensitivity of steady-state hydraulic heads and exchange

flows between groundwater and surface water to variations in main model parameters 85

(e.g. groundwater recharge and other model parameters like the riverbed conductance).

Sensitivities of the model are explored in three steps: (1)
To understand the impact of improved input data, in partic-
ular hydraulic conductivity, we investigate the changes in 90

simulated hydraulic head that result from changing the hy-
draulic conductivity data from the GLHYMPS 1.0 dataset
(Gleeson et al., 2014) to 2.0 (Huscroft et al., 2018). (2) Based
on prior experiments (de Graaf et al., 2015; Reinecke et al.,
2019) eight parameters are selected for a Monte Carlo exper- 95

iment to investigate sensitivities of quantify uncertainty in simulated
hydraulic head and groundwater-surface water interactions.
The parameters are sampled with a newly developed global
region-based sampling strategy and build the framework for
the (3) Morris analysis. Elementary Effects (EE), a metric 100

of sensitivity, are calculated and their means and variances
ranked to determine global spatial distributions of param-
eter sensitivities and interactions. The derived global maps
show, for the first time, the sensitivity and parameter interac-
tions of simulated hydraulic head and groundwater-surface 105

water flows in the simulated steady-state global groundwa-
ter system to variations in uncertain parameters. Foremost,
these maps help future calibration efforts by identifying the
most influential parameters and answer the question if the
calibration should focus on different parameters for differ- 110
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ent regions helping to understand regional deviations from
observations. Additionally, they guide the further develop-
ment of the model especially in respect to the coupling ef-
forts highlighting which parameters will influence the cou-
pled processes the most. Lastly, they show in which regions5

global groundwater models might benefit the most from ef-
forts in improving global datasets like global hydraulic con-
ductivity maps.

2 Methodology and Data

2.1 The model G3M10

G3M (Reinecke et al., 2019) is a global groundwater model
intended to be coupled with WaterGAP (Döll et al., 2003,
2012, 2014; Müller Schmied et al., 2014) and is based on
the Open Source groundwater modelling framework G3M-
f1(Reinecke, 2018). It computes lateral and vertical ground-15

water flows as well as surface water exchanges for all land
areas of the globe except Antarctica and Greenland on a res-
olution of 5′ with two vertical layers with a thickness of each
100 m representing the aquifer. The groundwater flow be-
tween cells is computed as20
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where Kx,y,z [LT−1] is the hydraulic conductivity along
the x,y, and z axis between the cells with size ∆x∆y∆z,
Ss [L−1] the specific storage, h the hydraulic head [L] the hy-25

draulic head, andQ [L3T−1] the in- and outflows of the cells
to or from external sources e.g. groundwater recharge groundwater
recharge from soil (R) and surface water body flows (Qswb)
(see also Reinecke et al. (2019)[Eq.(1,2)]). The evaluation
presented in this study is based on a steady-state variant of30

the model representing a quasi-natural equilibrium state, not
taking into account human interference (a full description of
the steady-state model and indented coupling can be found
in Reinecke et al. (2019)). The stand-alone steady-state sim-
ulations were performed as initial step to identify the domi-35

nant parameters that are also likely important for controlling
transient groundwater flow. In the fully coupled transient model hswb

will be changed according to calculated river discharge calculated by WaterGAP (Fig.

1). Qswb will be used to replace the current calculated flows in WaterGAP between

groundwater and surface water bodies.40

2.1.1 Groundwater recharge

Groundwater recharge (R) is based on mean annual R com-
puted by WaterGAP 2.2c for the period 1901-2013. Human
groundwater abstraction was not taken into account; not be-
cause it is not computed by WaterGAP but rather because45

1Available on globalgroundwatermodel.org

there is no meaningful way to include it into a steady-state
model which represents an equilibrium (abstractions do not
equilibrize).

2.1.2 Hydraulic conductivity

Hydraulic conductivity (K) is derived from GLHYMPS 2.0 50

(Huscroft et al., 2018) (shown in Fig. 2 (a)). The original
data was gridded to 5′ by using an area-weighted average
and used asK of the upper model layer. For the second layer,
K of the first layer is reduced by an e-folding factor f used
by Fan et al. (2013) (a calibrated parameter based on terrain 55

slope) assuming that hydraulic conductivity decreases expo-
nentially with depth. Conductivity Hydraulic conductivity of the
lower layer is calculated by multiplying the upper layer value
by exp(−50mf−1)−1 exp(af−1)−1 where a=−50 (m) (Fan
et al., 2013, Eq. 7). 60

Currently only two datasets, GLHMYPS 1.0 and 2.0
(Gleeson et al., 2014; Huscroft et al., 2018), are available
and are used by a number of continental and global models
(de Graaf et al., 2015; Maxwell et al., 2015; Keune et al.,
2016; Reinecke et al., 2019). GLHMYPS 1.0 (Gleeson et al., 65

2014) is compiled based on the global lithology map GLiM
(Hartmann and Moosdorf, 2012) and data from 92 regional
groundwater models and derives permeabilities (for the first
100 m vertically) based on Gleeson et al. (2011), differenti-
ating the sediments into the categories fine-, coarse-grained, 70

mixed, consolidated, and unconsolidated. Permafrost regions
are assigned a K value of 10−13 ms−1 based on Gruber
(2012). Areas of deeply weathered laterite soil (mainly in
tropical regions) are mapped as unconsolidated sediments as
they dominate K (Gleeson et al., 2014). 75

The global permeability map was further improved with
the development of GLHYMPS 2.0 by Huscroft et al. (2018).
A two-layer set up was established in GLHYMPS 2.0 with
the lower layer matching the original GLHYMPS 1.0. For
the upper layer in GLHYMPS 2.0, a global database of un- 80

consolidated sediments (Börker et al., 2018) was integrated
into GLHYMPS 2.0 resulting in overall slightly increased K
(Fig. 2 (a)). The thickness of the upper layer was deduced
from the depth-to-bedrock information available from Soil-
Grid (Hengl et al., 2017). No thickness was assigned to the 85

lower layer.

2.1.3 Surface water body conductance

The in- and outflows Q are described similar to MODFLOW
as flows from the cell: a flow from the cell to a surface water
body is negativeand positive if the opposite is true, and the reverse 90

flow is positive. Thus gains and losses from surface water
bodies (lakes, wetlands and rivers) are described as

Qswb =

{
Cswb(Eswb−h) h > Bswb

Cswb(Eswb−Bswb) h≤Bswb
(3)

globalgroundwatermodel.org
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Figure 1. Parameterization and outputs of the G3M model. Where Qswb is the flow between the aquifer and surface water bodies, h is the
simulated hydraulic head, K the hydraulic conductivity, Ke−fold is K scaled by an e-folding factor (see Sect. 2.1.2), Eswb the surface
water body elevationhead, Bswb the bottom elevation of the surface water body, Cswb the conductance of the surface water bodies, and R the
groundwater recharge. In red the outputs and parameters that are foremost important for coupling.

