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Abstract. In global hydrological models, groundwater stor-
ages and flows are generally simulated by linear reservoir
models. Recently, the first global gradient-based groundwa-
ter models were developed in order to improve the repre-
sentation of groundwater-surface water interactions, capil-5

lary rise, lateral flows and human water use impacts. How-
ever, the reliability of model outputs is limited by a lack of
data and by uncertain model assumptions that are necessary
due to the coarse spatial resolution. The impact of data qual-
ity is presented by showing the sensitivity of a groundwa-10

ter model to changes in the only available global hydraulic
conductivity data-set. To better understand the sensitivity
of model output to uncertain spatially distributed parame-
ters, we present the first application of a global sensitivity
method for a global-scale groundwater model using nearly15

2000 steady-state model runs of the global gradient-based
groundwater model G3M. By applying the Morris method
in a novel domain decomposition approach that identifies
global hydrological response units, spatially distributed pa-
rameter sensitivities are determined for a computationally ex-20

pensive model. Results indicate that globally simulated hy-
draulic heads are equally sensitive to hydraulic conductiv-
ity, groundwater recharge and surface water body elevation,
though parameter sensitivities vary regionally. For large ar-
eas of the globe, rivers are simulated to be either losing or25

gaining, depending on the parameter combination, indicating
a high uncertainty of simulating the direction of flow between
the two compartments. Mountainous and dry regions show a
high variance in simulated head due to numerical instabilities

of the model, limiting the reliability of computed sensitivities 30

in these regions. This is likely caused by the uncertainty in
surface water body elevation. We conclude that maps of spa-
tially distributed sensitivities can help to understand complex
behaviour of models that incorporate data with varying spa-
tial uncertainties. The findings support the selection of pos- 35

sible calibration parameters and help to anticipate challenges
for a transient coupling of the model.

1 Introduction

Global groundwater dynamics have significantly changed
due to human withdrawals, and are projected to continue 40

due to climate change (Taylor et al., 2013). Groundwater
withdrawals have led to lowered water tables, decreased
base flows, and groundwater depletion around the globe
(Konikow, 2011; Scanlon et al., 2012; Wada et al., 2012; Döll
et al., 2014; Wada, 2016). To represent groundwater-surface 45

water body interactions, lateral and vertical flows, and hu-
man water use impacts on head dynamics, it is necessary to
simulate the depth and temporal variation of the groundwater
table. Global-scale hydrological models have recently moved
to include these processes by implementing a gradient-based 50

groundwater model approach (de Graaf et al., 2015; Reinecke et al.,

2018)(de Graaf et al., 2015; Reinecke et al., 2019). This
study is based on G3M (Reinecke et al., 2018) (Reinecke et al.,
2019) one of the two global groundwater models capable of
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calculating hydraulic head and surface water body interac-
tion on a global scale. However, the lack of available input
data and the necessary conceptual assumptions due to the
coarse spatial resolution limit the reliability of model out-
put. These substantial uncertainties suggest an opportunity5

for diagnostic methods to prioritize efforts in data collection
and parameter estimation.

Sensitivity analysis is a powerful tool to assess how uncer-
tainty in model parameters affects model outcome, and can
provide insights about how the interactions between param-10

eters influence the model results (Saltelli et al., 2008). Sen-
sitivity methods can be separated into two classes: local and
global methods. Local methods compute partial derivatives
of the output with respect to an input factor at a fixed point
in the input space. By contrast, global methods explore the15

full input space, though at higher computational costs (Pi-
anosi et al., 2016). The large number of model evaluations
required can render global methods unfeasible for computa-
tionally demanding models, though increased computational
resources have led to more widespread application e.g. (Her-20

man et al., 2013b, a; Ghasemizade et al., 2017)(Herman et al., 2013a, b;
Ghasemizade et al., 2017). For this reason, existing stud-
ies of global models either focus on exploring uncertainties
by running their model with a limited set of different in-
puts for a quasi local sensitivity analysis (Wada et al., 2014;25

Müller Schmied et al., 2014, 2016; Koirala et al., 2018) or
applying computationally inexpensive methods based on a
limited set of model evaluations (Schumacher et al., 2015).
For example, de Graaf et al. (2015, 2017) determined the
coefficient of variation for head results in a global ground-30

water model with 1000 model runs evaluating the impact of
varying aquifer thickness, saturated conductivity and ground-
water recharge. To the knowledge of the authors, the only
other study that applied a global sensitivity analysis to a com-
parably complex global model is Chaney et al. (2015). An35

overview of the application of different sensitivity analysis
methods for hydrological models can be found in Song et al.
(2015); Pianosi et al. (2016).

To address the issue of This study relies on the method of Morris
(Morris, 1991) in the context of global sensitivity methods.40

Morris is a global sensitivity method as it provides an ag-
gregated measure of local sensitivity coefficients for each
parameter at multiple points across the input space and
analyses the distribution properties (Razavi and Gupta,
2015). Compared to other global methods, like the more45

robust variance based methods e.g. Sobol (1993), Mor-
ris has drawbacks as it may provide false conclusions
(Razavi and Gupta, 2015). The attribution of what is a
direct effect (model response only due to one parame-
ter change) and what an effect of interaction (response50

to non-linear interaction of parameters on model output)
is not trivial. Morris is prone to scale issues, that is that
the step size of the analysis can have significant impact
on the conclusions drawn especially for significantly non-
linear responses (Razavi and Gupta, 2015). In this study55

we address this by limiting the parameter ranges of the
multipliers where we suspect non-linearity in the model
response. In general the choice of the chosen global sen-
sitivity method may yield different results (Dell’Oca et al.,
2017). On the other hand, Janetti et al. (2019) showed 60

for a regional scale groundwater study that different global
methods showed similar results for hydraulic conductiv-
ity parameterization. Nevertheless, Morris is a well estab-
lished and recognized method (Razavi and Gupta, 2015)
that has the advantage of computational efficiency com- 65

pared to variance-based methods to screen the most sen-
sitive parameters (Herman et al., 2013a). It requires signif-
icantly fewer model runs, compared to other global meth-
ods, to provide a meaningful ranking of sensitive parame-
ters enabling the exploration of computationally demand- 70

ing models (Herman et al., 2013a). The application of a
global sensitivity method for a complex world-wide model
of groundwater flows is unique, and Morris is currently the
best available method to handle the computational con-
straints. 75

To reduce the number of necessary model runs when
conducting global sensitivity analysis for computationally
complex demanding models we introduce the concept of
Global Hydrological Response Units (GHRUs) (Sect. 2.2.3)
(similar to e.g. Hartmann et al. (2015)). Using the GHRUs 80

we present an application of the well-established Morris method
(Morris, 1991) to the Global Gradient-based Groundwater
Model G3M (Reinecke et al., 2018). The Morris method has been successfully

applied to a variety of models, ranging from hydrology (Zhan et al., 2013) to ecology

models (Cariboni et al., 2007). It requires significantly fewer model runs, compared to 85

other global methods, to provide a meaningful ranking of sensitive parameters (Herman

et al., 2013a) enabling the exploration of computationally demanding models. (Rei-
necke et al., 2019).

G3M uses input from, and it is intended to be coupled and
integrated into, the global hydrological model WaterGAP 90

Global Hydrology Model (WGHM) (Döll et al., 2014). This
study investigates the sensitivity of steady-state hydraulic
heads and exchange flows between groundwater and surface
water to variations in main model parameters (e.g. ground-
water recharge and other model parameters like the riverbed 95

conductance).
Sensitivities of the model are explored in three steps: (1)

To understand the impact of improved input data, in partic-
ular hydraulic conductivity, we investigate the changes in
simulated hydraulic head that result from changing the hy- 100

draulic conductivity data from the GLHYMPS 1.0 dataset
(Gleeson et al., 2014) to 2.0 (Huscroft et al., 2018). (2)
Based on prior experiments (de Graaf et al., 2015; Reinecke et al., 2018)

(de Graaf et al., 2015; Reinecke et al., 2019) eight parame-
ters are selected for a Monte Carlo experiment to investigate 105

sensitivities of simulated hydraulic head and groundwater-
surface water interactions. The parameters are sampled with
a newly developed global region-based sampling strategy and
build the framework for the (3) Morris analysis. Elemen-
tary Effects (EE), a metric of sensitivity, are calculated and 110



Robert Reinecke: Sensitivity of simulated global groundwater 3

their means and variances ranked to determine global spa-
tial distributions of parameter sensitivities and interactions.
The derived global maps show, for the first time, the sensi-
tivity and parameter interactions of simulated hydraulic head
and groundwater-surface water flows in the simulated steady-5

state global groundwater system to variations in uncertain pa-
rameters. Foremost, these maps help to guide future calibration
efforts by identifying the most influential parameters and an-
swer the question if the calibration should focus on differ-
ent parameters for different regions helping to understand re-10

gional deviations from observations. Additionally, they guide
the further development of the model especially in respect to
the coupling efforts highlighting which parameters will in-
fluence the coupled processes the most. Lastly, they show in
which regions global groundwater models might benefit the15

most from efforts in improving global datasets like global
conductivity maps.

2 Methodology and Data

2.1 The model G3M

G3M (Reinecke et al., 2018) (Reinecke et al., 2019) is a global20

groundwater model intended to be coupled with WaterGAP
(Döll et al., 2003, 2012, 2014; Müller Schmied et al., 2014)
and is based on the Open Source groundwater modelling
framework G3M-f1(Reinecke, 2018). It computes lateral and
vertical groundwater flows as well as surface water ex-25

changes for all land areas of the globe except Antarctica
and Greenland on a resolution of 5′ with two vertical lay-
ers with a thickness of each 100 m representing the aquifer.
The groundwater flow between cells is computed as

∂

∂x

(
Kx

∂h

∂x

)
+

∂

∂y

(
Ky

∂h

∂y

)
+

∂

∂z

(
Kz

∂h

∂z

)
(1)30

+
Q

∆x∆y∆z
= Ss

∂h

∂t
(2)

where Kx,y,z [LT−1] is the hydraulic conductivity along the
x,y, and z axis between the cells with size ∆x∆y∆z, Ss
[L−1] the specific storage, h the hydraulic head [L], and Q
[L3T−1] the in- and outflows of the cells to or from external35

sources e.g. groundwater recharge (R and surface water body
flows (Qswb) (see also Reinecke et al. (2018)[Eq.(1,2)]Reinecke et al.
(2019)[Eq.(1,2)]). The evaluation presented in this study is
based on a steady-state variant of the model representing a
quasi-natural equilibrium state, not taking into account hu-40

man interference (a full description of the steady-state model
and indented coupling can be found in Reinecke et al. (2018)Rei-
necke et al. (2019)). The stand-alone steady-state simula-
tions were performed as initial step to identify the domi-
nant parameters that are also likely important for control-45

ling transient groundwater flow. In the fully coupled transient

1Available on globalgroundwatermodel.org

model hswb will be changed according to calculated river dis-
charge calculated by WaterGAP (Fig. 1). Qswb will be used
to replace the current calculated flows in WaterGAP between
groundwater and surface water bodies. 50

2.1.1 Groundwater recharge

Groundwater recharge (R) is based on mean annual R com-
puted by WaterGAP 2.2c for the period 1901-2013. Human
groundwater abstraction was not taken into account; not be-
cause it is not computed by WaterGAP but rather because 55

there is no meaningful way to include it into a steady-state
model which represents an equilibrium (abstractions do not
equilibrize).

2.1.2 Hydraulic conductivity

Hydraulic conductivity (K) is derived from GLHYMPS 2.0 60

(Huscroft et al., 2018) (shown in Fig. 2 (a)). The original
data was gridded to 5′ by using an area-weighted average
and used asK of the upper model layer. For the second layer,
K of the first layer is reduced by an e-folding factor f used
by Fan et al. (2013) (a calibrated parameter based on terrain 65

slope) assuming that conductivity decreases exponentially
with depth. Conductivity of the lower layer is calculated by
multiplying the upper layer value by exp(−50mf−1)−1 (Fan
et al., 2013, Eq. 7).

Currently only two datasets, GLHMYPS 1.0 and 2.0 70

(Gleeson et al., 2014; Huscroft et al., 2018), are available
and are used by a number of continental and global mod-
els (de Graaf et al., 2015; Maxwell et al., 2015; Keune et al., 2016; Reinecke

et al., 2018)(de Graaf et al., 2015; Maxwell et al., 2015; Ke-
une et al., 2016; Reinecke et al., 2019). GLHMYPS 1.0 75

(Gleeson et al., 2014) is compiled based on the global lithol-
ogy map GLiM (Hartmann and Moosdorf, 2012) and data
from 92 regional groundwater models and derives permeabil-
ities (for the first 100 m vertically) based on Gleeson et al.
(2011), differentiating the sediments into the categories fine- 80

, coarse-grained, mixed, consolidated, and unconsolidated.
Permafrost regions are assigned a K value of 10−13 ms−1

based on Gruber (2012). Areas of deeply weathered laterite
soil (mainly in tropical regions) are mapped as unconsoli-
dated sediments as they dominate K (Gleeson et al., 2014). 85

The global permeability map was further improved with
the development of GLHYMPS 2.0 by Huscroft et al. (2018).
A two-layer set up was established in GLHYMPS 2.0 with
the lower layer matching the original GLHYMPS 1.0. For
the upper layer in GLHYMPS 2.0, a global database of un- 90

consolidated sediments (Börker et al., 2018) was integrated
into GLHYMPS 2.0 resulting in overall slightly increased K
(Fig. 2 (a)). The thickness of the upper layer was deduced
from the depth-to-bedrock information available from Soil-
Grid (Hengl et al., 2017). No thickness was assigned to the 95

lower layer.

globalgroundwatermodel.org
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Figure 1. Parameterization and outputs of the G3M model. Where Qswb is the flow between the aquifer and surface water bodies, h is the
simulated hydraulic head, K the hydraulic conductivity, Eswb the surface water body elevation, Bswb the bottom elevation of the surface
water body, Cswb the conductance of the surface water bodies, and R the groundwater recharge. In the red the Outputs outputs and parameters
that are foremost important for coupling.

Figure 2. Impact of hydraulic conductivity datasets GLHYMPS 1.0 and GLHYMPS 2.0. (a) GLHYMPS 2.0 [ms−1], (b) K differ-
ences, expressed as K(GLHYMPS 2.0)/K(GLHYMPS 1.0). Blue indicates higher values in GLHYMPS 2.0. (c) h(GLHYMPS 2.0) minus
h(GLHYMPS 1.0) [m], (d) the sensitivity of h to change in the GLHYMPS dataset based on Eq. (7) (white indicates that no index could be
calculated).

2.1.3 Surface water body conductance

The in- and outflows Q are described similar to MODFLOW
as flows from the cell: a flow from the cell to a surface water
body is negative and positive if the opposite is true. Thus
gains and losses from surface water bodies (lakes, wetlands5

and rivers) are described as

Qswb =

{
Cswb(hswb−h) h > Bswb

Cswb(hswb−Bswb) h≤Bswb
(3)

where h is the simulated hydraulic head, hswb is the head of
the surface water body, and Bswb the bottom elevation. The
conductanceCswb of the surface water body bed is calculated 10

as

Cswb =
KLW

hswb−Bswb
(4)

where K is the hydraulic conductivity, L the length and W
the width of the surface water body. For lakes (including
reservoirs) and wetlands, the conductances Clak and Cwet 15

are estimated based on K of the aquifer and surface water
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body area divided by a static thickness of 5 m (hswb−Bswb =
5m). For a steady-state simulation the surface water body
data shows the maximum spatial extent of wetlands, an ex-
tent that is seldom reached in particular in case of wetlands in
dry areas. To account for that we assume for global wetlands5

(Cgl.wet) that only eighty percent of their maximum extent
is reached in the steady-state. Global wetlands are defined
as wetlands that are recharged by streamflow coming from
an upstream 5′ grid cell in WaterGAP (Reinecke et al., 2018)(Rei-
necke et al., 2019). For gaining rivers, the conductance is10

quantified individually for each grid cell following an ap-
proach proposed by Miguez-Macho et al. (2007). According
to Miguez-Macho et al. (2007), the river conductance Criv
in a steady-state groundwater model needs to be set in a way
that the river is the sink for all the inflow to the grid cell (R15

and inflow from neighbouring cells) that is not transported
laterally to neighbouring cells.

Criv =
R+Qeqlateral

heq −hriv
h > hriv (5)

where Qeqlateral
is the lateral flow based on the equilib-

rium head heq of Fan et al. (2013) and hriv the head of the20

river (Eswb = hswb,riv in Table 1). These conductance equa-
tions are inherently empirical as they use a one-dimensional
flow equation to represent the three-dimensional flow pro-
cess that occurs between groundwater and surface water. Fu-
ture efforts will investigate using approaches appropriate for25

large scale models, such as described by Morel-Seytoux et al.
(2017). An extensive description on the chosen equations and
implications can be found in Reinecke et al. (2018)Reinecke et al.
(2019).

2.1.4 Surface water body elevation30

The vertical location of surface water bodies has a great im-
pact on model outcome (Reinecke et al., 2018)(Reinecke et al.,
2019). Their vertical location hswb is set to the 30th per-
centile of the 30′′ land surface elevation values of Fan et al.
(2013) per 5′ cell, e.g. the elevation that is exceeded by 70 %35

of the thousand hundred 30′′ elevation values within one 5′

cell. Bswb is calculated based on that head elevation with
different values for wetlands and lakes (Reinecke et al., 2018, Table

1)(Reinecke et al., 2019, Table 1). For rivers, Bswb is equal
to hriv − 0.349×Qbankfull0.341 (Allen et al., 1994), where40

Qbankfull is the bankfull river discharge in the 5′ grid cell
(Verzano et al., 2012).

2.1.5 Ocean boundary

The outer boundary condition in the model is described by
the ocean and uses an equation similar to MODFLOW’s gen-45

eral head boundary condition as flow

Qocean = Coc(hocean−h) (6)

where hocean is the elevation of the ocean water table set 0
m worldwide and Coc the conductance of the boundary con-

dition set to 10−6m2s−1 based on average K and aquifer 50

thickness.

2.2 Sensitivity Analysis

2.2.1 Sensitivity of simulated head to choice in
hydraulic conductivity dataset

Parameterization of aquifer properties based on hydrogeo- 55

logical data is an important decision in groundwater model-
ing. We first investigate the effect of switching to a newly
available global permeability dataset to explore the sensitiv-
ity of h to the variability in geologic data. The results are then
compared to the effects of parameter variability, as quantified 60

by the Monte Carlo experiments.
GLHYMPS 2.0 (Huscroft et al., 2018) provides an update

of the only available global permeability map (Gleeson et al.,
2014). To quantify how the new hydraulic conductivity es-
timates change the simulation outcome of the groundwater 65

model we apply a basic sensitivity method.

S =
h2−h1

h1

K2−K1

K1

(7)

where the sensitivity S of h to a change in K is calculated
based on the change in h (h1 is the hydraulic head cal-
culated with GLHYMPS 1.0 and h2 with GLHYMPS 2.0) 70

and change in K1 and K2 the conductivity based on GL-
HYMPS 1.0 and 2.0, respectively.

2.2.2 Sensitivity of head and surface water body flow to
choice in parameters

Along with K, additional parameters influence the model 75

outcome. In this study we apply the method of Morris (Mor-
ris, 1991) as a screening method to identify which parameters
are most important for the two main model outcomes, namely
h and groundwater-surface water interactions (Qswb). The
Morris method provides a compromise between accuracy and 80

computational cost in comparison to other Monte Carlo like
methods (Campolongo et al., 2007). Each model execution
represents an individually randomized One Factor At a Time
(OAT) experiment, where one parameter is changed per sim-
ulation. Based on these model executions, the Morris method 85

calculates an Elementary Effect (EE) d for every trajectory of
a i-th parameter (in this study parameter multipliers).

di(X) =

(
y(X1, . . . ,Xi−1,Xi + ∆,Xi+1, . . . ,Xk)− y(X)

∆

)
(8)

where ∆ is the trajectory step size for the parameter multi-
plier Xi, X is the vector of model parameters multipliers of 90

size k and y(X) the model output e.g. in the presented model
h or Qswb. The total effect of the ith parameter is computed
as the absolute mean of the EEs for all trajectories and is
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denoted as µ∗ (Campolongo et al., 2007). The standard de-
viation of EEs (σi) is an aggregated measure of the intensity
of the interactions of the ith parameter with the other pa-
rameters, representing the degree of non-linearity in model
response to changes in the ith parameter (Morris, 1991). The5

derived metrics µ∗ and σi both are measures of intensity
(higher values are more sensitive/interactive) and do not rep-
resent absolute values of sensitivity. Both can only be inter-
preted meaningfully in comparison with values derived for
other parameters.10

To achieve that, µ∗ and σi are presented in this study in
ranks. Thus, values for all parameters are ranked from high-
est to lowest, and the parameter with the highest value is se-
lected as the most influential parameter. The parameter with
the second highest value (rank 2) is the second most influen-15

tial parameter and so on.
Previous experiments (de Graaf et al., 2015; Reinecke et al., 2018)

(de Graaf et al., 2015; Reinecke et al., 2019) showed the
importance of hydraulic conductivity, groundwater recharge,
and surface water body elevation to the simulated hydraulic20

head. Together with the highly uncertain surface water body
and ocean conductance we thus selected eight model param-
eters for the sensitivity analysis. The analysis was conducted
my using randomly sampled multipliers in the ranges pre-
sented in Table 1.25

Throughout the analysis the following parameters includ-
ing the convergence criterion and spatial resolution stay
fixed: global mean sea-level, bottom elevation of surface
water bodies and their width, length. The baseline parame-
ters are assumed equally to Reinecke et al. (2018)Reinecke et al.30

(2019). Hydraulic conductivity is based on a global data set
(2.1.2), the conductance is calculated as previously shown
(2.1.3), and the groundwater recharge baseline is equally to
the mean annual values calculated by WaterGAP (2.1.1). Pa-
rameter ranges were chosen to ensure that a high percent-35

age of model realizations converge numerically. For exam-
ple, the uncertainty of Eswb in the model is higher than the
ranged used in this study, but the sampling range was re-
stricted because the parameter is especially important for
model convergence. Furthermore, the chosen river conduc-40

tance approach uses R as parameter and includes a nonlin-
ear threshold between losing and gaining surface water bod-
ies, which strongly affects numeric stability. As in any global

sensitivity analysis, the choice of parameter ranges involves
some subjectivity that may influence the ranking of sensitive45

parameters in the results.