Figure 2. Impact of hydraulic conductivity datasets GLHYMPS 1.0 and GLHYMPS 2.0. (a) GLHYMPS 2.0 [ms−1], (b) K differ-
ences, expressed as K(GLHYMPS 2.0)/K(GLHYMPS 1.0). Blue indicates higher values in GLHYMPS 2.0. (c) h(GLHYMPS 2.0) minus
h(GLHYMPS 1.0) [m], (d) the sensitivity of h to change in the GLHYMPS dataset based on Eq. (7) (white indicates that no index could be
calculated).

where h is the simulated hydraulic head, hswb Eswb is the
head of the surface water body, and Bswb the bottom eleva-
tion. The conductance Cswb of the surface water body bed is
calculated as

Cswb =
KLW

hswb−Bswb
KLW

Eswb−Bswb
(4)5

where K is the hydraulic conductivity, L the length and W
the width of the surface water body. For lakes (including
reservoirs) and wetlands, the conductances Clak and Cwet
are estimated based on K of the aquifer and surface water

body area divided by a static thickness of 5 m (hswb−Bswb = 10

5mEswb−Bswb = 5m). For a steady-state simulation the sur-
face water body data shows the maximum spatial extent
of wetlands, an extent that is seldom reached in particular
in case of wetlands in dry areas. To account for that we
assume for global wetlands (Cgl.wet) that only eighty percent 15

80% of their maximum extent is reached in the steady-state.
Global wetlands are defined as wetlands that are recharged
by streamflow coming from an upstream 5′ grid cell in Wa-
terGAP (Reinecke et al., 2019). For gaining rivers, the con-
ductance is quantified individually for each grid cell follow- 20
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ing an approach proposed by Miguez-Macho et al. (2007).
According to Miguez-Macho et al. (2007), the river conduc-
tance Criv in a steady-state groundwater model needs to be
set in a way that the river is the sink for all the inflow to the
grid cell (R and inflow from neighbouring cells) that is not transported5

laterally to neighbouring cells. This inflow consists ofR and
inflow from neighbouring cells.

Criv =
R+Qeqlateral

heq −hriv
R+Qeqlateral

heq−Eriv
h > hEriv (5)

where Qeqlateral
is the lateral flow based on the equilibrium

head heq of Fan et al. (2013) and hriv Eriv the head of the10

river (Eswb = hswb,riv Eswb,riv in Table 1). These conduc-
tance equations are inherently empirical as they use a one-
dimensional flow equation to represent the three-dimensional
flow process that occurs between groundwater and surface
water. Future efforts will investigate using approaches ap-15

propriate for large scale models, such as described by Morel-
Seytoux et al. (2017). An extensive description on the chosen
equations and implications can be found in Reinecke et al.
(2019).

2.1.4 Surface water body elevation20

The vertical location of surface water bodies has a great im-
pact on model outcome (Reinecke et al., 2019). Their vertical
location hswbEswb is set to the 30th percentile of the 30′′ land
surface elevation values of Fan et al. (2013) per 5′ cell, e.g.
the elevation that is exceeded by 70 % of the hundred 30′′25

elevation values within one 5′ cell. Bswb is calculated based
on that head elevation with different values for wetlands and
lakes (Reinecke et al., 2019, Table 1). For rivers, Bswb is
equal to hriv − 0.349×Qbankfull0.341 (Allen et al., 1994),
where Qbankfull is the bankfull river discharge in the 5′ grid30

cell (Verzano et al., 2012).

2.1.5 Ocean boundary

The outer boundary condition in the model is described by
the ocean and uses an equation similar to MODFLOW’s gen-
eral head boundary condition as flow35

Qocean = Coc(hocean−h) (6)

where hocean is the elevation of the ocean water table set 0
m worldwide and Coc the conductance of the boundary con-
dition set to 10−6m2s−1 10 m2d−1 based on average K and
aquifer thickness.40

2.2 Sensitivity Analysis

2.2.1 Sensitivity of simulated head to choice in of
hydraulic conductivity dataset

Parameterization of aquifer properties based on hydrogeo-
logical data is an important decision in groundwater model-45

ing. We first investigate the effect of switching to a newly

available global permeability dataset to explore the sensitiv-
ity of h to the variability in geologic data. The results are then
compared to the effects of parameter variability, as quantified
by the Monte Carlo experiments. 50

GLHYMPS 2.0 (Huscroft et al., 2018) provides an update
of the only available global permeability map (Gleeson et al.,
2014). To quantify how the new hydraulic conductivity es-
timates change the simulation outcome of the groundwater
model we apply calculate a basic sensitivity method. index 55

S =
h2−h1

h1

K2−K1

K1

(7)

where the sensitivity S of h to a change in K is calculated
based on the change in h (h1 is the hydraulic head calcu-
lated with GLHYMPS 1.0 and h2 with GLHYMPS 2.0) and
change in K1 and K2 the hydraulic conductivity based on 60

GLHYMPS 1.0 and 2.0, respectively.

2.2.2 Sensitivity of head and surface water body flow to
choice in parameters

Along with K, additional parameters influence the model
outcome. In this study we apply the method of Morris (Mor- 65

ris, 1991) as a screening method to identify which parameters
are most important for the two main model outcomes, namely
h and groundwater-surface water interactions (Qswb). The
Morris method provides a compromise between accuracy
and computational cost in comparison to other Monte Carlo 70

like methods (Campolongo et al., 2007). Compared to other
global methods, like the more robust variance based meth-
ods e.g. Sobol (1993), Morris has drawbacks as it may pro-
vide false conclusions (Razavi and Gupta, 2015). The attri-
bution of what is a direct effect (model response only due 75

to one parameter change) and what an effect of interac-
tion (response to non-linear interaction of parameters on
model output) is not trivial. Morris is prone to scale issues,
that is that the step size of the analysis can have significant
impact on the conclusions especially for significantly non- 80

linear responses (Razavi and Gupta, 2015). In this study
we address this by limiting the parameter ranges of the
multipliers where we suspect non-linearity in the model
response. In general the choice of the chosen global sen-
sitivity method may yield different results (Dell’Oca et al., 85

2017). On the other hand, Janetti et al. (2019) showed
for a regional scale groundwater study that different global
methods showed similar results for hydraulic conductiv-
ity parameterization. Nevertheless, Morris is a well estab-
lished and recognized method (Razavi and Gupta, 2015) 90

that has the advantage of computational efficiency com-
pared to variance-based methods to screen the most sen-
sitive parameters (Herman et al., 2013a).

Each model execution represents an individually random-
ized One Factor At a Time (OAT) experiment (Pianosi 95

et al., 2016), where one parameter is changed per simula-
tion. Based on these model executions, the Morris method
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calculates an Elementary Effect (EE) d for every trajectory
of a i-th parameter (in this study parameter multipliers).

di(X) =

(
y(X1, . . . ,Xi−1,Xi + ∆,Xi+1, . . . ,Xk)− y(X)

∆

)
(8)

where ∆ is the trajectory step size for the parameter multi-
plier Xi, X is the vector of model parameters multipliers of5

size k and y(X) the model output e.g. in the presented model
h or Qswb. The total effect of the ith parameter is computed
as the absolute mean of the EEs for all trajectories and is
denoted as µ∗ (Campolongo et al., 2007). The standard de-
viation of EEs (σi) is an aggregated measure of the intensity10

of the interactions of the ith parameter with the other pa-
rameters, representing the degree of non-linearity in model
response to changes in the ith parameter (Morris, 1991). The
derived metrics µ∗ and σi both are measures of intensity
(higher values are more sensitive/interactive) and do not rep-15

resent absolute values of sensitivity. Both can only be inter-
preted meaningfully in comparison with values derived for
other parameters.

To achieve that, µ∗ and σi are presented in this study in ranks. Thus,

values used to rank the most sensitive parameters. Values20

for all parameters are ranked sorted from highest to lowest,
and the parameter with the highest value is selected as the
most influential parameter with the highest rank (hereafter
called rank 1). The parameter with the second highest value
(rank 2) is the second most influential parameter and so on.25

The robustness of the parameter ranking is assessed by
calculating confidence intervals as described in detail in
Appendix 1.

Previous experiments (de Graaf et al., 2015; Reinecke
et al., 2019) showed the importance of hydraulic conductiv-30

ity, groundwater recharge, and surface water body elevation
to the simulated hydraulic head. Together with the highly un-
certain surface water body and ocean conductance we thus
selected eight model parameters for the sensitivity analysis.
The analysis was conducted my by using randomly sampled35

multipliers in the ranges presented in Table 1.
Throughout the analysis the following parameters includ-

ing the convergence criterion and spatial resolution stay
fixed: global mean sea-level, bottom elevation of surface
water bodies and their width, length. The baseline parame-40

ters are assumed equally equal to Reinecke et al. (2019). Hy-
draulic conductivity is based on a global data set (2.1.2),
the conductance is calculated as previously shown (2.1.3),
and the groundwater recharge baseline is equally equal to the
mean annual values calculated by WaterGAP (2.1.1). Param-45

eter ranges were chosen to ensure that a high percentage of
model realizations converge numerically. For example, the
uncertainty of Eswb in the model is higher than the ranged

ranges used in this study, but the sampling range was re-
stricted because the parameter is especially important for model convergencea50

larger range led to non-convergence. Furthermore, the cho-

sen river conductance approach uses R as parameter and in-
cludes a nonlinear threshold between losing and gaining sur-
face water bodies, which strongly affects numeric stability.
As in any sensitivity analysis, the choice of parameter ranges 55

involves some subjectivity that may influence the ranking of
sensitive parameters in the results.

2.2.3 Global hydrological response units

Even though the number of model evaluations are comparably

less for OAT-based less for OAT experiments than for All-At-a- 60

Time experiments (Pianosi et al., 2016), varying every pa-
rameter independently in every spatial grid cell leads to an
unfeasible amount of model runs. On the other hand, the use
of global multipliers that vary a parameter uniformly for all
computational cells may lead to inconclusive results, as the 65

sensitivity for every cell to this change is spread to the whole
computational domain. A possible solution would be to sepa-
rate the globe into zones with similar geological characteris-
tics based on the GLHYMPS dataset, but this may still result
in an infeasible number of required simulations. Each simu- 70

lation takes about 30 min to 1 h on a commodity computer
(more if the parameters hinder a fast convergence).

To overcome these limitations, we introduce the use of
a Global Hydrological Response Unit Units (GHRU). Every
GHRU represents a region of similar characteristics regard- 75

ing three characteristics: Eswb (Sect. 2.1.3,2.1.4), K (Sect.
2.1.2), and R (Sect. 2.1.1). This does not constitute a zon-
ing approach often used for calibration in traditional re-
gional groundwater modelling, only a separation into param-
eter multipliers. All multipliers for a given parameter for all regions are based 80

on the same random distribution inside a given range of uncertainty for that param-

eter A uniform random distribution within the ranges given
in Table 1 is used to sample the parameter multipliers for
all GHRUs. Characteristics for each model cell are normal-
ized to [0,1] and used to create a 3d point space (based on 85

the three characteristics for each model cell). We apply a k-
means (Lloyd, 1982) clustering algorithm to identify these
regions.

K-means clustering partitions n points into k clusters
where each point belongs to the cluster with a minimized 90

pairwise squared distance to the mean in a that cluster. Fig-
ure 3 (a) shows a map of k-means clustering (6 clusters)
categories based on normalized three-dimensional space of
Eswb, K, and R per grid cell.

The number of clusters was determined based on the fea- 95

sible number of model evaluations. k-means constitutes an
unsupervised machine learning approach that builds the re-
quired number of clusters automatically, thus it is necessary
afterwards to examine what main characteristics these clus-
ters represent (shown in Table 2). Characteristics are encoded 100

as relative values (high (↑), medium (∼), low (↓)) of the three
parameter values based on their mean value per cluster. These
characteristics are used to connect calculated parameter sen-
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Table 1. Range of parameter multipliers used in the Morris experiments. Each parameter multiplier is sampled in log space
(log10(Multiplier)) with sampling based on Campolongo et al. (2007) and optimized with Ruano et al. (2012).

Parameter P. Unit Multiplier Range Description

K LT−1 0.1 - 100 Saturated hydraulic conductivity
Eswb L 10−0.001 0.9977 - 100.001 1.0023 SWB elevation
Clak L2T−1 0.5 - 2 Conductance of lakebed
Cwet L2T−1 0.5 - 2 Conductance of wetland bed
Cgl.wet L2T−1 0.5 - 2 Conductance of global wetland bed
Criv L2T−1 0.5 - 2 Conductance of riverbed
R LT−1 0.5 - 2 Groundwater recharge
Coc L2T−1 0.1 - 10 Conductance of the ocean boundary

Coc is equal for all ocean cells

Figure 3. Map of k-means clustering categories each representing a
GHRU (a). Each color identifies a region where the combination of
all three parameters is similar.

sitivities to GHRUs when analyzing the results of the exper-
iment.

2.2.4 Experiment Configuration

With seven parameters per GHRU plus the ocean boundary, 10 000 initial trajectories

were sampled in total (Campolongo et al., 2007) and optimized using Ruano et al.5

(2012) resulting in 1848 optimized trajectories for each parameter. Random sampling

might result in non-optimal coverage of the input space; thus a high number of tra-

jectories is sampled first and only trajectories with a maximized spread are selected

(Ruano et al., 2012)The total number of necessary simulations
N is determined with N = r(k+ 1) (Campolongo et al.,10

2007), where r is the number of elementary effects and
k is the number of parameters. For 7 parameters (without
the ocean boundary) , n GHRUs (and 6 in this paper) GHRUs we
get a total number of parameters k = 42+1 where +1 stands
for the ocean boundary, which is not varied by GHRU . We15

assume 42 for the number of optimized trajectories (Ruano et al., 2012) resulting in

N = r(k+ 1) (Campolongo et al., 2007), where N is the total number of simula-

tion (resulting in 1848 )simulations. Elementary effects are
based on an initial random sampling of 10 000 trajectories
using Campolongo et al. (2007) and then reduced by as-20

suming 42 (number of parameters times GHRUs without
ocean boundary) so called optimized trajectories following

Ruano et al. (2012). Only random sampling might result
in non-optimal coverage of the input space; thus the ini-
tial random trajectories are used to select only those that 25

maximise the dispersion in the input space. This optimal
set of trajectories is approximated with a reasonable com-
putational demand using the methodology developed by
Ruano et al. (2012).

The experiment resulted in 1848 simulations with an over- 30

all runtime of two months on a machine with 20 computa-
tional cores (enabled hyper-threading) and 188 GB RAM.
Each simulation required about 8 GB of RAM and was as-
signed four computational threads while running the simu-
lations in cohorts of 10 simulations at once. Each simulation was 35

an OAT experiment (an extended explanation of OAT and other sensitivity experiment

setups and methods can be found in Pianosi et al. (2016)). Changes in parame-
ters were stacked over all experiments. Thus, an experiment
may have changed R (also affecting Criv for gaining condi-
tions) while containing a Criv multiplier from a previous ex- 40

periment. Sampling and analysis was implemented with the
Python library SALib (Herman and Usher, 2017). For each
experiment, the model was run until it reached an equilibrium
state (steady-state model). All other parameters and conver-
gence criteria can be found in Reinecke et al. (2019). If a 45

simulation failed (6 of 1848 did not converge) the missing
results were substituted randomly from another simulation
within the cohort to preserve the required ordering of param-
eter samples for the used Python implementation of Morris.
This number is low enough that it does not bias the results in 50

any significant way (Branger et al., 2015).
A converged simulation does not necessarily constitute a

valid result for all computed cells. Numeric difficulties based
on the model configuration (due to the selected parameter
multipliers) may lead to cells with calculated h that are un- 55

reasonable. More specifically, a hydraulic head that is far
above or below the land surface and/or leads to a large mass
budget error. In the presented study these simulations are re-
tained as a removal would require to either rerun simulations
with a different convergence criterion (see Sect. 4) and include 60
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Table 2. Mean values of GHRU characteristics and their summarized description, where ↑ is read as a relatively high value, ∼ as medium,
and ↓ as low; e.g. ↑↑ E indicates a cluster with very high and relatively high (↑) average Eswb. Additionally, the last two columns show the
percentage of cells per GHRU where µ∗ of h and Qswb could be reliably determined (described in Sect. 3.2.6).