2.2.3 Global hydrological response units

Even though the number of model evaluations are compara-
bly less for OAT-based experiments than for All-At-a-Time
(Pianosi et al., 2016), varying every parameter independently50

in every spatial grid cell leads to an unfeasible amount of
model runs. On the other hand, the use of global multipliers
that vary a parameter uniformly for all computational cells

Figure 3. Map of k-means clustering categories each representing a
GHRU (a). Each color identifies a region where the combination of
all three parameters is similar.

may lead to inconclusive results, as the sensitivity for ev-
ery cell to this change is spread to the whole computational 55

domain. A possible solution would be to separate the globe
into zones with similar geological characteristics based on
the GLHYMPS dataset, but this may still result in an infea-
sible number of required simulations. Each simulation takes
about 30 min to 1 h on a commodity computer (more if the 60

parameters hinder a fast convergence).
To overcome these limitations, we introduce the use of a

Global Hydrological Response Unit (GHRU). Every GHRU
represents a region of similar characteristics regarding three
characteristics: Eswb (Sect. 2.1.3,2.1.4), K (Sect. 2.1.2), and 65

R (Sect. 2.1.1). This does not constitute a zoning approach
often used for calibration in traditional regional groundwater
modelling, only a separation into parameter multipliers. All
multipliers for a given parameter for all regions are based on
the same random distribution inside a given range of uncer- 70

tainty for that parameter. Characteristics for each model cell
are normalized to [0,1] and used to create a 3d point space
(based on the three characteristics for each model cell). We
apply a k-means (Lloyd, 1982) clustering algorithm to iden-
tify these regions. 75

K-means clustering partitions n points into k clusters
where each point belongs to the cluster with a minimized
pairwise squared distance to the mean in a cluster. Figure 3
(a) shows a map of k-means clustering (6 clusters) categories
based on normalized three-dimensional space of Eswb, K, 80

and R per grid cell.
The number of clusters was determined based on the fea-

sible number of model evaluations. k-means constitutes an
unsupervised machine learning approach that builds the re-
quired number of clusters automatically, thus it is necessary 85

afterwards to examine what main characteristics these clus-
ters represent (shown in Table 2). Characteristics are encoded
as relative values (high (↑), medium (∼), low (↓)) of the three
parameter values based on their mean value per cluster. These
characteristics are used to connect calculated parameter sen- 90

sitivities to GHRUs when analyzing the results of the exper-
iment.
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Table 1. Range of parameter multipliers used in the Morris experiments. Each parameter multiplier is sampled in log space
(log10(Multiplier)) with sampling based on Campolongo et al. (2007) and optimized with Ruano et al. (2012).

Parameter P. Unit Multiplier Range Description

K LT−1 0.1 - 100 Saturated hydraulic conductivity
Eswb L 10−0.001 - 100.001 SWB elevation
Clak L2T−1 0.5 - 2 Conductance of lakebed
Cwet L2T−1 0.5 - 2 Conductance of wetland bed
Cgl.wet L2T−1 0.5 - 2 Conductance of global wetland bed
Criv L2T−1 0.5 - 2 Conductance of riverbed
R LT−1 0.5 - 2 Groundwater recharge
Coc L2T−1 0.1 - 10 Conductance of the ocean boundary

Coc is equal for all ocean cells

Table 2. Mean values of GHRU characteristics and their summarized description, where ↑ is read as a relatively high value, ∼ as medium,
and ↓ as low; e.g. ↑↑ E indicates a cluster with very high and relatively high (↑) average Eswb. Additionally, the last two columns show the
percentage of cells per GHRU where µ∗ of h and Qswb could be reliably determined (described in Sect. 3.2.6).

% of reliable µ∗

GHRU µ(Eswb)[m] µ(K)[m day−1] µ(R)[mm day−1] GHRU description h Qswb

1 454 10−4 0.15 ∼ E, ↑ K, ∼ R 9.54 % 6.58 %
2 286 10−6 0.15 ↓ E, ∼ K, ∼ R 12.07 % 14.41 %
3 4107 10−6 0.13 ↑↑ E, ∼ K, ↓ R 0.08 % 4.09 %
4 1355 10−6 0.11 ↑ E, ∼ K, ↓ R 3.17 % 17.19 %
5 303 10−6 1.24 ↓ E, ∼ K, ↑ R 31.62 % 26.37 %
6 194 10−4 1.25 ↓ E, ↑ K, ↑ R 29.00 % 14.36 %

2.2.4 Experiment Configuration

With seven parameters per GHRU plus the ocean boundary,
10 000 initial trajectories were sampled in total (Campolongo
et al., 2007) and optimized using Ruano et al. (2012) result-
ing in 1848 optimized trajectories for each parameter. Ran-5

dom sampling might result in non-optimal coverage of the
input space; thus a high number of trajectories is sampled
first and only trajectories with a maximized spread are se-
lected (Ruano et al., 2012). For 7 parameters (without ocean
boundary), n GHRUs (6 in this paper) we get a total num-10

ber of parameters k = 42 + 1 where +1 stands for the ocean
boundary, which is not varied by GHRU. We assume 42 for
the number of optimized trajectories (Ruano et al., 2012) re-
sulting in N = r(k+1) (Campolongo et al., 2007), where N
is the total number of simulation (1848).15

The experiment resulted in 1848 simulations with an over-
all runtime of two months on a machine with 20 computa-
tional cores (enabled hyper-threading) and 188 GB RAM.
Each simulation required about 8 GB of RAM and was as-
signed four computational threads while running the simu-20

lations in cohorts of 10 simulations at once. Each simula-
tion was an OAT experiment (an extended explanation of
OAT and other sensitivity experiment setups and methods
can be found in Pianosi et al. (2016)). Changes in parame-
ters were stacked over all experiments. Thus, an experiment25

may have changed R (also affecting Criv for gaining condi-
tions) while containing a Criv multiplier from a previous ex-
periment. Sampling and analysis was implemented with the
Python library SALib (Herman and Usher, 2017). For each
experiment, the model was run until it reached an equilibrium 30

state (steady-state model). All other parameters and conver-
gence criteria can be found in Reinecke et al. (2018)Reinecke et al.
(2019). If a simulation failed (6 of 1848 did not converge) the
missing results were substituted randomly from another sim-
ulation within the cohort to preserve the required ordering 35

of parameter samples for the used Python implementation of
Morris. This number is low enough that it does not bias the
results in any significant way (Branger et al., 2015).

A converged simulation does not necessarily constitute a
valid result for all computed cells. Numeric difficulties based 40

on the model configuration (due to the selected parameter
multipliers) may lead to cells with calculated h that are un-
reasonable. More specifically, a hydraulic head that is far
above or below the land surface and/or leads to a large mass
budget error. In the presented study these simulations are re- 45

tained as a removal would require to either rerun simulations
with a different convergence criterion (see Sect. 4) and in-
clude this in the analysis or modify the Morris method to
allow removal of simulations.
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Confidence intervals (95 %) are derived via bootstrap-
ping using 1000 bootstrap resamples, following Archer et al.
(1997).

3 Results

3.1 Sensitivity to updated GLHMYPS dataset5

Global-scale hydrogeological data is limited. Figure 2 (b)
shows the change in K between GLHYMPS 1.0 (Gleeson
et al., 2014) and the upper layer of GLHYMPS 2.0 (Huscroft
et al., 2018) where an overall increase can be observed due
to the change in unconsolidated sediments. Although uncon-10

solidated sediments cover roughly 50 % of the world’s ter-
restrial surface, their extent was underestimated in previous
lithologic maps by half (Börker et al., 2018). The largest in-
crease of K can be found between 50 and 70 ◦N because
of glacial sediments that were assigned high K values. Dif-15

ferent lithologies, e.g. alluvial terrace sediments and glacial
tills, have all been grouped into the hydrolithological cate-
gory of sand. Areas of decreased conductivity are e.g. the
Great Lakes, south of Hudson Bay, and parts of Somalia.
The area around Hudson Bay was assumed to consist of un-20

consolidated sediments in GLHYMPS 1.0 (Gleeson et al.,
2014) and was changed to consolidated. In Somalia, evap-
orites, which are known for low K, were incorporated from
the Global Unconsolidated Sediments Map Database (GUM)
(Börker et al., 2018). Furthermore, GUM provides a detailed25

mapping of loess and loess-like depositions, which were as-
signed lower K values. These regions can be observed to be
the only regions with reduced K (Fig. 2 (b)). Overall, the
increase in unconsolidated sediments is probably the main
cause for the increased K.30

Due to the change in K, the simulated h changes accord-
ingly (Fig. 2(c)). In areas where the K decreased h increased
e.g. eastern North America. Overall heads decreased, espe-
cially in central Russia by up to 10 to 100 m. A slight in-
crease in head can be observed in areas with no change in35

K. This can be either due to changes in groundwater flow
patterns due to the overall increase in K or due to numerical
noise.

Based on these results, a local sensitivity index was cal-
culated using Eq. (7), shown in Fig. 2 (d). White constitutes40

areas where either the relative change of K was zero or the
head of the GLHYMPS 1.0 simulation was zero. Areas with
a sensitivity index below (-)0.1 probably constitute variations
that can be accounted to numerical differences in simulation
outcome. Overall, h and K change in the opposite directions45

(positive values indicate a change into the same direction).
An overall increase in K has led to a overall decrease in h
as the higher K values are able to transport more water for
a given hydraulic gradient, especially along coastlines and
mountainous areas. Increased sensitivity indexes can be ob-50

served at boundaries of areas of large spatial extent where

the initial K was equal, whereas the h changes inside that
area are relatively small (e.g. Arabian Peninsula). In regions
where an increase in K leads to a decrease in head, an in-
crease of h at the boundary to other hydrolithological struc- 55

tures can be observed. Areas with changing indexes next to
each other, e.g. in the Sahara, possibly point to a numerically
unstable model region with a general sensitivity to parameter
changes. GLHYMPS 2.0 represents the best available global
data for hydraulic conductivity, and the results of this initial 60

experiment indicate a significant sensitivity to updating the
model with this new dataset.

3.2 Monte Carlo experiments

To assess the variability of model outputs we used the Monte
Carlo-like OAT experiments to analyze the outcomes of 1848 65

model realizations.

3.2.1 Variability of hydraulic head

The spatial distribution of variability in the main model out-
put h provides insights into model stability and highlights
regions which are most sensitive to parameter changes. Ob- 70

servable differences between simulations can be caused by:
(1) the parameter change of the OAT experiment, (2) the in-
teractive effects due to combinations of parameter changes,
(3) numerical noise (slight variations in outcome due to the
nature of the numerical algorithm or floating point errors that 75

cannot be attributed to a specific parameter change), and (4)
a non-optimal solution of the groundwater equation (Eq. (1))
even if the convergence criterion is met. The latter error (4)
can be observed in regions of the model where a strong non-
linear relation may produce solutions that fit the convergence 80

criterion but should be considered non-valid, e.g., because of
a mass-balance that is unacceptably inprecise.

Figure 4 shows the absolute coefficient of variation (ACV)
of h per cell over all Monte Carlo experiments. The ACV is
used to make a sound comparison of variance taking into ac- 85

count the mean of the h value per cell (because the mean
might be negative the absolute value is used). Yellow indi-
cates that h changed little (mostly for regions with shallow
groundwater), white to gray values indicate a growing differ-
ence in model results, and red values indicate a high variation 90

of h over all model realizations. The latter areas represent ei-
ther very low R (Sahara, Australia, South Africa) or a high
variance in elevations, e.g., Himalaya, Andes and the Rocky
Mountains. These are expected to have a high sensitivity to
parameter changes as the multiplier of Eswb produces the 95

highest shifts in regions with high elevation. Large changes
in Eswb might cause a switch from gaining to losing con-
ditions and vice versa (discussed in Sect. 3.2.2). Addition-
ally, a change in R directly influences the conductance term
Criv that might also be changed by a multiplier. These com- 100

binations may yield conditions that are exceptionally chal-
lenging for the numerical solver. Switches between the two
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Figure 4. Absolute coefficient of variation (σ(h)µ(|h|)−1) [%] of
simulated h per cell over all Monte Carlo realizations. Yellow indi-
cates that h results changed very little, white to gray values indicate
a growing difference in model results, and red values indicate a very
high variation of h over all model realizations.

conditions constitute a non-linearity in the equation which
might require a smaller temporal step-size to be solved. In a
nutshell, if an iteration leads to a gaining condition and the
next to a losing condition, the switch renders the approxi-
mated heads of the preceding iterations invalid as the equa-5

tion changed. In the worst case this can lead to an infinite
switch between the two conditions without finding the cor-
rect solution.

Areas with a high variance in results will also produce
wide confidence intervals and are highlighted in Fig. A2.10

Figure 5 relates the uncertainty in h, due to a change from
GLHYMPS 1.0 to 2.0 to the interquartile range of h of all
Monte Carlo realizations, thus uncertainty in h due to param-
eter variation. Parameter variation is the dominant cause for
h variability in mountainous regions, whereas the change in15

geologic data has a dominant impact in northern latitudes and
the upper Amazon. In Australia, central Africa, and northern
India the impact of increasingK is almost as high as the vari-
ability caused by the variation of parameters in the Monte
Carlo experiments. This suggests that a reduced uncertainty20

in K in these regions will improve the model results.

3.2.2 Variability of losing/gaining surface water bodies

Surface water bodies that provide focused, indirect ground-
water recharge to the aquifer system are an impor-
tant recharge mechanism to support ecosystems alongside25

streams (Stonestrom, 2007). Especially in arid regions, they
are important for agriculture and industrial development.

Losing or gaining surface water bodies are determined by
h in relation to Eswb. When h drops below Eswb water is
lost to the aquifer (Eq. (5)) Figure 6 shows for each grid30

cell the percentage of the model runs in which the surface
water bodies in the cell lose water to the groundwater. Re-
gions with a higher percentage are regions that are in losing
conditions independently of the applied parameter changes.
Areas with the highest deviation in h (Fig. 4), thus the low-35

Figure 5. Uncertainty in h caused by variability in geologic struc-
ture (dominant in blue to light blue) in relation to uncertainty in h
caused by variability in parameters based on Monte Carlo simula-
tions (dominant in brown to green) calculated as |h1−h2|

IQR(hmc)
where

h1/2 is the simulated head based on GLHMYPS 1.0 and 2.0 and
hmc the simulated head of all Monte Carlo experiments.

Figure 6. Percentage of all Monte Carlo realizations that resulted in
a losing surface water body in a specific cell.

est agreement over all model realizations, are similar to the
regions where some parameter combinations lead to losing
surface water bodies, while others lead to gaining surface
water bodies (Fig. 6). Overall arid and mountainous regions
show high percentages of Monte Carlo realizations with los- 40

ing conditions, with dominantly 20-50 % of the realizations
resulting in losing surface water bodies. h in these regions
falls below Eswb either due to low recharge or high gradi-
ents. Surface water-groundwater interaction in these regions
should be more closely investigated to improve model per- 45

formance. The Sahara region stands out with large areas that
contain losing surface water bodies in almost all model re-
alizations. Values close to 100 % are furthermore reached in
the Great-Lakes, the Colorado Delta, the Andes, the Namib
Desert, along the coast of Somalia, the Aral lake, lakes and 50

wetlands in northern Siberia, and partially in Australian wet-
lands. Wetlands in Australia and the Sahara are likely to be
overestimated in size in the context of a steady-state model.
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3.2.3 Parameter sensitivities as determined by the
method of Morris

The global-scale sensitivity of h and Qswb is summarized
in Table 3 that lists the percentage fractions of all cells for
which a certain parameter has a certain rank regarding sensi-5

tivity and parameter interaction.
Overall, Eswb and R are the most important parameters

for both model outputs over all ranks, followed by K. Qswb
is more sensitive to R than h, whereas h is more sensitive
to Eswb. Criv appears only dominant in the second and third10

rank for both model outputs. This means that for the majority
of cells a change in Eswb and R, rather than Criv dominates
changes in Qswb and h. K and R directly influence the cal-
culation of Criv and thus show a higher sensitivity.

The standard deviation of EEs (σi) is an aggregated mea-15

sure of the intensity of the interactions of the ith parameter
with the other parameters, representing the degree of non-
linearity in the model response to changes in the ith param-
eter Morris (1991). A high parameter interaction indicates
that the total output variance rises due to the interaction of20

the parameter with other parameters.
Eswb shows higher interactions for h than for Qswb. Criv

shows a high interaction on the first rank even if it is not
the dominant effect. This interaction is likely due to changes
andK andR that directly influence the computation of Criv .25

Both model outputs are sensitive to changes in R but show a
relatively low degree of interaction for the first rank. A higher
percentage of cells with an increased interaction of R is only
visible in the second and third rank.

Lakes and wetlands show low sensitivity and interaction30

in relation to total number of cells in Table 3 because they
only exist in a certain percentage of cells. Table 4 shows the
percentage fractions relative for cells with more than 25 %
coverage of a lakes, global wetlands, and/or wetlands. The
dominant parameter (by percentage) for all cells with respec-35

tive surface water body is always Eswb for h (in 79.2 % of
the lakes and in (79.9 %) 66.3 % of the (global)wetlands) and
R (∼54-77 % of all cells) for Qswb. For the second rank the
conductance of the surface water body Clak,wet,gl.wet dom-
inated h, Criv for Qswb. Thus for lakes and wetlands Eswb40

and R are more relevant to h and Qswb than the conductance
of these surface water bodies.

3.2.4 Maps of global sensitivity

To show the spatial distribution of the parameters that affect
h and Qswb the most, ranked parameters were plotted for45

every cell in Fig. 7. The top of Fig. 7 represents the most
sensitive parameters in terms of h (left) and Qswb (right).
Areas that should be judged with caution due to overlapping
CIs are shown in Fig. A2.
Eswb stands out for mountainous regions and regions with50

low recharge aligned with regions in Fig. 4 and Fig. A4 with
spots of Criv . Eswb is dominant for Qswb e.g. Rocky Moun-

Table 3. Percentage fractions of simulated cells with parameter sen-
sitivity µ∗ and parameter interaction σ per model output h and
Qswb, where the respective output is most sensitive to the listed
parameter. For example h is the most sensitive to Eswb (Rank 1) in
57.2% of all grid cells, while K is the second most important pa-
rameter for h in 24.2% of those cells. Fractions are shown for the
first three ranks.

% of cells
Rank 1 Rank 2 Rank 3

Para. Output µ∗ σ µ∗ σ µ∗ σ

K
h 24.2 18.8 21.7 12.9 7.1 4.3
Qswb 18.4 15.4 21.1 7.3 8.8 4.7

Eswb
h 57.2 46.3 14.8 19.9 13.4 18.9
Qswb 18.5 14.3 11.2 27.7 36.0 34.4

Clak
h 1.0 0.5 3.9 2.4 4.3 2.5
Qswb 0.5 0.6 2.2 0.9 2 0.9

Cwet
h 1.4 0.5 3.4 1.4 5.3 4.5
Qswb 0.5 0.8 3.6 2.1 4.2 2.8

Cgl.wet
h 0.9 0.9 1.8 10.2 8.4 8.1
Qswb 0.4 0.8 2.3 15.2 9.4 7.8

Criv
h 2.0 28.0 32.8 29.3 28.7 18.1
Qswb 1.4 62.6 47.8 16.2 28.8 10.0

R
h 13.4 4.1 22.7 23.6 33.8 43.2
Qswb 59.8 5.1 11.3 30.5 10.7 39.2

Coc
h 1.3 1.0 0.3 0.2 0.5 0.4
Qswb 0.5 0.4 0.5 0.2 0.2 0.2

Percentage of cells with non-overlapping CIs (see App. 1 and Sect. 3.2.6) µ∗: 11.8 %
(h) and 13.3 % (Qswb).

tains, Andes, Hijaz Mountains in Saudi Arabia and the Hi-
malaya. R stands out in regions in the Tropical Convergence
Zone with large R and in northern latitudes for Qswb. K 55

seems to be equally spatially distributed for h as well as for
Qswb. It is most important for h in Australia, the northern
Sahara, the Emirates, and across Europe. There seems to be
no correlation between the initial K spatial distribution and
a highly ranked K sensitivity. Areas with a dominant K are 60

possibly influenced by a high interaction with other model
components (K shows a high interaction Table 3 that is also
reflected spatially in Sect. 3.2.5). Eswb stands out in the Sa-
hara where likely overestimated wetland extents (Reinecke et al.,

2018) (Reinecke et al., 2019) have a high impact on h. Qswb 65

seems to be more robust to show the effects in the highly
variable regions and indicates the assumption that Eswb is
also mainly responsible for the h variations observed in Sect.
3.2.1.

The second rank (second row in Fig. 7) shows values that 70

are not as important as the top row but dominant over all
other parameters. In the highly variable regions K and for
parts of the HimalayaR are dominant in the second rank. The
Cwet appears as dominant parameter in areas with large wet-
lands with a bigger impact onQswb results than on h. Clak is 75

clearly visible in parts of Nepal and along the Brahmaputra.
In the Tropical Convergence Zone Criv and K dominate for
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Table 4. Percentage fractions of the most frequent parameter for rank 1 and 2 of all cells with with more than 25 % coverage of a lakes,
global wetland, or wetland.