% of reliable µ∗

GHRU µ(Eswb)[m] µ(K)[m s−1] µ(R)[mm day−1] GHRU description h Qswb

1 454 10−4 0.15 ∼ E, ↑ K, ∼ R 9.54 % 6.58 %
2 286 10−6 0.15 ↓ E, ∼ K, ∼ R 12.07 % 14.41 %
3 4107 10−6 0.13 ↑↑ E, ∼ K, ↓ R 0.08 % 4.09 %
4 1355 10−6 0.11 ↑ E, ∼ K, ↓ R 3.17 % 17.19 %
5 303 10−6 1.24 ↓ E, ∼ K, ↑ R 31.62 % 26.37 %
6 194 10−4 1.25 ↓ E, ↑ K, ↑ R 29.00 % 14.36 %

this in the analysis or modify the Morris method to allow
removal of simulations.

Confidence intervals (95 %) are derived via bootstrapping
using 1000 bootstrap resamples , following Archer et al. (1997)(see
Appendix 1).5

3 Results

3.1 Sensitivity to updated GLHMYPS dataset

Global-scale hydrogeological data is limited. Figure 2 (b)
shows the change in K between GLHYMPS 1.0 (Gleeson
et al., 2014) and the upper layer of GLHYMPS 2.0 (Huscroft10

et al., 2018) where an overall increase can be observed due
to the change in unconsolidated sediments. Although uncon-
solidated sediments cover roughly 50 % of the world’s ter-
restrial surface, their extent was underestimated in previous
lithologic maps by half (Börker et al., 2018). The largest in-15

crease of K can be found between 50 and 70 ◦N because
of glacial sediments that were assigned high K values. Dif-
ferent lithologies, e.g. alluvial terrace sediments and glacial
tills, have all been grouped into the hydrolithological cate-
gory of sand. Areas of decreased hydraulic conductivity are20

e.g. the Great Lakes, south of Hudson Bay, and parts of So-
malia. The area around Hudson Bay was assumed to con-
sist of unconsolidated sediments in GLHYMPS 1.0 (Gleeson
et al., 2014) and was changed to consolidated. In Somalia,
evaporites, which are known for low K, were incorporated25

from the Global Unconsolidated Sediments Map Database
(GUM) (Börker et al., 2018). Furthermore, GUM provides a
detailed mapping of loess and loess-like depositions, which
were assigned lower K values. These regions can be ob-
served to be the only regions with reduced K (Fig. 2 (b)).30

Overall, the increase in unconsolidated sediments is proba-
bly the main cause for the increased K.

Due to the change in K, the simulated h changes accord-
ingly (Fig. 2(c)). In areas where the K decreased h increased
e.g. eastern North America. Overall heads decreased, espe-35

cially in central Russia by up to 10 to 100 m. A slight in-
crease in head can be observed in areas with no change in

K. This can be either due to changes in groundwater flow
patterns due to the overall increase in K or due to numerical
noise. 40

Based on these results, a local sensitivity index was cal-
culated using Eq. (7), shown in Fig. 2 (d). White constitutes
areas where either the relative change of K was zero or the
head of the GLHYMPS 1.0 simulation was zero. Areas with a sen-

sitivity index below (-)0.1 probably constitute variations that can be accounted to nu- 45

merical differences in simulation outcome. Overall, h andK change in the
opposite directions (positive values indicate a change into the
same direction). An overall increase in K has led to a over-
all decrease in h as the higher K values are able to transport
more water for a given hydraulic gradient, especially along 50

coastlines and mountainous areas. Increased sensitivity in-
dexes can be observed at boundaries of areas of large spatial
extent where the initial K was equal, whereas the h changes
inside that area are relatively small (e.g. Arabian Peninsula).
In regions where an increase in K leads to a decrease in 55

head, an increase of h at the boundary to other hydrolitholog-
ical structures can be observed. Areas with changing indexes
next to each other, e.g. in the Sahara, possibly point to a nu-
merically unstable model region with a general sensitivity to
parameter changes. GLHYMPS 2.0 represents the best avail- 60

able global data for hydraulic conductivity, and the results
of this initial experiment indicate a significant sensitivity to
updating the model with this new dataset.

3.2 Monte Carlo experiments

To assess the variability of model outputs we used the Monte 65

Carlo-like OAT experiments to analyze the outcomes of quantify the
output uncertainty as given in the 1848 model realizations.

3.2.1 Variability of hydraulic head

The spatial distribution of variability in the main model out-
put h provides insights into model stability and highlights 70

regions which are most sensitive to parameter changes. Ob-
servable differences between simulations can be caused by:
(1) the parameter change of the OAT experiment, (2) the in-
teractive effects due to combinations of parameter changes,
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(3) numerical noise (slight variations in outcome due to the
nature of the numerical algorithm or floating point errors that
cannot be attributed to a specific parameter change), and (4)
a non-optimal solution of the groundwater equation (Eq. (1))
even if the convergence criterion is met. The latter error (4)5

can be observed in regions of the model where a strong non-
linear relation may produce solutions that fit the convergence
criterion but should be considered non-valid, e.g., because of
a mass-balance mass balance that is unacceptably inprecise.

Figure 4 shows the absolute coefficient of variation (ACV)10

of h per cell over all Monte Carlo experiments. The ACV is
used to make a sound comparison of variance taking into ac-
count the mean of the h value per cell (because the mean
might be negative the absolute value is used). Yellow indi-
cates that h changed little (mostly for regions with shallow15

groundwater), white to gray values indicate a growing differ-
ence in model results, and red values indicate a high varia-
tion of h over all model realizations. The latter areas repre-
sent either very low R (Sahara, Australia, South Africa) or
a high variance in elevations, e.g., Himalaya, Andes and the20

Rocky Mountains. These are expected to have a high sen-
sitivity to parameter changes as the multiplier of Eswb pro-
duces the highest shifts in regions with high elevation. Large

Any changes in Eswb might cause a switch from gaining to
losing conditions and vice versa (discussed in Sect. 3.2.2).25

Additionally, a change in R directly influences the conduc-
tance term Criv that might also be changed by a multiplier.
These combinations may yield conditions that are exception-
ally challenging for the numerical solver. Switches between
the two conditions constitute a non-linearity in the equa-30

tion which might require a smaller temporal step-size to be
solved. In a nutshell, if an iteration leads to a gaining condi-
tion and the next to a losing condition, the switch renders the
approximated heads of the preceding iterations invalid as the
equation changed. In the worst case this can lead to an infi-35

nite switch between the two conditions without finding the
correct solution.

Areas with a high variance in results hydraulic heads will
also produce wide confidence intervals and for parameters
which are highlighted in Fig. A2.40

Figure 5 relates the uncertainty in h, due to a change from
GLHYMPS 1.0 to 2.0 to the interquartile range of h of all
Monte Carlo realizations, thus uncertainty in h due to param-
eter variation. Parameter variation is the dominant cause for
h variability in mountainous regions, whereas the change in45

geologic data has a dominant impact in northern latitudes and
the upper Amazon. In Australia, central Africa, and northern
India the impact of increasingK is almost as high as the vari-
ability caused by the variation of parameters in the Monte
Carlo experiments. This suggests that a reduced uncertainty50

in K in these regions will improve the model results.

Figure 4. Absolute coefficient of variation (σ(h)µ(|h|)−1) [%] of
simulated h per cell over all Monte Carlo realizations. Yellow indi-
cates that h results changed very little, white to gray values indicate
a growing difference in model results, and red values indicate a very
high variation of h over all model realizations.

Figure 5. Uncertainty in h caused by variability in geologic struc-

ture hydraulic conductivity data between GLHYMPS 1.0 and 2.0
(dominant in blue brown to light bluegreen) in relation to uncertainty
in h caused by variability in parameters based on Monte Carlo
simulations (dominant in brown blue to greenlight blue) calculated
as |h1−h2|

IQR(hmc)
where h1/2 is the simulated head based on GLH-

MYPS 1.0 and 2.0 and hmc the simulated head of all Monte Carlo
experiments.

3.2.2 Variability of losing/gaining surface water bodies

Surface water bodies that provide focused, indirect ground-
water recharge to the aquifer system are an impor-
tant recharge mechanism to support ecosystems alongside 55

streams (Stonestrom, 2007). Especially in arid regions, they
are important for agriculture and industrial development.

Losing or gaining surface water bodies are determined by
h in relation toEswb. When h drops belowEswb water is lost
to the aquifer (Eq. (5)) Figure 6 shows for each grid cell the 60

percentage of the model runs in which the surface water bod-
ies in the cell lose water to the groundwater. Regions with
a higher percentage are regions that are in losing conditions inde-

pendently for most of the applied parameter changesvalues. Ar-
eas with the highest deviation in h (Fig. 4), thus the low- 65

est agreement over all model realizations, are similar to the
regions where some parameter combinations lead to losing
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Figure 6. Percentage of all Monte Carlo realizations that resulted in
a losing surface water body in a specific cell.

surface water bodies, while others lead to gaining surface
water bodies (Fig. 6). Overall arid and mountainous regions
show high percentages of Monte Carlo realizations with los-
ing conditions, with dominantly 20-50 % of the realizations
resulting in losing surface water bodies. h in these regions5

falls below Eswb either due to low recharge or high gradi-
ents. Surface water-groundwater interaction in these regions
should be more closely investigated to improve model per-
formance. The Sahara region stands out with large areas that
contain losing surface water bodies in almost all model re-10

alizations. Values close to 100 % are furthermore reached in
the Great-Lakes, the Colorado Delta, the Andes, the Namib
Desert, along the coast of Somalia, the Aral lake, lakes and
wetlands in northern Siberia, and partially in Australian wet-
lands. Wetlands in Australia and the Sahara are likely to be15

overestimated in size in the context of a steady-state model.

3.2.3 Parameter sensitivities as determined by the
method of Morris

The global-scale sensitivity of h and Qswb is summarized
in Table 3 that lists the percentage fractions of all cells for20

which a certain parameter has a certain rank regarding sensi-
tivity and parameter interaction.

Overall, Eswb and R are the most important parameters
for both model outputs over all ranks, followed by K. Qswb
is more sensitive to R than h, whereas h is more sensitive25

to Eswb. Criv appears only dominant in the second and third
rank for both model outputs. This means that for the majority
of cells a change in Eswb and R, rather than Criv dominates
changes in Qswb and h. K and R directly influence the cal-
culation of Criv and thus show a higher sensitivity.30

The standard deviation of EEs (σi) is an aggregated mea-
sure of the intensity of the interactions of the ith parameter
with the other parameters, representing the degree of non-
linearity in the model response to changes in the ith param-
eter Morris (1991). A high parameter interaction indicates35

that the total output variance rises due to the interaction of
the parameter with other parameters.

Table 3. Percentage fractions of simulated cells with parameter sensitivity for
which parameters are ranked 1 to 3 based on µ∗ and parameter

interaction σper . Percentages are shown for each model output, h
and Qswb, where the respective output is most sensitive to the listed parameter.
For example, h is the most sensitive to parameter Eswb (Rank 1)
in 57.2% of all grid cells, while K R is the second most important
parameter for hQswb in 24.259.8% of those cells.Fractions are shown for

the first three ranks.

% of cells
Rank 1 Rank 2 Rank 3

Para. Output µ∗ σ µ∗ σ µ∗ σ

K
h 24.2 18.8 21.7 12.9 7.1 4.3
Qswb 18.4 15.4 21.1 7.3 8.8 4.7

Eswb
h 57.2 57.2 46.3 14.8 19.9 13.4 18.9
Qswb 18.5 14.3 11.2 27.7 36.0 36.0 34.4

Clak
h 1.0 0.5 3.9 2.4 4.3 2.5
Qswb 0.5 0.6 2.2 0.9 2 0.9

Cwet
h 1.4 0.5 3.4 1.4 5.3 4.5
Qswb 0.5 0.8 3.6 2.1 4.2 2.8

Cgl.wet
h 0.9 0.9 1.8 10.2 8.4 8.1
Qswb 0.4 0.8 2.3 15.2 9.4 7.8

Criv
h 2.0 28.0 32.8 32.8 29.3 28.7 18.1
Qswb 1.4 62.6 47.8 47.8 16.2 28.8 10.0

R
h 13.4 4.1 22.7 23.6 33.8 33.8 43.2
Qswb 59.8 59.8 5.1 11.3 30.5 10.7 39.2

Coc
h 1.3 1.0 0.3 0.2 0.5 0.4
Qswb 0.5 0.4 0.5 0.2 0.2 0.2

Percentage of cells with non-overlapping CIs (see App. 1 and Sect. 3.2.6) µ∗: 11.8 % (h) and 13.3 %
(Qswb). Coc is rank 1 for h in 23% of all ocean cells and in 11% forQswb.

Eswb shows higher interactions for h than for Qswb. Criv
shows a high interaction on the first rank even if it is not
the dominant effect. This interaction is likely due to changes 40

andK andR that directly influence the computation of Criv .
Both model outputs are sensitive to changes in R but show a
relatively low degree of interaction for the first rank. A higher
percentage of cells with an increased interaction of R is only
visible in the second and third rank. 45

Lakes and wetlands show low sensitivity and interaction
in relation to total number of cells in Table 3 because they
only exist in a certain percentage of cells. Table 4 shows the
percentage fractions relative for cells with more than 25 %
coverage of a lakes, global wetlands, and/or wetlands. The 50

dominant parameter (by percentage) for all cells with respec-
tive surface water body is always Eswb for h (in 79.2 % of
the lakes and in (79.9 %) 66.3 % of the (global)wetlands) and
R (∼54-77 % of all cells) for Qswb. For the second rank the
conductance of the surface water body Clak,wet,gl.wet dom- 55

inated h, Criv for Qswb. Thus for lakes and wetlands Eswb
and R are more relevant to h and Qswb than the conductance
of these surface water bodies.
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Table 4. Percentage fractions of the most frequent parameter for rank 1 and 2 of all cells with with more than 25 % coverage of a lakes,
global wetland, or wetland.