µ ∗ (h) µ ∗ (Qswb)

% R. 1=Eswb % R. 2=Clak,wet,gl.wet % R. 1=R % R. 2=Criv

Lakes 79.2 64.6 54.2 38.8
Wetlands 66.3 47.3 77.2 46.9
Gl. Wetlands 79.9 56.4 66.3 131.7

1 Criv=31.7 %, Cgl.wet=40.6 %.
Percentage of second most frequent parameter not shown. Percentage in relation to cells with lakes, global wetland,
or wetland > 25 %. Percentage-wise R. 1(µ ∗ (h)) was always followed byR except for global wetlands were the
second most frequent R. 1 was Cgl.wet. R. 1(µ ∗ (Qswb)) was followed percentage-wise byEswb except for
local wetlands withK, R. 2(µ ∗ (Qswb)) by Clak,wet,gl.wet except for global wetlands with Criv .

Qswb, whereas results for h show a mix of Cgl.wet Cwet and
Criv.

Zooming in on Europe (Fig. 8) for h, as an example, shows
a similar trend to the global picture that R and K have the
highest impact on h along with Eswb. Eswb is dominant in5

mountainous regions like the Alps and the Apennines as well
in regions with lots of surface water bodies e.g. southern part
of Sweden in the area of lake Vättern and Vänern and in the
Finnish Lakeland. R appears dominant in east Italy in the
lagoon of Venice and Marano, the Netherlands, and the wet-10

lands in southwestern France. Almost invisible in the global
picture is Coc, a dominant parameter for most cells that have
the ocean as boundary condition (only observable for h). Pre-
dominantly Criv follows Eswb as second most important pa-
rameter. Only visible in the second rank are the wetlands e.g.15

in west Scotland.

3.2.5 Maps of global parameter interaction

Similar to the spatial parameter sensitivities Fig. 9 shows the
parameter interactions for h and Qswb. Parallel to Fig. 7, the
first row of Fig. 9 represents the most interactive parameters20

in terms of h change (left) and Qswb (right). The highest in-
teraction with other parameters can be observed for Eswb for
regions with high h variability similar to Fig. 7. Criv shows
a high interaction in regions sensitive to R (compare Fig. 7)
and is more visible for Qswb.25

K regions in the second rank are similar to where K al-
ready showed a high sensitivity for h (compare Fig. 7). In
the Himalaya R and Criv show a large spatial pattern. For
Qswb, Cgl.wet is clearly visible where Criv was most inter-
active before.30

3.2.6 Sensitivity per GHRU

Average sensitivities and parameter interactions for each of
the six GHRUs are shown in Fig. 10 (a). A dominant average
per GHRU does not imply a rank 1 in each cell but rather
provides an indication of its average importance per GHRU.35

Each GHRU is described by the notation in Table 2. The
shown average sensitivities and interactions are normalized

to [0,1] because the calculated µ∗ and σ present no absolute
measure of sensitivity. Mean values of µ∗ and σ that are very
close to zero are not shown in Fig. 10. 40

The values shown in Fig. 10 (a) should be judged with
caution as they also include the regions Fig. A2 shown to be
unreliable. Reliability means that due to overlapping CIs (any
overlapping) the ranking of the parameters can’t be clearly
determined (compare Fig. A2 and additional explanation Fig. 45

A1).
To judge the reliability of the outcomes per GHRU Table 2

shows the percentage of reliable results for h and Qswb for
each GHRU, where reliable results exclude over 80% of all
sensitivity values. 50

Figure 10 (b) shows only cells with reliable results, based
on their confidence intervals, resulting in 11.8 % of all grid
cells for h and 13.3 % for Qswb. GHRUs in high and very
high elevations show low reliability concerning h results as
expected (compare Fig. 4). Qswb appears as more robust in 55

these regions.
Figure 10 (a) shows a similar picture to the two global

maps (Fig. 7, 9). All GHRUs show a linear correlation of sen-
sitivity and degree of interaction. The GHRU with average
elevation, average recharge, and high K (GHRU 1) shows 60

higher average response in Qswb than h. h is most sensitive
to Criv , and less sensitive to the other parameters. Qswb is
clearly most sensitive to K and Cgl.wet and shows a high in-
teraction in this GHRU. Lower-lying regions with averageK
and R (GHRU 2) show high sensitivity of h only to Eswb 65

with a high interaction while Qswb is affected in decreasing
order by Cgl.wet andK. Results for h sensitivity in GHRU 3,
with very high elevations, average K and low R, should be
judged with caution because only a very low fraction is based
on results with non-overlapping CIs (Table 2). Compared to 70

other GHRUs, 3 shows rather clustered sensitivities and pa-
rameter interactions. h is most sensitive to Eswb and R and
Qswb to Clak, K, and Cwet. GHRU 4, which differs from
GHRU 3 by its high but not very high land surface elevation,
shows Eswb, K, and R as clearly most dominant and inter- 75

active parameter for Qswb, followed by Cwet. Similar Qswb
is most sensitive to Eswb and K. In low-lying and rather flat
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Figure 7. Ranking of parameter sensitivity of h (left) and Qswb (right). The upper maps show the first rank, the middle the second, and the
bottom the last rank by µ∗ values.

Figure 8. Zoom in of Europe of Fig. 7. Ranking of parameter sensitivity of h (left: rank 1, right: rank 2).

regions with high groundwater recharge (GHRU 5), sensitiv-
ities of h are close to zero except for K possibly because
changes in h are to small in flat regions (compare Fig. 4)
due to small h gradients. Qswb is most sensitive to Eswb and
Cgl.wet. GHRU 6 is relatively small and like GHRU 5 only5

occurs in the tropical zone (Fig. 3 (a)). In this GHRU, which
differs from GHRU 5 only by K being high instead of av-
erage, the dominant parameters of Qswb are similar to other
GHRUs where Eswb is clearly the most dominant followed
by R and K. h shows a response to wetlands but again like10

in 5 a very low response to Eswb.

Taking into account only the reliable regions changes the
perception in Fig. 10 (b). GHRU 1 shows rather similar sen-
sitivities and parameter interactions as compared to other
GHRUs. h is most sensitive toEswb, and only somewhat less 15

sensitive to Criv and Cwet. Qswb is clearly most sensitive
to Criv and shows a high interaction in this GHRU. GHRU
2 shows high sensitivity of h only to Eswb with a high in-
teraction while Qswb is equally affected by K, Eswb and R.
Results for h sensitivity in GHRU 3 are not very represen- 20

tative for the whole GHRU as only a very small fraction of
cells shows reliable results (Table 2). Like in GHRU 2, Qswb
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Figure 9. Ranking of parameters interaction (σ of EE is an indicator for parameter interaction) based on h (left) andQswb (right). Parameters
are ranked from top to bottom by Σ values.

is equally affected by by K, Eswb and R. GHRU 4 shows
Eswb as clearly most dominant and interactive parameter for
h, followed by K and Cwet. For GHRU 5, sensitivities of h
could not be determined reliably possibly because changes
in h are to small in flat regions (compare Fig. 4) due to small5

h gradients. Qswb is most sensitive to R (as rivers are gain-
ing rivers that need to drain groundwater recharge) followed
by K. In GHRU 6 the dominant parameters of Qswb are the
same as for GHRU 5 (except for Eswb) while h is most sen-
sitive to Clak.10

4 Discussion

This study presents a novel spatially distributed sensitivity
analysis for a high-resolution global gradient-based ground-
water model encompassing 4.3 million grid cells. While
these maps are challenging to interpret, they yield new ways15

of understanding model behaviour based on spatial differ-
ences and help to prepare calibration efforts by identifying
parameters that are most influential in specific regions. Fur-
thermore, they guide the future development of the model
and the intended coupling efforts of the groundwater model20

to the hydrological model. Especially, the sensitivity ofQswb
and the importance of Eswb, which are the two major cou-
pling components, are of interest.

However, the large number of grid cells with either statis-
tically zero sensitivity values (overlapping CI with zero) or25

unreliable results limit the relevance and applicability of the
study results. The study suggests that the highly non-linear
and conceptual approach to the surface water body conduc-
tance (in particular the sudden change of conductance be-
tween gaining and losing rivers) needs to be revised as it may 30

affect the stability of transient model results. Additionally
the results suggest that elevation of the water table of surface
water bodies is a promising calibration parameter alongside
with hydraulic conductivity.

The presented results need to be considered against the 35

backdrop of the high h variability of the Monte Carlo ex-
periments (Sect. 3.2.1). Some of these simulations cannot be
considered as a valid result for a h distribution. This is due
to multiple model challenges: (1) the evaluated model ap-
proximates a differential equation and can show non-linear 40

behaviour for different parameterizations, (2) the equations
used for rivers present a non-linear model component (switch
between equations for gaining and losing conditions as well
as relation to K and R), (3) the convergence criterion for
the steady-state solution is solely based on a vector norm of 45

residuals (metric of changes of the solution inside the con-
jugate gradient approach) and maximum h change between
iterations and do not contain an automated check for a rea-
sonable mass balance. On the other hand, it is challenging
to include a validation mechanism in the presented analysis 50

to alleviate these problems while maintaining a reasonable
model runtime (as a stricter convergence criterion will most



14 Robert Reinecke: Sensitivity of simulated global groundwater

Figure 10. Normalized average sensitivity and parameter interaction per GHRU for h and Qswb (a). If a parameter is not present the mean
sensitivity for that GHRU was close to zero (overlapping CI with zero). Does not include ocean parameter sensitivity. Mean characteristics,
their symbols for each GHRU, and the reliability of the sensitivity measure (only µ∗ not σ) are shown in Table 2. (b) Only reliable results
(after removing overlapping CI).

likely increase the number of necessary iterations) and/or
number of necessary model runs. It is questionable whether
results based on different convergence criteria can be com-
pared. This would necessitate including the numeric stability
in the sensitivity analysis as well.5

However, the results help to answer the research questions
at hand. While overlapping CIs blur the ranking of the pa-
rameters in some regions, they still provide evidence on what
parameters the calibration should focus and how the impor-
tance of parameters varies per region. The sensitivity ofQswb10

to parameters, especially Eswb, will help to guide the future
model development and coupling to the hydrological model.
In general, the analysis helped to identify the elevation of
surface water bodies as a focus for future research.

Around 30 % of all µ∗ values had a confidence interval 15

that was larger than 10 % of the µ∗ value. This suggests
that even more model runs are required and that large ex-
tents of the model experienced numerically unstable results
as the spatial distribution of head variance and large confi-
dence intervals overlap. 20

The selection of parameter ranges can influence the results
of a sensitivity analysis significantly (Pianosi et al., 2016).
Even parameters that are suspected of not being sensitive can
show highly nonlinear behavior in certain parts of the pa-
rameter space that are only activated when one expands the 25

ranges of the parameters. The presented ranges in this study
do not explore the full assumed uncertainty range. Specifi-
cally, the small range of Eswb is likely influencing the out-
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come of the parameter rankings. The range was chosen to
allow a reasonable number of simulations to converge as the
range of Eswb directly influences the numerical stability of
the model. The presented results, however, do show that the
model output is highly sensitive to changes in Eswb in most5

areas of the globe. The response in mountainous regions can
be attributed to applying Eswb as a multiplier, which has a
higher impact in regions where the initial water body eleva-
tion is high. On the other hand, this is accounting for the fact
that the uncertainty of Eswb is largest in regions with highly10

variable topography per 5’ grid cell.
The only previous sensitivity analysis of a global gradient-

based groundwater model to out knowledge was done by
de Graaf et al. (2015). Based on varying K, aquifer thick-
ness, and R, the coefficient of variation of the steady-state15

hydraulic head was computed (de Graaf et al., 2015, Fig. 5).
From that analysis it was determined that K has the highest
impact and aquifer thickness the lowest. It is not clear how
the coefficient of variation determined these outcomes. The
relatively low impact of aquifer thickness was observed also20

by Reinecke et al. (2018)Reinecke et al. (2019). Therefore, this pa-
rameter was not included in this study. Both de Graaf et al.
(2015) and this study show a high h variance in parts of Aus-
tralia and the Sahara (de Graaf et al., 2015, Fig. 5) possibly
due to the low initial R. Variations in the mountainous re-25

gions, on the other hand, are not reflected in de Graaf et al.
(2015) as their analysis did not vary Eswb.

Besides the large h variance, which is likely the main
cause for the low percentage of reliable cells, the confidence
intervals of the sensitivity indices in this experiment suggest30

that additional simulations are necessary to determine more
reliable results. Additionally, the small parameter ranges, re-
quired for stable model runs, influenced the overall outcome
and might be a reason for cells with inconclusive results.

For cells with lakes and wetlands, Eswb dominates over35

the variations in conductance for h (Table 4), confirming the
importance in determining the surface water body elevation.
For Qswb, on the other hand, R is most influential in these
cells even though it does not affect the conductance equation
for these surface water bodies. Apparently, available recharge40

is driving the interaction more than it influences changes in
head. In regions with high recharge (GHRU 5) Qswb was
more robust to parameter changes than h. This is possibly
due to the generally lower response in Qswb to changes in
Eswb, which can be explained by the constant flow for losing45

surface water bodies (incl. rivers) as soon as h drops below
Eswb. Thus changes is Eswb do not affect Qswb afterwards
(as long as the surface water body remains in losing condi-
tions). Both model outcomes show a high sensitivity to R
while the interaction of R is only visible at the 3rd rank sug-50

gesting that if R changes other parameter changes do not in-
fluence the model response further.

Separating the complex global domain into a selected
number of GHRUs enables a sensitivity analysis in accor-
dance with computational constraints (e.g. maximum num-55

ber of core hours). It alleviates the drawbacks of global-scale
multipliers while keeping a reasonable number of total simu-
lations. The presented decomposition based on three param-
eters Eswb, K, and R was guided by the high sensitivity of
model output to these parameters. Other factors like lithology 60

and surface water body characteristics should be investigated
as additional characteristics for GHRUs.

5 Conclusions

For the first time, spatially distributed sensitivities of the
global steady-state distribution of hydraulic head and flows 65

between the groundwater and the surface water bodies were
calculated and presented. We found the Morris sensitivity
analysis method can yield insights for computationally chal-
lenging (concerning computation time and numerical diffi-
culties) models with reasonable computational demand. This 70

study applied a novel approach for domain decomposition
into GHRUs. Applying parameter multipliers simultaneously
to all grid cells within each of the six GHRUs allowed a more
meaningful sensitivity calculation, than it would be possible
if the parameters would have varied simultaneously in all 75

grid cells, while maintaining a feasible the number of sim-
ulations.

Based on only a small fraction of grid cells for which
parameters could be ranked reliably according to their im-
portance for simulated model output, steady-state hydraulic 80

heads (h) were found to be comparably affected by hydraulic
conductivity (K), groundwater recharge (R) and the eleva-
tion of the water table of surface water bodies (Eswb). Rank-
ings for individual grid cells varies, but globally none of
the three dominates with respect to h. The simulated flows 85

between groundwater and surface water bodies (Qswb) are
clearly most sensitive to R. This is due to the model param-
eterization of river conductance that is computed as a func-
tion of R, assuming under steady-state conditions, ground-
water discharge to rivers should tend to increase with in- 90

creasing R (Eq. (5)). The results indicate that changes in
R between timesteps for a fully coupled transient model
could pose a challenge to the model convergence and that the
equations might need to be reconsidered for a fully coupled
model. In general the uncertainty due to the parameteriza- 95

tion of groundwater-surface water exchange flows (Eswb and
Criv,gl.wet,wet,lak) needs to be further investigated as they
have a high impact on h distribution and Qswb.

In high mountainous regions (Rocky Mountains, Andes,
Ethiopian Highlands, Arabian Peninsula, Himalaya) and re- 100

gions with low recharge (Sahara, southern Africa) the com-
puted h showed an unreasonably high variance due to the
numeric instability of the simulations in these areas. In case
of high elevations and thus large variations in Eswb or in
case of low groundwater recharge, it is not possible to solve 105

steady-state groundwater flow equations with arbitrary pa-
rameter combinations and a constant convergence parameter.
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Qswb was found to somewhat be more robust than h in these
regions. These results suggest that the parameterization of
Eswb needs to be reconsidered and is a likely parameter for
future calibration.

The lack of reliable data at the global scale, in particular5

hydraulic conductivity data with high horizontal and vertical
resolution, hinders the development of global groundwater
models. A simple sensitivity analysis on the impact of small
changes to an existing global hydraulic conductivity dataset
(GLHYMPS 1.0 (Gleeson et al., 2014) to 2.0 (Huscroft et al.,10

2018)) showed that knowledge about the distribution of K is
pivotal for the simulation of h as even slight changes in K
may change model results by up to 100 m.

The presented study results refer to the uncoupled steady-
state groundwater model G3M. As G3M is currently being15

integrated into the global hydrological model WaterGAP, fu-
ture work will extend this sensitivity analysis to fully coupled
transient simulations.

1 Appendix

Results of the method of Morris need to be contemplated in a20

ranking based scheme that relies on metrics that summarize
the calculated EEs. Figure A1 shows the conceptual issues
that are entailed with this ranking approach. The absolute
mean (µ∗) of all EEs of parameter 1 (P1) might be bigger
than µ∗ of P2 but as their CIs are overlapping a clear rank-25

ing is not possible. On the other hand it is evident that P1
and P2 are clearly more sensitive than P3. An overlapping
suggests that even if the mu∗ values are different a ranking
should be considered with care as the two parameters could
be equally important or in some regions inside one GRHU30

their importance could be the other way around. But even
if they overlap, the mu∗ provides a valuable measure of the
overall importance of the parameters also in comparison with
much less important parameters.

Additionally, not only the overlapping should be consid-35

ered but also the size of the CI in comparison to the mu∗. It
is a useful indicator on whether the sampling of the param-
eter space was to small and more simulations are required
to gain a clearer picture. 15% is an arbitrary value that we
considered an appropriate boundary. Other studies used 10%40

(Herman et al., 2013a) or 3.5% (Vanrolleghem et al., 2015).
Figure A2 shows regions where the applied sampling was

sufficient (CIs where smaller than 15% of the calculated µ∗
of the first rank) and regions where more simulations, or a
more sophisticated approach to ensure numerical stability, is45

required.
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Author Response 
 

We thank both reviewers for their thoughtful comments and questions. They helped us in particular 

to improve the consistency of the manuscript, frame the scientific advances this study provides and 

clarify the approach. 

Our answers to referees’ comments are written in italics. 

 

Response Referee #1 
 

1.1 
The working principles of the global groundwater model G3M should be explained in more details, 

otherwise I find it very difficult to fully understand the SA set-up and results. For example, on P. 2 L. 

32, it would be good to expand a bit on the connection betweenG3M and WaterGAP (which variables 

are exchanged from one model to the other and why this is important to improve WaterGAP 

predictions).  In Section 2.1 I would insert a schematic figure of the links between the key variables of 

the G3M model (h, Qsub, Bswb, etc.) - it would makes it easier to follow Eq. (1), (2), etc. and 

understand the role of the input data and parameters subject to the sensitivity analysis. Also, the 

mathematical descriptions in Sec.  2.1.3 to 2.1.5 is a bit messy and possibly incomplete. Variable h in 

Eq. (1) is undefined and there is no further equation or description of how it is calculated. Variable Q 

on L. 17 does not appear in Eq. (1) (unless by Q the authors actually mean Qswb). Many sentences in 

Sec.  2.1.3 are rather unclear - see more specific comments in the last section of my review. 

The model G³M and the governing equations are described in Reinecke (2018) in full detail. Because 

the presented study was not intended as a model description paper we choose to keep the description 

as light as possible. On the other hand, we agree with Ref.1 that in order to understand the results of 

the SA a more thorough description is necessary. We thank the Ref. for pointing out unclear sentences 

in such a detailed manner (see 1.12 for corrections). 

A description of variable h (hydraulic head) has been added to former Eq. (1). The full groundwater 

equation can be found in Reinecke (2018) Eq. (1). The equation has been added as new Eq. (1) for 

sake of completeness. 

An additional Figure 1 has been added and the description now reads (P. 4):  

 

Where K_{x,y,z} [LT^-1] is the hydraulic conductivity along the x,y, and z axis between the cells, S_s 

[L^-1] the specific storage, h the hydraulic head [L], and Q [L^3T^-1] the in- and outflows of the cells 

to or from external sources e.g. groundwater recharge (R and surface water body flows (Q_swb) (see 

also Reinecke et al. (2018) [Eq.(1,2)]). 



The evaluation presented in this study is based on a steady-state variant of the model representing a 

quasi-natural equilibrium state, not taking into account human interference (a full description of the 

steady-state model and indented coupling can be found in Reinecke et al. (2018)). 

The stand-alone steady-state simulations were performed as initial step to identify the dominant 

parameters that are also likely important for controlling transient groundwater flow. 

In the fully coupled transient model h_{swb} will be changed according to calculated river discharge 

calculated by WaterGAP (Fig. 1). 

Q_swb will be used to replace the current calculated flows in WaterGAP between groundwater and 

surface water bodies. 

 

Figure 1. Parameterization and outputs of the G³M model. Where Q_swb is the flow between the 

aquifer and surface water bodies, h is the simulated hydraulic head, K the hydraulic conductivity, 

E_swb the surface water body elevation, B_swb the bottom elevation of the surface water body, 

C_swb the conductance of the surface water bodies, and R the groundwater recharge. In red the 

outputs and parameters that are foremost important for coupling. 

 

1.2 
The ultimate goal of the SA should be more clearly stated. The Introduction ends with the statement 

(P. 3 L. 10):  ” The derived global maps show ,for the first time, the sensitivity and parameter 

interactions of simulated hydraulic head and groundwater-surface water flows in the simulated 

steady-state global groundwater system  to  variations  in  these  uncertain  inputs.”  Still, this does 

not clarify  what  are these maps useful for. Will they serve to set priorities for improvement of 

”input data”? Or to decide which parameters should be calibrated and which can be set to default 

values? Or maybe as a ”sanity check” test, i.e. to prove that the dominant parameters are as 

expected for each particular output in each particular region?  This needs to be clarified.  At present, 

the manuscript Introduction only states which ”sensitivities of the model are explored” (P. 3 L. 3) but 

it does not say what research questions this exploration is meant to answer. 