µ ∗ (h) µ ∗ (Qswb)

% R. 1=Eswb % R. 2=Clak,wet,gl.wet % R. 1=R % R. 2=Criv

Lakes 79.2 64.6 54.2 38.8
Wetlands 66.3 47.3 77.2 46.9
Gl. Wetlands 79.9 56.4 66.3 131.7

1 Criv=31.7 %, Cgl.wet=40.6 %.
Percentage of second most frequent parameter not shown. Percentage in relation to cells with lakes, global wetland,
or wetland > 25 %. Percentage-wise R. 1(µ ∗ (h)) was always followed byR except for global wetlands were the
second most frequent R. 1 was Cgl.wet. R. 1(µ ∗ (Qswb)) was followed percentage-wise byEswb except for
local wetlands withK, R. 2(µ ∗ (Qswb)) by Clak,wet,gl.wet except for global wetlands with Criv .

3.2.4 Maps of global sensitivity

To show the spatial distribution of the parameters that affect
h and Qswb the most, ranked parameters were plotted for
every cell in Fig. 7. The top of Fig. 7 represents the most
sensitive parameters in terms of h (left) and Qswb (right).5

Areas that should be judged with caution due to overlapping
CIs that are shown in Fig. A2.

For h Eswb stands out for mountainous regions and in mountain-
ous regions with spots of Criv and in regions with low
rechargealigned with regions . These regions align with highly10

variable outputs shown in Fig. 4and Fig. A4 with spots ofCriv .K is
most important for h in Australia, the northern Sahara, the
Emirates, and across Europe. The second rank (second
row in Fig. 7) shows values that are not as important as
the top row but dominant over all other parameters. In the15

regions with large output variations (compare 4) K and for
parts of the Himalaya R are dominant in the second rank
(for h). Clak is clearly visible in parts of Nepal and along
the Brahmaputra.

For Qswb Eswb is dominant forQswb in the first rank in e.g.20

Rocky Mountains, Andes, Hijaz Mountains in Saudi Arabia
and the Himalaya. R stands out in regions in the Tropical
Convergence Zone with large R and as well as in northern lat-
itudesfor . Cwet appears as dominant parameter in areas
with large wetlands with a bigger impact on Qswb results25

than on h. K seems to be equally spatially distributed for
h as well as for Qswb. It is most important for h in Australia, the northern

Sahara, the Emirates, and across Europe. There seems to be no correla-
tion between the initial K spatial distribution and a highly
ranked K sensitivity for both model outputs. Areas with a30

dominant K are possibly influenced by a high interaction
with other model components (K shows a high interaction
Table 3 that is also reflected spatially in Sect. 3.2.5). Eswb

stands out in the Sahara where likely overestimated wetland extents (Reinecke et al.,

2019) have a high impact on h. For the second rank in the Tropical35

Convergence ZoneCriv andK dominate forQswb. In gen-
eral Qswb seems to be more robust to show the effects in the
highly variable regionsand . That is Qswb is not responding
as extreme as h to parameter changes. This further indi-

cates the assumption that Eswb is also mainly responsible for 40

the h variations observed in Sect. 3.2.1.
The second rank (second row in Fig. 7) shows values that are not as important as

the top row but dominant over all other parameters. In the highly variable regions K

and for parts of the HimalayaR are dominant in the second rank. TheCwet appears as

dominant parameter in areas with large wetlands with a bigger impact onQswb results 45

than on h. Clak is clearly visible in parts of Nepal and along the Brahmaputra. In the

Tropical Convergence Zone Criv and K dominate for Qswb, whereas results for h

show a mix of Cgl.wet Cwet and Criv .

Zooming in on Europe (Fig. 8) for h, as an example, shows
a similar trend similar to the global picture that R and K have the 50

highest impact on h along with Eswb. Eswb is dominant in
mountainous regions like the Alps and the Apennines as well
in regions with lots of surface water bodies e.g. southern part
of Sweden in the area of lake Vättern and Vänern and in the
Finnish Lakeland.R appears dominant in east Italy in the lagoon 55

of Venice and MaranoPo Valley, the Netherlands, and the wetlands
in southwestern France. Almost invisible in the global pic-
ture is Coc, a dominant parameter for most cells that have the
ocean as boundary condition (only observable for h). Pre-
dominantly Criv follows Eswb as second most important pa- 60

rameter. Only visible in the second rank are the wetlands e.g.
in west Scotland.

3.2.5 Maps of global parameter interaction

Similar to the spatial parameter sensitivities Fig. 9 shows the
parameter interactions for h and Qswb. Parallel to Fig. 7, the 65

first row of Fig. 9 represents the most interactive parameters
in terms of h change (left) and Qswb (right). The highest in-
teraction with other parameters can be observed for Eswb for
regions with high h variability similar to Fig. 7. Criv shows
a high interaction in regions sensitive to R (compare Fig. 7) 70

and is more visible for Qswb.
K regions in the second rank are similar to where K al-

ready showed a high sensitivity for h (compare Fig. 7). In
the Himalaya R and Criv show a large spatial pattern. For
Qswb, Cgl.wet is clearly visible where Criv was most inter- 75

active before.



12 Robert Reinecke: Sensitivity of simulated global groundwater

Figure 7. Ranking of parameter sensitivity µ∗ of h (left) and Qswb (right). The upper maps show the first rank, the middle the second, and the
bottom the last third rankby µ∗ values.

Figure 8. Zoom in of Europe of Fig. 7. Ranking of parameter sensitivity µ∗ of h (left: rank 1, right: rank 2).

3.2.6 Sensitivity per GHRU

Average sensitivities and parameter interactions for each of
the six GHRUs are shown in Fig. 10 (a). A dominant average
per GHRU does not imply a rank 1 in each cell but rather
provides an indication of its average importance per GHRU.5

Each GHRU is described by the notation in Table 2. The
shown average sensitivities and interactions are normalized
to [0,1] because the calculated µ∗ and σ present no absolute
measure of sensitivity. Mean values of µ∗ and σ that are very
close to zero are not shown in Fig. 10.10

The values shown in Fig. 10 (a) should be judged with
caution as they also include the regions Fig. A2 shown to be unreli-

able . Reliability means that due to overlapping CIs (any overlapping) that show
possibly unreliable results, i.e., those where any overlap in
CIs indicates that the ranking of the parameters can’t cannot 15

be clearly determined (compare Fig. A2 and see additional expla-
nation Fig. A1).

To judge the reliability of the outcomes per GHRU Table 2
shows the percentage of reliable results for h and Qswb for
each GHRU, where reliable results exclude over 80% of all 20

sensitivity values.
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Figure 9. Ranking of parameters interaction (σ σ∗ of EE is an indicator for parameter interaction) based on h (left) and Qswb (right). Parameters are ranked from

top to The upper maps show the first rank, the middle the second, and the bottom by Σ valuesthe third rank.