We agree with the assessment that the ultimate goal of the SA needs to be stated more clearly. The 

introduction has been aligned to address that. 

Now reads (P. 2 L. 78-88): 

Foremost, these maps help to guide future calibration efforts by identifying the most influential 

parameters and answer the question if the calibration should focus on different parameters for 

different regions helping to understand regional deviations from observations. 



Additionally, they guide the further development of the model especially in respect to the coupling 

efforts highlighting which parameters will influence the coupled processes the most. 

Lastly, they show in which regions global groundwater models might benefit the most from efforts in 

improving global datasets like global conductivity maps. 

1.3 
One of the key ideas that make SA applicable to such a spatially complex model, is the use of Global 

Hydrological Response Units (i.e.  groups of hydrologically similar cells to which the same parameter 

perturbations can be applied) as described in Sec. 2.2.3. This is a simple but effective approach that 

could be of interest to a wide audience of modellers who deals with large-scale models and may 

confront similar problems when applying MC simulations or SA. Hence it should be mentioned in the 

Introduction or it may go unnoticed by interested readers.  Also, it would probably be good to 

recognise that similar approaches have been used before, for example (if I get this right) by Hartman 

et al.  2015 (A large-scale simulation model to assess karstic groundwater recharge over Europe and 

the Mediterranean, GMD). 

We thank the Ref. for pointing out the importance of the concept and that similar approaches have 

been used before. 

The introduction now reads (P.2 L. 37 ff): 

To address the issue of conducting global sensitivity analysis for computationally complex models we 

introduce the concept of Global Hydrological Response Units (GHRUs) (Sect. 2.2.3) (similar to e.g. 

Hartmann et al. (2015)). 

Using the GHRUs we present an application of the well-established Morris method (Morris, 1991) 

with the Global Gradient-based Groundwater Model G³M (Reinecke et al., 2018). 

 

1.4 
Reliability and meaningfulness of the SA results. The authors say that many model runs needed to be 

discarded from the SA because the simulation outputs were unreasonable, and that the sensitivity 

indices for many cells were not reliable because estimation errors were too large. I think these two 

issues are very important as they may undermine the usefulness of the entire analysis. As such, they 

need to be explained and discussed more clearly. Specifically: P.  9  L.  4:  ”A  converged  simulation  

does  not  necessarily  constitute  a  valid  result for  all  computed  cells. Numeric difficulties based 

on the model configuration (due to the selected parameter multipliers) may lead to cells with 

calculated h that are unreasonable.” This needs further clarification. First, how is an unreasonable 

value of h defined? Second, what do you do with simulation runs that provide unreasonable h 

values?  Do you retain them in the SA? If so, sensitivity estimates may be affected by simulation 

results that you consider unreasonable. Is this acceptable? Table  2  (last  column)  and  Table  3  

(footnote):   majority  of  the  cells  do  not  provide ”reliable” sensitivity estimates (i.e. CIs of 

sensitivity estimates are overlapping). Again, the criterion by which CIs are deemed overlapping and 

hence sensitivity estimates are considered unreliable needs to be explained more clearly. Appendix 1 

covers the topic but is very concise and not very clear.  The sentence on P. 22 L. 1 seems to suggest 

that the ’reliability criterion’ is based on the fact that the CI be smaller than 15% of the calculated μ∗ 

of the first rank - if so, where is the 15% threshold coming from?  And is this criterion really related 

with the fact that CIs overlap?  I suppose one could have CIs of P2 and P3 that overlap even if each of 

them is smaller than 15% of P1. Figure A1 does not help clarifying the matter.  The 15% threshold 

does not appear in there, and many other things are confusing. For example, in P2 why the text ”CI 



95%”only refers to half of the CI (instead of all the CI)? In P3, why σ’ comes out’ of an arrow starting 

from the CI of μ∗? Please clarify 

No model runs where discarded due to unreasonable model outputs. This would be challenging in two 

aspects: (1) it requires a metric of what is unreasonable e.g. min, max head values and/or water 

budget error and rerun the simulations with e.g. a stricter convergence criterion (see discussion) and 

(2) an approach on how to either change the Morris method to incorporate non-valid simulations or a 

simulations method for the discarded simulations. Both are challenging and should be approached in 

future research. 

This issue is now highlighted more clearly in section 2.2.4 (P. 6 L. 88 – P. 7 L. 7): 

“Numeric difficulties based on the model configuration (due to the selected parameter multipliers) 

may lead to cells with calculated h that are unreasonable. 

More specifically, a hydraulic head that is far above or below the land surface and/or leads to a large 

mass budget error. 

In the presented study these simulations are retained as a removal would require to either rerun 

simulations with a different convergence criterion (see Sect. 4) and include this in the analysis or 

modify the Morris method to allow removal of simulations.” 

 

The overlapping CIs and the 15% criterion are two different metrics to judge the quality of the SA 

results. The overlapping is a binary property (any or none) and the 15% is a relation of the μ∗ to the 

CI. An overlapping suggests that even if the μ∗ values are different a ranking should be considered 

with care as the two parameters could be equally important or in some regions inside one GRHU their 

importance could be the other way around. But even if they overlap the μ∗ provides a valuable 

measure of the overall importance of the parameters also in comparison with much less important 

parameters (if the two most important overlap in CI it might be still evident that they are much more 

important than other parameters). The 15% is an arbitrary value that the authors considered to be a 

useful indicator whether the sampling of the parameter space was too small and more simulations 

are required to gain a clearer picture. Other publications used 10 % (Herman et al., 2013) or 3.5 % 

(Vanrolleghem et al., 2015). 

The appendix was revised (incl. Figure A1) and now reads: 



 

New Fig. A1 

 “An overlapping suggests that even if the mu* values are different a ranking should be considered 

with care as the two parameters could be equally important or in some regions inside one GRHU 

their importance could be the other way around. 

But even if they overlap, the mu* provides a valuable measure of the overall importance of the 

parameters also in comparison with much less important parameters. 

 

Additionally, not only the overlapping should be considered but also the size of the CI in comparison 

to the mu*. 

It is a useful indicator on whether the sampling of the parameter space was too small and more 

simulations are required to gain a clearer picture. 

15% is an arbitrary value that we considered an appropriate boundary. Other studies used 10% 

(Herman et al., 2013) or 3.5% (Vanrolleghem et al., 2015).” 

The implications of “unreliable” results are now more clearly highlighted in section 3 (P. 11, L. 3): 

“Reliability means that due to overlapping CIs (any overlapping) the ranking of the parameters can't 

be clearly determined (compare Fig. A2 and additional explanation Fig. A1).” 



 

1.5 
Last, are the SA results really useful if so many cells provide unreliable results?  This is difficult for me 

to say given that, as pointed out in [2] above, the ultimate goal of the analysis is not totally clear. For 

example, if the ultimate goal was to identify the 2-3 key controls of the model behaviour in each 

different region, then an overlap between the CIs of the first and second ranked parameters would 

not be too much of the problem: the key message of which are the 2 most important parameters 

would still emerge clearly from the SA. So I am not suggesting that the SA results presented here are 

not useful - I just think the manuscript should clarify better what can and what cannot be inferred 

from such results, and what the implications are for the future improvement or use of the model. At 

present, it sounds a bit like the authors produced SA maps and draw some conclusions, then checked 

the CIs and realised most of the regions in those maps are actually unreliable. This is unconvincing. I 

would approach the issue from another angle: given the questions you wanted to answer, is still 

possible to answer them despite the overlapping CIs? 

See 1.2 and 1.4. Furthermore, the discussion has been extended by (P. 13 L. 28 ff): 

“While these maps are challenging to interpret, they yield new ways of understanding model 

behaviour based on spatial differences and help to prepare calibration efforts by identifying 

parameters that are most influential in specific regions. 

Furthermore, they guide the future development of the model and the intended coupling efforts of 

the groundwater model to the hydrological model. 

Especially, the sensitivity of Q_swb and the importance of E_swb, which are the two major coupling 

components, are of interest.” 

And P.13 L. 70 ff: 

“However, the results help to answer the research questions at hand. 

While overlapping CIs blur the ranking of the parameters in some regions, they still provide evidence 

on what parameters the calibration should focus and how the importance of parameters varies per 

region. 

The sensitivity of Q_swb to parameters, especially E_swb, will help to guide the future model 

development and coupling to the hydrological model. 

In general, the analysis helped to identify the elevation of surface water bodies as a focus for future 

research.” 

 

1.6 
Global-scale hydrological models have recently moved to include these processes by implementing a 

gradient-based groundwater model approach (de Graaf et al., 2015; Reinecke et al., 2018).” It would 

be good to be a bit more specific here. How many gradient-based groundwater models are currently 

available at the global scale?  One (to which both cited papers contributed) or two (one developed by  

de  Graff  et  al  2015  and  a  different  one  by Reinecke et al 2018)?  And if the Reinecke model cited 

here is (as I guess) the G3Mmodel that is then analysed in this paper (as introduced on L. 26), then it 

would be good to clarify the point.  If G3M is the only (or one of the two) global model currently able 

to simulate global groundwater heads and flows, then the relevance of this manuscript is higher than 

the manuscript currently communicates. 



G³M is currently one of two models (the other being developed by de Graaf et al. for the global 

hydrological model PCRGLOBWB) that are capable to calculate gradient-based hydraulic heads and 

interactions to surface water bodies. 

To clarify we added the following sentence (P. 1 L. 52): 

This study is based on G³M (Reinecke 2018) one of the two global groundwater models capable of 

calculating hydraulic head and surface water body interaction on a global scale. 

 

1.7 
Throughout the manuscript there is some confusion around the difference between ”input data” and 

”parameters”. I understand that ”input data” essentially refer to theGLHYMPS  dataset,  of  which  

two  versions  (1.0  and  2.0)  are  tested  and  compared(point (1) on P. 3 L.3).  However, such input 

data are used to estimate the hydraulic conductivity K, which is also one of the parameters that are 

later made randomly vary in the Monte Carlo experiments. Therefore there is some overlap between 

the two concepts (input data = parameter in the case of K, if I get this right?).  This is difficult to grasp 

if the authors do not clarify the point.  Again, having a schematic of the key relationships between 

variables would probably help here. 

This is correct there is some overlapping and the current use of the keywords is confusing. We are 

thankful for the suggestion of the schematic figure to clarify the input parameters (see 1.1 new Figure 

1). 

Additionally, multiple uses of “input” have been replaced by “parameter” (see mark-up document). 

 

1.8 
”Based on  previous  experiments...”  I think it would be good to add some more information about 

the selection of the 8 parameters to be subject to SA. Mentioning ”previous  experiments”  is  too  

vague. How many other parameters are there in the model that are held fixed? What did these 

previous experiments show that made you choose those 8 in particular? Also, if the SA is conducted 

by varying the parameter multipliers, then the choice of the baseline parameter values that are 

perturbed by the multipliers may be critical. How were this baseline values estimated? 

The section was extended with the following to answer these questions (P. 5 L. 70 ff): 

“Previous experiments (de Graaf et al., 2015; Reinecke et al., 2018) showed the importance of 

hydraulic conductivity, groundwater recharge, and surface water body elevation to the simulated 

hydraulic head. 

Together with the highly uncertain surface water body and ocean conductance we thus selected 

eight model parameters presented as multipliers inTable 1. 

Throughout the analysis the following parameters including the convergence criterion and spatial 

resolution stay fixed: global mean sea-level, bottom elevation of surface water bodies and their 

width, length.   

The baseline parameters are assumed equally to Reinecke et al. (2018). 

Hydraulic conductivity is based on a global data set (2.1.2), the conductance is calculated as 

previously shown (2.1.3), and the groundwater recharge baseline is equally to the mean annual 

values calculated by WaterGAP (2.1.1).” 



1.9 
P. 2 L. 30: “the Morris method does not provide the variance decomposition ”The sentence suggests 

that not providing the variance decomposition is a problem perse, but I do not understand why that 

should be the case. Many global SA methods (e.g.regional SA, density-based methods, etc.)  do not 

provide variance decomposition as they define output sensitivity based on other principles than  ” 

contribution  to  outputvariance” - yet they can perfectly fit their purpose. So I think this sentence is 

misleadingand should be revised or removed. 

Was removed. 

1.10 
P. 6 L. 10-15:  I suppose you must have used the (most common and most sensible) implementation 

of the Morris method where sensitivity∗ is given by the mean absolute value of the Elementary 

Effects. Still neither Eq. (6) or the text mention using absolute values. Please clarify. 

Yes, this is described in Line 15 ff. directly below equation (6): “The total effect of the ith parameter is 

computed as the absolute mean of the EEs and is denoted as mu* (Campolongo et al. 2007.)” 

We corrected the missing “absolute mean”. 

1.11 
P. 15: ”The number of clusters was determined based on the feasible number of model evaluations” 

P. 8 L. 2: ”With seven parameters per GHRU plus the ocean boundary, 10,000 basepoints were 

sampled in total (Campolongo et al., 2007) and optimized using Ruano etal. (2012). The experiment 

resulted in 1848 simulations” 

This is very confusing. How is the number of clusters (n) related to the total number of model 

evaluations (N)?  I would think: N= r × (n×8 + 1), where 8 is the number of parameters in Table 1 

(hence n×6 gives the total number of multipliers to be sampled in the application of the Morris 

method) and r is the number of Elementary Effects for the Morris method.  However, as the authors 

use n=6 clusters and N= 1848 model evaluations, I cannot figure out a feasible value for r!   This 

needs to be explained more clearly. Also, I do not understand what the term ”base points” refer to? 

It clearly cannot be the number of points from with OAT perturbations are applied, so what is it? 

 

We agree that the number of simulations need a more extensive explanation. The number of 

basepoints refers to the number of initial trajectories that are randomly sampled to select an 

optimized number of trajectories from as suggested by Campolongo et al. 2007 and Ruano et al 2012. 

The paragraph reads now (P. 6 L. 50 ff): 

“With seven parameters per GHRU plus the ocean boundary, 10 000 initial trajectories were sampled 

in total (Campolongo et al., 2007) and optimized using Ruano et al. (2012) resulting in 1848 

optimized trajectories for each parameter. 

Random sampling might result in non-optimal coverage of the input space; thus a high number of 

trajectories is sampled first and only trajectories with a maximized spread are selected (Ruano et al., 

2012). 

For 7 parameters (without ocean boundary), n GHRUs (6 in this paper) we get a total number of 

parameters k=42+1 where +1 stands for the ocean boundary, which is not varied by GHRU. 



We assume 42 for the number of optimized trajectories (Ruano et al., 2012) resulting in N = r(k+1) 

(Campolongo et al., 2007), where N is the total number of simulation (1848).” 

 

1.12 Typos and grammar 

1.12.1 
P. 1 L. 4:  ”the reliability of model outputs is limited by a lack of data as well as model assumptions 

required due to the necessarily coarse spatial resolution.” Something not right with this sentence, 

maybe better:  ”the reliability of model outputs is limited by lack of data and by uncertain model 

assumptions that are necessary due to the coarse spatial resolution.” 

Now reads (P. 1 L. 6): 

“However, the reliability of model outputs is limited by a lack of data and by uncertain model 

assumptions that are necessary due to the coarse spatial resolution.” 

 

1.12.2 
P. 1 L. 14: ”numerical difficulties”.  Unclear.  Is it a problem of numerical instability?  Or what else? 

”difficulties” is not a technical term. 

Now reads “instability” (P. 1 L. 28). 

1.12.3 
P. 2 L. 26:  ”an application of ....  with the Global ...”  should be ”an application of ...  to the Global ...” 

Corrected. 

1.12.4 
P. 2 L. 29: ”sensitivity parameters” should be ”sensitive parameters” 

Corrected. 

1.12.5 
P. 3 L. 15 and L. 23: ”to be coupled with WGHM”....  ”computed by WaterGAP 2.2c”.  I suppose 

WGHM and WaterGAP 2.2c are the same model, if so please use one name, otherwise explain the 

difference. 

For clarification only WaterGAP is used now. 

1.12.6 
P.  3  L.  25:  ”to  include  it  into  a  stead-state  model  represents  a  natural  equilibrium ”Something 

missing/wrong in this sentence, please revise. 

Now reads (P. 3 L. 22):  

“Human groundwater abstraction was not taken into account; not because it is not computed by 

WaterGAP but rather because there is no meaningful way to include it into a steady-state model 

which represents an equilibrium (abstractions do not equilibrize).” 

1.12.7 
P. 3 L. 26: ”shown in Fig. 2(a)”. Figure 2 is cited before Figure 1, which is odd. Maybe change the 

Figure order? 



Has been moved and is now new Fig.2 (because auf new additional Fig. 1). 

 

1.12.8 
P. 4 L. 16-17: ”The in- and outflows are described similar to MODFLOW as flows from the cell Q, thus 

losing and gaining surface water bodies (lakes, wetlands and rivers)are described as” Very unclear. 

”from the cell Q” seems to suggest that ”Q” is the index of the cell, which from the subsequent 

equation clearly is not. Also, it is unclear here if the spatial unit of interest is a grid cell (as in the text) 

or a surface water body (as in the equation) - if there is a difference between the two?  Last, the 

subject of the sentence changes from ”flows” to ”surface water bodies” but the subsequent equation 

defines (again) flows (Qswb) not water bodies.  So maybe rephrase as ”gains and losses from surface 

water bodies (lakes, wetlands and rivers) are described as” (?) 

Q is not the index but rather the symbol for the multiple flows a cell can contain (e.g. Q_wetland, 

Q_river etc.). 

Now reads (P. 3 L. 65ff): 

“The in- and outflows Q are described similar to MODFLOW as flows from the cell: a flow from the 

cell to a surface water body is negative and positive if the opposite is true. 

Thus gains and losses from surface water bodies (lakes, wetlands and rivers) are described as” 

 

1.12.9 
P. 4 L. 21: ”For lakes (including reservoirs) Clak and wetlands Cwet, Cswb is estimated...”.  Unclear 

what is the difference between one variable and another.  Maybe the authors mean:  ”  For lakes 

(including reservoirs) and wetlands, the conductances Clak and Cwet are estimated ...” 

Now reads (P. 3 L. 77 ff): 

“For lakes (including reservoirs) and wetlands, the conductances C_lak and C_wet are estimated 

based on K of the aquifer and surface water body area divided by a static thickness of 5 m.” 

 

1.12.10 
P. 4 L. 15-30: ”To account for that we assume ... the river is the sink for all the inflow to the grid cell 

... that is not transported ...”. Very long, convoluted sentences that can be hardly followed - please 

revised. 

Now reads (P. 3 L. 84-96): 

“To account for that we assume for global wetlands (C_gl.wet) that only eighty percent of their 

maximum extent is reached in the steady-state. 

Global wetlands are defined as wetlands that are recharged by streamflow coming from an upstream 

5' grid cell in WaterGAP (Reinecke et al., 2018). 

For gaining rivers, the conductance is quantified individually for each grid cell following an approach 

proposed by Miguez-Macho et al. (2007). 



According to Miguez-Macho et al. (2007), the river conductance C_riv in a steady-state groundwater 

model needs to be set in a way that the river is the sink for all the inflow to the grid cell (R and inflow 

from neighbouring cells) that is not transported laterally to neighbouring cells.” 

1.12.11 
P. 5 L. 22: ”the sensitivity of .... caused by variability” should be: ”the sensitivity of ... to the 

variability” 

Corrected. 

1.12.12 
P. 5 L. 23: ”The results are then compared to the variability in parameters of the MonteCarlo 

experiments.”   Unclear.   I suppose what can be compared is the variations of outputs, not the 

variability of inputs. Hence the sentence should sound something like: ”The results are then 

compared to the effects of parameter variability, as quantified by the Monte Carlo experiments.” 

Now reads (P. 5 L. 19): 

“The results are then compared to the effects of parameter variability, as quantified by the Monte 

Carlo experiments.” 

1.12.13 
P. 6 L. 5: ”(Sect. 2)”. Circular reference: this is actually Section 2! 

Removed. 

1.12.14 
P. 6 L. 10:  ”model evaluation responses”.  Unnecessarily confusing.  I would just say: ”model 

executions”. 

Corrected. 

1.12.15 
P. 6 L. 19:  ”To achieve that, μ∗ and σi are presented as ranked parameters”.  This is not 

understandable.  What do the authors mean by ”ranked parameters”? Please clarify. 

Now reads (P. 5 64 ff): 

“To achieve that, mu* and sigma_i are presented in this study in ranks. 

Thus, values for all parameters are ranked from highest to lowest, and the parameter with the 

highest value is selected as the most influential parameter. 

The parameter with the second highest value (rank 2) is the second most influential parameter and 

so on.” 

1.12.16 
P. 6 L. 22:  ”we identified eight uncertain model parameters presented as multipliers in Table 1”.  

Again, unclear.  I guess this means that eight uncertain parameters were selected for the SA, and the 

analysis was performed by multiplying each parameter by a random multiplier (sampled from ranges 

specified in Table 1). If so, please clarify. 

Now reads (P. 5 L. 76): 

“The analysis was conducted my using randomly sampled multipliers in the ranges presented in Table 

1.” 



 

1.12.17 
P. 7 L. 6: ”(Sect. 2.1.4)” Possibly wrong reference? E is defined in Sec. 2.1.3. 

h_swb is defined in 2.1.3 but more closely discussed in 2.1.4. 

We added 1.3 as reference as well. 

1.12.18 
P. 10 L. 3:  ”3.2 Monte Carlo experiments”.  I find it a bit confusing that the results re-ported here are 

sometimes referred to as ”Monte Carlo experiments”, some other times as ”Morris method”. I would 

choose one term (possibly the latter, as it is more precise) and stick to it. 

We decided to refer to the setup as Monte Carlo experiments because the analysis also contains 

results that are only connected to the Morris method through its random nature e.g. the percentage 

of gaining and losing rivers. We wanted to emphasise that through the sensitivity analysis additional 

large amounts of data are created that can be analysed in the context of a classical Monte Carlo 

setup. 

 

1.12.19 
P. 10 L. 11:  ”the groundwater equation”:  which equation?  please clarify. 

Now refers to new Eq 1. 