Figure 10 (b) shows only cells with reliable results, based
on their confidence intervals, resulting in 11.8 % of all grid
cells for h and 13.3 % for Qswb. GHRUs in high and very
high elevations show low reliability concerning h results as
expected (compare Fig. 4). Qswb appears as more robust in5

these regions.
Figure 10 (a) shows a similar picture to the two global

maps (Fig. 7, 9). All GHRUs show a linear correlation of sen-
sitivity and degree of interaction. The GHRU with average
elevation, average recharge, and high K (GHRU 1) shows10

higher average response in Qswb than h. h is most sensitive
to Criv , and less sensitive to the other parameters. Qswb is
clearly most sensitive to K and Cgl.wet and shows a high in-
teraction in this GHRU. Lower-lying regions with averageK
and R (GHRU 2) show high sensitivity of h only to Eswb15

with a high interaction while Qswb is affected in decreasing
order by Cgl.wet andK. Results for h sensitivity in GHRU 3,
with very high elevations, average K and low R, should be
judged with caution because only a very low fraction is based
on results with non-overlapping CIs (Table 2). Compared to20

other GHRUs, 3 shows rather clustered sensitivities and pa-
rameter interactions. h is most sensitive to Eswb and R and
Qswb to Clak, K, and Cwet. GHRU 4, which differs from
GHRU 3 by its high but not very high land surface elevation,
shows Eswb, K, and R as clearly most dominant and inter-25

active parameter for Qswb, followed by Cwet. Similar Qswb
is most sensitive to Eswb and K. In low-lying and rather flat

regions with high groundwater recharge (GHRU 5), sensitiv-
ities of h are close to zero except for K possibly because
changes in h are to small in flat regions (compare Fig. 4) 30

due to small h gradients. Qswb is most sensitive to Eswb and
Cgl.wet. GHRU 6 is relatively small and like GHRU 5 only
occurs in the tropical zone (Fig. 3 (a)). In this GHRU, which
differs from GHRU 5 only by K being high instead of av-
erage, the dominant parameters of Qswb are similar to other 35

GHRUs where Eswb is clearly the most dominant followed
by R and K. h shows a response to wetlands but again like
in 5 a very low response to Eswb.

Taking into account only the reliable regions changes the
perception in Fig. 10 (b). GHRU 1 shows rather similar sen- 40

sitivities and parameter interactions as compared to other
GHRUs. h is most sensitive toEswb, and only somewhat less
sensitive to Criv and Cwet. Qswb is clearly most sensitive
to Criv and shows a high interaction in this GHRU. GHRU
2 shows high sensitivity of h only to Eswb with a high in- 45

teraction while Qswb is equally affected by K, Eswb and R.
Results for h sensitivity in GHRU 3 are not very represen-
tative for the whole GHRU as only a very small fraction of
cells shows reliable results (Table 2). Like in GHRU 2, Qswb
is equally affected by by K, Eswb and R. GHRU 4 shows 50

Eswb as clearly most dominant and interactive parameter for
h, followed by K and Cwet. For GHRU 5, sensitivities of h
could not be determined reliably possibly because changes
in h are to small in flat regions (compare Fig. 4) due to small
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h gradients. Qswb is most sensitive to R (as rivers are gain-
ing rivers that need to drain groundwater recharge) followed
by K. In GHRU 6 the dominant parameters of Qswb are the
same as for GHRU 5 (except for Eswb) while h is most sen-
sitive to Clak.5

4 Discussion

This study presents a novel spatially distributed sensitivity
analysis for a high-resolution global gradient-based ground-
water model encompassing 4.3 million grid cells. While
these maps are challenging to interpret, they yield new ways10

of understanding model behaviour based on spatial differ-
ences and help to prepare calibration efforts by identifying
parameters that are most influential in specific regions. Fur-
thermore, they guide the future development of the model
and the intended coupling efforts of the groundwater model15

to the hydrological model. Especially, the sensitivity ofQswb
and the importance of Eswb, which are the two major cou-
pling components, are of interest.

However, the large number of grid cells with either statis-
tically zero sensitivity values (overlapping CI with zero) or20

unreliable results limit the relevance and applicability of the
study results. For most of the statistically zero sensitivity
values the CI is very large, and it is therefore very unlikely
that the parameter is not influential. The study suggests that
the highly non-linear and conceptual approach to the surface25

water body conductance (in particular the sudden change of
conductance between gaining and losing rivers) needs to be
revised as it may affect the stability of transient model re-
sults. Additionally the results suggest that elevation of the
water table of surface water bodies is a promising calibration30

parameter alongside with hydraulic conductivity.
The presented results need to be considered against the

backdrop of the high h variability of the Monte Carlo ex-
periments (Sect. 3.2.1). Some of these simulations cannot be
considered as a valid result for a h distribution, an issue35

not faced with other simpler traditional bucket-like hydro-
logical models. This is due to multiple model challenges:
(1) the evaluated model approximates a differential equation
and can show non-linear behaviour for different parameteri-
zations, (2) the equations used for rivers present a non-linear40

model component (switch between equations for gaining and
losing conditions as well as relation toK andR), (3) the con-
vergence criterion for the steady-state solution is solely based
on a vector norm of residuals (metric of changes of the solu-
tion inside the conjugate gradient approach) and maximum h45

change between iterations and do not contain an automated
check for a reasonable mass balance. On the other hand, it
is challenging to include a validation mechanism in the pre-
sented analysis to alleviate these problems while maintaining
a reasonable model runtime (as a stricter convergence crite-50

rion will most likely increase the number of necessary itera-
tions) and/or number of necessary model runs. It is question-

able whether results based on different convergence criteria
can be compared. This would necessitate including the nu-
meric stability in the sensitivity analysis as well. 55

However, the results help to answer the research questions
at hand. While overlapping CIs blur the ranking of the pa-
rameters in some regions, they still provide evidence on what
parameters the calibration should focus and how the impor-
tance of parameters varies per region. The sensitivity ofQswb 60

to parameters, especially Eswb, will help to guide the future
model development and coupling to the hydrological model.
In general, the analysis helped to identify the elevation of
surface water bodies as a focus for future research.

Around 30 % of all µ∗ values had a confidence interval 65

that was larger than 10 % of the µ∗ value. This suggests
that even more model runs are required and that large ex-
tents of the model experienced numerically unstable results
as the spatial distribution of head variance and large confi-
dence intervals overlap. 70

The selection of parameter ranges can influence the results
of a sensitivity analysis significantly (Pianosi et al., 2016).
Even parameters that are suspected of not being sensitive can
show highly nonlinear behavior in certain parts of the pa-
rameter space that are only activated when one expands the 75

ranges of the parameters. The presented ranges in this study
do not explore the full assumed uncertainty range. Specifi-
cally, the small range of Eswb is likely influencing the out-
come of the parameter rankings. The range was chosen to
allow a reasonable number of simulations to converge as the 80

range of Eswb directly influences the numerical stability conver-
gence of the model. The presented results, however, do show
that the model output is highly sensitive to changes in Eswb
in most areas of the globe. The response in mountainous
regions can be attributed to applying Eswb as a multiplier, 85

which has a higher impact in regions where the initial water
body elevation is high. On the other hand, this is accounting
for the fact that the uncertainty of Eswb is largest in regions
with highly variable topography per 5’ grid cell.

The only previous sensitivity analysis of a global gradient- 90

based groundwater model to out knowledge was done by
de Graaf et al. (2015). Based on varying K, aquifer thick-
ness, and R, the coefficient of variation of the steady-state
hydraulic head was computed (de Graaf et al., 2015, Fig. 5).
From that analysis it was determined that K has the highest 95

impact and aquifer thickness the lowest. It is not clear how
the coefficient of variation determined these outcomes. The
relatively low impact of aquifer thickness was observed also
by Reinecke et al. (2019). Therefore, this parameter was not
included in this study. Both de Graaf et al. (2015) and this 100

study show a high h variance in parts of Australia and the
Sahara (de Graaf et al., 2015, Fig. 5) possibly due to the low
initial R. Variations in the mountainous regions, on the other
hand, are not reflected in de Graaf et al. (2015) as their anal-
ysis did not vary Eswb. 105

Besides the large h variance, which is likely the main
cause for the low percentage of reliable cells, the confidence
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Figure 10. Normalized average sensitivity and parameter interaction per GHRU for h and Qswb (a). If a parameter is not present the mean
sensitivity for that GHRU was close to zero (overlapping CI with zero). Does not include ocean parameter sensitivity. Mean characteristics,
their symbols for each GHRU, and the reliability of the sensitivity measure (only µ∗ not σ) are shown in Table 2. (b) Only reliable results
(after removing overlapping CI).