1.12.20 
P. 11 L. 20:”... are determined by h in relation to Eswb.” Vague. Explain what the relationship is. 

Added additional sentence (P. 9 L. 4): 

“When h drops below E_swb water is lost to the aquifer (Eq. (5))” 

1.12.21 
P. 11 L. 21: ”the the surface”: remove one ”the” 

Removed. 

1.12.22 
P. 11 L. 22: ”independent of”: should be ”independently of” 

Corrected. 

1.12.23 
P. 17 L. 3: ”as most sensitive” should be ”is most sensitive” 

Corrected. 

1.12.24 
P. 18 L. 15: ”grid cells with either zero sensitivity value” This is strange. If the sensitivity estimate is 

exactly zero, that should suggest there must be some calculation error. 

Thank you for that important note. We intended to say statistically zero i.e. and overlap of the CI with 

zero. 

The sentence has been changed and now reads (P. 13 L. 37 ff): 



“However, the large number of grid cells with either statistically zero sensitivity values (overlapping 

CI with zero) or unreliable results limit the relevance and applicability of the study results.” 

1.12.25 
P. 18 L. 22:  ”the evaluated model is a numerical model and thus behaves differently for different 

parameterizations” This sentence does not mean much. Every model subject to SA is a numerical 

model and all models behave differently if one changes the parameter values. Please clarify what you 

mean to say here. 

Every model subjected to SA is a mathematical model. In our view a numerical model is a model that 

uses some sort of numerical time-stepping. We understand that the current phrasing might be 

misleading. 

Now reads (P. 13 L. 52): 

“(1) the evaluated model approximates a differential equation and can show non-linear behaviour for 

different parameterizations,” 

 

Response Referee #2 
 

2.1 
Page 2 Line 22 “To the knowledge of the authors”:  What about Widen-Nilsson et al.(2007)? 

The paper of Wilden-Nilsson et al. (2007) presents a global runoff model with different parameter 

sets and use the model realisations in a quasi-calibration approach. The sensitivity analysis was not 

carried out by applying a global sensitivity method and the paper does not show any sensitivities 

values. 

On the other hand, we agree that the current sentence might be misleading in what we want to 

convey. 

The manuscript has been changed and now reads (P. 2 L. 31): 

“To the knowledge of the authors, the only other study that applied a global sensitivity analysis to a 

comparably complex global model is Chaney et al. (2015). “ 

 

2.2 
Page 3 Line 8 “Elementary Effects (EE)”: To improve readability, this term needs a briefexplanation. 

Now reads (P. 2 L. 71): 

“Elementary Effects (EE), a metric of sensitivity, are calculated and their means and variances ranked 

to determine global spatial distributions of parameter sensitivities and interactions.” 

 

2.3 
Page 3 Line 18 “two vertical layers with a thickness of 100m”:  Do you mean totally 200m? What does 

each layer represent? 



Yes in total the two layers are 200 m in thickness. Each layer represents the first 100 and 200 m of the 

aquifer. 

Now reads (P. 2 L. 95): 

“It computes lateral and vertical groundwater flows as well as surface water exchanges for all land 

areas of the globe except Antarctica on a resolution of 5' with two vertical layers with a thickness of 

each 100 m representing the aquifer.” 

2.4 
Page 4 Line 2 “exp(-50mf-1)-1”: What is m? 

The SI unit meter. 

2.5 
Page 4 Line 16 “G3M is a conceptual model with one river in every 5’ grid cell”: What is a “river” in a 

groundwater model?  Perhaps this sentence would be better read ‘The interaction of groundwater 

and surface water bodies (lakes,  wetlands,  and rivers) is conceptualized in G3M as follows. 

Has been removed for clarity. 

2.6 
Page  4 Equation  1:  h  must  be defined.   A simple schematic diagram is needed to explain h, Bswb, 

hswb, L, and W. Actually I still cannot clearly figure out the relationship of these terms. 

See 1.1. 

2.7 
Page 4 Line 24 “a static thickness of 5m”: Do you mean the difference between hswb and Bswb in 

Equation 1 is always 5m? 

Yes (for lakes and wetlands). 

Now reads (P. 3 L. 77): 

“For lakes (including reservoirs) and wetlands, the conductances C_lak and C_wet are estimated 

based on K of the aquifer and surface water body area divided by a static thickness of 5 m (h_swb - 

B_swb = 5 m).” 

 

2.8 
Page 5 Line 1 “Eswb and hswb,riv”: Define these terms. 

(Lines numbers refer to initial document) 

E_swb is defined in Line 1 and 2: “..(E_swb = h_swb,riv ..” 

h_riv is defined in Line 1 “… and h_riv the head of the river..”. 

h_swb is defined on page 4 line 19: “where h_swb is the head of the surface water body. 

 

2.9 
Page 5 Line 2 “These conductance equations are inherently empirical”: Unclear. Equations 1-3 show 

physical relationships (although quite simplified). What are the “empirical” aspects? 



The empirical aspects are that the connection between a groundwater and surface water is a three-

dimensional flow process which is being simplified to a one-dimensional flow linked through a single 

conductance parameter.   

Now reads (P. 4 L. 3): 

“These conductance equations are inherently empirical as they use a one-dimensional flow equation 
to represent the three-dimensional flow process that occurs between groundwater and surface 
water.” 
 

2.10 
Page 5 Equation 4 “haq”: Define this term. 

Now reads h. 

 

2.11 
Page 6 Line 10 “Elementary Effect (EE) for a given value of X for the ith model input”: What are the 

value and the input? Because this is a parameter sensitivity test, I thought X was parameter, but it 

didn’t work.  Anyway, the terms ‘value’ and ‘input’ are highly confusing to me. 

Now reads (P. 5 L. 45): 

“Based on these model executions, the Morris method calculates an Elementary Effect (EE) d for 

every trajectory of a i-th parameter (in this study parameter multipliers). 

 

2.12 
Page 6 Line 14 “y(X) the model output.”: What are outputs? For example, the ground-water level (h) 

is an output? 

Now reads (P. 5 L. 51): 

“..y(X) the model output e.g. in the presented model h or Q_swb.” 

 

2.13 
Page 6 Line 14 “The total effect of ith parameters”: What does “total” mean here? Here the term 

“parameters” appears in addition to “values” and “inputs”. 

See 2.11 and now reads (P. 5 L. 52): “The total effect of the ith parameter is computed as the 

absolute mean of the EEs for all trajectories and is denoted as mu* (Campolongo et al., 2007).” 

 

2.14 
Page 6 Line 24 “Eswb in the model is higher than the range used in this study”: Indeed it looks 

extremely small in Table 1. 

Yes this is why the rest of the sentence states: “.., but the sampling range was restricted because the 

parameter is especially important for model convergence.” 

 



2.15 
Page 8 Line 3 “optimized using Ruano et al.  (2012)”:  Optimized to what?  What was the objective 

function? 

The objective function is the maximized spread of trajectories. See 1.11. 

Added text (P. 6 L. 54 ff): “Random sampling might result in non-optimal coverage of the input space; 

thus a high number of trajectories is sampled first and only trajectories with a maximized spread are 

selected (Ruano et al., 2012).” 

 

2.16 
Page  9  Line  30  “at  boundaries  of  large  areas  where  K  changed”:  What  are  “large areas”? Are 

there any “small areas”? 

Now reads (P. 8 L. 9): 

“Increased sensitivity indexes can be observed at boundaries of areas of large spatial extent where 

the initial K was equal, whereas the h changes inside that area are relatively small (e.g. Arabian 

Peninsula).” 

 

2.17 
Page 10 Line 12 “latter error”:  Do you mean the last error (4) or the latter two errors (3-4)? 

Mainly 4. This has been clarified and now reads (P. 8 L. 37): 

“The latter error (4) can be observed in regions of the model where a strong non-linear relation may 

produce solutions that fit the convergence criterion but should be considered non-valid, e.g., 

because of a mass-balance that is unacceptably inprecise. 

 

2.18 
Page 11 Line 4“the multiplier of Eswb produces the highest shifts in regions with high elevation that 

might cause a switch from gaining to losing conditions and vice versa”: Hard to read 

Now reads (P. 8 53 ff):  

“These are expected to have a high sensitivity to parameter changes as the multiplier of E_swb 

produces the highest shifts in regions with high elevation. 

Large changes in E_swb might cause a switch from gaining to losing conditions and vice versa 

(discussed in Sect.3.2.2).” 

2.19 
Page 11 Line 7 “these combinations may yield conditions that are exceptionally challenging for the 

numerical solver.”:  Hard to understand what the authors meant here. Clarify the logic. 

Now reads (P. 8 L. 59): 

“These combinations may yield conditions that are exceptionally challenging for the numerical solver. 



Switches between the two conditions constitute a non-linearity in the equation which might require 

a smaller temporal step-size to be solved. 

In a nutshell, if an iteration leads to a gaining condition and the next to a losing condition, the switch 

renders the approximated heads of the preceding iterations invalid as the equation changed. 

In the worst case this can lead to an infinite switch between the two conditions without finding the 

correct solution.” 

2.20 
Page 11Line 22 “independent of the applied parameter changes”: Why is this independent? I am 

confused because the change in parameters should be the only source of difference in sensitivity 

simulations. 

Regions with a higher percentage of simulations that show losing conditions can be considered to be 

not influenced by the applied parameter changes. Only a few of the parameter changes caused them 

not to be in a losing condition. 

 

2.21 
Page 12 Line 1 “lowest agreement”: Do you mean the lowest percentage (0-1%) or the lowest 

agreement (50%)? 

The sentence refers to Fig 3. Which shows an absolute coefficient of variation which is 0-4.5 %. Thus 

the lowest agreement of model realizations and the highest deviation in h refer to the highest 

percentage in this figure. 

 

2.22 
Page 15 Figure 6 “Parameters are ranked from top to bottom”:  Only three panels for eight 

parameters. What does “bottom” mean? The third or the eighth? 

The maps show all 8 parameters for the first 3 ranks. To clarify figure now reads: 

“The upper maps show the first rank, the middle the second, and the bottom the last rank by mu* 

values.” 

2.23 
Page 18 Line 24 “a vector norm of residuals”: Explain what it means. 

Now reads (P. 13 L. 58): 

“.. based on a vector norm of residuals (metric of changes of the solution inside the conjugate 

gradient approach) and maximum h change between iterations and do not contain an automated 

check for a reasonable mass balance.” 

 

2.24 
Page 19 Figure 9 “If a parameter is not present the mean sensitivity for that GHRU was close to zero”:  

Because the axes are logarithmic,  “close to zero” sounds a bit odd. Consider rephrasing the overall 

caption because this figure is particularly hard to understand. 

See also 1.12.24 



Sentence in caption now reads: 

“If a parameter is not present the mean sensitivity for that GHRU was close to zero (overlapping CI 

with zero).” 
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Abstract. In global hydrological models, groundwater stor-
ages and flows are generally simulated by linear reservoir
models. Recently, the first global gradient-based groundwa-
ter models were developed in order to improve the represen-
tation of groundwater-surface water interactions, capillary5

rise, lateral flows and human water use impacts. However,
the reliability of model outputs is limited by a lack of data as
well as model assumptions required

:::
and

:::
by

::::::::
uncertain

:::::
model

::::::::::
assumptions

:::
that

:::
are

:::::::::
necessary due to the necessarily coarse

spatial resolution. The impact of data quality is presented by10

showing the sensitivity of a groundwater model to changes
in the only available global hydraulic conductivity data-set.
To better understand the sensitivity of model output to un-
certain spatially distributed parameter inputs

:::::::::
parameters, we

present the first application of a global sensitivity method for15

a global-scale groundwater model using nearly 2000 steady-
state model runs of the global gradient-based groundwater
model G3M. By applying the Morris method in a novel do-
main decomposition approach that identifies global hydro-
logical response units, spatially distributed parameter sen-20

sitivities are determined for a computationally expensive
model. Results indicate that globally simulated hydraulic
heads are equally sensitive to hydraulic conductivity, ground-
water recharge and surface water body elevation, though pa-
rameter sensitivities vary regionally. For large areas of the25

globe, rivers are simulated to be either losing or gaining,
depending on the parameter combination, indicating a high
uncertainty of simulating the direction of flow between the
two compartments. Mountainous and dry regions show a

high variance in simulated head due to numerical difficulties 30

:::::::::
instabilities

:
of the model, limiting the reliability of computed

sensitivities in these regions. This instability is likely caused
by the uncertainty in surface water body elevation. We con-
clude that maps of spatially distributed sensitivities can help
to understand complex behaviour of models that incorporate 35

data with varying spatial uncertainties. The findings support
the selection of possible calibration parameters and help to
anticipate challenges for a transient coupling of the model.

1 Introduction

Global groundwater dynamics have significantly changed 40

due to human withdrawals, and are projected to continue
due to climate change (Taylor et al., 2013). Groundwater
withdrawals have led to lowered water tables, decreased
base flows, and groundwater depletion around the globe
(Konikow, 2011; Scanlon et al., 2012; Wada et al., 2012; 45

Döll et al., 2014; Wada, 2016). To represent groundwater-
surface water body interactions, lateral and vertical flows,
and human water use impacts on head dynamics, it is nec-
essary to simulate the depth and temporal variation of the
groundwater table. Global-scale hydrological models have 50

recently moved to include these processes by implementing a
gradient-based groundwater model approach (de Graaf et al.,
2015; Reinecke et al., 2018).

:::
This

:::::
study

::
is
::::::

based
:::
on

::::
G3M

::::::::::::::::::::::
(Reinecke et al., 2018) one

::
of

::::
the

:::
two

::::::
global

:::::::::::
groundwater
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::::::
models

:::::::
capable

::
of

::::::::::
calculating

::::::::
hydraulic

:::::
head

::::
and

::::::
surface

::::
water

:::::
body

:::::::::
interaction

:::
on

:
a
::::::
global

:::::
scale.

:
However, the lack

of available input parameter data and the necessary concep-
tual assumptions due to the coarse spatial resolution limit the
reliability of model output. These substantial uncertainties5

suggest an opportunity for diagnostic methods to prioritize
efforts in data collection and parameter estimation.

Sensitivity analysis is a powerful tool to assess how un-
certainty in model inputs

:::::::::
parameters

:
affects model outcome,

and can provide insights about how the interactions between10

parameters influence the model results (Saltelli et al., 2008).
Sensitivity methods can be separated into two classes: local
and global methods. Local methods compute partial deriva-
tives of the output with respect to an input factor at a fixed
point in the input space. By contrast, global methods explore15

the full input space, though at higher computational costs
(Pianosi et al., 2016). The large number of model evaluations
required can render global methods unfeasible for computa-
tionally demanding models, though increased computational
resources have led to more widespread application e.g.20

(Herman et al., 2013b, a; Ghasemizade et al., 2017)
::::::::::::::::::::::::::::::::::::::::::
(Herman et al., 2013a, b; Ghasemizade et al., 2017).

For this reason, existing studies of global models either
focus on exploring uncertainties by running their model with
a limited set of different inputs for a quasi local sensitivity
analysis (Wada et al., 2014; Müller Schmied et al., 2014,25

2016; Koirala et al., 2018) or applying computationally
inexpensive methods based on a limited set of model evalua-
tions (Schumacher et al., 2015). For example, de Graaf et al.
(2015, 2017) determined the coefficient of variation for head
results in a global groundwater model with 1000 model runs30

evaluating the impact of varying aquifer thickness, saturated
conductivity and groundwater recharge. To the knowledge
of the authors, Chaney et al. (2015) is the only study of a
global (land surface) model which carried out an extensive
global

::
the

::::
only

:::::
other

:::::
study

::::
that

::::::
applied

::
a
::::::
global sensitivity35

analysis to assess how model parameter uncertainty affects
prediction of hydrologic extremes

:
a
::::::::::
comparably

::::::::
complex

:::::
global

:::::
model

::
is
:::::::::::::::::
Chaney et al. (2015). An overview of the ap-

plication of different sensitvity
::::::::
sensitivity

:
analysis methods

for hydrological models can be found in Song et al. (2015);40

Pianosi et al. (2016).
We

::
To

::::::::
address

::::
the

::::::
issue

::::
of

::::::::::
conducting

:::::::
global

::::::::
sensitivity

::::::::
analysis

:::
for

::::::::::::::
computationally

::::::::
complex

:::::::
models

::
we

::::::::::
introduce

::::
the

:::::::::
concept

:::
of

::::::::
Global

::::::::::::
Hydrological

::::::::
Response

:::::
Units

:::::::::
(GHRUs)

::::::
(Sect.

::::::
2.2.3)

:::::::
(similar

:::
to

::::
e.g.45

:::::::::::::::::::
Hartmann et al. (2015)).

::::::
Using

:::
the

::::::::
GHRUs

:::
we

:
present an

application of the well-established Morris method (Morris,
1991) with

:
to

::
the Global Gradient-based Groundwater

Model G3M (Reinecke et al., 2018). The Morris method has
been successfully applied to a variety of models, ranging50

from hydrology (Zhan et al., 2013) to ecology models
(Cariboni et al., 2007). It requires significantly fewer model
runs, compared to other global methods, to provide a mean-
ingful ranking of sensitivity

:::::::
sensitive

:
parameters (Herman

et al., 2013a) enabling the exploration of computationally55

demanding models. One drawback is that the Morris method
does not provide the variance decomposition obtained with
variance-based measures like Sobol (1993).

G3M uses input from, and it is intended to be coupled and
integrated into, the global hydrological model WaterGAP 60

Global Hydrology Model (WGHM) (Döll et al., 2014). This
study investigates the sensitivity of steady-state hydraulic
heads and exchange flows between groundwater and surface
water to variations in main model inputs

:::::::::
parameters

:
(e.g.

groundwater recharge and other model parameters like the 65

riverbed conductance).
Sensitivities of the model are explored in three steps: (1)

To understand the impact of improved input data, in particu-
lar hydraulic conductivity, we investigate the changes in sim-
ulated hydraulic head that result from changing the hydraulic 70

conductivity data from the GLHYMPS 1.0 dataset (Gleeson
et al., 2014) to 2.0 (Huscroft et al., 2018). (2) Based on prior
experiments (de Graaf et al., 2015; Reinecke et al., 2018)
eight parameters are selected for a Monte Carlo experiment
to investigate sensitivities of simulated hydraulic head and 75

groundwater-surface water interactions. The parameters are
sampled with a newly developed global region-based sam-
pling strategy and build the framework for the (3) Morris
analysis. Elementary Effects (EE),

::
a
:::::
metric

::
of
:::::::::
sensitivity,

:
are

calculated and their means and variances ranked to determine 80

global spatial distributions of parameter sensitivities and in-
teractions. The derived global maps show, for the first time,
the sensitivity and parameter interactions of simulated hy-
draulic head and groundwater-surface water flows in the sim-
ulated steady-state global groundwater system to variations 85

in these uncertain inputs
::::::::
uncertain

::::::::::
parameters.

:::::::::
Foremost,

::::
these

:::::
maps

:::::
help

::::::
future

:::::::::
calibration

:::::::
efforts

:::
by

:::::::::
identifying

::
the

:::::
most

::::::::::
influential

:::::::::
parameters

::::
and

:::::::
answer

::::
the

:::::::
question

:
if
:::

the
::::::::::

calibration
::::::
should

:::::
focus

:::
on

::::::::
different

:::::::::
parameters

:::
for

:::::::
different

::::::
regions

:::::::
helping

:::
to

:::::::::
understand

:::::::
regional

:::::::::
deviations 90

::::
from

::::::::::::
observations.

:::::::::::
Additionally,

:::::
they

::::::
guide

::::
the

::::::
further

::::::::::
development

:::
of

::::
the

::::::
model

:::::::::
especially

:::
in

:::::::
respect

:::
to

:::
the

:::::::
coupling

::::::
efforts

::::::::::
highlighting

:::::
which

:::::::::
parameters

::::
will

:::::::
influence

::
the

::::::::
coupled

:::::::::
processes

::::
the

::::::
most.

::::::
Lastly,

:::::
they

:::::
show

:::
in

:::::
which

::::::
regions

::::::
global

:::::::::::
groundwater

::::::
models

:::::
might

::::::
benefit

:::
the 95

::::
most

:::::
from

::::::
efforts

::
in

:::::::::
improving

::::::
global

:::::::
datasets

::::
like

:::::
global

::::::::::
conductivity

:::::
maps.

2 Methodology and Data

2.1 The model G3M

G3M (Reinecke et al., 2018) is a global groundwater model 100

intended to be coupled with WGHM
:::::::::
WaterGAP (Döll et al.,

2003, 2012, 2014; Müller Schmied et al., 2014) and is
based on the Open Source groundwater modelling frame-
work G3M-f1(Reinecke, 2018). It computes lateral and verti-
cal groundwater flows as well as surface water exchanges for 105

1Available on globalgroundwatermodel.org

globalgroundwatermodel.org
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all land areas of the globe except Antarctica
::
and

:::::::::
Greenland

on a resolution of 5′ with two vertical layers with a thick-
ness of

::::
each 100 m

::::::::::
representing

:::
the

::::::
aquifer.

::::
The

::::::::::
groundwater

::::
flow

:::::::
between

::::
cells

::
is

::::::::
computed

::
as

:

∂

∂x

(
Kx

∂h

∂x

)
+

∂

∂y

(
Ky

∂h

∂y

)
+

∂

∂z

(
Kz

∂h

∂z

)
::::::::::::::::::::::::::::::::::::::

(1)5

+
Q

∆x∆y∆z
= Ss

∂h

∂t
:::::::::::::::::

(2)

:::::
where

::::::
Kx,y,z [LT−1]

:
is

:::
the

::::::::
hydraulic

::::::::::
conductivity

:::::
along

:::
the

:::
x,y,

::::
and

:
z
::::

axis
::::::::

between
:::
the

:::::
cells

::::
with

::::
size

:::::::::
∆x∆y∆z,

:::
Ss

[L−1]
:::
the

:::::::
specific

::::::
storage,

::
h
:::
the

:::::::::
hydraulic

::::
head

:
[L]

:
,
:::
and

::
Q

[L3T−1]
::
the

:::
in-

:::
and

::::::::
outflows

::
of

:::
the

::::
cells

::
to

::
or

::::
from

:::::::
external10

::::::
sources

:::
e.g.

:::::::::::
groundwater

:::::::
recharge

:::
(R

:::
and

::::::
surface

:::::
water

::::
body

::::
flows

::::::
(Qswb)::::

(see
::::
also

::::::::::::::::::::::::::
Reinecke et al. (2018)[Eq.(1,2)]). The

evaluation presented in this study is based on a steady-state
variant of the model representing a quasi-natural equilib-
rium state, not taking into account human interference

:
(a

:::
full15

:::::::::
description

::
of

:::
the

::::::::::
steady-state

::::::
model

:::
and

::::::::
indented

:::::::
coupling

:::
can

:::
be

:::::
found

:::
in

:::::::::::::::::::
Reinecke et al. (2018)). The stand-alone

steady-state simulations were performed as initial step to
identify the dominant parameters that are also likely impor-
tant for controlling transient groundwater flow.

::
In

:::
the

::::
fully20

::::::
coupled

::::::::
transient

::::::
model

::::
hswb::::

will
::
be

::::::::
changed

::::::::
according

::
to

::::::::
calculated

::::
river

:::::::::
discharge

::::::::
calculated

:::
by

:::::::::
WaterGAP

:::::
(Fig.

::
1).

::::
Qswb::::

will
:::
be

::::
used

::
to

::::::
replace

:::
the

:::::::
current

::::::::
calculated

:::::
flows

::
in

:::::::::
WaterGAP

:::::::
between

::::::::::
groundwater

::::
and

::::::
surface

:::::
water

::::::
bodies.

:

2.1.1 Groundwater recharge25

Groundwater recharge (R) is based on mean annual R com-
puted by WaterGAP 2.2c for the period 1901-2013. Human
groundwater abstraction was not taken into account; not be-
cause it is not computed by WaterGAP but rather because
there is no meaningful way to include it into a steady-state30

model represents a natural equilibrium
:::::
which

:::::::::
represents

::
an

:::::::::
equilibrium

:::::::::::
(abstractions

:::
do

:::
not

:::::::::
equilibrize).

2.1.2 Hydraulic conductivity

Hydraulic conductivity (K) is derived from GLHYMPS 2.0
(Huscroft et al., 2018) (shown in Fig. 2 (a)). The original35

data was gridded to 5′ by using an area-weighted average
and used asK of the upper model layer. For the second layer,
K of the first layer is reduced by an e-folding factor f used
by Fan et al. (2013) (a calibrated parameter based on terrain
slope) assuming that conductivity decreases exponentially40

with depth. Conductivity of the lower layer is calculated by
multiplying the upper layer value by exp(−50mf−1)−1 (Fan
et al., 2013, Eq. 7).

Currently only two datasets, GLHMYPS 1.0 and 2.0
(Gleeson et al., 2014; Huscroft et al., 2018), are available45

and are used by a number of continental and global models
(de Graaf et al., 2015; Maxwell et al., 2015; Keune et al.,

2016; Reinecke et al., 2018). GLHMYPS 1.0 (Gleeson et al.,
2014) is compiled based on the global lithology map GLiM
(Hartmann and Moosdorf, 2012) and data from 92 regional 50

groundwater models and derives permeabilities (for the first
100 m vertically) based on Gleeson et al. (2011), differenti-
ating the sediments into the categories fine-, coarse-grained,
mixed, consolidated, and unconsolidated. Permafrost regions
are assigned a K value of 10−13 ms−1 based on Gruber 55

(2012). Areas of deeply weathered laterite soil (mainly in
tropical regions) are mapped as unconsolidated sediments as
they dominate K (Gleeson et al., 2014).

The global permeability map was further improved with
the development of GLHYMPS 2.0 by Huscroft et al. (2018). 60

A two-layer set up was established in GLHYMPS 2.0 with
the lower layer matching the original GLHYMPS 1.0. For
the upper layer in GLHYMPS 2.0, a global database of un-
consolidated sediments (Börker et al., 2018) was integrated
into GLHYMPS 2.0 resulting in overall slightly increased K 65

(Fig. 2 (a)). The thickness of the upper layer was deduced
from the depth-to-bedrock information available from Soil-
Grid (Hengl et al., 2017). No thickness was assigned to the
lower layer.

2.1.3 Surface water body conductance 70

G3M is a conceptual model with one river in every 5′ grid
cell. The in- and outflows

:
Q

:
are described similar to MOD-

FLOW as flows from the cellQ, thus losing and gaining :

:
a
::::
flow

:::::
from

:::
the

::::
cell

:::
to

::
a

::::::
surface

::::::
water

:::::
body

::
is

:::::::
negative

:::
and

:::::::
positive

::
if

:::
the

::::::::
opposite

::
is

::::
true.

:::::
Thus

:::::
gains

::::
and

:::::
losses 75

::::
from

:
surface water bodies (lakes, wetlands and rivers) are

described as

Qswb =

{
Cswb(hswb−h) h > Bswb

Cswb(hswb−Bswb) h≤Bswb
(3)

where
::
h

:
is
:::
the

:::::::::
simulated

::::::::
hydraulic

:::::
head, hswb is the head of

the surface water body
:
, and Bswb the bottom elevation. The 80

conductanceCswb of the surface water body bed is calculated
as

Cswb =
KLW

hswb−Bswb
(4)

where K is the hydraulic conductivity, L the length and W
the width of the surface water body. For lakes (including 85

reservoirs) Clak and wetlandsCwet, Cswb is
:::
and

::::::::
wetlands,

::
the

::::::::::::
conductances

::::
Clak::::

and
:::::
Cwet :::

are estimated based on K
of the aquifer and surface water body area divided by a static
thickness of 5 m

:::::::::::::::::
(hswb−Bswb = 5m). For a steady-state

simulation the surface water body data shows the maximum 90

spatial extent of wetlands, an extent that is seldom reached
in particular in case of wetlands in dry areas. To account for
that we assume for global (surface water bodies recharged by
streamflow coming from an upstream 5′ grid cell) wetlands
(Cgl.wet) that only eighty percent of their maximum extent 95
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Figure 1.
:::::::::::::
Parameterization

:::
and

::::::
outputs

::
of

::
the

:::::
G3M

:::::
model.

:::::
Where

:::::
Qswb::

is
::
the

::::
flow

::::::
between

:::
the

::::::
aquifer

:::
and

::::::
surface

::::
water

::::::
bodies,

:
h
::
is
:::
the

:::::::
simulated

:::::::
hydraulic

:::::
head,

::
K

:::
the

:::::::
hydraulic

::::::::::
conductivity,

::::
Eswb:::

the
::::::
surface

::::
water

:::::
body

:::::::
elevation,

:::::
Bswb ::

the
::::::

bottom
:::::::
elevation

::
of

:::
the

::::::
surface

::::
water

::::
body,

:::::
Cswb:::

the
:::::::::
conductance

::
of

:::
the

:::::
surface

:::::
water

::::::
bodies,

:::
and

::
R

::
the

::::::::::
groundwater

:::::::
recharge.

::
In

:::
red

::
the

::::::
outputs

:::
and

:::::::::
parameters

:::
that

:::
are

::::::
foremost

::::::::
important

::
for

::::::::
coupling.

Figure 2.
:::::
Impact

::
of

:::::::
hydraulic

::::::::::
conductivity

::::::
datasets

:::::::::
GLHYMPS

:::
1.0

:::
and

:::::::::
GLHYMPS

::::
2.0.

::
(a)

::::::::::
GLHYMPS

::
2.0

:
[
::::
ms−1]

:
,
::
(b)

:::
K

:::::::::
differences,

:::::::
expressed

::
as
::::::::::::
K(GLHYMPS

:::::::::::::::
2.0)/K(GLHYMPS

::::
1.0).

:::::
Blue

:::::::
indicates

:::::
higher

::::::
values

::
in

:::::::::
GLHYMPS

::::
2.0.

:::
(c)

:::::::::::
h(GLHYMPS

:::
2.0)

::::::
minus

::::::::::
h(GLHYMPS

::::
1.0) [

:
m],

:::
(d)

::
the

::::::::
sensitivity

::
of

::
h

::
to

:::::
change

::
in

:::
the

:::::::::
GLHYMPS

:::::
dataset

:::::
based

::
on

:::
Eq.

::
(7)

:::::
(white

:::::::
indicates

:::
that

:::
no

::::
index

:::::
could

::
be

::::::::
calculated).

is reached
:
in

:::
the

::::::::::
steady-state.

::::::
Global

::::::::
wetlands

:::
are

::::::
defined

::
as

:::::::
wetlands

::::
that

:::
are

::::::::
recharged

:::
by

::::::::::
streamflow

::::::
coming

:::::
from

::
an

:::::::
upstream

:::
5′

::::
grid

:::
cell

:::
in

:::::::::
WaterGAP

:::::::::::::::::::
(Reinecke et al., 2018).

For gaining rivers,
:::
the conductance is quantified individu-

ally for each grid cell following an approach proposed by5

Miguez-Macho et al. (2007). The value of river conductance
Criv , according

::::::::
According

:
to Miguez-Macho et al. (2007),

in a groundwater flow
:::
the

:::::
river

:::::::::::
conductance

:::::
Criv ::

in
::

a

:::::::::
steady-state

:::::::::::
groundwater

:
model needs to be set to such a

values that , for steady-state conditions,
::
in

:
a
::::

way
::::

that
:
the10

river is the sink for all the inflow to the grid cell (R and in-
flow from neighbouring cells) that is not transported laterally
to neighbouring cellssuch that .

:

Criv =
R+Qeqlateral

heq −hriv
h > hriv (5)

where Qeqlateral
is the lateral flow based on the equilibrium 15

head heq of Fan et al. (2013) and hriv the head of the river
(Eswb = hswb,riv in Table 1). These conductance equations
are inherently empirical

::
as

::::
they

:::
use

:
a
::::::::::::::
one-dimensional

::::
flow
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:::::::
equation

::
to

::::::::
represent

:::
the

::::::::::::::
three-dimensional

::::
flow

:::::::
process

:::
that

:::::
occurs

::::::::
between

:::::::::::
groundwater

:::
and

:::::::
surface

:::::
water. Future ef-

forts will investigate using approaches appropriate for large
scale models, such as described by Morel-Seytoux et al.
(2017). An extensive description on the chosen equations and5

implications can be found in Reinecke et al. (2018).

2.1.4 Surface water body elevation

The vertical location of surface water bodies has a great im-
pact on model outcome (Reinecke et al., 2018). Their vertical
location hswb is set to the 30th percentile of the 30′′ land sur-10

face elevation values of Fan et al. (2013) per 5′ cell, e.g. the
elevation that is exceeded by 70 % of the thousand

::::::
hundred

30′′ elevation values within one 5′ cell. Bswb is calculated
based on that head elevation with different values for wet-
lands and lakes (Reinecke et al., 2018, Table 1). For rivers,15

Bswb is equal to hriv − 0.349×Qbankfull0.341 (Allen et al.,
1994), where Qbankfull is the bankfull river discharge in the
5′ grid cell (Verzano et al., 2012).

2.1.5 Ocean boundary

The outer boundary condition in the model is described by20

the ocean and uses an equation similar to MODFLOW’s gen-
eral head boundary condition as flow

Qocean = Coc(hocean−haq) (6)

where hocean is the elevation of the ocean water table set 0
m worldwide and Coc the conductance of the boundary con-25

dition set to 10−6m2s−1 based on average K and aquifer
thickness.

2.2 Sensitivity Analysis

2.2.1 Sensitivity of simulated head to choice in
hydraulic conductivity dataset30

Parameterization of aquifer properties based on hydrogeo-
logical data is an important decision in groundwater model-
ing. We first investigate the effect of switching to a newly
available global permeability dataset to explore the sensitiv-
ity of simulated hydraulic head (h ) caused by

::
to

:::
the

:
vari-35

ability in geologic data. The results are then compared to the
variability in parameters of

:::::
effects

::
of
:::::::::

parameter
:::::::::
variability,

::
as

::::::::
quantified

:::
by the Monte Carlo experiments.

GLHYMPS 2.0 (Huscroft et al., 2018) provides an update
of the only available global permeability map (Gleeson et al.,40

2014). To quantify how the new hydraulic conductivity es-
timates change the simulation outcome of the groundwater
model we apply a basic sensitivity method.

S =
h2−h1

h1

K2−K1

K1

(7)

where the sensitivity S of h to a change in K is calculated 45

based on the change in h (h1 is the hydraulic head cal-
culated with GLHYMPS 1.0 and h2 with GLHYMPS 2.0)
and change in K1 and K2 the conductivity based on GL-
HYMPS 1.0 and 2.0, respectively.

2.2.2 Sensitivity of head and surface water body flow to 50

choice in parameters

Along with K, additional parameters influence the model
outcome(Sect. 2). In this study we apply the method of Mor-
ris (Morris, 1991) as a screening method to identify which
parameters are most important for the two main model out- 55

comes, namely h and groundwater-surface water interactions
(Qswb). The Morris method provides a compromise between
accuracy and computational cost in comparison to other
Monte Carlo like methods (Campolongo et al., 2007). Each
model execution represents an individually randomized One 60

Factor At a Time (OAT) experiment, where one parameter
is changed per simulation. Based on these model evaluation
responses

::::::::
executions, the Morris method calculates

::
an

:
Ele-

mentary Effect (EE) d for a given value of X for the
::::
every

::::::::
trajectory

::
of

::
a
:
ith model input

::
-th

:::::::::
parameter

:::
(in

:::
this

:::::
study 65

::::::::
parameter

::::::::::
multipliers).

di(X) =

(
y(X1, . . . ,Xi−1,Xi + ∆,Xi+1, . . . ,Xk)− y(X)

∆

)
(8)

where ∆ is the trajectory step size for the parameter multi-
plier Xi, X is the vector of model parameters multipliers of
size k and y(X) the model output

:::
e.g.

::
in

:::
the

::::::::
presented

:::::
model 70

:
h
::
or

:::::
Qswb. The total effect of the ith parameter is computed

as the
::::::
absolute

:
mean of the EEs

::
for

:::
all

::::::::::
trajectories and is

denoted as µ∗ (Campolongo et al., 2007). The standard de-
viation of EEs (σi) is an aggregated measure of the intensity
of the interactions of the ith parameter with the other pa- 75

rameters, representing the degree of non-linearity in model
response to changes in the ith parameter (Morris, 1991). The
derived metrics µ∗ and σi both are measures of intensity
(higher values are more sensitive/interactive) and do not rep-
resent absolute values of sensitivity. Both can only be inter- 80

preted meaningfully in comparison with values derived for
other parameters.

To achieve that, µ∗ and σi are presented as
:
in

::::
this

::::
study

::
in

rankedparameters. µ∗
:::::
ranks.

:::::
Thus,

:
values for all parameters

are ranked from highest to lowest, and the parameter with the 85

highest value is selected as the most influential parameter.
The parameter with the second highest value (rank 2) is the
second most influential parameter and so on.

Based on previous experiments
(de Graaf et al., 2015; Reinecke et al., 2018) we 90

identified eight uncertain model parameters
presented as multipliers in

:::::::
Previous

::::::::::::
experiments

::::::::::::::::::::::::::::::::::::::::::
(de Graaf et al., 2015; Reinecke et al., 2018) showed

::::::
the
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:::::::::
importance

::
of

::::::::
hydraulic

:::::::::::
conductivity,

:::::::::::
groundwater

:::::::
recharge,

:::
and

::::::
surface

:::::
water

:::::
body

::::::::
elevation

::
to

:::
the

::::::::
simulated

::::::::
hydraulic

::::
head.

:::::::::
Together

::::
with

::::
the

::::::
highly

:::::::::
uncertain

:::::::
surface

:::::
water

::::
body

::::
and

:::::
ocean

:::::::::::
conductance

:::
we

::::
thus

:::::::
selected

:::::
eight

:::::
model

:::::::::
parameters

:::
for

::::
the

:::::::::
sensitivity

::::::::
analysis.

::::
The

:::::::
analysis

::::
was5

::::::::
conducted

::::
my

:::::
using

::::::::
randomly

::::::::
sampled

::::::::::
multipliers

::
in

:::
the

:::::
ranges

::::::::
presented

::
in
:
Table 1.

:::::::::
Throughout

:::::
the

::::::::
analysis

::::
the

::::::::::
following

::::::::::
parameters

::::::::
including

:::
the

:::::::::::
convergence

:::::::
criterion

::::
and

::::::
spatial

:::::::::
resolution

:::
stay

::::::
fixed:

::::::
global

::::::
mean

:::::::::
sea-level,

:::::::
bottom

::::::::
elevation

:::
of10

::::::
surface

:::::
water

::::::
bodies

::::
and

::::
their

::::::
width,

::::::
length.

::::
The

:::::::
baseline

:::::::::
parameters

:::
are

::::::::
assumed

:::::::
equally

::
to

:::::::::::::::::::
Reinecke et al. (2018).

::::::::
Hydraulic

:::::::::::
conductivity

:
is
::::::

based
::
on

::
a

:::::
global

::::
data

:::
set

::::::
(2.1.2),

::
the

:::::::::::
conductance

::
is
:::::::::

calculated
:::
as

:::::::::
previously

::::::
shown

::::::
(2.1.3),

:::
and

:::
the

::::::::::
groundwater

::::::::
recharge

:::::::
baseline

:
is
:::::::
equally

::
to

:::
the

::::
mean15

:::::
annual

::::::
values

:::::::::
calculated

:::
by

::::::::::
WaterGAP

::::::
(2.1.1).

:
Parameter

ranges were chosen to ensure that a high percentage of
model realizations converge numerically. For example, the
uncertainty of Eswb in the model is higher than the ranged
used in this study, but the sampling range was restricted20

because the parameter is especially important for model
convergence. Furthermore, the chosen river conductance
approach uses R as input

::::::::
parameter

:
and includes a nonlinear

threshold between losing and gaining surface water bodies,
which strongly affects numeric stability. As in any global25

sensitivity analysis, the choice of parameter ranges involves
some subjectivity that may influence the ranking of sensitive
parameters in the results.

2.2.3 Global hydrological response units

Even though the number of model evaluations are compara-30

bly less for OAT-based experiments than for All-At-a-Time
(Pianosi et al., 2016), varying every parameter independently
in every spatial grid cell leads to an unfeasible amount of
model runs. On the other hand, the use of global multipliers
that vary a parameter uniformly for all computational cells35

may lead to inconclusive results, as the sensitivity for ev-
ery cell to this change is spread to the whole computational
domain. A possible solution would be to separate the globe
into zones with similar geological characteristics based on
the GLHYMPS dataset, but this may still result in an infea-40

sible number of required simulations. Each simulation takes
about 30 min to 1 h on a commodity computer (more if the
parameters hinder a fast convergence).

To overcome these limitations, we introduce the use of a
Global Hydrological Response Unit (GHRU). Every GHRU45

represents a region of similar characteristics regarding three
characteristics: Eswb (Sect.

:::::
2.1.3,2.1.4), K (Sect. 2.1.2), and

R (Sect. 2.1.1). This does not constitute a zoning approach
often used for calibration in traditional regional groundwater
modelling, only a separation into parameter multipliers. All50

multipliers for a given parameter for all regions are based on
the same random distribution inside a given range of uncer-
tainty for that parameter. Characteristics for each model cell

Figure 3. Map of k-means clustering categories each representing a
GHRU (a). Each color identifies a region where the combination of
all three parameters is similar.

are normalized to [0,1] and used to create a 3d point space
(based on the three characteristics for each model cell). We 55

apply a k-means (Lloyd, 1982) clustering algorithm to iden-
tify these regions.

K-means clustering partitions n points into k clusters
where each point belongs to the cluster with a minimized
pairwise squared distance to the mean in a cluster. Figure 3 60

(a) shows a map of k-means clustering (6 clusters) categories
based on normalized three-dimensional space of Eswb, K,
and R per grid cell.

The number of clusters was determined based on the fea-
sible number of model evaluations. k-means constitutes an 65

unsupervised machine learning approach that builds the re-
quired number of clusters automatically, thus it is necessary
afterwards to examine what main characteristics these clus-
ters represent (shown in Table 2). Characteristics are encoded
as relative values (high (↑), medium (∼), low (↓)) of the three 70

input
::::::::
parameter values based on their mean value per cluster.

These characteristics are used to connect calculated parame-
ter sensitivities to GHRUs when analyzing the results of the
experiment.

2.2.4 Experiment Configuration 75

With seven parameters per GHRU plus the ocean bound-
ary, 10 000 base points

:::::
initial

:::::::::
trajectories

:
were sampled in

total (Campolongo et al., 2007) and optimized using Ru-
ano et al. (2012) .

:::::::
resulting

::
in

:::::
1848

:::::::::
optimized

:::::::::
trajectories

::
for

:::::
each

::::::::::
parameter.

::::::::
Random

:::::::::
sampling

::::::
might

:::::
result

:::
in 80

::::::::::
non-optimal

:::::::
coverage

:::
of

::
the

:::::
input

::::::
space;

:::
thus

::
a
::::
high

::::::
number

::
of

::::::::::
trajectories

::
is

:::::::
sampled

:::::
first

:::
and

:::::
only

::::::::::
trajectories

::::
with

:
a
::::::::::
maximized

::::::
spread

:::
are

:::::::
selected

::::::::::::::::::
(Ruano et al., 2012).

:::
For

:
7
::::::::::
parameters

:::::::
(without

::::::
ocean

::::::::::
boundary),

::
n

:::::::
GHRUs

:::
(6

::
in

:::
this

::::::
paper)

:::
we

:::
get

:
a
::::
total

:::::::
number

:::
of

:::::::::
parameters

:::::::::
k = 42 + 1 85

:::::
where

:::
+1

:::::
stands

:::
for

:::
the

:::::
ocean

:::::::::
boundary,

:::::
which

::
is

:::
not

:::::
varied

::
by

:::::::
GHRU.