intervals of the sensitivity indices in this experiment suggest
that additional simulations are necessary to determine more
reliable results. Additionally, the small parameter ranges, re-
quired for stable model runs, influenced the overall outcome
and might be a reason for cells with inconclusive results.5

For cells with lakes and wetlands, Eswb dominates over
the variations in conductance for h (Table 4), confirming the
importance in determining the surface water body elevation.
For Qswb, on the other hand, R is most influential in these
cells even though it does not affect the conductance equation10

for these surface water bodies. Apparently, available recharge
is driving the interaction more than it influences changes in
head. In regions with high recharge (GHRU 5) Qswb was
more robust to parameter changes than h. This is possibly

due to the generally lower response in Qswb to changes in 15

Eswb, which can be explained by the constant flow for losing
surface water bodies (incl. rivers) as soon as h drops below
Eswb. Thus changes is Eswb do not affect Qswb afterwards
(as long as the surface water body remains in losing condi-
tions). Both model outcomes show a high sensitivity to R 20

while the interaction of R is only visible at the 3rd rank sug-
gesting that if R changes other parameter changes do not in-
fluence the model response further.

Separating the complex global domain into a selected
number of GHRUs enables a sensitivity analysis in accor- 25

dance with computational constraints (e.g. maximum num-
ber of core hours). It alleviates the drawbacks of global-scale
multipliers while keeping a reasonable number of total simu-
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lations. The presented decomposition based on three param-
eters Eswb, K, and R was guided by the high sensitivity of
model output to these parameters. Other factors like lithology
and surface water body characteristics should be investigated
as additional characteristics for GHRUs.5

5 Conclusions

For the first time, spatially distributed sensitivities of the
global steady-state distribution of hydraulic head and flows
between the groundwater and the surface water bodies were
calculated and presented. We found the Morris sensitivity10

analysis method can yield insights for computationally chal-
lenging (concerning computation time and numerical diffi-
culties) models with reasonable computational demand. This
study applied a novel approach for domain decomposition
into GHRUs. Applying parameter multipliers simultaneously15

to all grid cells within each of the six GHRUs allowed a more
meaningful sensitivity calculation, than it would be possible
if the parameters would have varied simultaneously in all
grid cells, while maintaining a feasible the number of simu-
lations.20

Based on only a small fraction of grid cells for which
parameters could be ranked reliably according to their im-
portance for simulated model output, steady-state hydraulic
heads (h) were found to be comparably affected by hydraulic
conductivity (K), groundwater recharge (R) and the eleva-25

tion of the water table of surface water bodies (Eswb). Rank-
ings for individual grid cells varies, but globally none of
the three dominates with respect to h. The simulated flows
between groundwater and surface water bodies (Qswb) are
clearly most sensitive to R. This is due to the model param-30

eterization of river conductance that is computed as a func-
tion of R, assuming under steady-state conditions, ground-
water discharge to rivers should tend to increase with in-
creasing R (Eq. (5)). The results indicate that changes in
R between timesteps for a fully coupled transient model35

could pose a challenge to the model convergence and that the
equations might need to be reconsidered for a fully coupled
model. In general the uncertainty due to the parameteriza-
tion of groundwater-surface water exchange flows (Eswb and
Criv,gl.wet,wet,lak) needs to be further investigated as they40

have a high impact on h distribution and Qswb.
In high mountainous regions (Rocky Mountains, Andes,

Ethiopian Highlands, Arabian Peninsula, Himalaya) and re-
gions with low recharge (Sahara, southern Africa) the com-
puted h showed an unreasonably high variance due to the45

numeric numerical instability of the simulations in these areas.
In case of high elevations and thus large variations in Eswb
or in case of low groundwater recharge, it is not possible to
solve steady-state groundwater flow equations with arbitrary
parameter combinations and a constant convergence param-50

eter. Qswb was found to somewhat be more robust than h in
these regions. These results suggest that the parameterization

of Eswb needs to be reconsidered and is a likely parameter
for future calibration. In general more robust global sensi-
tivity methods are required that allow exclusion of certain 55

simulations from the analysis.
The lack of reliable data at the global scale, in particular

hydraulic conductivity data with high horizontal and vertical
resolution, hinders the development of global groundwater
models. A simple sensitivity analysis on the impact of small 60

changes to an existing global hydraulic conductivity dataset
(GLHYMPS 1.0 (Gleeson et al., 2014) to 2.0 (Huscroft et al.,
2018)) showed that knowledge about the distribution of K is
pivotal for the simulation of h as even slight changes in K
may change model results by up to 100 m. 65

The presented study results refer to the uncoupled steady-
state groundwater model G3M. As G3M is currently being
integrated into the global hydrological model WaterGAP, fu-
ture work will extend this sensitivity analysis to fully coupled
transient simulations. 70

1 Appendix

Confidence intervals are determined based on 1000 boot-
strap resamples following Archer et al. (1997) for all sim-
ulation outputs. Bootstrapping is an established statistical
method that relies on random sampling with replacement 75

using the original data. This sampling from a set of inde-
pendent, identically distributed data is equivalent to sam-
pling from the empirical distribution function of the data
allowing to determine confidence intervals (Archer et al.,
1997). Results of the method of Morris need to be contemplated in a ranking based 80

scheme that relies on metrics thatsummarize the calculated EEs. The derived
metrics µ∗ and σi both are measures of intensity (higher
values are more sensitive/interactive) and do not repre-
sent absolute values of sensitivity. Both can only be inter-
preted meaningfully in comparison with values derived for 85

other parameters. To achieve that, µ∗ and σi should be
presented in so called ranks. Values for all parameters are
sorted from highest to lowest, and the parameter with the
highest value is selected as the most influential parame-
ter with the highest rank. The parameter with the second 90

highest value is the second most influential parameter and
so on.

Figure A1 shows the conceptual issues that are entailed
with this ranking approach. The absolute mean (µ∗) of all
EEs of parameter 1 (P1) might be bigger than µ∗ of P2 but as 95

their CIs are overlapping a clear ranking is not possible. On
the other hand it is evident that P1 and P2 are clearly more
sensitive than P3. An overlapping suggests that even if the
mu∗ µ∗ values are different a ranking should be considered
with care as the two parameters could be equally important 100

or in some regions inside one GRHU their importance could
be the other way around. But even if they overlap, the mu∗

µ∗ provides a valuable measure of the overall importance of
the parameters also in comparison with much less important
parameters. 105
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Figure A1. Illustration of derivation of presented metrics. Blue cir-
cles show the two criteria used to judge the quality of the results. µ∗
is calculated based on the EEs (circles), however the CI is cal-
culated based on bootstrap resamples of the simulation outputs.

Additionally, not only the overlapping should be consid-
ered but also the size of the CI in comparison to the mu∗µ∗.
It is a useful indicator on whether the sampling of the param-
eter space was to small and more simulations are required
to gain a clearer picture. 15% is an arbitrary value that we5

considered an appropriate boundary. Other studies used 10%
(Herman et al., 2013a) or 3.5% (Vanrolleghem et al., 2015).

Figure A2 shows regions where the applied sampling was sufficient

(CIs where smaller than 15% of the calculated µ∗ of the first
rank ) and regions where likely more simulations, or a more10

sophisticated approach to ensure numerical stability, is re-
quired.

Figure A2. Confidence interval (95) in relation to the µ∗ for rank 1
of h and Qswb. Yellow regions indicate a sufficient sampling size.
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