::::
We

:::::::
assume

:::
42

:::
for

::::
the

:::::::
number

::
of

:::::::::
optimized

:::::::::
trajectories

::::::::::::::::::::::::
(Ruano et al., 2012) resulting

:::
in

::::::::::::
N = r(k+ 1)

::::::::::::::::::::::
(Campolongo et al., 2007),

:::::
where

:::
N

::
is

:::
the

::::
total

:::::::
number

::
of

::::::::
simulation

:::::::
(1848). 90
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Table 1. Range of parameter multipliers used in the Morris experiments. Each parameter multiplier is sampled in log space
(log10(Multiplier)) with sampling based on Campolongo et al. (2007) and optimized with Ruano et al. (2012).

Parameter P. Unit Multiplier Range Description

K LT−1 LT−1 0.1 - 100 Saturated hydraulic conductivity
Eswb L L 10−0.001 - 100.001 SWB elevation
Clak L2T−1 L2T−1 0.5 - 2 Conductance of lakebed
Cwet L2T−1 L2T−1 0.5 - 2 Conductance of wetland bed
Cgl.wet L2T−1 L2T−1 0.5 - 2 Conductance of global wetland bed
Criv L2T−1 L2T−1 0.5 - 2 Conductance of riverbed
R LT−1 LT−1 0.5 - 2 Groundwater recharge
Coc L2T−1 L2T−1 0.1 - 10 Conductance of the ocean boundary

Coc is equal for all ocean cells

Table 2. Mean values of GHRU characteristics and their summarized description, where ↑ is read as a relatively high value, ∼ as medium,
and ↓ as low; e.g. ↑↑ E indicates a cluster with very high and relatively high (↑) average Eswb. Additionally, the last two columns show the
percentage of cells per GHRU where µ∗ of h and Qswb could be reliably determined (described in Sec

:::
Sect. 3.2.6).

% of reliable µ∗

GHRU µ(Eswb)[mm] µ(K)[m/daym day−1] µ(R)[mm/daymm day−1] GHRU description h Qswb

1 454 10−4 0.15 ∼ E, ↑ K, ∼ R 9.54 % 6.58 %
2 286 10−6 0.15 ↓ E, ∼ K, ∼ R 12.07 % 14.41 %
3 4107 10−6 0.13 ↑↑ E, ∼ K, ↓ R 0.08 % 4.09 %
4 1355 10−6 0.11 ↑ E, ∼ K, ↓ R 3.17 % 17.19 %
5 303 10−6 1.24 ↓ E, ∼ K, ↑ R 31.62 % 26.37 %
6 194 10−4 1.25 ↓ E, ↑ K, ↑ R 29.00 % 14.36 %

The experiment resulted in 1848 simulations with an over-
all runtime of two months on a machine with 20 computa-
tional cores (enabled hyper-threading) and 188 GB RAM.
Each simulation required about 8 GB of RAM and was as-
signed four computational threads while running the simu-5

lations in cohorts of 10 simulations at once. Each simula-
tion was an OAT experiment (an extended explanation of
OAT and other sensitivity experiment setups and methods
can be found in Pianosi et al. (2016)). Changes in parame-
ters were stacked over all experiments. Thus, an experiment10

may have changed R (also affecting Criv for gaining condi-
tions) while containing a Criv multiplier from a previous ex-
periment. Sampling and analysis was implemented with the
Python library SALib (Herman and Usher, 2017). For each
experiment, the model was run until it reached an equilibrium15

state (steady-state model). All other parameters and conver-
gence criteria can be found in Reinecke et al. (2018). If a
simulation failed (6 of 1848 did not converge) the missing
results were substituted randomly from another simulation
within the cohort to preserve the required ordering of param-20

eter samples for the used Python implementation of Morris.
This number is low enough that it does not bias the results in
any significant way (Branger et al., 2015).

A converged simulation does not necessarily constitute
a valid result for all computed cells. Numeric difficulties25

based on the model configuration (due to the selected pa-

rameter multipliers) may lead to cells with calculated h
that are unreasonable.

::::
More

:::::::::::
specifically,

:
a
:::::::::

hydraulic
::::
head

:::
that

::
is
:::

far
::::::

above
:::

or
::::::
below

:::
the

::::
land

:::::::
surface

::::::
and/or

:::::
leads

::
to

:
a
:::::

large
:::::
mass

::::::
budget

:::::
error.

:::
In

:::
the

::::::::
presented

:::::
study

:::::
these 30

:::::::::
simulations

:::
are

:::::::
retained

::
as

::
a

:::::::
removal

:::::
would

::::::
require

::
to

:::::
either

::::
rerun

::::::::::
simulations

::::
with

:
a
::::::::
different

::::::::::
convergence

::::::::
criterion

:::
(see

::::
Sect.

::
4)

:::
and

:::::::
include

:::
this

::
in

:::
the

:::::::
analysis

::
or

:::::::
modify

::
the

::::::
Morris

::::::
method

:::
to

:::::
allow

:::::::
removal

::
of

::::::::::
simulations.

:

Confidence intervals (95 %) are derived via bootstrap- 35

ping using 1000 bootstrap resamples, following Archer et al.
(1997).

3 Results

3.1 Sensitivity to updated GLHMYPS dataset

Global-scale hydrogeological data is limited. Figure 2 (b) 40

shows the change in K between GLHYMPS 1.0 (Gleeson
et al., 2014) and the upper layer of GLHYMPS 2.0 (Huscroft
et al., 2018) where an overall increase can be observed due
to the change in unconsolidated sediments. Although uncon-
solidated sediments cover roughly 50 % of the world’s ter- 45

restrial surface, their extent was underestimated in previous
lithologic maps by half (Börker et al., 2018). The largest in-
crease of K can be found between 50 and 70 ◦N because
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of glacial sediments that were assigned high K values. Dif-
ferent lithologies, e.g. alluvial terrace sediments and glacial
tills, have all been grouped into the hydrolithological cate-
gory of sand. Areas of decreased conductivity are e.g. the
Great Lakes, south of Hudson Bay, and parts of Somalia.5

The area around Hudson Bay was assumed to consist of un-
consolidated sediments in GLHYMPS 1.0 (Gleeson et al.,
2014) and was changed to consolidated. In Somalia, evap-
orites, which are known for low K, were incorporated from
the Global Unconsolidated Sediments Map Database (GUM)10

(Börker et al., 2018). Furthermore, GUM provides a detailed
mapping of loess and loess-like depositions, which were as-
signed lower K values. These regions can be observed to be
the only regions with reduced K (Fig. 2 (b)). Overall, the
increase in unconsolidated sediments is probably the main15

cause for the increased K.
Due to the change in K, the simulated h changes accord-

ingly (Fig. 2(c)). In areas where the K decreased h increased
e.g. eastern North America. Overall heads decreased, espe-
cially in central Russia by up to 10 to 100 m. A slight in-20

crease in head can be observed in areas with no change in
K. This can be either due to changes in groundwater flow
patterns due to the overall increase in K or due to numerical
noise.

Based on these results, a local sensitivity index was cal-25

culated using Eq. (7), shown in Fig. 2 (d). White consti-
tutes areas where either the relative change of K was zero
or the head of the GLHYMPS 1.0 simulation was zero. Ar-
eas with a sensitivity index below (-)0.1 probably consti-
tute variations that can be accounted to numerical differ-30

ences in simulation outcome. Overall, h and K change in
the opposite directions (positive values indicate a change
into the same direction). An overall increase in K has led
to a overall decrease in h as the higher K values are able
to transport more water for a given hydraulic gradient, es-35

pecially along coastlines and mountainous areas. Increased
sensitivity indexes can be observed at boundaries of large
areas where

::::
areas

::
of

:::::
large

::::::
spatial

::::::
extent

::::::
where

:::
the

:::::
initial

K changed
::::
was

:::::
equal, whereas the h changes inside that

area are relatively small (e.g. Arabian Peninsula). In regions40

where an increase in K leads to a decrease in head, an in-
crease of h at the boundary to other hydrolithological struc-
tures can be observed. Areas with changing indexes next to
each other, e.g. in the Sahara, possibly point to a numeri-
cally unstable model region with a general sensitivity to pa-45

rameter changes. GLHYMPS 2.0 represents the best avail-
able global data for hydraulic conductivity, and the results of
this initial experiment indicate a significant sensitivity to up-
dating the model with this new dataset. Impact of hydraulic
conductivity datasets GLHYMPS 1.0 and GLHYMPS 2.0.50

(a) GLHYMPS 2.0 ms−1, (b) K differences, expressed
as K(GLHYMPS 2.0)/K(GLHYMPS 1.0). Blue indicates
higher values in GLHYMPS 2.0. (c) h(GLHYMPS 2.0)
minus h(GLHYMPS 1.0) m, (d) the sensitivity of h to

change in the GLHYMPS dataset based on Eq. (7) (white 55

indicates that no index could be calculated).

3.2 Monte Carlo experiments

To assess the variability of model outputs we used the Monte
Carlo-like OAT experiments to analyze the outcomes of 1848
model realizations. 60

3.2.1 Variability of hydraulic head

The spatial distribution of variability in the main model out-
put h provides insights into model stability and highlights
regions which are most sensitive to parameter changes. Ob-
servable differences between simulations can be caused by: 65

(1) the parameter change of the OAT experiment, (2) the in-
teractive effects due to combinations of parameter changes,
(3) numerical noise (slight variations in outcome due to the
nature of the numerical algorithm or floating point errors
that cannot be attributed to a specific parameter change), 70

and (4) a non-optimal solution of the groundwater equation

:::
(Eq.

::::
(1))

:
even if the convergence criterion is met. The lat-

ter error
:::
(4) can be observed in regions of the model where

a strong non-linear relation may produce solutions that fit
the convergence criterion but should be considered non-valid, 75

e.g., because of a mass-balance that is not in an acceptably
precise

::::::::::
unacceptably

::::::::
inprecise.

Figure 4 shows the absolute coefficient of variation (ACV)
of h per cell over all Monte Carlo experiments. The ACV is
used to make a sound comparison of variance taking into ac- 80

count the mean of the h value per cell (because the mean
might be negative the absolute value is used). Yellow indi-
cates that h changed little (mostly for regions with shallow
groundwater), white to gray values indicate a growing differ-
ence in model results, and red values indicate a high varia- 85

tion of h over all model realizations. The latter areas repre-
sent either very low R (Sahara, Australia, South Africa) or
a high variance in elevations, e.g., Himalaya, Andes and the
Rocky Mountains. These are expected to have a high sensi-
tivity to parameter changes as the multiplier of Eswb pro- 90

duces the highest shifts in regions with high elevationthat

:
.
:::::
Large

:::::::
changes

::
in
:::::
Eswb:might cause a switch from gain-

ing to losing conditions and vice versa (discussed in Sect.
3.2.2). Additionally, a change in R directly influences the
conductance term Criv that might also be changed by a mul- 95

tiplier. These combinations may yield conditions that are ex-
ceptionally challenging for the numerical solver.

:::::::
Switches

:::::::
between

:::
the

:::
two

:::::::::
conditions

:::::::::
constitute

:
a
:::::::::::
non-linearity

::
in

:::
the

:::::::
equation

::::::
which

:::::
might

::::::
require

::
a
:::::::
smaller

::::::::
temporal

:::::::
step-size

::
to

::
be

::::::
solved.

:::
In

:
a
::::::::
nutshell,

::
if

::
an

:::::::
iteration

:::::
leads

::
to

::
a
::::::
gaining 100

::::::::
condition

:::
and

::::
the

::::
next

:::
to

::
a
::::::
losing

:::::::::
condition,

:::
the

::::::
switch

::::::
renders

:::
the

::::::::::::
approximated

:::::
heads

::
of

::::
the

::::::::
preceding

::::::::
iterations

:::::
invalid

:::
as

:::
the

::::::::
equation

:::::::
changed.

:::
In

:::
the

:::::
worst

::::
case

::::
this

:::
can

:::
lead

::
to

:::
an

::::::
infinite

::::::
switch

:::::::
between

:::
the

:::
two

:::::::::
conditions

::::::
without

::::::
finding

:::
the

::::::
correct

:::::::
solution.

:
105
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Figure 4. Absolute coefficient of variation (σ(h)µ(|h|)−1) [%] of
simulated h per cell over all Monte Carlo realizations. Yellow indi-
cates that h results changed very little, white to gray values indicate
a growing difference in model results, and red values indicate a very
high variation of h over all model realizations.

Figure 5. Uncertainty in h caused by variability in geologic struc-
ture (dominant in blue to light blue) in relation to uncertainty in h
caused by variability in parameters based on Monte Carlo simula-
tions (dominant in brown to green) calculated as |h1−h2|

IQR(hmc)
where

h1/2 is the simulated head based on GLHMYPS 1.0 and 2.0 and
hmc the simulated head of all Monte Carlo experiments.

Areas with a high variance in results will also produce
wide confidence intervals and are highlighted in Fig. A2.

Figure 5 relates the uncertainty in h, due to a change from
GLHYMPS 1.0 to 2.0 to the interquartile range of h of all
Monte Carlo realizations, thus uncertainty in h due to param-5

eter variation. Parameter variation is the dominant cause for
h variability in mountainous regions, whereas the change in
geologic data has a dominant impact in northern latitudes and
the upper Amazon. In Australia, central Africa, and northern
India the impact of increasingK is almost as high as the vari-10

ability caused by the variation of parameters in the Monte
Carlo experiments. This suggests that a reduced uncertainty
in K in these regions will improve the model results.

3.2.2 Variability of losing/gaining surface water bodies

Surface water bodies that provide focused, indirect ground-15

water recharge to the aquifer system are an impor-
tant recharge mechanism to support ecosystems alongside

Figure 6. Percentage of all Monte Carlo realizations that resulted in
a losing surface water body in a specific cell.

streams (Stonestrom, 2007). Especially in arid regions, they
are important for agriculture and industrial development.

Losing or gaining surface water bodies are determined by 20

h in relation toEswb.:::::
When

::
h

::::
drops

::::::
below

::::
Eswb:::::

water
::
is

:::
lost

::
to

:::
the

::::::
aquifer

::::
(Eq.

:::
(5))

:
Figure 6 shows for each grid cell the

percentage of the model runs in which the the surface water
bodies in the cell lose water to the groundwater. Regions with
a higher percentage are regions that are in losing conditions 25

independent
:::::::::::
independently

:
of the applied parameter changes.

Areas with the highest deviation in h (Fig. 4), thus the low-
est agreement over all model realizations, are similar to the
regions where some parameter combinations lead to losing
surface water bodies, while others lead to gaining surface 30

water bodies (Fig. 6). Overall arid and mountainous regions
show high percentages of Monte Carlo realizations with los-
ing conditions, with dominantly 20-50 % of the realizations
resulting in losing surface water bodies. h in these regions
falls below Eswb either due to low recharge or high gradi- 35

ents. Surface water-groundwater interaction in these regions
should be more closely investigated to improve model per-
formance. The Sahara region stands out with large areas that
contain losing surface water bodies in almost all model re-
alizations. Values close to 100 % are furthermore reached in 40

the Great-Lakes, the Colorado Delta, the Andes, the Namib
Desert, along the coast of Somalia, the Aral lake, lakes and
wetlands in northern Siberia, and partially in Australian wet-
lands. Wetlands in Australia and the Sahara are likely to be
overestimated in size in the context of a steady-state model. 45

3.2.3 Parameter sensitivities as determined by the
method of Morris

The global-scale sensitivity of h and Qswb is summarized
in Table 3 that lists the percentage fractions of all cells for
which a certain parameter has a certain rank regarding sensi- 50

tivity and parameter interaction.
Overall, Eswb and R are the most important parameters

for both model outputs over all ranks, followed by K. Qswb
is more sensitive to R than h, whereas h is more sensitive
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Table 3. Percentage fractions of simulated cells with parameter sen-
sitivity µ∗ and parameter interaction σ per model output h and
Qswb, where the respective output is most sensitive to the listed
parameter. For example h is the most sensitive to Eswb (Rank 1) in
57.2% of all grid cells, while K is the second most important pa-
rameter for h in 24.2% of those cells. Fractions are shown for the
first three ranks.

% of cells
Rank 1 Rank 2 Rank 3

Para. Output µ∗ σ µ∗ σ µ∗ σ

K
h 24.2 18.8 21.7 12.9 7.1 4.3
Qswb 18.4 15.4 21.1 7.3 8.8 4.7

Eswb
h 57.2 46.3 14.8 19.9 13.4 18.9
Qswb 18.5 14.3 11.2 27.7 36.0 34.4

Clak
h 1.0 0.5 3.9 2.4 4.3 2.5
Qswb 0.5 0.6 2.2 0.9 2 0.9

Cwet
h 1.4 0.5 3.4 1.4 5.3 4.5
Qswb 0.5 0.8 3.6 2.1 4.2 2.8

Cgl.wet
h 0.9 0.9 1.8 10.2 8.4 8.1
Qswb 0.4 0.8 2.3 15.2 9.4 7.8

Criv
h 2.0 28.0 32.8 29.3 28.7 18.1
Qswb 1.4 62.6 47.8 16.2 28.8 10.0

R
h 13.4 4.1 22.7 23.6 33.8 43.2
Qswb 59.8 5.1 11.3 30.5 10.7 39.2

Coc
h 1.3 1.0 0.3 0.2 0.5 0.4
Qswb 0.5 0.4 0.5 0.2 0.2 0.2

Percentage of cells with non-overlapping CIs (see App. 1 and Sect. 3.2.6) µ∗: 11.8 %
(h) and 13.3 % (Qswb).

to Eswb. Criv appears only dominant in the second and third
rank for both model outputs. This means that for the majority
of cells a change in Eswb and R, rather than Criv dominates
changes in Qswb and h. K and R directly influence the cal-
culation of Criv and thus show a higher sensitivity.5

The standard deviation of EEs (σi) is an aggregated mea-
sure of the intensity of the interactions of the ith parameter
with the other parameters, representing the degree of non-
linearity in the model response to changes in the ith param-
eter Morris (1991). A high parameter interaction indicates10

that the total output variance rises due to the interaction of
the parameter with other parameters.
Eswb shows higher interactions for h than for Qswb. Criv

shows a high interaction on the first rank even if it is not
the dominant effect. This interaction is likely due to changes15

andK andR that directly influence the computation of Criv .
Both model outputs are sensitive to changes in R but show a
relatively low degree of interaction for the first rank. A higher
percentage of cells with an increased interaction of R is only
visible in the second and third rank.20

Lakes and wetlands show low sensitivity and interaction
in relation to total number of cells in Table 3 because they
only exist in a certain percentage of cells. Table 4 shows the
percentage fractions relative for cells with more than 25 %
coverage of a lakes, global wetlands, and/or wetlands. The25

dominant parameter (by percentage) for all cells with respec-
tive surface water body is always Eswb for h (in 79.2 % of
the lakes and in (79.9 %) 66.3 % of the (global)wetlands) and
R (∼54-77 % of all cells) for Qswb. For the second rank the
conductance of the surface water body Clak,wet,gl.wet dom- 30

inated h, Criv for Qswb. Thus for lakes and wetlands Eswb
and R are more relevant to h and Qswb than the conductance
of these surface water bodies.

3.2.4 Maps of global sensitivity

To show the spatial distribution of the parameters that affect 35

h and Qswb the most, ranked parameters were plotted for
every cell in Fig. 7. The top of Fig. 7 represents the most
sensitive parameters in terms of h (left) and Qswb (right).
Areas that should be judged with caution due to overlapping
CIs are shown in Fig. A2. 40

Eswb stands out for mountainous regions and regions with
low recharge aligned with regions in Fig. 4 and Fig. A4 with
spots of Criv . Eswb is dominant for Qswb e.g. Rocky Moun-
tains, Andes, Hijaz Mountains in Saudi Arabia and the Hi-
malaya. R stands out in regions in the Tropical Convergence 45

Zone with large R and in northern latitudes for Qswb. K
seems to be equally spatially distributed for h as well as for
Qswb. It is most important for h in Australia, the northern
Sahara, the Emirates, and across Europe. There seems to be
no correlation between the initial K spatial distribution and 50

a highly ranked K sensitivity. Areas with a dominant K are
possibly influenced by a high interaction with other model
components (K shows a high interaction Table 3 that is also
reflected spatially in Sect. 3.2.5). Eswb stands out in the Sa-
hara where likely overestimated wetland extents (Reinecke 55

et al., 2018) have a high impact on h.Qswb seems to be more
robust to show the effects in the highly variable regions and
indicates the assumption thatEswb is also mainly responsible
for the h variations observed in Sect. 3.2.1.

The second rank (second row in Fig. 7) shows values that 60

are not as important as the top row but dominant over all
other parameters. In the highly variable regions K and for
parts of the HimalayaR are dominant in the second rank. The
Cwet appears as dominant parameter in areas with large wet-
lands with a bigger impact onQswb results than on h. Clak is 65

clearly visible in parts of Nepal and along the Brahmaputra.
In the Tropical Convergence Zone Criv and K dominate for
Qswb, whereas results for h show a mix of Cgl.wet Cwet and
Criv.

Zooming in on Europe (Fig. 8) for h, as an example, shows 70

a similar trend to the global picture that R and K have the
highest impact on h along with Eswb. Eswb is dominant in
mountainous regions like the Alps and the Apennines as well
in regions with lots of surface water bodies e.g. southern part
of Sweden in the area of lake Vättern and Vänern and in the 75

Finnish Lakeland. R appears dominant in east Italy in the
lagoon of Venice and Marano, the Netherlands, and the wet-
lands in southwestern France. Almost invisible in the global
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Table 4. Percentage fractions of the most frequent parameter for rank 1 and 2 of all cells with with more than 25 % coverage of a lakes,
global wetland, or wetland.

µ ∗ (h) µ ∗ (Qswb)

% R. 1=Eswb % R. 2=Clak,wet,gl.wet % R. 1=R % R. 2=Criv

Lakes 79.2 64.6 54.2 38.8
Wetlands 66.3 47.3 77.2 46.9
Gl. Wetlands 79.9 56.4 66.3 131.7

1 Criv=31.7 %, Cgl.wet=40.6 %.
Percentage of second most frequent parameter not shown. Percentage in relation to cells with lakes, global wetland,
or wetland > 25 %. Percentage-wise R. 1(µ ∗ (h)) was always followed byR except for global wetlands were the
second most frequent R. 1 was Cgl.wet. R. 1(µ ∗ (Qswb)) was followed percentage-wise byEswb except for
local wetlands withK, R. 2(µ ∗ (Qswb)) by Clak,wet,gl.wet except for global wetlands with Criv .

Figure 7. Ranking of parameter sensitivity of h (left) and Qswb (right). Parameters are ranked from top to
::

The
:::::
upper

::::
maps

:::::
show

::
the

::::
first

::::
rank,

::
the

::::::
middle

::
the

::::::
second,

:::
and

:::
the bottom

::
the

:::
last

::::
rank by µ∗ values.

picture is Coc, a dominant parameter for most cells that have
the ocean as boundary condition (only observable for h). Pre-
dominantly Criv follows Eswb as second most important pa-
rameter. Only visible in the second rank are the wetlands e.g.
in west Scotland.5

3.2.5 Maps of global parameter interaction

Similar to the spatial parameter sensitivities Fig. 9 shows the
parameter interactions for h and Qswb. Parallel to Fig. 7, the
first row of Fig. 9 represents the most interactive parameters
in terms of h change (left) and Qswb (right). The highest in-10

teraction with other parameters can be observed for Eswb for
regions with high h variability similar to Fig. 7. Criv shows

a high interaction in regions sensitive to R (compare Fig. 7)
and is more visible for Qswb.
K regions in the second rank are similar to where K al- 15

ready showed a high sensitivity for h (compare Fig. 7). In
the Himalaya R and Criv show a large spatial pattern. For
Qswb, Cgl.wet is clearly visible where Criv was most inter-
active before.

3.2.6 Sensitivity per GHRU 20

Average sensitivities and parameter interactions for each of
the six GHRUs are shown in Fig. 10 (a). A dominant average
per GHRU does not imply a rank 1 in each cell but rather
provides an indication of its average importance per GHRU.
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Figure 8. Zoom in of Europe of Fig. 7. Ranking of parameter sensitivity of h (left: rank 1, right: rank 2).

Figure 9. Ranking of parameters interaction (σ of EE is an indicator for parameter interaction) based on h (left) andQswb (right). Parameters
are ranked from top to bottom by Σ values.

Each GHRU is described by the notation in Table 2. The
shown average sensitivities and interactions are normalized
to [0,1] because the calculated µ∗ and σ present no absolute
measure of sensitivity. Mean values of µ∗ and σ that are very
close to zero are not shown in Fig. 10.5

The values shown in Fig. 10 (a) should be judged with
caution as they also include the regions Fig. A2 shown to be
unreliable.

::::::::
Reliability

::::::
means

:::
that

:::
due

::
to
::::::::::
overlapping

:::
CIs

::::
(any

::::::::::
overlapping)

:::
the

:::::::
ranking

::
of

::::
the

:::::::::
parameters

:::::
can’t

::
be

::::::
clearly

:::::::::
determined

::::::::
(compare

::::
Fig.

::
A2

::::
and

::::::::
additional

::::::::::
explanation

:::
Fig. 10

::::
A1).

To judge the reliability of the outcomes per GHRU Table 2
shows the percentage of reliable results for h and Qswb for
each GHRU, where reliable results exclude over 80% of all
sensitivity valuesbecause their CI overlapped (compare Fig. 15

A2 and explanation Fig. A1). .
:

Figure 10 (b) shows only cells with reliable results, based
on their confidence intervals, resulting in 11.8 % of all grid
cells for h and 13.3 % for Qswb. GHRUs in high and very
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high elevations show low reliability concerning h results as
expected (compare Fig. 4). Qswb appears as more robust in
these regions.

Figure 10 (a) shows a similar picture to the two global
maps (Fig. 7, 9). All GHRUs show a linear correlation of sen-5

sitivity and degree of interaction. The GHRU with average
elevation, average recharge, and high K (GHRU 1) shows
higher average response in Qswb than h. h as

::
is most sensi-

tive to Criv, and less sensitive to the other parameters. Qswb
is clearly most sensitive to K and Cgl.wet and shows a high10

interaction in this GHRU. Lower-lying regions with average
K and R (GHRU 2) show high sensitivity of h only to Eswb
with a high interaction while Qswb is affected in decreasing
order by Cgl.wet andK. Results for h sensitivity in GHRU 3,
with very high elevations, average K and low R, should be15

judged with caution because only a very low fraction is based
on results with non-overlapping CIs (Table 2). Compared to
other GHRUs, 3 shows rather clustered sensitivities and pa-
rameter interactions. h is most sensitive to Eswb and R and
Qswb to Clak, K, and Cwet. GHRU 4, which differs from20

GHRU 3 by its high but not very high land surface elevation,
shows Eswb, K, and R as clearly most dominant and inter-
active parameter for Qswb, followed by Cwet. Similar Qswb
is most sensitive to Eswb and K. In low-lying and rather flat
regions with high groundwater recharge (GHRU 5), sensitiv-25

ities of h are close to zero except for K possibly because
changes in h are to small in flat regions (compare Fig. 4)
due to small h gradients. Qswb is most sensitive to Eswb and
Cgl.wet. GHRU 6 is relatively small and like GHRU 5 only
occurs in the tropical zone (Fig. 3 (a)). In this GHRU, which30

differs from GHRU 5 only by K being high instead of av-
erage, the dominant parameters of Qswb are similar to other
GHRUs where Eswb is clearly the most dominant followed
by R and K. h shows a response to wetlands but again like
in 5 a very low response to Eswb.35

Taking into account only the reliable regions changes the
perception in Fig. 10 (b). GHRU 1 shows rather similar sen-
sitivities and parameter interactions as compared to other
GHRUs. h is most sensitive toEswb, and only somewhat less
sensitive to Criv and Cwet. Qswb is clearly most sensitive40

to Criv and shows a high interaction in this GHRU. GHRU
2 shows high sensitivity of h only to Eswb with a high in-
teraction while Qswb is equally affected by K, Eswb and R.
Results for h sensitivity in GHRU 3 are not very represen-
tative for the whole GHRU as only a very small fraction of45

cells shows reliable results (Table 2). Like in GHRU 2, Qswb
is equally affected by by K, Eswb and R. GHRU 4 shows
Eswb as clearly most dominant and interactive parameter for
h, followed by K and Cwet. For GHRU 5, sensitivities of h
could not be determined reliably possibly because changes50

in h are to small in flat regions (compare Fig. 4) due to small
h gradients. Qswb is most sensitive to R (as rivers are gain-
ing rivers that need to drain groundwater recharge) followed
by K. In GHRU 6 the dominant parameters of Qswb are the

same as for GHRU 5 (except for Eswb) while h is most sen- 55

sitive to Clak.

4 Discussion

This study presents a novel spatially distributed sensitivity
analysis for a high-resolution global gradient-based ground-
water model encompassing 4.3 million grid cells. While 60

these maps are challenging to interpret, they yield new ways
of understanding model behavior and can help to focus
efforts in collecting observation data for specific regionsfor
future calibration.

::::::::
behaviour

:::::
based

::
on

::::::
spatial

:::::::::
differences

:::
and

:::
help

:::
to

::::::
prepare

:::::::::
calibration

::::::
efforts

:::
by

:::::::::
identifying

:::::::::
parameters 65

:::
that

:::
are

:::::
most

:::::::::
influential

:::
in

:::::::
specific

:::::::
regions.

:::::::::::
Furthermore,

:::
they

::::::
guide

:::
the

::::::
future

:::::::::::
development

:::
of

:::
the

::::::
model

::::
and

:::
the

:::::::
intended

::::::::
coupling

::::::
efforts

::
of

:::
the

:::::::::::
groundwater

::::::
model

::
to

:::
the

::::::::::
hydrological

::::::
model.

::::::::::
Especially,

:::
the

:::::::::
sensitivity

::
of

:::::
Qswb:::

and

::
the

::::::::::
importance

::
of
::::::
Eswb,:::::

which
::::

are
:::
the

:::
two

::::::
major

:::::::
coupling 70

::::::::::
components,

:::
are

::
of

:::::::
interest.

:

However, the large number of grid cells with either

:::::::::
statistically

:
zero sensitivity values

:::::::::::
(overlapping

::
CI

::::
with

::::
zero)

or unreliable results limit the relevance and applicability of
the study results. The study suggests that the highly non- 75

linear and conceptual approach to the surface water body
conductance (in particular the sudden change of conductance
between gaining and losing rivers) needs to be revised as
it may affect the stability of transient model results. Addi-
tionally the results suggest that elevation of the water table 80

of surface water bodies is a promising calibration parameter
alongside with hydraulic conductivity.

The presented results need to be considered against the
backdrop of the high h variability of the Monte Carlo ex-
periments (Sect. 3.2.1). Some of these simulations cannot be 85

considered as a valid result for a h distribution. This is due
to multiple model challenges: (1) the evaluated model is a
numerical model and thus behaves differently

::::::::::
approximates

:
a
::::::::::
differential

:::::::
equation

::::
and

::::
can

:::::
show

:::::::::
non-linear

::::::::
behaviour

for different parameterizations, (2) the equations used for 90

rivers present a non-linear model component (switch be-
tween equations for gaining and losing conditions as well
as relation to K and R), (3) the convergence criterion for
the steady-state solution is solely based on a vector norm
of residuals

:::::
(metric

:::
of

:::::::
changes

:::
of

:::
the

:::::::
solution

::::::
inside

:::
the 95

::::::::
conjugate

:::::::
gradient

:::::::::
approach)

:
and maximum h change be-

tween iterations and do not contain an automated check for
a reasonable mass balance. On the other hand, it is chal-
lenging to include a validation mechanism in the presented
analysis to alleviate these problems while maintaining a rea- 100

sonable model runtime (as a stricter convergence criterion
will most likely increase the number of necessary iterations)
and/or number of necessary model runs. It is questionable
whether results based on different convergence criteria can
be compared. This would necessitate including the numeric 105

stability in the sensitivity analysis as well.
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Figure 10. Normalized average sensitivity and parameter interaction per GHRU for h and Qswb (a). If a parameter is not present the mean
sensitivity for that GHRU was close to zero

:::::::::
(overlapping

::
CI

::::
with

::::
zero). Does not include ocean parameter sensitivity. Mean characteristics,

their symbols for each GHRU, and the reliability of the sensitivity measure (only µ∗ not σ) are shown in Table 2. (b) Only reliable results
(after removing overlapping CI).

::::::::
However,

:::
the

:::::
results

::::
help

::
to

::::::
answer

:::
the

:::::::
research

::::::::
questions

:
at
::::::

hand.
::::::
While

::::::::::
overlapping

::::
CIs

::::
blur

::::
the

:::::::
ranking

:::
of

:::
the

:::::::::
parameters

::
in

:::::
some

:::::::
regions,

::::
they

::::
still

:::::::
provide

::::::::
evidence

::
on

::::
what

:::::::::
parameters

::::
the

:::::::::
calibration

::::::
should

:::::
focus

::::
and

::::
how

:::
the

:::::::::
importance

::
of

:::::::::
parameters

:::::
varies

:::
per

::::::
region.

::::
The

::::::::
sensitivity

::
of5

::::
Qswb::

to
::::::::::

parameters,
:::::::::
especially

:::::
Eswb,::::

will
::::
help

::
to

:::::
guide

:::
the

:::::
future

:::::
model

:::::::::::
development

::::
and

:::::::
coupling

:::
to

:::
the

::::::::::
hydrological

::::::
model.

:::
In

::::::::
general,

::::
the

::::::::
analysis

::::::
helped

:::
to

::::::::
identify

:::
the

:::::::
elevation

:::
of

:::::::
surface

:::::
water

:::::::
bodies

:::
as

::
a

:::::
focus

:::
for

::::::
future

:::::::
research.

:
10

Around 30 % of all µ∗ values had a confidence interval
that was larger than 10 % of the µ∗ value. This suggests
that even more model runs are required and that large ex-
tents of the model experienced numerically unstable results

as the spatial distribution of head variance and large confi- 15

dence intervals overlap.
The selection of parameter ranges can influence the results

of a sensitivity analysis significantly (Pianosi et al., 2016).
Even parameters that are suspected of not being sensitive can
show highly nonlinear behavior in certain parts of the pa- 20

rameter space that are only activated when one expands the
ranges of the parameters. The presented ranges in this study
do not explore the full assumed uncertainty range. Specifi-
cally, the small range of Eswb is likely influencing the out-
come of the parameter rankings. The range was chosen to 25

allow a reasonable number of simulations to converge as the
range of Eswb directly influences the numerical stability of
the model. The presented results, however, do show that the
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model output is highly sensitive to changes in Eswb in most
areas of the globe. The response in mountainous regions can
be attributed to applying Eswb as a multiplier, which has a
higher impact in regions where the initial water body eleva-
tion is high. On the other hand, this is accounting for the fact5

that the uncertainty of Eswb is largest in regions with highly
variable topography per 5’ grid cell.

The only previous sensitivity analysis of a global gradient-
based groundwater model to out knowledge was done by
de Graaf et al. (2015). Based on varying K, aquifer thick-10

ness, and R, the coefficient of variation of the steady-state
hydraulic head was computed (de Graaf et al., 2015, Fig. 5).
From that analysis it was determined that K has the highest
impact and aquifer thickness the lowest. It is not clear how
the coefficient of variation determined these outcomes. The15

relatively low impact of aquifer thickness was observed also
by Reinecke et al. (2018). Therefore, this parameter was not
included in this study. Both de Graaf et al. (2015) and this
study show a high h variance in parts of Australia and the
Sahara (de Graaf et al., 2015, Fig. 5) possibly due to the low20

initial R. Variations in the mountainous regions, on the other
hand, are not reflected in de Graaf et al. (2015) as their anal-
ysis did not vary Eswb.

Besides the large h variance, which is likely the main
cause for the low percentage of reliable cells, the confidence25

intervals of the sensitivity indices in this experiment suggest
that additional simulations are necessary to determine more
reliable results. Additionally, the small parameter ranges, re-
quired for stable model runs, influenced the overall outcome
and might be a reason for cells with inconclusive results.30

For cells with lakes and wetlands, Eswb dominates over
the variations in conductance for h (Table 4), confirming the
importance in determining the surface water body elevation.
For Qswb, on the other hand, R is most influential in these
cells even though it does not affect the conductance equation35

for these surface water bodies. Apparently, available recharge
is driving the interaction more than it influences changes in
head. In regions with high recharge (GHRU 5) Qswb was
more robust to parameter changes than h. This is possibly
due to the generally lower response in Qswb to changes in40

Eswb, which can be explained by the constant flow for losing
surface water bodies (incl. rivers) as soon as h drops below
Eswb. Thus changes is Eswb do not affect Qswb afterwards
(as long as the surface water body remains in losing condi-
tions). Both model outcomes show a high sensitivity to R45

while the interaction of R is only visible at the 3rd rank sug-
gesting that if R changes other parameter changes do not in-
fluence the model response further.

Separating the complex global domain into a selected
number of GHRUs enables a sensitivity analysis in accor-50

dance with computational constraints (e.g. maximum num-
ber of core hours). It alleviates the drawbacks of global-scale
multipliers while keeping a reasonable number of total simu-
lations. The presented decomposition based on three param-
eters Eswb, K, and R was guided by the high sensitivity of55

model output to these parameters. Other factors like lithology
and surface water body characteristics should be investigated
as additional characteristics for GHRUs.

5 Conclusions

For the first time, spatially distributed sensitivities of the 60

global steady-state distribution of hydraulic head and flows
between the groundwater and the surface water bodies were
calculated and presented. We found the Morris sensitivity
analysis method can yield insights for computationally chal-
lenging (concerning computation time and numerical diffi- 65

culties) models with reasonable computational demand. This
study applied a novel approach for domain decomposition
into GHRUs. Applying parameter multipliers simultaneously
to all grid cells within each of the six GHRUs allowed a more
meaningful sensitivity calculation, than it would be possible 70

if the parameters would have varied simultaneously in all
grid cells, while maintaining a feasible the number of sim-
ulations.

Based on only a small fraction of grid cells for which
parameters could be ranked reliably according to their im- 75

portance for simulated model output, steady-state hydraulic
heads (h) were found to be comparably affected by hydraulic
conductivity (K), groundwater recharge (R) and the eleva-
tion of the water table of surface water bodies (Eswb). Rank-
ings for individual grid cells varies, but globally none of 80

the three dominates with respect to h. The simulated flows
between groundwater and surface water bodies (Qswb) are
clearly most sensitive to R. This is due to the model param-
eterization of river conductance that is computed as a func-
tion of R, assuming under steady-state conditions, ground- 85

water discharge to rivers should tend to increase with in-
creasing R (Eq. (5)). The results indicate that changes in
R between timesteps for a fully coupled transient model
could pose a challenge to the model convergence and that the
equations might need to be reconsidered for a fully coupled 90

model. In general the uncertainty due to the parameteriza-
tion of groundwater-surface water exchange flows (Eswb and
Criv,gl.wet,wet,lak) needs to be further investigated as they
have a high impact on h distribution and Qswb.

In high mountainous regions (Rocky Mountains, Andes, 95

Ethiopian Highlands, Arabian Peninsula, Himalaya) and re-
gions with low recharge (Sahara, southern Africa) the com-
puted h showed an unreasonably high variance due to the
numeric instability of the simulations in these areas. In case
of high elevations and thus large variations in Eswb or in 100

case of low groundwater recharge, it is not possible to solve
steady-state groundwater flow equations with arbitrary pa-
rameter combinations and a constant convergence parameter.
Qswb was found to somewhat be more robust than h in these
regions. These results suggest that the parameterization of 105

Eswb needs to be reconsidered and is a likely parameter for
future calibration.
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The lack of reliable data at the global scale, in particular
hydraulic conductivity data with high horizontal and vertical
resolution, hinders the development of global groundwater
models. A simple sensitivity analysis on the impact of small
changes to an existing global hydraulic conductivity dataset5

(GLHYMPS 1.0 (Gleeson et al., 2014) to 2.0 (Huscroft et al.,
2018)) showed that knowledge about the distribution of K is
pivotal for the simulation of h as even slight changes in K
may change model results by up to 100 m.

The presented study results refer to the uncoupled steady-10

state groundwater model G3M. As G3M is currently being
integrated into the global hydrological model WaterGAP, fu-
ture work will extend this sensitivity analysis to fully coupled
transient simulations.

1 Appendix15

Results of the method of Morris need to be contemplated in a
ranking based scheme that relies on metrics that summarize
the calculated EEs. Figure A1 shows the conceptual issues
that are entailed with this ranking approach. The absolute
mean (µ∗) of all EEs of parameter 1 (P1) might be bigger20

than µ∗ of P2 but as their CIs are overlapping a clear ranking
is not possible. On the other hand it is evident that P1 and P2
are clearly more sensitive than P3. Illustration of derivation
of presented metrics.

::
An

:::::::::::
overlapping

:::::::
suggests

::::
that

::::
even

::
if

::
the

:::::
mu∗

:::::
values

:::
are

::::::::
different

:
a
:::::::
ranking

::::::
should

::
be

:::::::::
considered25

::::
with

::::
care

::
as

:::
the

:::
two

::::::::::
parameters

:::::
could

::
be

:::::::
equally

::::::::
important

::
or

::
in

::::
some

:::::::
regions

:::::
inside

::::
one

::::::
GRHU

::::
their

:::::::::
importance

:::::
could

::
be

:::
the

:::::
other

::::
way

::::::
around.

::::
But

::::
even

::
if

::::
they

:::::::
overlap,

:::
the

::::
mu∗

:::::::
provides

::
a

:::::::
valuable

::::::::
measure

::
of

::::
the

::::::
overall

::::::::::
importance

::
of

::
the

::::::::::
parameters

::::
also

::
in

:::::::::
comparison

:::::
with

:::::
much

:::
less

::::::::
important30

:::::::::
parameters.

:

::::::::::
Additionally,

:::::
not

:::::
only

::::
the

::::::::::::
overlapping

:::::::
should

:::
be

:::::::::
considered

:::
but

:::::
also

::::
the

::::
size

:::
of

::::
the

:::
CI

:::
in

::::::::::
comparison

::
to

:::
the

::::::
mu∗.

:::
It

::
is
:::

a
::::::

useful
::::::::

indicator
::::

on
::::::::

whether
:::
the

:::::::
sampling

:::
of

:::
the

:::::::::
parameter

::::::
space

::::
was

::
to

:::::
small

::::
and

:::::
more35

:::::::::
simulations

::::
are

::::::::
required

::
to

:::::
gain

::
a
::::::
clearer

::::::::
picture.

::::
15%

:
is
:::

an
::::::::

arbitrary
::::::

value
::::
that

:::
we

::::::::::
considered

:::
an

::::::::::
appropriate

::::::::
boundary.

:::::
Other

::::::
studies

::::
used

:::::
10%

::::::::::::::::::::
(Herman et al., 2013a) or

::::
3.5%

:::::::::::::::::::::::
(Vanrolleghem et al., 2015).

:

Figure A2 shows regions where the applied sampling was40

sufficient (CIs where smaller than 15% of the calculated µ∗
of the first rank) and regions where more simulations, or a
more sophisticated approach to ensure numerical stability, is
required.
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Figure A1.
::::::::
Illustration

:::
of

::::::::
derivation

::
of

::::::::
presented

::::::
metrics.

::::
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:::::
circles

::::
show

:::
the

:::
two

:::::
criteria

::::
used

::
to

::::
judge

:::
the

:::::
quality

::
of

:::
the

:::::
results.
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